
Parallel distributed-memory particle

methods for acquisition-rate segmentation
and uncertainty quantifications of large

fluorescence microscopy images

A dissertation submitted to
Technische Universität Dresden

Fakultät Informatik

for the degree of
Doktor-Ingenieur (Dr.-Ing.)

presented by
Yaser Afshar

M.Sc. Mechanical Engineering
born on April 26th, 1980
citizen of Tehran, Iran

accepted on the recommendation of
Prof. Ivo F. Sbalzarini
Prof. Michael Schröder

Prof. Gene Myers
Prof. Lars Hufnagel

Date of defense: October 17th, 2016

Declaration of Authorship

This thesis is a presentation of my own original research work. Wherever
contributions of others are involved, every effort is made to indicate this
clearly, with due reference to the literature. The work was done at the
Technische Universität Dresden, and project carried out at the Center for
Systems Biology Dresden and the Max Planck Institute of Molecular Cell
Biology and Genetics under the supervision of Prof. Dr. Ivo F. Sbalzarini.
I hereby declare that this thesis has not been submitted before to any
institution for assessment purposes.

Dresden, July 11, 2016 Yaser Afshar

i

ii

Acknowledgments

This thesis would not have been possible without the support of many
people at MPI-CBG and beyond. First and most of all, I would like to
express my special appreciation to Ivo, for giving me the opportunity to
do my Ph.D. in the MOSAIC group. Ivo, you have been always amazingly
open, positive, and supportive. I would like to thank you for sharing your
enthusiasm and your ideas for our work which has been very contagious
and motivating. I would like to thank you for encouraging my research
and for helping me to establish my career as a research scientist. Your
advice on both research as well as on my career has been priceless. Thank
you!

I would also like to thank my thesis committee members, Prof. Dr. Gene
Myers and Prof. Dr. Michael Schröder, who have been my thesis advisory
members after I started my Ph.D. thesis at MPI-CBG. I am thankful to
all for the insightful comments and sincere encouragement during the last
four years. Furthermore, I am grateful to my external reviewer, Dr. Lars
Hufnagel, for accepting to review this thesis.

I want to thank sincerely the members of the MOSAIC group, who have
contributed immensely to my personal and professional time at MPI-CBG.
The group has been a source of friendships as well as good advice and
collaboration. I want to thank all the present and past members of MO-
SAIC, with whom, I had the pleasure to work and to interact. They all

iii

contributed to the stimulating and friendly atmosphere in many ways and
made my Ph.D. adventure a very pleasant experience indeed.

Big cheers go to my awesome friends at MOSAIC. Thanks to Pietro and
Bevan for the countless challenging and fruitful discussions. Millions of
thanks go to Josefine for the good moments we had working together and
most importantly for being a wonderful friend in every way. A special
thank you to Ulrik, for sharing his expertise on Apple hardware and for
introducing me to rock climbing and vertical adventures. I am also glad to
have worked with Rajesh, I always enjoyed our discussions and benefited
from his scientific knowledge. I enjoyed all the discussions with Rajesh
and Pietro in the lab. It was a pleasant experience to work with Alex. I
enjoyed Alex’s scientific mind and the way he shares it. I was truly pleased
to share the office with Krzysztof. I appreciate his honesty and his sense
of humor. I enjoyed the discussions with Ömer on parallel programming
and parallelization technology. It was very pleasant to work with Sophie.
I acknowledge her honesty and calmness and all the good moments we
shared together at MOSAIC. I’d like to thank Alejandro for contributing
to the good mood in the group. I am also grateful to Anastasia, Benjamin,
and Michael for the great moments we had working together and for all
our discussions. I am also thankful to Gong, for many valuable discussions
that helped me understand image processing when I joined the group and
when this research area was still new to me.

I am indebted to Ms. Carolyn Fritzsche from the international office of
MPI-CBG for her support in my personal and professional life, and to
Ms. Antje Walter who helped me and my wife in our marriage through
each and every step with the paper work and the German bureaucracy. I
am also thankful to our kind and helpful secretary, Mrs. Susann Gierth.

Moreover, I would like to acknowledge the financial, academic and tech-
nical support of the Max Planck Institute of Molecular Cell Biology and
Genetics (MPI-CBG) and its staff.

