
RESEARCH ARTICLE

A Parallel Distributed-Memory Particle
Method Enables Acquisition-Rate
Segmentation of Large Fluorescence
Microscopy Images
Yaser Afshar1,2,3, Ivo F. Sbalzarini1,2,3*

1Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, Technische Universität
Dresden, 01187 Dresden, Germany, 2Max Planck Institute of Molecular Cell Biology and Genetics, 01307
Dresden, Germany, 3MOSAIC Group, Center for Systems Biology Dresden, 01397 Dresden, Germany

* ivos@mpi-cbg.de

Abstract
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable

of acquiring large three-dimensional images at high data rate. This creates a bottleneck in

computational processing and analysis of the acquired images, as the rate of acquisition

outpaces the speed of processing. Moreover, images can be so large that they do not fit the

main memory of a single computer. We address both issues by developing a distributed par-

allel algorithm for segmentation of large fluorescence microscopy images. The method is

based on the versatile Discrete Region Competition algorithm, which has previously proven

useful in microscopy image segmentation. The present distributed implementation decom-

poses the input image into smaller sub-images that are distributed across multiple comput-

ers. Using network communication, the computers orchestrate the collectively solving of the

global segmentation problem. This not only enables segmentation of large images (we test

images of up to 1010 pixels), but also accelerates segmentation to match the time scale of

image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart

microscopes of the future and enables online data compression and interactive

experiments.

Introduction
Modern fluorescence microscopes with high-resolution cameras are capable of acquiring large
images at a fast rate. Data rates of 1 GB/s are common with CMOS cameras, and the three-
dimensional (3D) image volumes acquired by light-sheet microscopy [1] routinely exceed tens
of gigabytes per image, and tens of terabytes per time-lapse experiment [2–4]. This defines new
challenges in handling, storing, and analyzing the image data, as image acquisition outpaces
analysis capabilities.

PLOSONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 1 / 36

a11111

OPEN ACCESS

Citation: Afshar Y, Sbalzarini IF (2016) A Parallel
Distributed-Memory Particle Method Enables
Acquisition-Rate Segmentation of Large
Fluorescence Microscopy Images. PLoS ONE 11(4):
e0152528. doi:10.1371/journal.pone.0152528

Editor: Alessandro Esposito, University of
Cambridge, UNITED KINGDOM

Received: December 25, 2015

Accepted: March 15, 2016

Published: April 5, 2016

Copyright: © 2016 Afshar, Sbalzarini. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The data and source
code (open source) are available on GitHub (https://
github.com/yafshar/PPM_RC).

Funding: This work was supported by the Max
Planck Society, and by funding from the German
Federal Ministry of Education and Research (BMBF)
under funding code 031A099. We thank the Center
for Information Services and High Performance
Computing (ZIH) at TU Dresden for generous
allocations of computer time.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0152528&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/yafshar/PPM_RC
https://github.com/yafshar/PPM_RC


Ideally, the images are analyzed during acquisition with analysis times that are smaller than
the time until the next image is acquired. This “real-time” image analysis not only alleviates the
data bottleneck, but is also a prerequisite for smart microscopes that optimize the acquisition
of the next image based on the contents of the current image [5]. Real-time segmentation also
enables interactive experiments where, e.g., optical manipulation and tracking become feasible
in a developing embryo [6].

Real-time, or more precisely acquisition-rate, segmentation of large images is usually hin-
dered by the memory requirements of the image data and the analysis algorithm. Segmenting
an image requires about 5 to 10 times more memory than the raw image data [7–9]. This
means that in order to segment a 30 GB 3D light-sheet microscopy image, one would need a
computer with 150 to 300 GB of main memory. Image segmentation at acquisition rate has
hence mainly been achieved for smaller images [10]. For example, segmenting a 2048 × 2048 ×
400 pixel image of stained nuclei, which translates to about 3 GB file size at 16 bit depth,
required more than 32 GB of main memory [10].

Acquisition-rate processing of large images has so far been limited to low-level image pro-
cessing, such as filtering or blob detection. Pixel-by-pixel low-level processing has been acceler-
ated by Olmedo, et al., [11] using CUDA as a parallel programming tool on a graphics
processing units (GPUs). In their work, pixel-wise operations are applied to many pixels simul-
taneously, rather than sequentially looping through pixels. While such GPU acceleration
achieves high processing speeds and data rates, it is limited by the size of the GPU memory,
which is in general smaller than the main memory. Another approach is to distribute different
images to different computers. In a time-lapse sequence, every image can be sent to a different
computer for processing. Using 100 computers, every computer has 100 frames time to finish
processing its image, until it receives the next one. While this does not strictly fulfill the defini-
tion of acquisition-rate processing (e.g., it would not be useful for a smart microscope), it
improves data throughput by pipelining. Galizia, et al., [12] have demonstrated this in the par-
allel image processing library GEnoa, which runs on computer clusters using the Message Pass-
ing Interface (MPI) to distribute work, but it also runs on GPUs and GPU clusters. This library
focuses on low-level image processing. Both GPU acceleration and embarrassingly parallel
work-farming approaches are unable to provide acquisition-rate high-level image analysis of
single large images or time series comprised of large images.

High-level image analysis in fluorescence microscopy is mostly concerned with image seg-
mentation [13, 14]. In image segmentation, the task is to detect and delineate objects repre-
sented in the image. This is a high-level task, which cannot be done in a pixel-independent
way. It also cannot be formulated as a shader or filter, rendering it hard to exploit the speed of
GPUs. Finally, as outlined above, high-level image analysis of large images quickly exceeds the
main memory of a single computer. This memory limitation can be overcome by sub-sampling
the image, for example coarse-graining groups of pixels to super-pixels. This has been success-
fully used for acquisition-rate detection of nuclei and lineage tracking from large 3D images
[6]. The generation of super-pixels only requires low-level operations, where the high-level
analysis is done on the reduced data. While this effectively enables acquisition-rate high-level
analysis, it does not provide single-pixel resolution and is somewhat limited to the specific
application of lineage tracing.

Pixel-accurate high-level analysis of large images can be achieved by splitting each image
into smaller sub-images and distributing them across multiple computers or memories, thus
distributing the data and the work. The computers then work in parallel, each on its sub-
image. They communicate over a network interconnect in order to collectively solve the same
high-level image-analysis problem that a single computer would have solved. However, since
the data are distributed, the solution is available faster, and arbitrarily large images can be

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 2 / 36



accommodated by distributing across more computers. This is the hallmark of distributed-
memory parallelism.

Here, we present a distributed-memory parallel implementation of a generic image segmen-
tation algorithm. The present implementation scales to large images. Here we test images of
size up to 8192 × 8192 × 256 = 1.7 � 1010 pixels, corresponding to 32 GB of data per image at 16
bit depth. Distributing an image across 128 computers enabled acquisition-rate segmentation
of large light-sheet microscopy images of Drosophila embryos. The image-segmentation
method implemented is Discrete Region Competition (DRC) [15], which is a general-purpose
model-based segmentation method. It is not limited to nucleus detection or any other task, but
solves generic image segmentation problems with pixel accuracy. The method is based on
using computational particles to represent image regions. This particle-method character ren-
ders the computational cost of the method independent of the image size, since it only depends
on the total contour length of the segmentation. Storing the information on particles effectively
reduces the problem from 3D to 2D (or from 2D to 1D). Moreover, the particle nature of the
method lends itself to distributed parallelism, as particles can be processed concurrently, even
if pixels cannot. In terms of computational speed, DRC has been shown competitive with fast
discrete methods from computer vision, such as multi-label graph-cuts [15, 16]. DRC has pre-
viously been demonstrated on 2D and 3D images using a variety of different image models,
including piecewise constant, piecewise smooth, and deconvolving models [15].

The piecewise constant and piecewise smooth models are also available in the present dis-
tributed-memory parallel implementation. This makes available a state-of-the-art generic
image segmentation toolbox for acquisition-rate analysis and analysis of large images that do
not need to fit the memory of a single computer. The main challenge in parallelizing the DRC
algorithm is to ensure global topological constraints on the image regions. These are required
in order for regions to remain closed or connected. The main algorithmic contribution of the
present work is hence to propose a novel distributed algorithm for the independent-sub-graph
problem. The algorithmic solutions presented hereafter ensure that the final result computed is
the same that would have been computed on a single computer, and that the network-commu-
nication overhead is kept to a minimum, hence ensuring scalability to large images.

Since each computer only stores its local sub-image, information needs to be communicated
between neighboring sub-images in order to ensure global consistency of the solution. Since
DRC is a particle method, we use the Parallel Particle Mesh (PPM) library [17–19] for work
distribution and orchestration of the parallel communication. In the following, we briefly
review DRC and then describe how it can be parallelized in a distributed-memory environ-
ment. We then present the main algorithmic contribution that made this possible: the distrib-
uted independent-sub-graph algorithm. We demonstrate correctness of the parallel
implementation by comparing with the sequential reference implementation of DRC [15], as
available in ITK [20]. We then benchmark the scalability and parallel efficiency of the new par-
allel implementation on synthetic images, where the correct solution is known. Finally, we
showcase the use of the present implementation for acquisition-rate segmentation of light-
sheet fluorescence microscopy images.

