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Abstract

The meniscus plays a crucial role in the biomechanics of the knee, serving as load
transmitter and reducing friction between joints. Understanding the biomechanics of the
meniscus is essential to effective treatment of knee injuries and degenerative condi-
tions. This study aims to elucidate the relationship between the porous microstructure of
the human knee meniscus and its biomechanical function, specifically focusing on fluid
dynamics at the pore scale. Here, we use two central-meniscus samples extracted from
a human knee and reconstruct high-resolution geometry models from u-CT scans. By
eroding the channels of the original meniscus geometry, we simulate perturbed
microstructures with varying porosities (53% to 80%), whilst preserving the connectivity of
the porous structure. We numerically solve for the fluid dynamics in the meniscus using
a mesh-free particle method, considering various inlet pressure conditions, character-
ising the fluid flow within the microstructures. The results of the original microstructure
associated with a physiological dynamic viscosity of synovial fluid are in accordance with
biophysical experiments on menisci. Furthermore, the eroded microstructure with a 33%
increase in porosity exhibited a remarkable 120% increase in flow velocity. This empha-
sises the sensitivity of meniscus physiology to the porous microstructure, showing that
detailed computational models can explore physiological and pathological conditions,
advancing further knee biomechanics research.
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Introduction

The biomechanical functions of menisci in the knee include load transmission, friction reduc-
tion between joints [1-3], and possibly shock absorption. The shock-absorbing function of
the meniscus, while commonly cited, is however a subject of ongoing debate [4]. Prior to
1980, menisci were often considered superfluous and were frequently removed after injury,
leading to negative consequences such as arthrosis in patients [3]. The understanding of
meniscus function has improved significantly, with multiple aspects believed to contribute to
their energy dissipation ability, including the geometry and the biochemical composition of
the microstructure [1-3,5-10].

In this study, menisci are considered as a porous medium. This porous medium contains
a structural solid scaffold mainly composed of type I collagen (75%), large hydrophilic
molecules termed proteoglycans (6%) [5]. This solid scaffold is saturated by synovial fluid,
the dynamic viscosity of which depends on the meniscus’ health and its physiological
conditions [11].

The main component of the structural scaffold, the collagen fibers which ensure its
mechanical integrity [12], contributes to energy dissipation by its structure ensuring a
circumferential tensile stress [6,7]. The chemical composition of the structural scaffold, par-
ticularly the presence of proteoglycans, plays a crucial role in defining the shock-absorption
properties [5]. Proteoglycan are large hydrophilic molecules that ensure tissue elasticity under
small loads [5]. Under larger loads (>100kPa), the interstitial fluid starts to flow, causing
menisci to behave as a viscous porous medium [8].

We only found few quantitative studies that used numerical simulations to relate the
mechanical and structural properties of the meniscus [13-15]. These studies have provided
insights into the viscoelastic properties and the anisotropy of permeability due to collagen
fiber orientation in the meniscus [15,16].

Advances in computing power and microscale characterization techniques, such as
micro-computed tomography (¢-CT), magnetic resonance velocimetry (MRV), and X-ray
microtomography (XMT), have enabled the study of fluid flow and transport processes at the
microscopic scale in porous media [17-20]. These techniques allow accurate reconstruction
of the pore structure of porous media in three dimensions, which can then be used as input
for computational fluid dynamics (CFD) simulations at the pore scale [21,22]. This study
specifically aims to understand how microstructure and fluid viscosity affect meniscus
biomechanics. Here, we use these computational advances to disentangle the contributions
of chemical, structural, and geometric factors to the energy dissipation capability of human
menisci, building on existing literature and research [1-3,5-10].

Here we use two central-meniscus samples extracted from a human knee imaged by
high-resolution u-CT (6.25 um resolution). For these samples, we reconstructed a 3D com-
putational geometry model using an implicit immersed boundary technique. We then solve
an alternative formulation of the incompressible Navier-Stokes equations (the Entropically
Damped Artificial Compressibility equations) inside the resulting microstructures, using
different inlet pressure boundary conditions representative of different loading scenarios.