Above all, special thanks go to my family. I have an amazing family, unique
in many ways. Words cannot express how grateful I am for all the sacrifices
that they made for me. Without them, it would not have been possible for
me to study and carry out this thesis. Thank you for encouraging me in all
of my pursuits and for inspiring me to follow my dreams. I am especially

iv

grateful to my parents, who supported me in every way. I always knew
that they believed in me and wanted the best for me. They have cherished
with me every great moment and supported me whenever I needed it. I’m
profoundly grateful.

All my love goes to my wife. Fafa, thank you for starting this journey
with me and always backing me in all difficulties, even though we were
half a globe apart. You encouraged me to do the best and helped me to
follow my dreams. Thanks for your love and support. You are my eternal
sunshine.

Yaser

v

vi

Abstract

Modern fluorescence microscopy modalities, such as light-sheet
microscopy, are capable of acquiring large three-dimensional images
at high data rate. This creates a bottleneck in computational pro-
cessing and analysis of the acquired images, as the rate of acquisition
outpaces the speed of processing. Moreover, images can be so large
that they do not fit the main memory of a single computer. An-
other issue is the information loss during image acquisition due to
limitations of the optical imaging systems . Analysis of the acquired
images may, therefore, find multiple solutions (or no solution) due to
imaging noise, blurring, and other uncertainties introduced during
image acquisition.

In this thesis, we address the computational processing time and
memory issues by developing a distributed parallel algorithm for
segmentation of large fluorescence-microscopy images. The method
is based on the versatile Discrete Region Competition (Cardinale
et al., 2012) algorithm, which has previously proven useful in mi-
croscopy image segmentation. The present distributed implementa-
tion decomposes the input image into smaller sub-images that are
distributed across multiple computers. Using network communica-
tion, the computers orchestrate the collective solving of the global
segmentation problem. This not only enables segmentation of large
images (we test images of up to 1010 pixels), but also accelerates
segmentation to match the time scale of image acquisition. Such
acquisition-rate image segmentation is a prerequisite for the smart
microscopes of the future and enables online data inspection and
interactive experiments.

Second, we estimate the segmentation uncertainty on large im-
ages that do not fit the main memory of a single computer. We there-
fore develop a distributed parallel algorithm for efficient Markov-
chain Monte Carlo Discrete Region Sampling (Cardinale, 2013). The
parallel algorithm provides a measure of segmentation uncertainty
in a statistically unbiased way. It approximates the posterior prob-
ability densities over the high-dimensional space of segmentations
around the previously found segmentation.

I

II

Zusammenfassung

Moderne Fluoreszenzmikroskopie, wie zum Beispiel Lichtblattmi-
kroskopie, erlauben die Aufnahme hochaufgelöster, 3-dimensionaler
Bilder. Dies führt zu einen Engpass bei der Bearbeitung und Analy-
se der aufgenommenen Bilder, da die Aufnahmerate die Datenverar-
beitungsrate übersteigt. Zusätzlich können diese Bilder so groß sein,
dass sie die Speicherkapazität eines einzelnen Computers überschreiten.
Hinzu kommt der aus Limitierungen des optischen Abbildungssys-
tems resultierende Informationsverlust während der Bildaufnahme.
Bildrauschen, Unschärfe und andere Messunsicherheiten können da-
zu führen, dass Analysealgorithmen möglicherweise mehrere oder
keine Lösung für Bildverarbeitungsaufgaben finden.

Im Rahmen der vorliegenden Arbeit entwickeln wir einen verteil-
ten, parallelen Algorithmus für die Segmentierung von speicherin-
tensiven Fluoreszenzmikroskopie-Bildern. Diese Methode basiert auf
dem vielseitigen “Discrete Region Competition” Algorithmus (Car-
dinale et al., 2012), der sich bereits in anderen Anwendungen als
nützlich für die Segmentierung von Mikroskopie-Bildern erwiesen
hat. Das hier präsentierte Verfahren unterteilt das Eingangsbild in
kleinere Unterbilder, welche auf die Speicher mehrerer Computer
verteilt werden. Die Koordinierung des globalen Segmentierungspro-
blems wird durch die Benutzung von Netzwerkkommunikation er-
reicht. Dies erlaubt die Segmentierung von sehr großen Bildern, wo-
bei wir die Anwendung des Algorithmus auf Bildern mit bis zu 1010

Pixeln demonstrieren. Zusätzlich wird die Segmentierungsgeschwin-
digkeit erhöht und damit vergleichbar mit der Aufnahmerate des
Mikroskops. Dies ist eine Grundvoraussetzung für die intelligenten
Mikroskope der Zukunft, und es erlaubt die Online-Betrachtung der
aufgenommenen Daten, sowie interaktive Experimente.