Methods
Since the introduction of active contours [21], deformable models have extensively been used for
image segmentation. They are characterized by a geometry representation and an evolution law
[22]. Thorough reviews of deformable models can be found in Refs. [22, 23]. The geometry repre-
sentation of the evolving contours in the image can be continuous or discrete, and in either case
implicit (also called “geometric models”) or explicit (also called “parametric models”) [24].

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 3 / 36



Review of Discrete Region Competition
Inspired by discrete level-set methods [25], and motivated by the wish to delineate different
objects in an image as individual regions, Cardinale et al. [15] presented a discrete deformable
model where the contour is represented by computational particles placed on the pixel grid.
This is illustrated in Fig 1 and provides a geometry representation that is both explicit and
implicit [25]. During the iterative segmentation process, the particles migrate to neighboring
pixels and hence deform the contour. This migration is driven by an energy-minimization
flow. Additional topological constraints ensure that contours remain closed and/or connected.
The algorithm is a discrete version of Region Competition [26], which converges to a locally
optimal solution. It is called Discrete Region Competition (DRC), since particles from adjacent
regions compete for ownership over pixels along common boundaries.

The algorithm partitions a digital image domain O � Z
d (the dimension d = 2 or 3) into a

background (BG) region X0 and (M − 1)> 0 disjoint foreground (FG) regions Xi, i = 1, � � �,M
− 1, bounded by contours Γi, i = 1, � � �,M − 1 [15].

FG regions are constrained to be connected sets of pixels. The void space around the FG
regions is represented by a single BG region, which need not be connected. Connectivity in the
FG regions is defined by a face-connected neighborhood, i.e., 4-connected in 2D and 6-con-
nected in 3D. The BG region then has to be 8-connected in 2D and 18 or 26-connected in 3D
[27]. Imposing the topological constraint that FG regions have to be connected sets of pixels
regularizes the problem to the extent where the number of regions can be jointly estimated
with their photometric parameters and contours [15].

The evolving contour is represented by computational particles as shown in Fig 1. The algo-
rithm advances multiple particles simultaneously in a processing order that does not depend
on particle indexing. This ensures convergence to a result that is independent of the order in
which particles are visited. Connectedness of the evolving contours is ensured by topological

Fig 1. Illustration of 2 regions (A, light gray and B, dark gray) in a 2D digital image (grid). Pixels in the background region are white. Particles are shown
as black filled circles. They represent the regions by marking their outlines. Shaded pixels without a particle are interior points of the respective region.

doi:10.1371/journal.pone.0152528.g001

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 4 / 36



control. The motion of the particles is driven by a discrete energy-minimization flow that
locally minimizes the segmentation energy functional [15]:

E ¼ Edata þ lE length þ aEmerge: ð1Þ

Here, λ and α are regularization parameters trading off the weights of the contour-length and
region-merging priors. The first term measures how well the current segmentation fits (or
explains) the image. The specific forms of the three terms depend on the image model, imaging
model, and object model used [15].

The above energy is minimized by approximate gradient descent. The gradient is approxi-
mated by the energy difference incurred by a particle move. Particles are then moved in order
of descending energy reduction using a rank-based optimizer, hence ensuring that the result is
independent of particle ordering [15]. Since regions may dynamically fuse and split during
energy minimization, the algorithm is able to detect and segment a previously unknown and
arbitrary number of regions.

The algorithm starts from an initialization (frequently: local intensity maxima or an initial
thresholding) and then refines the segmentation in iterations until no further improvement
can be achieve by any particle move. In each iteration, every particle finds the set of adjacent
pixels it could potentially move to. It then computes the energy differences of all possible
moves. Moves that lead to topological violations are pruned from the list. Then, a graph of
causally dependent moves is constructed. An example of causal dependency is illustrated in Fig
2, where the possible moves of particle p depend on the move of particle q. Assume that the
energetically most favorable move for particle p is downward (Fig 2a). If the energetically most
favorable move of particle q is to go left (Fig 2b), this violates the topological constraint that

Fig 2. Illustration of causally dependent moves. Assume that the energetically most favorable moves are for particle p to move down (a) and particle q left
(b). If both moves are executed, the light gray region is not connected any more, hence violating the topological constraint (c). The moves of the two particles
hence causally depend on each other.

doi:10.1371/journal.pone.0152528.g002

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 5 / 36



the light-gray region has to be a 4-connected set of pixels (Fig 2c). Simply executing the ener-
getically most favorable move for each particle could hence lead to topological violations. In
the situation shown in Fig 2, only one of the two particles can execute its most favorable move,
constraining the possible moves of the other. In the present greedy descent scheme, the move
that leads to the largest energy decrease has priority.

In order to find the set of moves that can be executed concurrently, we build a graph of all
such causal dependencies and sort them by energy. Fig 3 illustrates the construction of this
undirected graph of causal dependencies. It starts from enumerating all possible moves for all
particles (Fig 3a). Shrinking a region is done by removing the respective particle and inserting
new boundary particles. This is irrelevant for the dependency graph. The directionality of the
moves is also irrelevant and is removed, yielding a set of undirected edges. A vertex is intro-
duced wherever two edges meet in any pixel. This defines the final graph (Fig 3b). Moves that
are connected by a path in the graph are causally dependent. Connected sub-graphs of the final
graph (highlighted by different colors in Fig 3b) hence correspond to dependent sets of moves.
They can extend across several particles, defining long-range chains of dependency.

Each maximal connected sub-graph can be processed independently. While the moves
within a maximal connected sub-graph are causally dependent, there are no dependencies
across different maximal connected sub-graphs. In order to find the energetically most favor-
able set of moves that can be executed simultaneously, the edges in each maximal connected
sub-graph are sorted by energy difference. In each sub-graph, the move that leads to the largest
decrease in energy is executed.

Splits and fusions of FG regions are topological changes that are allowed by the energy.
They are detected using concepts from digital topology [15, 25, 27–29] and accepted if energet-
ically favorable. The BG region is allowed to arbitrarily change its topology.

Data distribution by domain decomposition
We parallelize the DRC algorithm in a distributed environment by applying a domain-decom-
position approach to the image. The input image is decomposed into disjoint sub-images that

Fig 3. Illustration of the dependency graph construction. (a) All possible moves are enumerated for all particles. (b) The undirected graph of causal
dependencies is obtained by removing directionality and joining edges that share a common pixel. The maximal connected sub-graphs are represented by
different colors.

doi:10.1371/journal.pone.0152528.g003

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 6 / 36



are distributed to different computers. This is illustrated in Fig 4. Domain decomposition and
data distribution are done transparently by the PPM library [17–19]. Reading the input image
from a file is also done in a distributed way, where each computer only reads certain image
planes. The PPM library then automatically redistributes the data so as to achieve a good and
balanced decomposition. Each computer only stores its local sub-image, and no computer
needs to be able to store the entire image data.

The algorithm is then initialized locally on each computer, using only the local sub-image.
The boundary information between sub-images is communicated between the respective com-
puters with ghost layers. Ghost layers are extra layers of pixels around each sub-image that rep-
licate data from the adjacent sub-images on the other processors, as illustrated in Fig 5. The
width of these ghost layers is determined by the number of pixels required to compute energy
differences, i.e., by the radius of the energy kernel (see Ref. [15] for details). The width of the
ghost layer defines the communication overhead and hence the parallel scalability of the algo-
rithm. PPM ghost mappings [17–19] are used to transparently update and manage ghost layer
information whenever the corresponding pixels on the other computer have changed.

The initial segmentation from which the algorithm starts can be determined in a number of
ways. Fig 5 shows an example of an initial segmentation given by uniformly distributed circles
(shown in red). From there, the algorithm evolves to the final result. Using an initialization
that is so far from the final result, however, increases the runtime and also bears the risk of get-
ting stuck in a sub-optimal local energy minimum. In practice, we hence usually initialize by a
local-maximum detection or an initial intensity thresholding.

Starting from the initial segmentation, each FG region is identified by a globally unique
label [15]. This requires care in a data-distributed setting, since different computers could use
the same label to denote different regions. In our implementation, each processor first per-
forms an intermediate local labeling of the regions in its sub-image. Using the processor num-
ber (i.e., processor ID), this is done such that no two labels are used twice (see Fig 6a). All

Fig 4. An illustrative example showing domain decomposition and distribution of an image across four computers (numbered 0 to 3).

doi:10.1371/journal.pone.0152528.g004

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 7 / 36



regions are hence labeled uniquely. However, regions extending across more than one sub-
image will be assigned multiple, conflicting labels. In a second step, the algorithm resolves
these conflicts, ensuring that each FG region is uniquely labeled.

Using the definition that a FG region has to be a connected set of pixels, uniquely labeling
them can be done using a parallel connected-component algorithm [30–35]. We here use the
algorithm proposed by Flanigan et al. [30], which is based on an iterative relaxation process.
During this, each sub-image exchanges boundary-crossing labels with neighboring processors.
The labels are then replaced by the minimum of the two labels from the two processors. This
process continues in iterations until a fixed point (labels do not change any more on any pro-
cessor) is reached [30]. This is only done once, during initialization, and leads to a result as
illustrated in Fig 6b. Every FG region now has a globally unique, unambiguous label, indepen-
dent of which sub-image it lies in, or across how many computers the image has been distrib-
uted. This sets the basis for the energy-minimization iterations of the DRC algorithm.