We find that by surpassing a certain pressure threshold, the flow in the meniscus qualita-
tively changes from a slow creeping flow to a pressure-dominated laminar flow. The existence
of these two qualitatively different flow regimes is typically associated with healthy menisci.
Increasing the porosity of the meniscus microstructure enhances hydration, but excessive
porosity leads to pathological responses, interfering with joint function, affecting tissue
nutrient exchange, and leading to joint degeneration [23-27]. In the context of osteoarthritis,
which leads to a degenerated meniscus, a decrease in collagen content alongside an increase in
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water content were observed both in histology and imaging [28]. Translated to a poromechan-
ical framework, as modelled here, this leads to a thinning of the solid scaffold and therefore
an increase of the porosity. Additionally, osteoarthritis provokes a decrease in synovial fluid
viscosity [29]. We elucidate the mechanism behind this by eroding the meniscus geometry
to construct microstructures ranging from a porosity of 53% to a porosity of 80% at constant
connectivity of the pore structure. Of course, an artificially increased porosity as high as 80%
is not physiological. However, the purpose of dilating the microstructure to such limits is to
extrapolate the impact of the meniscus’ microstructural characteristics on its macroscopic
properties. We find that eroded geometries: (i) no longer exhibit the two flow regimes and (ii)
display a non-linear relationship between porosity and velocity magnitude. For instance, a
30% increase in porosity leads to a 120% increase in velocity magnitude.

Taken together, the fully resolved pore-scale computer models of meniscus geometry
and direct numerical fluid flow simulations within them allow us to accurately capture the
geometry-mechanics trade-off in menisci. On the one hand, fluid flow in a meniscus should
be sufficiently slow and dampened for it to exhibit shock absorbing properties. On the other
hand, though, some flow must exist in order to transport metabolites and nutrients in and out
of the tissue. This requires a fine-tuned balance between the geometric microstructure of the
meniscus and the viscosity of the synovial fluid. Using the present simulations, we were able
to understand this balance mechanistically and predict impact of meniscus microstructure on
mechanical function under fully controlled conditions.

Materials and methods
Entropically Damped Artificial Compressibility (EDAC)

In the realm of simulating the incompressible Navier-Stokes equations, Clausen [30] intro-
duced the EDAC method. This method paved the way for the explicit simulation of these
equations. Within the EDAC formulation, a new equation governing the evolution of pres-
sure p is introduced. This equation is derived from the thermodynamics of the system while
maintaining a fixed density p. Remarkably, the EDAC method exhibits convergence to

the incompressible Navier-Stokes equations when operating at low Mach numbers, i.e., at
flow velocities much smaller than the speed of sound, and it maintains consistency both at
low and high Reynolds numbers. Consequently, it becomes feasible to explicitly solve both
the momentum equation and the pressure evolution equation [31], which are given in the
Eulerian frame of reference as:

du,- abl,' ap afij X
——tu— = - = = (Ui — U(og)i 1
Par Ty, 55 " ax T ewi) W
dp op , Ou; 3%
5, iy —bs Fo 5 2
a dx; P Ox; +Vaxixi @
Qu; Ouj 2 _ Quy
i = _— + — - *61“7 . 3
b #(axj " ox; 3 ]6xk) ®)

This approach involves the implicit penalisation of the computational domain, achieved by
the indicator function y that identifies the areas occupied by the solid geometry denoted as O:

1 if xe€O,
0 otherwise.

x(x)= { (4)
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For conciseness of notation, the equations above are written in Einstein summation
notation. Eq (1) is the momentum equation. In this equation:

o p is the fluid density, representing the mass per unit volume.

% is the time derivative of the velocity component u;, indicating how the velocity changes

over time.
. uj% represents advection, describing how the velocity varies spatially within the fluid.
%
. % is the pressure gradient, the driving force for fluid flow.

0t . . . 1 .
* 5. represents the stress divergence, accounting for viscous forces within the fluid.
]

* U(oq)i is the velocity of the solid body, i.e., the walls of the meniscus.

o 1) =a¢ is the normalized viscous permeability, where ¢ is the porosity of the medium and
is a small parameter, with 0 <¢p < land 0<n <K1.

o u is the dynamic viscosity of the fluid.

o y is the penalization mask function, which enforces boundary conditions and represents
solid regions as defined in Eq (4).

Eq (2) is the pressure evolution equation. There:

. % is the time derivative of pressure, indicating the rate of pressure change over time.

. ”i% is the advection term for pressure, showing how pressure is transported by the fluid
flow.

. —cfpog—z: is the acoustic term, related to the compressibility of the fluid, where c; is the
speed of sound and p, is the reference density.

8%p

-V 6x,-x,-

represents diffusion, allowing pressure to diftuse through the fluid.
Finally, Eq (3) defines the shear stress tensor:

o u is the dynamic viscosity.
Qu; | 94
axj' + ax,»

. %5,73—;”; is the volume change correction, subtracting the isotropic part of the deformation
to maintain consistency with the fluid’s compressibility.

represents the rate of strain tensor, which describes the deformation of the fluid.

The EDAC method converges to the incompressible Navier Stokes equations at low Mach
numbers, and the equations can be solved explicitly in a Lagrangian or Eulerian frame of
reference, please refer to [30].