Wir bestimmen die Unsicherheit des Segmentierungsalgorithmus
bei der Anwendung auf Bilder, deren Größe den Speicher eines ein-
zelnen Computers übersteigen. Dazu entwickeln wir einen verteilten,
parallelen Algorithmus für effizientes Markov-chain Monte Carlo
“Discrete Region Sampling” (Cardinale, 2013). Dieser Algorithmus
quantifiziert die Segmentierungsunsicherheit statistisch erwartungs-
treu. Dazu wird die A-posteriori-Wahrscheinlichkeitsdichte über den
hochdimensionalen Raum der Segmentierungen in der Umgebung
der zuvor gefundenen Segmentierung approximiert.

III

IV

Contents

Declaration of Authorship i

Acknowledgements iii

Abstract I

Zusammenfassung III

1 Introduction 1

Thesis Outline and Contributions 4

2 Preliminaries 9

2.1 The Bayesian image Segmentation Paradigm 9

2.2 Review of Discrete Region Competition 11

2.3 Introduction to MCMC 16

V

CONTENTS

2.3.1 The Metropolis-Hastings algorithm 21

2.4 Review of Discrete Region Sampling 22

2.5 Distributed computing 27

2.5.1 Middleware for distributed computing: PPM 28

3 Parallel distributed-memory Discrete Region
Competition algorithm 29

3.1 Introduction . 29

3.2 Data distribution by domain decomposition 29

3.2.1 Initialization . 30

3.2.2 Parallel connected-component labeling 33

3.2.3 Parallel contour propagation 41

3.2.4 Parallel topology processing and data-structure update 50

3.3 Results . 55

3.3.1 Correctness of the distributed algorithm 56

3.3.2 Efficiency of the distributed algorithm 66

3.3.3 Application to acquisition-rate segmentation of 3D
light-sheet microscopy data 71

3.4 Summary . 80

4 Parallel distributed-memory Discrete Region
Sampling algorithm 83

4.1 Introduction . 83

4.1.1 Previous approaches 84

4.2 Algorithm . 89

VI

CONTENTS

4.2.1 Domain decomposition 89

4.2.2 Checkerboard decomposition 90

4.2.3 Parallel Pseudo random number generation 92

4.2.4 Iteration structure 94

4.2.5 Data structure . 101

4.3 Results . 102

4.4 Summary . 103

5 Conclusions and Future work 105

Curriculum Vitae 117

VII

CONTENTS

VIII

Nomenclature

List of Acronyms

2D two-dimensional

3D three-dimensional

AR acceptance rate

BG background

CMOS complementary metal-oxide-semiconductor

CUDA a parallel computing platform and programming model

DRC discrete region competition

DRS discrete region sampling

DSL domain-specific programming language

eDSL embedded domain-specific programming language

FBR forward-backward ratio

FFTW fastest Fourier transform in the west

FG foreground

GB gigabyte

GFP green fluorescent protein

GPU graphics processing unit

HKA Hoshen-Kopelman algorithm

HR Hastings ratio

ITK insight segmentation and registration toolkit

IX

CONTENTS

MAP maximum-a-posteriori

MC Monte Carlo

MCMC Markov-chain Monte Carlo

MH Metropolis-Hastings

MPI-CBG Max Planck Institute of Molecular Cell Biology and Ge-
netics

MPI message passing interface

MTRNG Mersenne Twister random number generator

PC piecewise constant

PPM parallel particle mesh library

PPML parallel particle mesh language

PS piecewise smooth

RMA remote memory access

RNG pseudo random number generator

SPIM selective plane illumination microscopy

SRNG Saru random number generator

Greek Characters

αij transition probability

∆rmax edge length of the cell

∆E energy difference

Γ segmentation contour

Γ′ perturbed segmentation contour

Γi contour of region i

λ regularization parameter

Ω image domain

π(.) target distribution

σ standard deviation of a Gaussian

τ hitting time

X

CONTENTS

Latin Characters

bc boundary cell

C set of states

Cc checkerboard set

Cb array of border cell indices

Ci array of interior cell indices

Cn displacement array of interior cells

d image dimension

di period of a state i

E energy function

E expectation value

f̄ an estimate of the expectation of f

fnij probability of chain starting at i entering j for the first
time at the nth step