Parallel contour propagation
Following initialization and initial region labeling, particles move across the image as driven by
the energy-minimization flow in order to compute the segmentation. As outlined in the section
“Review of Discrete Region Competition”, this involves construction of a dependency graph of
causally dependent particle moves, followed by selecting a maximal set of non-interfering
moves. In a data-distributed setting, the problem occurs that every computer only knows the
part of the graph that resides in its local sub-image. If graphs span across processor boundaries,
correct move selection cannot be guaranteed without additional communication. This

Fig 5. Ghost layers communicate information between neighboring sub-images residing on different
computers. In the example from the previous figure, processor 0 receives ghost data from processors 1, 2,
and 3, as shown for a ghost layer of 10 pixels width. The same is also done on all of the other processors.
This allows the particles (boundary pixels of red regions) to smoothly migrate across computers, and energy
differences to be evaluated purely locally on each sub-image.

doi:10.1371/journal.pone.0152528.g005

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 8 / 36



communication between computers is required to find a globally consistent set of independent
moves, but should be kept to a minimum in order to guarantee algorithm scalability.

In our implementation, finding a globally consistent set of moves starts by each processor P
creating a local undirected graph GP, comprising its interior and ghost particles. Disconnected
parts of the graph that entirely lie within the local sub-image are called interior sub-graphs Gi

P.
Parts of the graph that extend across sub-image boundaries are called boundary sub-graphs Gb

P.
Identifying compatible moves in an interior sub-graph can be done independently by each

processor. Resolving boundary sub-graphs, however, requires information from all sub-images
across which the sub-graph extends. This is challenging because the sub-graphs sizes, struc-
tures, and distributions are not known a priori, as they depend on the input image data.

Traditionally, master-slave approaches have been used to solve this problem on distributed
machines. This is illustrated in Fig 7. In this approach, the boundary sub-graphs Gb

P from all
processors are gathered on one single processor, the master processor. This master processor
then determines the move sets and sends them back to the respective other processors. Mean-
while, the other processors work on their interior sub-graphs.

This approach is easy to implement, but carries substantial overhead due to the global com-
munication and the task serialization on the master processor. As we show below, this
approach does not scale and prevents acquisition-rate image analysis.

We address this problem by introducing a new parallel contour propagation algorithm,
which does not require global communication and incurs no serialization. In theory, it hence
scales perfectly. Instead of gathering all boundary sub-graphs Gb

P on one master processor, we
propose to use the locally available boundary sub-graph on each processor and identify the
compatible moves only on that local part. If all processors did this in parallel, however, conflict-
ing moves across sub-image boundaries would occur. We avoid this by decomposing the pro-
cessors into two sets: black and white processors. Since FG regions are face-connected, using a
checkerboard decomposition as illustrated in Fig 8 ensures that boundary sub-graphs always
cross from black to white processors, or vice versa. They never cross sub-image boundaries
within one color, hence avoiding boundary conflicts if the processing is done by color. There-
fore, the black processors start by determining the viable moves on their boundary sub-graphs,

Fig 6. Region label initialization starts by each processor assigning unique labels to the FG regions in its sub-image (a). This, however, leads to
conflicts for regions extending across multiple sub-images, as they will receive multiple, conflicting labels. Using a parallel connected-component algorithm
[30], these conflicts are resolved in a second step, leading to a globally unique label for each FG region (b).

doi:10.1371/journal.pone.0152528.g006

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 9 / 36



while the white processors work on their interior sub-graphs. Then, the black processors com-
municate their boundary decisions to the neighboring white processors using a ghost particle
mapping [17]. Finally, the white processors resolve their boundary sub-graphs using the
received decisions as boundary conditions, while the black processors work on their interior
sub-graphs. This procedure is illustrated in Fig 8. It effectively avoids conflicts and determines
a globally viable move set within two rounds of local ghost communication.

Taking advantage of non-blocking MPI operations, the whole procedure is executed in an
asynchronous parallel way, as detailed in Algorithm 1. This largely hides the communication
time of the ghost mappings, resulting in better scalability and speed-up on a distributed mem-
ory parallel machine.

Algorithm 1: Parallel distributed-memory contour propagation algorithm

Find: interior and boundary maximal connected sub-graphs, Gi
P and Gb

P

if Black processor then
Receive: ghost information from white neighbor processors
foreach boundary sub-graph Gb

P do
identify compatible moves

Send: non-blocking send of updated boundary particle information to white
neighbor processors

foreach interior sub-graphs Gi
P do

identify compatible moves
Wait: for non-blocking send to complete

if White processor then
Send: non-blocking send of boundary particle information to black neigh-

bor processors
Receive: non-blocking receive of ghost information from black neighbor

processors
foreach interior sub-graph Gi

P do
identify compatible moves

Wait: for non-blocking receive to complete
foreach boundary sub-graphs Gb

P do
identify compatible moves under ghost constraints

Fig 7. Themaster-slave approach to finding the global independent move set by gathering all boundary sub-graphs on a single master processor
and then sending back the results. In this example, processor 0 is the master.

doi:10.1371/journal.pone.0152528.g007

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 10 / 36



Breaking the boundary sub-graphs along sub-image boundaries changes the sorting order
of compatible moves, and hence the convergence trace of the algorithm in energy space.
Enforcing boundary conditions at the break points of the boundary sub-graphs amounts to an
approximation of the original problem. This approximation is not guaranteed to determine the
same global move set as the sequential approach, because the moves are only sorted by energy
locally in each sub-graph, and not globally in the entire graph. However, as long as the statisti-
cal distribution of break points in the graph is unbiased, the optimizer is still guaranteed to
converge, albeit the path of convergence may differ. This is a famous result fromMonte Carlo
(MC) approaches to the Ising model [36], where it has been shown that unbiased randomiza-
tion of the moves may even accelerate convergence toward an energy minimum. In our case,
the distribution of break points is indeed unbiased. This is because it is the result of a domain
decomposition that depends on the number of processors used, and the graphs depend on the

Fig 8. Distributed sub-graph algorithm to determine a globally consistent set of particle moves. The processors are divided into black and white ones
using a checkerboard decomposition. (a) Compatible moves are identified simultaneously on all boundary sub-graphs (black) on the black processors, while
the white processors work on their interior sub-graphs (gray). (b) Boundary particles (dark red) are send from the black to the white processors in order to
provide the boundary condition for the boundary sub-graph processing on the white processors. The ghosts are not altered by the white processors, but
immediately accepted as moves (symbolized by the check marks). This avoids conflicts and only requires local communication.

doi:10.1371/journal.pone.0152528.g008

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 11 / 36



unpredictable image content. Therefore, independent unbiased breaking is satisfied, and the
distributed approach converges.

We empirically confirm this convergence by comparing the energy evolution of the original
sequential algorithm [15] and our new distributed method on different 2D benchmark images
from the Berkeley database [37]. The result for four example images is shown in Fig 9 using dif-
ferent numbers of processors and hence different sub-graph decompositions. In all tested
cases, both methods converge. The largest observed difference in final energy is less than 0.5%.

Fig 10 shows histograms of the energy differences for 25 images from the Berkeley database.
Three metrics are shown: (a) the maximum energy difference occurring anywhere along the
convergence path, (b) the difference in the energy of the final converged state, (c) the difference
in the number of iterations requires to reach convergence.

The results in Figs 9 and 10 show that the parallel algorithm is in good agreement with the
original sequential algorithm [15]. Both algorithms show the same energy-evolution trend and
converge to almost the same energy level with less than 0.5% difference anywhere during
energy evolution. Fig 10c also confirms the Ising-model result that the randomized parallel
algorithm on average converges in fewer iterations than the sequential method.