Discretisation-Corrected Particle Strength Exchange (DC-PSE)

To simulate fluid flow through the meniscus, we use the mesh-free Discretisation-Corrected
Particle Strength Exchange (DC-PSE) method [32]. DC-PSE is a numerical method for
consistently discretising differential operators on Eulerian or Lagrangian particles, which
represent the mathematical collocation points on which the continuous fields are sampled.
DC-PSE is based on the approximation of a sufficiently smooth function f; (X) with a

kernel (),

@) % f@) = [ fme -5, )
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where € is the radius of the kernel, which is defined as:

iHj<remin o joix? g2 [ 2 .2
n(ic):{ Dy e hervise, ©)

0 otherwise,

where the polynomial coefficients a;; are determined from discrete moment conditions evalu-
ated at run-time on the given set of particles [32]. The discrete moment conditions are derived
using Taylor series expansion such that the operators are consistent to a desired order of con-
vergence. We encourage the reader to refer to Ref. [31] for further discussion regarding the
EDAC formulation of the DC-PSE method, where the method is validated with different
benchmarks and a convergence and accuracy studies are provided.

Simulation setup, initial condition and boundaries

The DC-PSE simulations are performed in the Eulerian frame of reference with low Reynolds
number Re < 1. The simulations use DC-PSE operators of convergence order 3, a particle
interaction cutoft radius of 3.1¢, and second-order Adams Bashforth-Moulton adaptive time
integration.

The boundary conditions are chosen according to the literature. At the inflow, we apply
inlet pressure boundary conditions in z directions with a range of values (1.1 bar to 2.5 bar)
based on previous studies that examined synovial fluid pressure under various joint loading
scenarios [6,8,11]. This range allows us to validate two distinct flow regimes: a visco-elastic
creeping flow observed below the critical pressure of approximately 1.7 bar, and a laminar
porous-permeable flow above this threshold. Periodic boundary conditions are applied in the
x and y directions, while outflow conditions are implemented in the z direction. In the litera-
ture, various estimates for the fluid-dynamic viscosity ¢ have been provided [33,34]. Bera et
al. [34] found that there is no established standard for the dynamic viscosity of the synovial
fluid, with a range of values from 0.7 - 107 to 3.5- 10> Pa-s. Meanwhile, Fu et al. [33]
determined that the viscosity of the synovial fluid in the meniscus with periprosthetic joint
infection can be as high as 1.5+ 1072 Pa - s. Galandakova et al. [11] conducted a study to
determine the synovial fluid viscosity in the knee joint using a Vibro viscometer and con-
cluded the median viscosity value for a sample of 22 healthy menisci is 7.3 - 107 Pa - s. We use
this viscosity value as a reference in our study.

The spatial domain is discretised using particles, with (128 X 128 X 256) particles in the x, y,
and z directions, respectively. The DC-PSE solver for EDAC formulation is integrated into the
C++ open-source high-performance computing platform OpenFPM. [35], (see Mathematical
modelling). The C++ code is compiled using gcc 8.3.0 and OpenMPI 3.1.3 on 64-core AMD
EPYC 7742 Processor (64 MB cache, 2.25 GHz) with 512 GB RAM running Debian Linux
11.5.Each simulation time step takes approximately 0.4 seconds of wall-clock time when run
on in parallel on all cores of a 64 -core AMD EPYC 7742 processor.

From sample to computational domain

As previously mentioned, the reference samples in the present study were obtained from
human meniscus donors. A brief description of this procurement is presented to illustrate the
transition from the in vivo state to preservation and observation. In the study by Agustoni
etal. [10], two meniscus samples were extracted, here identified as S1G0 and S2G0, our two
reference samples. To obtain better image contrast, the samples were lyophilized prior to the
u -CT (6.25, um resolution) scans and therefore contained only two phases: solid and void.

It has been previously shown [10] that the specific freeze-drying procedure preserves the
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range of pore sizes compared to the results obtained by Vetri et al. [36] using confocal multi-
photon microscopy. We cannot exclude the existence of an artificial porosity induced by this
experimental procedure, as we acknowledge that no observation technique is without limita-
tions. The u CT scans were then used to generate the 3D volume in the form of the Standard
Triangle Language (STL) format geometry of the meniscus specimens used as input for our
work, Fig 1A. The ex vivo sample S1GO had a diameter of 3.5 mm and a length of 4.6 mm. The
generated STL had 5.68 million vertices and 11.55 million faces. The ex vivo sample S2G0 had
a diameter of 1 mm and a length of 3.13 mm. The resulting STL geometry had 3.55 million
vertices and 7.14 million faces (see From Sample to Computational Domain). The different
sizes of the two samples, with S1G0 having a diameter 3.5 times larger than that of $2GO0, are
due to the natural dimensions of the tissues extracted from the donors.