GP undirected graph on processor P

Gi
P interior sub-graphs on processor P

Gb
P boundary sub-graphs on processor P

I image

L1 L1-norm or least absolute deviation

L2 L2-norm or least squares deviation

L label image

l′ candidate label of a particle

L0 initial label image

L length of sub-image border

L collection of segmentations

M number of regions

M hash map

Pf set of floating particles

pij transition probability to move from state i to state j

P set of regular particles

P number of processors

P transition matrix

p a particle

XI

CONTENTS

qf off-boundary sampling probability

q a particle

R the set of real numbers

S finite state space

Xi image region, set of discrete points

Xn random variable at time or position n

X ′ proposal state

Special symbols

∇ Nabla operator

O complexity function, “big-O notation”

→ a state is accessible from the other

↔ states communicate with each other

⊂ sub-set

∈ set membership

XII

List of Figures

2.1 Illustration of two regions 12

2.2 Illustration of causally dependent moves 14

2.3 Illustration of dependency graph construction 15

2.4 Illustration of a region . 24

2.5 Illustration of a topological trap 25

3.1 Domain decomposition and distribution of an image 30

3.2 Ghost layers . 31

3.3 Region label initialization 32

3.4 Distributed parallel connected-component labeling 34

3.5 Processors independently label the local part 35

3.6 The border relabeling . 36

3.7 Sending border to the master node 38

3.8 An array of unique pairs . 39

XIII

LIST OF FIGURES

3.9 The global array of all unique pairs 40

3.10 The master-slave approach 43

3.11 Distributed sub-graph algorithm 44

3.12 Energy evolution . 47

3.13 Comparison of the results 48

3.14 Local pixel oscillations . 50

3.15 Distributed region split and merge algorithm 51

3.16 Activated (“hot”) boundary particles 52

3.17 Distributed segmentation of a synthetic image 57

3.18 Energy evolution . 58

3.19 Distributed segmentation of a natural-scene image 59

3.20 Distributed segmentation of fluorescently labeled cell nuclei 60

3.21 Parallel segmentation of a synthetic image 62

3.22 Energy evolution . 63

3.23 Distributed segmentation of a natural-scene image 64

3.24 Distributed segmentation of zebrafish primordial germ cells 65

3.25 Maximum-intensity projections 67

3.26 Weak scaling parallel efficiency 69

3.27 Strong scaling speedup . 70

3.28 Application to acquisition-rate segmentation 73

3.29 Comparison of PC and PS image models 76

3.30 Application to segmenting zebrafish vasculature 79

XIV

LIST OF FIGURES

4.1 An image with four sub-images 86

4.2 Sampling two particles simultaneously in two sub-images . . 87

4.3 Image distributed to sixteen sub-images 90

4.4 Illustration of boundary and interior cells 95

4.5 Illustration of the five sub-sweeps over cells 97

4.6 Communications after sampling 100

XV

LIST OF FIGURES

XVI

CHAPTER

ONE

Introduction

Modern fluorescence microscopes with high-resolution cameras are capable
of acquiring large images at a fast rate. Data rates of 1 GB/s are common
with CMOS cameras, and the three-dimensional (3D) image volumes ac-
quired by light-sheet microscopy (Huisken et al., 2004) routinely exceed
tens of gigabytes per image, and tens of terabytes per time-lapse exper-
iment (Huisken and Stainier, 2007; Preibisch et al., 2010; Schmid et al.,
2013). This defines new challenges in handling, storing, and analyzing the
image data, as image acquisition outpaces analysis capabilities.

Ideally, the images are analyzed during acquisition with analysis times
that are smaller than the time until the next image is acquired. This “real-
time” image analysis not only alleviates the data bottleneck, but is also
a prerequisite for smart microscopes that optimize the acquisition of the
next image based on the contents of the current image (Scherf and Huisken,
2015). Real-time segmentation also enables interactive experiments where,
e.g., optical manipulation and tracking become feasible in a developing
embryo (Amat et al., 2014).