The question arises, however, if these small energy differences are significant in terms of the
final segmentation. While no general guarantee can be given, the final segmentations were

Fig 9. Energy evolution of the sequential DRC algorithm [15] and the present parallel algorithm on four different images from the Berkeley
database [37] on 4 and 8 processors. Despite the boundary sub-graph decomposition (see main text), the results are pixel-wise identical in all cases
except for image 100007, where two pixels on 4 processors and 3 pixels on 8 processors differ from the sequential result due to contour oscillations, as
discussed in the main text.

doi:10.1371/journal.pone.0152528.g009

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 12 / 36



close in all cases tested, with at most 3 pixels differing between the sequential and parallel solu-
tions. All observed pixel differences stemmed from contour oscillations around the converged
state, as confirmed by pixel-wise comparison of the final segmentations. These oscillations are
an inherent property of the energy descent method used in DRC [15]. They are suppressed by
reducing the number of concurrently accepted moves whenever oscillations occur [15]. This is
required in order to guarantee convergence of DRC. In our distributed DRC implementation,
oscillations are detected locally by each computer. Also, the number of accepted moves per iter-
ation is set locally, and potentially differently, by each computer. The oscillation pattern close

Fig 10. Comparison of the results from the distributed DRC algorithm and the original sequential implementation [15] on 25 2D images from the
Berkeley benchmark database [37]. (a) Histogram of the maximum energy difference occurring anywhere along the energy evolution path; EDRC is the
sequential algorithm and EN the distributed algorithm on N computers. (b) Histogram of the final energy difference of the converged solutions. (c) Histogram
of the difference in the total number of iterations required to reach the converged final solution.

doi:10.1371/journal.pone.0152528.g010

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 13 / 36



to the final converged state is hence different than the one in sequential DRC. An example is
shown in Fig 11 where the only differences between the two segmentations are the two oscil-
latory particles shown in white. Since they may stop their oscillations at different locations, the
final segmentations may differ in these two pixels, which explains the small energy difference.
The final segmentations are, however, geometrically close, and the algorithm converges toward
the same local energy minimum. It is also important to keep in mind that the sequential DRC
algorithm uses an approximate local optimizer that may not find the globally best segmenta-
tion. Sometimes, the slightly different result obtained by the distributed method is therefore
better in terms of energy (see Fig 10b).

Parallel topology processing and data-structure update
After having determined the set of compatible acceptable moves, the particles (and hence the
contours) propagate in parallel on each processor. This changes the region labels of the corre-
sponding pixels, as regions move, shrink, or grow. Particles that move across sub-image bound-
aries are communicated to the respective destination processor using the local neighborhood
mappings of PPM [17]. This ensures global consensus about the propagating contours.

In addition to propagating, contours can also split or fuse if that is energetically favorable.
This corresponds to a region splitting into two, or two regions merging. While digital topology
allows such topological changes in the segmentation to be efficiently detected using only local
information [15], the labels of the involved regions may change across sub-image boundaries.
Whenever region labels change as a result of a split or fusion, a seeded flood-fill is performed in
the original DRC algorithm [15], in order to identify the new connected components. This
again requires additional care in a distributed setting, as illustrated in Fig 12.

Fig 12a shows the two critical situations: two regions touching at a sub-image boundary that
are not supposed to fuse (by the image energy model) and a split in a region that extends across
multiple sub-images. The parallel connected component algorithm [30] used during initializa-
tion would unnecessarily re-label all regions that cross any sub-image boundary and errone-
ously fuse the two touching regions (Fig 12b). In order to obtain the correct result, we propose
a particle-based alternative, as detailed in Algorithm 2.

Fig 11. The small energy differences between the distributed and the sequential DRC implementations result from local pixel oscillations. An
example is shown with a synthetic image using a piecewise smooth image model for segmentation. (a) Result on a single computer. (b) Result from the
distributed algorithm on 8 computers. (c) Overlay of the two results with differences shows in white. These are two oscillatory particles jumping back and forth
between two neighboring pixels. The final segmentation results are hence very close and amount to alternative pixelations of the object border line.

doi:10.1371/journal.pone.0152528.g011

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 14 / 36



Algorithm 2: Distributed region re-labeling

Reconstruct: label image L
hotpart false
Create an empty list S
if contour particle label changes at sub-image boundary then

activate particle as a hot particle
hotpart true

Ghost mappings: Particle
if there is any hot ghost particle then

add it as a seed to the list S
Global: reduce operation on hotpart
while hotpart do

Reconstruct label image L using flood fill from the seeds in S
Empty: S
Ghost mappings: Particle
if there is any hot ghost particle then
add it as a seed to the list S

Fig 12. Distributed region split andmerge algorithm. In the upper row, the evolving contours are shown by dashed lines and the underlying objects to be
segmented by the black solid regions. (a) The situation before re-labeling the regions. Two regions (B/C) touch at a sub-image boundary, but should not fuse
according to the image energy model. The region A extends across multiple sub-images and splits in sub-image 3. (b) Applying a parallel connected-
component algorithm [30] would erroneously fuse regions touching at sub-image boundaries and unnecessarily re-label all regions with new unique labels.

doi:10.1371/journal.pone.0152528.g012

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 15 / 36



hotpart false
if contour particle label changes at particle ghost layer then
activate particle as a hot particle
hotpart true

Global: reduce operation on hotpart

Taking advantage of the particle representation of the evolving contours, information about
region label changes at sub-image boundaries is communicated through PPM’s ghost-get map-
pings [17]. For each region, however, only two particles are communicated instead of the full
ghost layer of pixels. This is illustrated in Fig 13. Moreover, this only happens when the region
label on the source processor did actually change. In this case, the corresponding boundary
particles are activated. By default, all boundary particles are deactivated. Activated particles,
which we call “hot particles” from now on, as inspired by the classical forest-fire algorithm, are
then sent to the neighboring processor.

The neighboring processor receiving the hot ghost particles starts a local forest-fire algo-
rithm for seeded flood filling of the region, using the hot ghosts as seeds. Since this may propa-
gate the label change across multiple processors, the procedure proceeds in iterations until no
more hot particles are detected anywhere. This is determined by a global all-reduce operation
of local flags for the presence of hot particles in each sub-image. Regions are always re-labeled
using the lower of the two labels. This means that hot particles only propagate changes with
new labels lower than existing ones. Therefore, the procedure is guaranteed to terminate, as
oscillations or loops cannot occur.

The complete procedure is detailed in Algorithm 2. Again, all communication (mappings)
is done asynchronously using non-blocking MPI operations. After execution of the algorithm,
all regions are again identified by globally unique labels, but only necessary changes are made.
Regions that did not undergo topological changes retain their previous labels. This prevents
spurious region fusions and keeps the data-structure updates to a minimum. Also,

Fig 13. Boundary particles are activated upon region label changes in the local sub-image.Only activated (“hot”) boundary particles are
communicated to the neighboring processor, restricting re-labeling to affected regions and avoiding communication of a full ghost layer of pixels. (a) All
boundary particles (black disks) are deactivated (“cold”) before local region label update. (b) Boundary particles of re-labeled regions are activated (red disks,
“hot”) and propagate the label change to the neighboring processor.

doi:10.1371/journal.pone.0152528.g013

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 16 / 36



communicating only hot ghost particles, instead of full pixel layers, significantly reduces the
communication overhead.

Results
We first show correctness and efficiency of the distributed parallel algorithm and then illustrate
its application to acquisition-rate image segmentation in 3D light-sheet fluorescence micros-
copy. We demonstrate correctness by comparison with the original reference implementation
of Cardinale et al. [15] on synthetic and real-world images taken from the original DRC paper
[15]. Then, we assess the parallel efficiency and scalability of the present implementation using
scalable synthetic images in both a weak-scaling and a strong-scaling experiment.

All computations were performed using the PPM library [17–19] in its 2015 version on the
Bull cluster “taurus” at the Center for Information Services and High Performance Computing
(ZIH) of TU Dresden. The cluster island used consists of 612 Intel Haswell nodes with 24 cores
per node and 2.5 GB of main memory per core. The parameter settings for all test cases are
summarized in Table 1. They were determined following the guidelines given in the original
DRC publication [15].

Correctness of the distributed algorithm
Results using a piecewise constant image model. We first check that the distributed algo-

rithm produces the same results as the sequential benchmark implementation in the case of a
multi-region piecewise constant (PC) image model. In this model, the assumption is that differ-
ent FG regions have different intensities that are, however, spatially constant within each

Table 1. Parameter settings used for the cases shown in this paper (PC: piecewise constant; PS: piecewise smooth). See Ref. [15] for parameter
meaning and guidelines.

Initialization Algorithm parameters Edata Energy parameters

Icecream PC 2D, 130 × 130, Fig 14

6 × 6 bubbles θ = 0.02, Rκ = 4 PC λ = 0.04

Bird, 481 × 32, Fig 16

32 × 21 bubbles θ = 4.5, Rκ = 5 PC λ = 0.2

Cell nuclei, 672 × 512, Fig 17

local maxima θ = 0.02, Rκ = 4 PC λ = 0.06

Icecream PS 2D, 130 × 130, Fig 18

5 × 5 bubbles θ = 0.2, Rκ = 4 PS λ = 0.04, β = 0.05, R = 8

Elephants 2D, 481 × 321, Fig 20

21 × 14 bubbles θ = 0.2, Rκ = 8 PS λ = 0.2, β = 0.05, R = 4

Zebrafish embryo germ cells 3D, 188 × 165 × 30, Fig 21

bounding box Rκ = 4 PS λ = 0.08, β = 0.005, R = 9μm

Synthetic unit cell test image 3D, 256 × 256 × 256, Fig 22

local maxima θ = 0.02, Rκ = 4 PC λ = 0.04

Drosophila embryo 3D, 1824 × 834 × 809, Fig 25

local maxima from blob detector θ = 0.001, Rκ = 8 PC λ = 0.005

Drosophila embryo 3D, 1824 × 834 × 809, Fig 26

local maxima from blob detector θ = 0.001, Rκ = 8 PS λ = 0.005, β = 1.0, R = 8

zebrafish vasculature 3D, 1626 × 988 × 219, Fig 27

thresholding θ = 10.0, Rκ = 8 PS λ = 0.02, β = 0.001, R = 12

doi:10.1371/journal.pone.0152528.t001

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 17 / 36



region. We use the same test image as in Ref. [15] in order to compare the results. The result
from the present distributed implementation is shown in Fig 14 using one, four, and eight pro-
cessors. Pixel-wise comparison shows that all segmentation results are identical to the one
reported in Ref. [15] for the sequential benchmark implementation.