STL geometries have surfaces that represent the walls of the meniscus, but these surfaces
cannot be used directly in most numerical methods. To overcome this, we use an algorithm
that labels particles with a mask field y (x) [37,38] (or characteristic function) differentiat-
ing fluid or solid phase depending on their position, x, within the STL surface. To study the
mechanical behavior of the meniscus with varying porosity, the original geometries S1G0
and S2GO are taken as a reference, and modified geometries are generated with different
volume fractions while conserving the connectivity of the porous network through a
homogeneous erosion process. This process involves STL-to-voxel conversion, morphologi-
cal erosion of the stack of voxels, voxel-to-STL conversion, and decimation and formatting to
reduce computational cost.

Results

In Fig 1 we outline the main steps of this work. From the previous content in the Introduction
it is evident that there is a clinical need to study the effect of the meniscus wall degradation on
its functionality, thus, demonstrating the pertinence of the present work. Meniscus degener-
ation, however, is a multi-faceted process that encompasses not just geometric alterations to
the microstructure, but also changes in the biochemical composition, material properties, and
structural organisation of the meniscus. Understanding meniscus degeneration will therefore
ultimately require a holistic approach that goes beyond morphological alterations [39,40].

As a first step, we here focus on the effect of microstructure geometry on fluid mechanics

in the meniscus, which our computational model enables us to study in isolation. For this,

we apply a uniform erosion morphological filter with two different characteristic lengths to
S1GO, modifying its porosity to obtain two new “degraded” meniscus geometries (S1G1 and
S1G2) while preserving the connectivity of the porous network, Fig 1(B). The 3D volume of
the three geometries is then represented in the mesh-free computational domain as parti-

cles (point clouds). Due to the complexity of the meniscus geometry, the Brinkman penalisa-
tion technique is applied for implicit representation of the complex boundaries [37], Fig 1(C).
In Fig 1(D) the local permeability distribution of the three porous geometries is presented.
This distribution allows the identification of areas in which the flow will tend to move more
easily (high local permeability), see Fig 1(D) and inline with our numerical results in Fig 1(E),
further validating the significance of local permeability in influencing fluid flow behavior
within the porous medium. The Entropically Damped Artificial Compressibility (EDAC)
solver for The Discretisation-Corrected Particle Strength Exchange (DC-PSE) [31] is utilised
to model the three dimensional viscous fluid flow inside the meniscus by solving the EDAC
formulation, in Fig 1(E). Finally, we examine the the impact of inlet pressure and dynamic
viscosity on fluid flow, considering various porosity values across different microstructures,
Figs 4 and 5.
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Fig 1. Workflow outline for investigating the effect of microstructural properties on fluid flow in human menis-
cus: (A) The 3D STL geometry of the microstructure volume of the human meniscus (S1G0) is constructed from
high-resolution y-CT (6.25um). (B) The meniscus channels are eroded by applying morphological filters (erosion)
to obtain two additional geometries (S1G1 and S1G2) with different microstructural properties. This controlled
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erosion filter changes the microstructural properties of the meniscus, mainly the porosity. The resulting geometries
allow us to study the effect of the meniscus’s wall degradation on its functionality, as shown in Table 1. (C) The
computational domain of the different meniscus geometries (S1G0, S1G1, and S1G2) with implicit boundary repre-
sentation is created using an in-the Brinkman penalisation. (D) Flux analysis at the pore scale for the three structures
yields a distribution of local permeability. The local permeability is characterised by the volume of voxel clusters of
the porous network with pore diameters exceeding 4 voxels. Blue regions indicate areas of lower local permeability
and correspond to smaller volume magnitudes. Conversely, red regions represent higher local permeability, signifying
areas with greater volume magnitudes. (E) High-fidelity computational fluid dynamics (CFD) flow simulations are
conducted using the Discretisation-Corrected Particle Strength Exchange (DC-PSE) method. All flow velocities in the
three panels are all normalised to the maximum velocity magnitude observed in S1G0. Evolution of the velocity field
with respect to the porosity: from $1G0 to S1G1 and S1G2, the porosity increases by 20.5% and 33%, respectively, and
the maximal velocity increases by 30% and 120%, respectively.

https://doi.org/10.1371/journal.pone.0304440.9001

Geometric parameter analysis

Before analysing three crucial geometrical parameters, namely porosity, average tortuosity,
and connectivity, it is necessary to examine how the microstructural properties of the menis-
cus impact its functionality.

We modify the healthy sample S1GO outside its physiological configurations, the sample
undergoes a morphological filter (erosion filter) to artificially increase the porosity by increas-
ing the channel diameters. This filter has a significant impact on the properties of the porous
medium, see Table 1. In the table, £, represents the structural element length, which corre-
sponds to the size of the voxel being eroded. Applying the erosion filter of length (structural
element ¢,) 2 and 4 voxels, the porosity of S1GO is artificially increased by 20.5% and 33.5%,
respectively. This leads to the creation of two new meniscus geometries, S1G1 and S1G2, as
presented in Fig 1(B) and 1(C). Tortuosity provides a measure of the difficulty level for fluid
to flow within a porous network. When the length scale of the erosion filter is increased, the
average tortuosity decreases, indicating that the porous network becomes more permeable.