1

CHAPTER 1. INTRODUCTION

Real-time, or more precisely acquisition-rate, segmentation of large images
is usually hindered by the memory requirements of the image data and
the analysis algorithm. Segmenting an image requires about 5 to 10 times
more memory than the raw image data (Caselles et al., 1997; Beare and
Lehmann, 2006; Al-Kofahi et al., 2010). This means that in order to seg-
ment a 30 GB 3D light-sheet microscopy image, one would need a computer
with 150 to 300 GB of main memory. Image segmentation at acquisition
rate has hence mainly been achieved for smaller images (Stegmaier et al.,
2014). For example, segmenting a 2048×2048×400 pixel image of stained
nuclei, which translates to about 3 GB file size at 16 bit depth, required
more than 32 GB of main memory (Stegmaier et al., 2014).

Acquisition-rate processing of large images has so far been limited to
low-level image processing, such as filtering or blob detection. Pixel-by-
pixel low-level processing has been accelerated by Olmedo et al. (2012)
using CUDA as a parallel programming tool on graphics processing units
(GPUs). In their work, pixel-wise operations are applied to many pixels
simultaneously, rather than sequentially looping through pixels. While
such GPU acceleration achieves high processing speeds and data rates, it
is limited by the size of the GPU memory, which is in general smaller than
the main memory. Another approach is to distribute different images to
different computers. In a time-lapse sequence, every image can be sent to
a different computer for processing. Using 100 computers, every computer
has 100 frames time to finish processing its image, until it receives the
next one. While this does not strictly fulfill the definition of acquisition-
rate processing (e.g., it would not be useful for a smart microscope), it
improves data throughput by pipelining. Galizia et al. (2015) have demon-
strated this in the parallel image processing library GEnoa, which runs
on computer clusters using the Message Passing Interface (MPI) to dis-
tribute work, but it also runs on GPUs and GPU clusters. This library
focuses on low-level image processing. Both GPU acceleration and embar-
rassingly parallel work-farming approaches are, however, unable to provide
acquisition-rate high-level image analysis of single large images or time se-
ries comprised of large images.

High-level image analysis in fluorescence microscopy is mostly concerned
with image segmentation (Aubert and Kornprobst, 2006; Cremers et al.,
2007). In image segmentation, the task is to detect and delineate objects

2

represented in the image. This is a high-level task, which cannot be done
in a pixel-independent way. It also cannot be formulated as a shader or
filter, rendering it hard to exploit the speed of GPUs. Finally, as outlined
above, high-level image analysis of large images quickly exceeds the main
memory of a single computer. This memory limitation can be overcome
by sub-sampling the image, for example coarse-graining groups of pixels to
super-pixels. This has been successfully used for acquisition-rate detection
of nuclei and lineage tracking from large 3D images (Amat et al., 2014).
The generation of super-pixels only requires low-level operations, where
the high-level analysis is done on the reduced data. While this effectively
enables acquisition-rate high-level analysis, it does not provide single-pixel
resolution and is somewhat limited to the specific application of lineage
tracing.

Pixel-accurate high-level analysis of large images can be achieved by split-
ting each image into smaller sub-images and distributing them across mul-
tiple computers or memories, thus distributing the data and the work. The
computers then work in parallel, each on its sub-image. They communicate
over a network interconnect in order to collectively solve the same high-
level image-analysis problem that a single computer would have solved.
However, since the data are distributed, the solution is available faster,
and arbitrarily large images can be accommodated by distributing across
more computers. This is the hallmark of distributed-memory parallelism.
This strategy enables segmentation of large images, and accelerates seg-
mentation to match the time scale of image acquisition. However, image
segmentation constitutes an ill-posed problem. Thus, the segmentation
might be uncertain without providing any information about the uncer-
tainty in the solution. Providing confidence intervals and uncertainties
of the analysis results would provide more information and enable higher-
level reasoning about the solution. Therefore, it is critical to capture the
uncertainty of the segmentation before declaring the final decision or stor-
ing the results, in order to decide whether an observed difference between
samples is real, or a processing artifact. In Bayesian image analysis, the
distribution of potential results and a representative collection of them can
be estimated by drawing samples from the posterior distribution. Repre-
sentative samples from the posterior provide additional insight into the
robustness of the segmentation. However, the sampling approach, no mat-
ter how smart, is computationally expensive and inherently sequential. We

3

CHAPTER 1. INTRODUCTION

explore the distributed-memory approaches that relax these issues for data
that do not fit the memory of a single computer.