Fig 15 shows the energy evolution of the distributed cases compared with the original
sequential benchmark implementation of Cardinale et al. [15]. If anything, the graph randomi-
zation used in the present distributed algorithm slightly accelerates convergence in the first
half of the iterations. All methods reach the same final energy.

We further compare the results from the present distributed implementation with the origi-
nal sequential algorithm on real image data. The same natural-scene image as considered in
the original publication [15] is shown in Fig 16. Again, the present implementation running on
one and four processors produces the exact same result as the benchmark implementation.

As a second real image, we consider the same fluorescence microscopy image of nuclei as in
the original publication [15]. The results on one and 16 processors are shown in Fig 17. The
algorithm is initialized with a circular region around each local intensity maximum after blur-
ring the image with a Gaussian filter of width σ = 10 pixel. This is the same initialization as
used in Ref. [15]. The results are identical, pixel by pixel.

Results using a piecewise smooth image model. The DRC algorithm is generic over a
wide range of image models, including the more complex piecewise smooth (PS) model. In this
model, each region is allowed to have a smooth internal intensity shading. We again use the
same synthetic test image as in Ref. [15] and illustrate the result in Fig 18. Pixel-to-pixel com-
parison of the final segmentation results shows differences in two oscillatory pixels on eight
processors (see also Fig 11). This is consistent with the way boundary oscillations are detected
and handled in the distributed algorithm in comparison with the sequential one.

The energy evolution for this case is shown in Fig 19 in comparison with the original
sequential DRC algorithm of Cardinale et al. [15]. Again, the two convergence traces are almost
identical with small differences stemming from the graph decomposition used in the present
implementation. The difference in final energy is due to the two oscillatory pixels, as discussed
above and shown in Fig 11.

Fig 20 illustrates the sequential and distributed segmentations of a natural-scene image
using the PS image model. By pixel-to-pixel comparison, the segmentation result on four pro-
cessors (Fig 20d) is identical to the one computed by a single computer (Fig 20b).

As a first 3D test image, we use the same fluorescence confocal image of zebrafish germ cells
that was also used in Ref. [15]. Fig 21 shows the raw image along with the PS segmentation
results on one and four processors. By pixel-wise comparison, the results are identical.

Efficiency of the distributed algorithm
Performance of a distributed parallel algorithm is influenced by many factors, including the
structure of the input data, computer memory architecture, communication network, disk
space, and background load. While it is impossible to reproduce or control all of these, we pres-
ent empirical tests in order to assess the overall performance of the present algorithm in terms
of parallel scalability and speed. Scalability (parallel efficiency) quantifies how well a distributed
algorithm utilizes the computer resources as the number of computers/processors increases.
Therefore, we provide results for both weak and strong scaling on synthetic benchmark images.
Weak scaling measures how well the algorithm scales to very large images that do not fit into
the memory of a single computer. Strong scaling measures how quickly the algorithm can solve
a problem of fixed size when it is distributed across an increasing number of computers. We
use synthetic images in order to control for variations in the result stemming from image

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 18 / 36



Fig 14. Distributed segmentation of a synthetic test image using a piecewise constant imagemodel. (a) Initialization on a single processor with
particles shown in red. (b) Final result on a single processor. (c) Initialization on four processors. (d) Final result on four processors. (e) Initialization on eight
processors. (f) Final result on eight processors. The results are identical to those in Ref. [15] in all cases.

doi:10.1371/journal.pone.0152528.g014

PLOSONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 19 / 36



contents. Moreover, synthetic images can easily be scaled to arbitrary size, as required for the
weak scaling tests.

The two synthetic images used here are shown in Fig 22. These are 3D images, and Fig 22
shows maximum-intensity projections. The top row in Fig 22 shows the “unit cells”, from
which the test images are generated by periodic concatenation as shown in the panels below. In
the first image (Fig 22a), all objects are local, i.e., there are no objects that cross sub-image
boundaries. The second image (Fig 22b) contains objects that cross sub-image boundaries.
Comparing the results of the two allows us to estimate the communication overhead from the
parallel graph-handling and region labeling algorithms introduced here. In all cases, the algo-
rithm is initialized with circular regions around each local intensity maximum after blurring
the image with a Gaussian filter of σ = 5 pixel.

In the weak scaling, the workload per processor remains constant, while the overall image
size increases proportionally to the number of processors. This way, the workload on 512 pro-
cessors is an image of 8192 × 4096 × 256 pixels containing 18 944 objects. Periodically repeat-
ing the “unit cell” image, rather than scaling it, ensures that the workload on each processor is
exactly the same, since every processor locally “sees” the same image.

Fig 15. Energy evolution of the sequential DRC algorithm of Cardinale et al. [15] in comparison with the present distributed algorithm processing
the piecewise constant test image from Fig 14 on four and eight processors.

doi:10.1371/journal.pone.0152528.g015

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 20 / 36



Fig 23 shows the resulting parallel efficiency (weak scaling) for the two test images. For com-
parison, it also shows the parallel efficiency when using the classical master-slave approach to
graph processing (see Fig 7). This approach does not scale, as the parallel efficiency rapidly
drops when using more than 32 processors. This results from the communication overhead
due to global communication, and from the additional serialization. The present randomized
approach scales for both test images.

Segmentation of the second data set using the present parallel approach on 1, 64, and 512
processors took less than 12, 24, and 29 seconds respectively, corresponding to image sizes of
32 MB, 2 GB, and 16 GB, respectively, in this weak-scaling test. Comparing the results for the
first test image, where no objects cross sub-image boundaries, with those for the second test
image reveals that about half of the communication overhead is due to boundary particles.

Strong scaling measures how efficiently a parallel algorithm reduces the processing time for
an image of a given and fixed size by distributing it across an increasing number of processors.

Fig 16. Distributed segmentation of a natural-scene image using a piecewise constant imagemodel. (a) Initialization on a single processor with
particles shown in red. (b) Final result on a single processor. (c) Initialization on four processors. (d) Final result on four processors. The results are identical
to those in Ref. [15] in both cases.

doi:10.1371/journal.pone.0152528.g016

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 21 / 36



Fig 17. Distributed segmentation of fluorescently labeled cell nuclei (raw image: Dr. Prisca Liberali, FMI Basel) using a piecewise constant image
model. (a) Initialization on a single processor. (b) Result on a single processor. (c) Initialization on 16 processors. (d) Result on 16 processors. The results
are identical to those in Ref. [15] in both cases.

doi:10.1371/journal.pone.0152528.g017

PLOSONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 22 / 36



Fig 18. Parallel segmentation of a synthetic image using a piecewise smooth imagemodel. (a) Initialization on a single processor with particles shown
in red. (b) Final result on a single processor. (c) Initialization on four processors. (d) Final result on four processors. (e) Initialization on eight processors. (f)
Final result on eight processors. Two oscillatory pixels differ with respect to the result in Ref. [15] (see also Fig 11).

doi:10.1371/journal.pone.0152528.g018

PLOSONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 23 / 36



Since the workload per processor decreases as the number of processors increases in a strong
scaling, the relative communication overhead steadily grows. Strong scalability is hence always
limited by problem size with large problems scaling better. We therefore show tests for two dif-
ferent image sizes: a moderate image size of 512 × 512 × 512 pixels (black circles in Fig 24) and
a large image of 2048 × 2048 × 2048 pixels (red squares in Fig 24).

For the first image of size 512 × 512 × 512 pixel, the decrease in efficiency beyond 8 proces-
sors is due to communication between the processors, which increases relatively to the smaller
and smaller computational load per processor. A 30-fold speedup is achieved for this image
size on 64 processors. On 512 processors, every processor only has a sub-image of size 64 × 64
× 64 pixel with ghost layers of width 5 pixel all around. Segmentation of this image on 8, 64,
and 512 processors took 16, 4.2, and 1.6 seconds, respectively.

For the larger image of size 2048 × 2048 × 2048 pixel, segmentation on one processor is not
possible, since it would require 62 GB of main memory. On 8 and more processors, segmenta-
tion becomes feasible and takes 6870 seconds on 8 processors. On 64 and 512 processors, the
result is computed in 860 and 145 seconds, respectively. A 48-fold speed is achieved on 512
processors relative to 8 processors, which corresponds to a scalability close to the optimal line.

Fig 19. Energy evolution of the sequential DRC algorithm of Cardinale et al. [15] in comparison with the present distributed algorithm processing
the piecewise smooth test image from Fig 18 on four and eight processors.

doi:10.1371/journal.pone.0152528.g019

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 24 / 36



Application to acquisition-rate segmentation of 3D light-sheet
microscopy data
We present case studies applying the present algorithm to segmenting 3D image data from
light-sheet microscopy, demonstrating that acquisition-rate segmentation is possible. We use
images of stained nuclei and of vasculature in order to demonstrate the flexibility of the method
to segment different shapes.