The non-connected clusters in a porous medium refer to isolated regions within the sam-
ple where there is no possibility of fluid flow due to a lack of connectivity to other regions
of the sample. In other words, these clusters represent areas where fluid flow is hindered or
impossible. The numbers provided in Table 1, in the volume fraction v; of connected voids
column, indicate that the porous network in the original geometries S1G0 and $2G0 have
a high degree of connectivity, > 99.7% of the volume fraction. This is important for a living
tissue, as it ensures that there are no “dead” regions without fluid exchange. This high degree
of connectivity is preserved also in the eroded geometries, showing that the sample poros-
ity can be modified without significantly altering the overall connectivity of the porous
network (note that for S2G0, the number of non-connected clusters is representative of a
smaller volume compared to S1G0), see Table 1.

The volume fraction in relation to the normalised pore diameters is shown in Fig 2(B),
which provides insight into the homogeneity or heterogeneity of the pore structure. The wide

Table 1. Computed volume fraction v and microstructure statistics for the simulation domains. It is important
to highlight the significant size difference between the two samples, with S1G0 having a diameter that is 3.5
times larger than that of S2GO0.

Geometry |Erosionlength of the |Average porosity |Non-connected |vfof connected |Average tortuosity

structural element £, clusters voids
S1GO 0 53.45% 247 0.997377 24
S1G1 2 67.23% 180 0.999631 1.7
S1G2 4 80.36% 69 0.999928 1.4
S2G0 0 51.08% 92 0.998975 2.2

https://doi.org/10.1371/journal.pone.0304440.t001
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Fig 2. (A) The Normalised maximum flow velocity vs. inlet pressure; original geometry S1GO (e, blue); eroded geometry S1G1 (m, red); eroded geometry S1G2
(X, yellow); original geometries 2 S2GO (v, purple). S1G0 and S2G0 show a threshold behavior with respect to the inlet pressure, in accordance with the flow regimes
described by Fithian et al. [6]. The eroded geometries S1G1 and S1G2 lose this property, but keeping the same behavior at high pressures. (B) The volume fraction
occupied by different normalised pore diameters. The wide distribution of pore diameters in S1GO (e, blue) and S2GO (v, purple) indicates a high level of heterogeneity,
while the peak at 0.9 in S1G2 (X, yellow) indicates a relatively homogeneous geometry.

https://doi.org/10.1371/journal.pone.0304440.g002

distribution of pore diameters in S1G0 and S2GO0 indicates a high level of heterogeneity, while
the peak at 0.9 of the maximum diameter in $1G2 indicates a high level of homogeneity.

The histograms and fitted probability density functions for porosity, along with the aver-
age tortuosity, are presented for the four geometries in Fig 3. The histograms provide insights
into the distribution of porosity and tortuosity within each microstructure, revealing unique
characteristics and variations among the studied microstructures.

We note that the porosity of the original geometry (53 +5%), obtained by uCT scans anal-
ysis, is within the range of the current literature (from 34.1% [41] to 65% [42]). We also note
that the mean value of tortuosity in the original geometries is 2.3, close to the value of 2,
commonly used in the porous medium literature for living tissues [43-45]. As the porosity
increases in S1G1 and S1G2 the tortuosity decreases, indicating a more permeable porous
medium.

The effect of inlet pressure on the flow regime

The focus of our study is to investigate how fluid flow is affected by varying pressure at
the inlet, with different microstructural properties (healthy and pathological menisci). To
accomplish this, we apply initial pressure boundary conditions at the inflow using a range of
values from 1.1 to 2.5 bar (see Simulation setup, initial condition and boundaries). Accord-
ing to Fithian et al. [6], synovial fluid can exhibit two types of flow behavior: (1) visco-elastic
behavior, which is mediated by proteoglycans of the extra-cellular matrix, (2) porous-
permeable behavior, which occurs when the synovial fluid is subjected to flow through a
hydraulic pressure gradient or matrix compaction.