Thesis Outline and Contributions

In this thesis, we address both processing-time and memory issues by
developing a distributed parallel framework for segmentation and uncer-
tainty quantification of large fluorescence microscopy images. The method
is based on the versatile Discrete Region Competition (Cardinale et al.,
2012) algorithm, which has previously proven useful in microscopy image
segmentation. The present distributed implementation decomposes the
input image into smaller sub-images that are distributed across multiple
computers. Using network communication, the computers orchestrate the
collective solving of the global segmentation problem. This not only en-
ables segmentation of large images (we test images of up to 1010 pixels),
but also accelerates segmentation to match the time scale of image acqui-
sition. Such acquisition-rate image segmentation is a prerequisite for the
smart microscopes of the future and enables online data inspection and
interactive experiments.

We also address both the processing-time and memory issues of Markov-
chain Monte Carlo algorithms for assessing the segmentation quality and
robustness. The method is based on a novel, efficient, particle-based
Metropolis-Hastings algorithm (Cardinale, 2013), called discrete region
sampling (DRS). Again, the present distributed implementation decom-
poses the input image into smaller sub-images that are distributed across
multiple computers. Using network communication, the computers orches-
trate the collective sampling from the posterior distribution of the defined
segmentations on the observed image in a statistically unbiased manner.

Chapter 2: Preliminaries

We begin by discussing the relevant background material in Chapter. 2.
After motivating the Bayesian formulation of image analysis, we introduce
the DRC image-segmentation algorithm. We give a brief introduction to

4

Markov chain theory, followed by a review of previous shape sampling
approaches. We provide an introduction to distributed computing and
conclude with an overview of the parallel particle mesh library (PPM) as
a middleware for distributed particle methods.

Chapter 3: Parallel distributed-memory Discrete
Region Competition algorithm

We present a distributed-memory parallel design and implementation of
the generic image-segmentation algorithm DRC. The present implementa-
tion scales to large images. Here, we test images of size up to 8192×8192×
256 = 1.7 · 1010 pixels, corresponding to 32 GB of data per image at 16
bit depth. We show that distributing an image across 128 processors en-
ables acquisition-rate segmentation of large light-sheet microscopy images
of Drosophila embryos. Discrete Region Competition (DRC) (Cardinale
et al., 2012) is a general-purpose model-based segmentation method. It is
not limited to nucleus detection or any other task, but solves generic image-
segmentation problems with pixel accuracy. The method is based on using
computational particles to represent image regions. This particle-method
character renders the computational cost of the method independent of
the image size, since it only depends on the total contour length of the
segmentation. Storing the information on particles effectively reduces the
problem from 3D to 2D (or from 2D to 1D). Moreover, the particle nature
of the method lends itself to distributed parallelism, as particles can be
processed concurrently, even if pixels cannot. In terms of computational
speed, DRC has been shown competitive with fast discrete methods from
computer vision, such as multi-label graph-cuts (Cardinale et al., 2012; De-
long et al., 2012). Single-processor DRC has previously been demonstrated
on 2D and 3D images using a variety of different image models, including
piecewise constant, piecewise smooth, and deconvolving models (Cardinale
et al., 2012).

The piecewise constant and piecewise smooth models are also available in
the present distributed-memory parallel implementation. This makes avail-
able a state-of-the-art generic image segmentation toolbox for acquisition-
rate analysis of large images that do not need to fit the memory of a

5

CHAPTER 1. INTRODUCTION

single computer. The main challenge in parallelizing the DRC algorithm
is to ensure global topological constraints on the image regions. These
are required in order for regions to remain closed or connected. The main
algorithmic contribution of the present work is hence to propose a novel
distributed algorithm for the independent-sub-graph problem. Moreover,
we present a new parallel algorithm for connected-component labeling in
2D and 3D images. The presented algorithm is both memory and compu-
tationally efficient and scales to large numbers of processors.