The first image shows a whole live Drosophila melanogaster embryo at cellular blastoderm
stage with nuclei labeled by a histone marker. This data was acquired on an OpenSPIM micro-
scope [38] in the Tomancak lab at MPI-CBG. The size of the original image file is 4.6 GB at 32
bit depth. The image has 1824 × 834 × 809 pixels. During the segmentation, a total of about 64
GB of main memory is required for DRC. Distributed across 128 processors, this is 500 MB per
processor, which fits the memory of the individual cores. The segmentation results using the
present distributed algorithm with the PC image model on 128 processors is shown in Fig 25c.

Fig 20. Distributed segmentation of a natural-scene image using a piecewise smooth imagemodel. (a) Initialization on a single processor with
particles shown in red. (b) Final result on a single processor. (c) Initialization on four processors. (d) Final result on four processors. The two results are
identical.

doi:10.1371/journal.pone.0152528.g020

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 25 / 36



Fig 21. Distributed segmentation of zebrafish primordial germ cells using a piecewise smooth imagemodel. (a) Raw 3D confocal fluorescence
microscopy image showing three cells with a fluorescent membrane stain (image: M. Goudarzi, University of Münster). (b) Segmentation result on a single
processor. (c) Segmentation result on four processors. The two results are identical.

doi:10.1371/journal.pone.0152528.g021

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 26 / 36



Fig 25e shows the sub-image from one of the processors, and Fig 25f the corresponding part
of the segmentation result. Communication across sub-image boundaries ensures that the pro-
cessors collectively solve the global problem without storing all of it.

Segmenting this image distributed across 128 processors took less than 60 seconds, which is
shorter than the time of 90 seconds until the microscope acquires the next time point. We
hence achieve acquisition-rate image segmentation in this example, using a state-of-the-art
model-based segmentation algorithm that produces high-quality results. If necessary, more

Fig 22. Maximum-intensity projections of the synthetic test images used to assess the parallel performance and scalability of the distributed
algorithm. (a) 256 × 256 × 256 pixel unit cell of the first test image where no object touches or crosses the boundary. The image contains 37 ellipsoidal
objects of different intensities. All objects are non-overlapping in 3D, even though they may appear overlapping in the maximum projection shown here. (b)
256 × 256 × 256 pixel unit cell of the second test image with objects touching and crossing the boundary. The image contains 48 ellipsoidal objects of
different intensities. The object number is higher than in the first image, because some objects are partial, but the fraction of FG pixels vs. BG pixels is the
same as in (a) in order to keep the computational cost (i.e., the number of particles) constant. (c) Synthetic workload image of type 1, generated from 4 unit
cells by periodically concatenating them. (d) Synthetic workload image of type 2, generated from 4 unit cells by periodically concatenating them.

doi:10.1371/journal.pone.0152528.g022

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 27 / 36



processors can be used to further reduce processing time, as we have shown the present imple-
mentation to scale well up to 512 processors.

We compare our approach with the TWANG [10] pipeline on 14 cores of one compute
node (TWANG does shared-memory multi-threading). TWANG [10] required 24 minutes to
compute the segmentation using the 14 cores, which does not allow acquisition-rate process-
ing. The comparison is mainly in terms of computational performance, since TWANG was
optimized for segmenting spherical objects, whereas the nuclei in our image are rather elon-
gated. The result from DRC hence shows better segmentation quality.

Due to the inhomogeneous fluorescence intensity across the sample, the PC segmentation
shown in Fig 25c misses some of the nuclei at the left tip of the embryo. This can be improved
using the PS image model instead, which allows for intensity gradients within regions, in par-
ticular within the background region. This is shown in Fig 26. Fig 26a shows a low-intensity

Fig 23. Weak scaling parallel efficiency of the present method in comparison with the classical master/slave approach. Time t1 is the runtime of the
algorithm to process a “unit cell” image on one processor, and tP is the runtime to segment a P-fold larger periodic concatenation image distributed over P
processors. The images on 1 to 16 processors are shown below the abscissa for illustration.

doi:10.1371/journal.pone.0152528.g023

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 28 / 36



region where the PC model misses some nuclei. Fig 26b shows a high-intensity regions where
the PC model fuses several nuclei together. The corresponding results when using the PS image
model are shown in the panels below, in Fig 26c and 26d. The whole-image result when using
the PS image model is shown in Fig 26e. The PS model improves the segmentation since it
adjusts to local intensity variations in the objects and the background, which is also why it cap-
tures more of the fiducial beads around the embryo. This demonstrates the flexibility of DRC
to accommodate for different image models, enabling application-specific segmentations that
include prior knowledge about the image. The segmentation quality can further be improved
by including shape priors [23, 40], as has been demonstrated for DRC [41], or by using Sobolev
gradients for which DRC is uniquely suited [42].

Using the PS image model, however, is computationally more involved than using the PC
model. The segmentation shown in Fig 26e required 250 seconds to be computed on 128 pro-
cessors. Acquisition-rate processing using the PS model hence requires about 512 processors.

The second image shows the tail of a live zebrafish embryo 3.5 days post fertilization with
the vasculature fluorescently labeled by expressing GFP in endothelial cells (Tg(flk1:EGFP)
s843). This image was acquired by the Huisken lab at MPI-CBG using a state-of-the-art light-
sheet microscope [1]. The geometric structure of a vascular network is very different from
blob-like nuclei, illustrating the flexibility of DRC to segment arbitrary shapes. This image is

Fig 24. Strong scaling speedup versus number of processors P for two different image sizes of 512 × 512 × 512 pixel (black circles) and
2048 × 2048 × 2048 pixel (red squares). The two images are shown in the insets.

doi:10.1371/journal.pone.0152528.g024

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 29 / 36



PLOSONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 30 / 36

Distributed Segmentation of Large Microscopy Images



intractable for specialized blob-segmentation pipelines like TWANG [10]. Fig 27a shows the
raw data. The image has 1626 × 988 × 219 pixels. Fig 27b shows the segmentation result using
Li’s minimum cross-entropy thresholding [43], as implemented in the software package Fiji
[44]. We use this thresholding as an initialization for our method. Fig 27c is the segmentation
result using the PS image model with a Gaussian noise model. Distributed processing on 32
processors took 248 seconds. In this segmentation, some vessels appear non-contiguous and
the caudal vessels (caudal artery and caudal vein) are not properly resolved. This changes when
replacing the Gaussian noise model with a Poisson noise model [45], as shown in Fig 27d.
Using the correct noise model clearly improves the result, providing further illustration that
flexible frameworks like DRC are important. The result in Fig 27d was obtained on 32 proces-
sors in less than 200 seconds.

Discussion
We have presented a distributed-memory parallel implementation of the Discrete Region
Competition (DRC) algorithm [15] for image segmentation. Efficient parallelization was made
possible by a novel parallel independent sub-graph algorithm, as well as optimizations to the
parallel connected-component labeling algorithm. The final algorithm was implemented using
the PPM library [17–19] as an efficient middleware for parallel particle-mesh methods. The
parallel implementation includes both piecewise constant (PC) and piecewise smooth (PS)
image models; it is open-source and freely available from the web page of the MOSAIC Group
and from github: https://github.com/yafshar/PPM_RC.

The distributed-memory scalability of the presented approach effectively overcomes the
memory and runtime limitations of a single computer. None of the computers or processors
over which a task is distributed needs to store the entire image. This allows segmenting very
large images. The largest synthetic image considered here had 1.7 � 1010 pixels, corresponding
to 32 GB of uncompressed memory. A real-world light-sheet microscopy image of 1824 × 834
× 809 pixels (amounting to 4.6 GB of uncompressed memory) was segmented in under 60 sec-
onds when distributed across 128 processors. This was less than the 90 seconds until the micro-
scope acquired the next time point, hence providing online, acquisition-rate image analysis.
This is a prerequisite for smart microscopes [5] and also enables interactive experiments.

We have demonstrated the parallel efficiency and scalability of the present implementation
using synthetic images that can be scaled to arbitrary size. We have further reproduced the
benchmark cases from the original DRC paper [15] and shown that the parallel implementa-
tion produces the same or very close results as the original sequential reference implementa-
tion. Small differences may occur, but are limited to isolated oscillatory pixels, which are due to
local oscillation detection. This local detection is preferable because it avoids global communi-
cation and improves parallel scalability with respect to the traditional master/slave approach.