The results of our numerical simulations are summarised in Fig 2(A), where those two
regimes of the velocity with respect to inlet pressure are clearly seen for the original geome-
tries S1G0 and S2GO. It is clear that only the original, healthy geometries S1G0 and S2G0
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Fig 3. Comparative analysis of four distinct microstructures: S1G0, S1G1, S1G2, and $2G0. Each row show the microstructure, followed by its poros-
ity and tortuosity. Histograms for the respective sample are in full color, whereas those of the other samples shown transparently for comparison. The
porosity of $1G0 and $2G0 (0.53% =+ 0.05%) aligns with CT measurements from the literature. Note the increase in porosity in $1G1 and S1G2 due to
the morphological filter. The mean value of tortuosity for S1G0 and S2GO is close to 2, a typical value for living tissues [41-43]. As the porosity increases
in S1G1 and S1G2, the tortuosity decreases, indicating a more permeable porous medium.

https://doi.org/10.1371/journal.pone.0304440.g003
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exhibit two flow regimes with a threshold of around 1.7bar inlet pressure. This threshold
behavior is not seen in any of the eroded geometries S1G1 and S1G2, where porosity no
longer limits fluid flow.

In healthy samples (S1G0 and $2G0) this surprising qualitative change in behavior is
not an artifact of the mathematical flow model used (see Mathematical modelling), as the
pressure-velocity relationship is locally linear, but an intrinsic geometrical property of the
original sample itself and the physiological viscosity of the synovial fluid. For a better under-
standing of this behavior, the histograms of velocities with an inlet pressure of 1.7 and 2.1 bar
for S1GO are provided in Fig 4(B-1). The simulated flow for sub-critical inlet pressure (blue
in Fig 4), presents a general trend toward extremely small velocities (visco-elastic). Specifi-
cally, in S1GO, more than 50% of the porosity contains flow below 5% of maximal velocity
(1.53- 107 m/s), and this trend is even more obvious for $2G0 (Fig 4(B-2)). Above the
threshold of 1.7 bar, (red in Fig 4), the model predicts a porous-permeable flow behavior,
which means that the flow is dominated by the pressure gradient. The velocity distribution
becomes more Gaussian in shape and centered around about 33% of the maximal velocity.
This is a clear indication that the flow behavior has transitioned to the porous-permeable
regime.

The synovial dynamic viscosity has an impact on the mechanical function of the menis-
cus. A viscosity below the physiological range is for example observed, for example, in cases
of osteoarthritis [29]. This change in viscosity affects the flow behavior of the synovial fluid,
as evidenced by the loss of the threshold behavior observed under healthy conditions, see
Fig 5(C-1). This confirms that the dual flow behavior is not solely influenced by the geometry
of the samples, but also by the physiological properties of the synovial fluid.

The flow transition also disappears upon meniscus degeneration, modeled by an increased
porosity (+20.5% for S1G1, accompanied by a -29.1% decrease in tortuosity), see Fig 5(B-2).
The meniscus then shows a linear flow behavior with respect to the inlet pressure. The same
is observed in S1G2 (porosity increases of +33.5% and tortuosity decreases of -41.6%), see
Fig 5(B-3). Since no other simulation parameter changed, this qualitative change can be
attributed purely to intrinsic geometrical properties of the samples at physiological values of
synovial fluid viscosity. These results are summarised Fig 2(A), where the threshold behav-
ior of velocity with respect to inlet pressure is only visible for the original healthy geometries
(S1G0 and S2GO).

The effect of the pore size on the maximum flow velocity

We perform numerical simulations of the fluid dynamics of the synovial fluid inside the fully-
resolved porous microstructure geometries of two human meniscus samples S1G0 and S2GO.
The details of the simulation method are given in the Materials and Methods section and have
been verified and validated elsewhere [31].

In order to see how the average pore diameter influences the fluid flow velocity field, we
also consider the two eroded versions of sample S1G0, namely S1G1 and S1G2 (cf. Table 1).
Visualisations of the simulation results for an inlet pressure of 2.1 bar are shown in Fig 5(A).
They qualitatively agree with the experimental findings of Proctor et al. [8], who provoked
porous-permeable flows in meniscus samples through consolidation experiments at 2 bar. All
cases in Fig 5(A) have the velocity magnitudes normalised by the same maximum velocity
obtained in S1GO. The effect of pore size on fluid flow is clearly visible.

In S1G2, the normalised velocity prediction is 120% higher than in S1G0, whereas in
S1G1, the normalised velocity is only 30% higher than in S1GO. Using the erosion filter, the
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Fig 4. (A) Visualisation of the normalised (to the maximum value in S1G0) flow velocity fields for S1G0 and S2G0, with inlet pressure 2.1 bar. (B) flow velocity
distribution histograms; in blue, inlet pressure 1.7 bar; in red, 2.1 bar. The velocity is normalised with the maximum velocity observed for inlet pressure Pyt = 2.1 bar,
with the reference viscosity 4 =7.3 - 10 Pa - s. (B-1) The histogram of the non-zero velocity field for $1GO. The flow presents a general trend toward extremely small
velocities (visco-elastic), more than 50% of the porosity contains flow below 5% of maximal velocity (1.53 - 10~ m/s). The synovial fluid transitions to porous-permeable
behavior, which means that the flow is dominated by the pressure gradient, at super-critical pressure. The velocity distribution then becomes more Gaussian in shape and
centered at around 33% of the maximal velocity. (B-2)The same histograms for sample $2G0, showing the threshold behavior even more clearly.