Although our performance figures are encouraging, there is still room for further improve-
ments. One idea could be to compress the particle and image data before communication. This
would effectively reduce the communication overhead and improve scalability. Furthermore,

Fig 25. Application of the present implementation to acquisition-rate segmentation of a 3D light-sheet microscopy image using a piecewise
constant (PC) imagemodel. All 3D visualizations were done usingClearVolume [39]. (a) Raw image showing a Drosophila melanogaster embryo at cellular
blastoderm stage with fluorescent histone marker (image: Dr. Pavel Tomancak, MPI-CBG). In addition to the nuclei, there are fluorescent beads embedded
around the sample as fiducial markers for multi-view fusion and registration [3]. (b) Segmentation result using the present distributed implementation of DRC
with the PC image model distributed across 128 processors. The total time to compute the segmentation was 60 seconds, while the microscope acquired a
3D image every 90 seconds. (c) Example of a sub-image from one of the processors. (d) Corresponding part of the segmentation as computed by that
processor.

doi:10.1371/journal.pone.0152528.g025

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 31 / 36

https://github.com/yafshar/PPM_RC


Fig 26. Comparison of the piecewise constant (PC) and piecewise smooth (PS) imagemodels. All visualizations were done usingClearVolume [39]. (a)
Segmentation (red) overlay in a low-intensity region using the PCmodel. (b) Segmentation (red) overlay in a high-intensity region using the PCmodel. (c)
Segmentation (red) overlay in the same low-intensity region using the PSmodel. (d) Segmentation (red) overlay in the same high-intensity region using the
PS model. (e) Complete result using the PSmodel on 128 processors. The total processing time was 250 seconds for this case.

doi:10.1371/journal.pone.0152528.g026

PLOSONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 32 / 36



Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 33 / 36



spatially adaptive domain decompositions and dynamic load balancing could be used to reduce
load imbalance. Depending on the image contents, not all processors may have an equal
amount of particles. This causes asynchronous waiting times that may limit scalability. Due to
the checkerboard decomposition used in the graph handling, however, the present implemen-
tation is limited to Cartesian domain decompositions, while spatially adaptive trees might be
better. Lastly, the local evaluation of energy differences for all possible particle moves can be
accelerated by taking advantage of multi-threading and graphics processing units (GPUs). This
is possible for DRC, as has already been shown [46], suggesting that processing could be further
accelerated by a factor of 10 to 30, depending on the image model.

This leaves ample opportunities for further reducing processing times as required by the
microscopy application. Already the present implementation, however, illustrates the algorith-
mic concept, which is based on randomized graph decomposition and hybrid particle-mesh
methods. This enables acquisition-rate segmentation of 3D fluorescence microscopy images
using different image models, opening the door for smart microscopes and interactive, feed-
back-controlled experiments.

Acknowledgments
This work was supported by the Max Planck Society and by the German Federal Ministry of
Education and Research (BMBF) under funding code 031A099. We thank the Center for Infor-
mation Services and High Performance Computing (ZIH) at TU Dresden for generous alloca-
tion of computer time. We thank Dr. Pavel Tomancak (MPI-CBG) for providing the example
image of Drosophila melanogaster, and Dr. Jan Huisken (MPI-CBG) and Stephan Daetwyler
(Huisken lab, MPI-CBG) for providing the example image of zebrafish vasculature. We also
thank Pietro Incardona and Bevan Cheeseman (both MOSAIC group) for many discussions.

Author Contributions
Conceived and designed the experiments: YA IFS. Performed the experiments: YA. Analyzed
the data: YA IFS. Contributed reagents/materials/analysis tools: YA. Wrote the paper: YA IFS.

References
1. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical Sectioning Deep Inside Live

Embryos by Selective Plane Illumination Microscopy. Science. 2004; 305:1007–1009. doi: 10.1126/
science.1100035 PMID: 15310904

2. Huisken J, Stainier DYR. Even fluorescence excitation by multidirectional selective plane illumination
microscopy (mSPIM). Opt Lett. 2007 Sep; 32(17):2608–2610. Available from: http://ol.osa.org/abstract.
cfm?URI=ol-32-17-2608 doi: 10.1364/OL.32.002608 PMID: 17767321

3. Preibisch S, Saalfeld S, Schindelin J, Tomancak P. Software for bead-based registration of selective
plane illumination microscopy data. Nat Meth. 2010 Jun; 7(6):418–419. 00086. Available from: http://
dx.doi.org/10.1038/nmeth0610-418

Fig 27. Application of the present method to segmenting zebrafish vasculature in a light-sheet
microscopy image. All visualizations were done usingClearVolume [39]. (a) Raw image showing the tail
part of the vasculature in a developing zebrafish embryo 3.5 days post fertilization (image: Stephan
Daetwyler, Huisken lab, MPI-CBG). (b) Initialization using Li thresholding [43]. (c) Segmentation result using
the PS image model with Gaussian noise model on 32 processors. The total processing time was 248
seconds. (d) Segmentation result using the PS image model with Poisson noise model [45] on 32 processors.
The total processing time was less than 200 seconds.

doi:10.1371/journal.pone.0152528.g027

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 34 / 36

http://dx.doi.org/10.1126/science.1100035
http://dx.doi.org/10.1126/science.1100035
http://www.ncbi.nlm.nih.gov/pubmed/15310904
http://ol.osa.org/abstract.cfm?URI=ol-32-17-2608
http://ol.osa.org/abstract.cfm?URI=ol-32-17-2608
http://dx.doi.org/10.1364/OL.32.002608
http://www.ncbi.nlm.nih.gov/pubmed/17767321
http://dx.doi.org/10.1038/nmeth0610-418
http://dx.doi.org/10.1038/nmeth0610-418


4. Schmid B, Shah G, Scherf N, Weber M, Thierbach K, Campos CP, et al. High-speed panoramic light-
sheet microscopy reveals global endodermal cell dynamics. Nat Commun. 2013 Jul; 4. 00013. Avail-
able from: http://dx.doi.org/10.1038/ncomms3207

5. Scherf N, Huisken J. The smart and gentle microscope. Nat Biotechnol. 2015 08; 33(8):815–818. doi:
10.1038/nbt.3310 PMID: 26252136

6. Amat F, LemonW, Mossing DP, McDole K, Wan Y, Branson K, et al. Fast, accurate reconstruction of
cell lineages from large-scale fluorescence microscopy data. Nat Methods. 2014 Sep; 11(9):951–958.
doi: 10.1038/nmeth.3036 PMID: 25042785

7. Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comput Vis. 1997; 22(1):61–79. doi:
10.1023/A:1007979827043

8. Beare R, LehmannG. The watershed transform in ITK—discussion and new developments. The Insight
Journal. 2006 06; Available from: http://hdl.handle.net/1926/202

9. Al-Kofahi Y, LassouedW, LeeW, Roysam B. Improved Automatic Detection and Segmentation of Cell
Nuclei in Histopathology Images. IEEE T Bio-Med Eng. 2010 April; 57(4):841–852. doi: 10.1109/TBME.
2009.2035102

10. Stegmaier J, Otte JC, Kobitski A, Bartschat A, Garcia A, Nienhaus GU, et al. Fast Segmentation of
Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks. PLoS ONE. 2014 02;
9(2):e90036. doi: 10.1371/journal.pone.0090036 PMID: 24587204

11. Olmedo E, Calleja JDL, Benitez A, Medina MA. Point to point processing of digital images using parallel
computing. International Journal of Computer Science Issues. 2012; 9(3):1–10.

12. Galizia A, D’Agostino D, Clematis A. An MPI–CUDA library for image processing on HPC architectures.
J Comput Appl Mech. 2015; 273:414–427. doi: 10.1016/j.cam.2014.05.004

13. Aubert G, Kornprobst P. Mathematical Problems in Image Processing. vol. 147 of Applied Mathematical
Sciences. Second edition ed. Springer New York; 2006.

14. Cremers D, Rousson M, Deriche R. A Review of Statistical Approaches to Level Set Segmentation:
Integrating Color, Texture, Motion and Shape. International Journal of Computer Vision. 2007; 72
(2):195–215. Available from: http://dx.doi.org/10.1007/s11263-006-8711-1

15. Cardinale J, Paul G, Sbalzarini IF. Discrete region competition for unknown numbers of connected
regions. IEEE Trans Image Process. 2012; 21(8):3531–3545. doi: 10.1109/TIP.2012.2192129 PMID:
22481820

16. Delong A, Osokin A, Isack HN, Boykov Y. Fast Approximate Energy Minimization with Label Costs. Int
J Comput Vision. 2012; 96(1):1–27. doi: 10.1007/s11263-011-0437-z

17. Sbalzarini IF, Walther JH, Bergdorf M, Hieber SE, Kotsalis EM, Koumoutsakos P. PPM—A Highly Effi-
cient Parallel Particle-Mesh Library for the Simulation of Continuum Systems. J Comput Phys. 2006;
215(2):566–588. doi: 10.1016/j.jcp.2005.11.017

18. Awile O, Demirel O, Sbalzarini IF. Toward an Object-Oriented Core of the PPM Library. In: Proc.
ICNAAM, Numerical Analysis and Applied Mathematics, International Conference. AIP; 2010. p. 1313–
1316.

19. Awile O, MitrovićM, Reboux S, Sbalzarini IF. A domain-specific programming language for particle sim-
ulations on distributed-memory parallel computers. In: Proc. III Intl. Conf. Particle-based Methods
(PARTICLES). Stuttgart, Germany; 2013. p. p52.

20. Ibanez L, Schroeder W, Ng L, Cates J. The ITK Software Guide. http://www.itk.org/ItkSoftwareGuide.
pdf; 2005.

21. Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. Int J Comput Vis. 1988;p. 321–331.

22. Montagnat J, Delingette H, Ayache N. A review of deformable surfaces: topology, geometry and defor-
mation. Image and Vision Comput. 2001; 19(14):1023–1040. Available from: http://www.sciencedirect.
com/science/article/pii/S0262885601000646 doi: 10.1016/S0262-8856(01)00064-6

23. Zhang D, Lu G. Review of shape representation and description techniques. Pattern Recognition.
2004; 37(1):1–19. Available from: doi: 10.1016/j.patcog.2003.07.008

24. Xu C, Yezzi J A, Prince JL. On the relationship between parametric and geometric active contours. In:
Signals, Systems and Computers, 2000. Conference Record of the Thirty-Fourth Asilomar Conference
on. vol. 1; 2000. p. 483 –489 vol.1.

25. Shi Y, Karl WC. A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution.
IEEE Trans Image Process. 2008; 17(5):645–656. doi: 10.1109/TIP.2008.920737 PMID: 18390371

26. Zhu SC, Yuille A. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband
image segmentation. IEEE Trans Pattern Anal Machine Intell. 1996 Sep; 18(9):884–900. doi: 10.1109/
34.537343

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 35 / 36

http://dx.doi.org/10.1038/ncomms3207
http://dx.doi.org/10.1038/nbt.3310
http://www.ncbi.nlm.nih.gov/pubmed/26252136
http://dx.doi.org/10.1038/nmeth.3036
http://www.ncbi.nlm.nih.gov/pubmed/25042785
http://dx.doi.org/10.1023/A:1007979827043
http://hdl.handle.net/1926/202
http://dx.doi.org/10.1109/TBME.2009.2035102
http://dx.doi.org/10.1109/TBME.2009.2035102
http://dx.doi.org/10.1371/journal.pone.0090036
http://www.ncbi.nlm.nih.gov/pubmed/24587204
http://dx.doi.org/10.1016/j.cam.2014.05.004
http://dx.doi.org/10.1007/s11263-006-8711-1
http://dx.doi.org/10.1109/TIP.2012.2192129
http://www.ncbi.nlm.nih.gov/pubmed/22481820
http://dx.doi.org/10.1007/s11263-011-0437-z
http://dx.doi.org/10.1016/j.jcp.2005.11.017
http://www.itk.org/ItkSoftwareGuide.pdf
http://www.itk.org/ItkSoftwareGuide.pdf
http://www.sciencedirect.com/science/article/pii/S0262885601000646
http://www.sciencedirect.com/science/article/pii/S0262885601000646
http://dx.doi.org/10.1016/S0262-8856(01)00064-6
http://dx.doi.org/10.1016/j.patcog.2003.07.008
http://dx.doi.org/10.1109/TIP.2008.920737
http://www.ncbi.nlm.nih.gov/pubmed/18390371
http://dx.doi.org/10.1109/34.537343
http://dx.doi.org/10.1109/34.537343


27. Ségonne F. Segmentation of Medical Images under Topological Constraints. Massachusetts Institute
of Technology (MIT); 2005.

28. Bertrand G. Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern
Recognition Letters. 1994; 15(10):1003–1011. doi: 10.1016/0167-8655(94)90032-9

29. Lamy J. Integrating digital topology in image-processing libraries. Computer Methods and Programs in
Biomedicine. 2007; 85(1):51–58. doi: 10.1016/j.cmpb.2006.08.006 PMID: 17113181

30. Flanigan M, Tamayo P. Parallel cluster labeling for large-scale Monte Carlo simulations. Physica A:
Statistical Mechanics and its Applications. 1995; 215(4):461–480. Available from: http://www.
sciencedirect.com/science/article/pii/0378437195000194 doi: 10.1016/0378-4371(95)00019-4

31. Knop F, Rego V. Parallel Labeling of Three-Dimensional Clusters on Networks of Workstations. Journal
of Parallel and Distributed Computing. 1998; 49(2):182–203. Available from: http://www.sciencedirect.
com/science/article/pii/S0743731597914209 doi: 10.1006/jpdc.1997.1420

32. Teuler JM, Gimel JC. A direct parallel implementation of the Hoshen–Kopelman algorithm for distrib-
uted memory architectures. Computer Physics Communications. 2000; 130(1-2):118–129. Available
from: http://www.sciencedirect.com/science/article/pii/S0010465500000461 doi: 10.1016/S0010-4655
(00)00046-1

33. Tiggemann D. Simulation of percolation on massively-parallel computers. International Journal of Mod-
ern Physics C. 2001; 12(06):871. doi: 10.1142/S012918310100205X

34. Wang Kb, Chia Tl, Chen Z, Lou Dc. Parallel execution of a connected component labeling operation on
a linear array architecture. Journal of Information Science And Engineering. 2003; 19:353–370.

35. Moloney NR, Pruessner G. Asynchronously parallelized percolation on distributed machines. Phys Rev
E. 2003 Mar; 67:037701. Available from: http://link.aps.org/doi/10.1103/PhysRevE.67.037701 doi: 10.
1103/PhysRevE.67.037701

36. Pawley GS, Bowler KC, Kenway RD, Wallace DJ. Concurrency and parallelism in MC and MD simula-
tions in physics. Comput Phys Commun. 1985; 37(1-3):251–260. doi: 10.1016/0010-4655(85)90160-2

37. Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. IEEE Intl. Conf.
Computer Vision (ICCV). Vancouver, BC, Canada; 2001. p. 416–423.

38. Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, Eliceiri KW, et al. OpenSPIM: an
open-access light-sheet microscopy platform. Nat Methods. 2013 Jul; 10(7):597–598. doi: 10.1038/
nmeth.2507

39. Royer LA, Weigert M, Günther U, Maghelli N, Jug F, Sbalzarini IF, et al. ClearVolume: open-source live
3D visualization for light-sheet microscopy. Nat Methods. 2015 Jun; 12(6):480–481. doi: 10.1038/
nmeth.3372 PMID: 26020498

40. Veltkamp RC, Hagedoorn M. 4. State of the Art in Shape Matching. Principles of visual information
retrieval. 2001;p. 87.

41. Cardinale J. Unsupervised Segmentation and Shape Posterior Estimation under Bayesian Image Mod-
els [PhD Thesis, Diss. ETH No. 21026]. MOSAIC Group, ETH Zürich; 2013.

42. Sbalzarini IF, Schneider S, Cardinale J. Particle methods enable fast and simple approximation of
Sobolev gradients in image segmentation. arXiv preprint arXiv:14030240v1. 2014;p. 1–21.

43. Li CH, Lee CK. MinimumCross Entropy Thresholding. Pattern Recognition. 1993; 26(4):617–625. doi:
10.1016/0031-3203(93)90115-D

44. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
platform for biological-image analysis. Nat Methods. 2012; 9(7):676–682. doi: 10.1038/nmeth.2019
PMID: 22743772

45. Paul G, Cardinale J, Sbalzarini IF. Coupling Image Restoration and Segmentation: A Generalized Lin-
ear Model/Bregman Perspective. Int J Comput Vis. 2013; 104(1):69–93. Available from: 10.1007/
s11263-013-0615-2

46. Ebrahim E. Energy-based Image Segmentation using GPGPU [Master thesis]. Technische Universität
München &MOSAIC Group, ETH Zurich; 2011.

Distributed Segmentation of Large Microscopy Images

PLOS ONE | DOI:10.1371/journal.pone.0152528 April 5, 2016 36 / 36

http://dx.doi.org/10.1016/0167-8655(94)90032-9
http://dx.doi.org/10.1016/j.cmpb.2006.08.006
http://www.ncbi.nlm.nih.gov/pubmed/17113181
http://www.sciencedirect.com/science/article/pii/0378437195000194
http://www.sciencedirect.com/science/article/pii/0378437195000194
http://dx.doi.org/10.1016/0378-4371(95)00019-4
http://www.sciencedirect.com/science/article/pii/S0743731597914209
http://www.sciencedirect.com/science/article/pii/S0743731597914209
http://dx.doi.org/10.1006/jpdc.1997.1420
http://www.sciencedirect.com/science/article/pii/S0010465500000461
http://dx.doi.org/10.1016/S0010-4655(00)00046-1
http://dx.doi.org/10.1016/S0010-4655(00)00046-1
http://dx.doi.org/10.1142/S012918310100205X
http://link.aps.org/doi/10.1103/PhysRevE.67.037701
http://dx.doi.org/10.1103/PhysRevE.67.037701
http://dx.doi.org/10.1103/PhysRevE.67.037701
http://dx.doi.org/10.1016/0010-4655(85)90160-2
http://dx.doi.org/10.1038/nmeth.2507
http://dx.doi.org/10.1038/nmeth.2507
http://dx.doi.org/10.1038/nmeth.3372
http://dx.doi.org/10.1038/nmeth.3372
http://www.ncbi.nlm.nih.gov/pubmed/26020498
http://dx.doi.org/10.1016/0031-3203(93)90115-D
http://dx.doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://dx.doi.org/10.1007/s11263-013-0615-2
http://dx.doi.org/10.1007/s11263-013-0615-2