https://doi.org/10.1371/journal.pone.0304440.9004
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Fig 5. (A) Visualisation of the normalised (to the maximum value in $1G0) flow velocity fields for S1G0, S1G1 and S1G2, with inlet pressure 2.1 bar. The nor-
malised velocity in S1G2 is 120% higher than in S1GO, whereas it is only 30% higher in $1G1, highlighting the nonlinear effect of pore size on flow dynamics in the
meniscus. (B) flow velocity distribution histograms; in blue, inlet pressure 1.7 bar; in red, 2.1 bar. The velocity is normalised with the maximum velocity observed
for inlet pressure Pieq = 2.1 bar, with the reference viscosity g = 7.3 - 1073 Pa - 5. (B-1) The flow velocity distribution histogram of the non-zero velocity field for
$1GO. The flow presents a general trend toward extremely small velocities (visco-elastic), more than 50% of the porosity contains flow below 5% of maximal velocity
(1.53- 107> m/s). The synovial fluid transitions to porous-permeable behavior, which means that the flow is dominated by the pressure gradient, at super-critical
pressure. The velocity distribution then becomes more Gaussian in shape and centered at around 33% of the maximal velocity. (B-2) The histogram of the non-zero
velocity field for sample S1G1. (B-3) The histogram of the non-zero velocity field for sample S1G2. The results of the two previous structures suggest that the geomet-
rical properties of the meniscus significantly affect the behavior of fluid under varying pressure. Here, the threshold behavior is lost in both samples with flow always
in the porous-permeable regime. (C-1) The flow velocity histograms for S1GO with a lower synovial fluid viscosity g = 1.5 - 1073 Pa- s, characteristic of osteoarthritis
[29], where the dual behavior is lost. This confirms that the two flow regimes observed in the healthy samples are not solely due to the geometry of the samples, but
also depend on the physiological properties of the synovial fluid, specifically as its viscosity.

https://doi.org/10.1371/journal.pone.0304440.g005
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porosity increased by 20.5% in S1G1 and 33.5% S1G2. Therefore, it is evident that the poros-
ity of the meniscus medium has a significant and non-linear impact on fluid flow. This finding
emphasises the importance of understanding the relationship between porosity and velocity
in fluid flow.

The nonlinear flow characteristics can influence how effectively the meniscus distributes
loads and lubricates the knee joint. Understanding these nonlinearities can provide insights
into optimal joint function and highlight potential issues in case degeneration.

Discussion

To advance our knowledge of the biomechanics of the knee joint, it is critical to investigate the
microstructure interactions of the human meniscus and how it affects its mechanical func-
tion reflected on its macroscopical response. Connecting the microstructural properties of
the meniscus to its macroscopic function is still an unsolved problem, and investigating the
impact of porosity and connectivity of the porous network within the meniscus on macro-
scopic fluid-mechanical properties can provide insights into physiological mechanisms. We
therefore reconstructed the microstructure of two human menisci using high-resolution
u1-CT scans (6,25um). By computational fluid dynamics (CFD) flow simulations with mesh-
free particle methods and implicit boundaries, we show that the absorption properties of
the meniscus are mainly explained by the diameters of the channels. For instance, a 30%
increase in porosity leads to a 120% increase in velocity magnitude. These findings sup-
port the experimentally observed fact that the degraded function of aged menisci is asso-
ciated with a condensed collagen network. Our findings may have implications for the
treatment of knee injuries and aging, and contribute to a better understanding of meniscal
biomechanics.

We used two uCT scans (6.25 um resolution) of human meniscus samples [10] to study
the effect of microstructure on meniscus fluid dynamics. We developed an end-to-end com-
putational pipeline from uCT scans to computational simulation results. This was then used
to simulate pore-scale flow using a mesh-free simulation method with different inlet pressure
conditions.

For healthy sample geometries under physiological conditions, our simulations were able
to reproduce two regimes of flow in accordance with the biophysical literature [6,8,11]: a
visco-elastic creeping flow below a critical pressure of about 1.7 bar, and laminar porous-
permeable flow above the threshold pressure. Interestingly, this threshold behavior was lost in
both degraded sample geometries and at lower synovial fluid dynamic viscosity, both symp-
tomatic of diseased states of the meniscus.

Fully resolved computer simulations of healthy menisci allowed us to understand the
effect of the inlet pressure on flow patterns. This validated the method by comparison with
experimental findings [6,8,11]. We then modified the healthy sample geometries outside the
physiological range to study the effect of degeneration of the meniscus wall, specifically of a
decrease of collagen content and increase of water content [28].

This was achieved by using an erosion filter to simulate porosity volume fractions rang-
ing from 53% to 80% at constant network connectivity. For the absolute porosity, we found
average values between 100 um for S1G0 and 166 um for S1G2 with corresponding modes
between 5.56 um and 27.82 um. All distributions had a shifted half-Gaussian-like shape. The
distance between mode and mean values suggests that in different sections of the effective
direction of the flux, multiple smaller porosity channels are intersected.

The resulting artificially eroded meniscus geometries were comparable to those seen from
collagen fibers condensing in aging menisci or osteoathritis [23,28,46]. The prescribed load of
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the body remaining the same, this increase in permeability will shorten the consolidation time
of the porous medium, leading to a joint that is more susceptible to damage. The simulation
results showed that degenerating the meniscus wall non-linearly increases the transport veloc-
ity (+120% when increasing porosity by +33%) and decreases the meniscus’ tortuosity. The
former impairs the meniscus’ functionality as a shock absorber, whereas the latter could ham-
per biochemical exchange in the tissue. According to our co-author Prof. MD. Seil, an expert
in knee surgery, the erosion process identified in our research offers a potential translation for
the reduction in cartilage and menisci thickness observed in MRI studies of individuals who
participate in long-distance running [47]. This phenomenon is often associated with repetitive
impact loading, especially in runners with intact menisci.

Our results showed that the pore size is critical in determining the fluid flow behavior, as
smaller pores lead to capillary action slowing the flow, leading to a more uniform velocity dis-
tribution across pore sizes. Larger pores, on the other hand, reduce the fluid-solid interfacial
area, resulting in reduced frictional forces and viscous drag, which leads to an increase in fluid
velocity [48,49]. However, the exact behavior can be influenced by the nature of the fluid (e.g.,
synovial fluid’s viscosity) and the specific microstructure of the porous media.

We were also able to simulate the effect of osteoarthritis , which provokes a decrease in
synovial fluid viscosity [29]. Indeed, our numerical results show that, if the dynamic viscos-
ity of the synovial fluid is below physiological range, the threshold behavior of the intersti-
tial flow, i.e. visco-elastic vs. porous-permeable, is lost. This finding is confirmed by studies,
which showed that infiltration of intra-articular hyaluronate with rheological properties close
to those of healthy synovial fluid helps restore the synovial fluid properties in patients with
osteoarthritis [29]. Therefore, this dual behavior of the meniscus seems to be contained by the
porous medium as a whole: the geometry of the microstructure coupled with the physiologi-
cal range of synovial fluid dynamic viscosity.

Several leads for future improvement may be considered. First, experimental techniques
have limitations we can not exclude the existence of artificial porosity provoked by freeze-
drying protocol. However, the presented samples S1G0 and S2G0 show porosities within
the physiological range of the knee meniscus [42], please refer to Table 1. The present study
reproduced the biophysical behavior of the human meniscus on only two samples. Repro-
duction of these results on a larger cohort is critical. Second, meniscus is considered in this
study as a porous system composed of a rigid solid scaffold (i.e. a network of collagen fibers
is not deformed) perfused by a viscous fluid. The present methodology could be used to con-
firm the hypothesis by Fithian et al. [6] that the deformation of the extra-cellular matrix may
provoke porous-permeable flow. In order to reproduce this phenomenon, our mathematical
model would need to be extended to consider poro-elastic effects [50], which are likely to play
a key role there. In the present work, we also assumed that the pores are empty due to prior
freeze-drying of the samples. We also did not model details of the solid scaffold of the menis-
cal tissue, such as the collagen network. Our model therefore did not include additional fric-
tion forces, but studied the role of microstructure geometry in isolation. Finally, the present
simulations only considered static meniscus geometries. They did therefore not allow us to
study pore collapse or recovery of the tissue from load, for which a simulation in a deforming
geometry would be required. Future work could extend the algorithm in this direction, albeit
this is not trivial.

To conclude, analysing fluid flow behavior in different realistic meniscus geometries using
a direct numerical simulation method on a parallel multi-core computer allowed us to gain
insight into how changes in porosity, connectivity, pore diameter, and fluid viscosity affect
the macroscopic functional properties of human menisci. Our numerical simulations indi-
cate that the observed threshold behavior of the meniscus as a porous medium is the result
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of a precise balance provided by the geometry of the microstructure and the dynamic viscos-
ity of the synovial fluid. In the future, this knowledge and the presented numerical simulation
program can be used to design better prosthetics and rehabilitation protocols, offering more
effective and personalised treatment options.
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