The algorithmic solutions presented in Chapter 3 ensure that the final
result computed is the same that would have been computed on a single
computer, and that the network communication overhead is kept to a
minimum, hence ensuring scalability to large images.

Since each computer only stores its local sub-image, information needs
to be communicated between neighboring sub-images in order to ensure
global consistency of the solution. Since DRC is a particle method, we use
the Parallel Particle Mesh (PPM) library (Sbalzarini et al., 2006; Awile
et al., 2010, 2013) for work distribution and orchestration of the parallel
communication.

We then present the main algorithmic contribution that made this possi-
ble: the distributed independent-sub-graph algorithm. We demonstrate
correctness of the parallel implementation by comparing with the sequen-
tial reference implementation of DRC (Cardinale et al., 2012), as available
in ITK (Ibanez et al., 2005). We then benchmark the scalability and
parallel efficiency of the new parallel implementation on synthetic images,
where the correct solution is known. Finally, we showcase the use of the
present implementation for acquisition-rate segmentation of light-sheet flu-
orescence microscopy images.

Chapter 4: Parallel distributed-memory Discrete
Region Sampling algorithm

Accurately and robustly segmenting an image is a challenging task. Usu-
ally, the segmentation is not unique and can be locally uncertain. Even
using a global approach and providing bounds on the final energy of a solu-

6

tion does not provide information about its quality. This means that many
cases require user interaction, for example by iterating over the results and
correcting mistakes. This process is usually too time-consuming or does
not yield reproducible results, especially at places in the image with low
signal-to-noise ratio.

Estimating the uncertainty and robustness of a segmentation can reduce
and guide user interaction. It also enables statistical tests conveying the
information about the segmentation reliability. Cardinale (2013) presented
a method for sampling from the posterior distribution of explicitly or im-
plicitly defined segmentations, conditioned on the observed image. In this
approach, a discrete deformable model evolves, such that the sampled
segmentations approximate the posterior distribution of possible segmen-
tations. This allows assessing segmentation robustness. The presented
particle-based Metropolis-Hastings algorithm, called Discrete Region Sam-
pling, has been compared with a state-of-the-art algorithm by Chang and
Fisher (2012) in terms of solution quality and has been shown competitive
w.r.t. computation time.

In Chapter 4, we present a distributed-memory parallel extension of this
sampling approach. Because of the inherently sequential nature of the
sampling approach, parallelization is challenging. The primary challenge in
parallelizing the DRS algorithm is to update a large number of particles in
a statistically unbiased way and to guarantee the detailed balance, which is
a sufficient condition for convergence. The main algorithmic contribution
of the present work is to propose and implement a novel parallel distributed
algorithm for efficiently sampling from the posterior distribution of defined
segmentations on the observed image in a statistically correct manner.

Chapter 5: Conclusions and Future Work

Finally, in Chapter 5, we summarize the present work and the contributions
of this thesis. We provide recommendations for extensions and future
work pertaining to the developed parallel algorithms for segmentation and
uncertainty quantification of fluorescence-microscopy images.

7

CHAPTER 1. INTRODUCTION

8

CHAPTER

TWO

Preliminaries

We review relevant background materials for this thesis. We begin by
motivating the Bayesian formulation for image analysis; then we introduce
the image segmentation algorithm. We give a brief introduction to Markov
chain theory, followed by a review of an efficient shape sampling approach.
We provide an introduction to distributed computing and conclude with
an overview of the parallel particle mesh library (PPM) as a middleware
for distributed computing.

2.1 The Bayesian image Segmentation Paradigm

Image segmentation has been a fundamental topic in computer vision and
image understanding and Bayesian inference offers an elegant mathemat-
ical formulation of it (Winkler, 2003). Let us denote the observed image
by I and Γ the segmentation of the image. The goal of segmentation (here
we are primarily concerned with the segmentation of objects in fluores-
cence microscope images) is to reconstruct the objects shown in the image

9

CHAPTER 2. PRELIMINARIES

from a given observed image. In this sense, segmentation is an inverse
problem. Segmentation is also “ill-posed,” which means that there may
not be a unique solution. Several solutions (or no solution) can be due to
imaging noise, blurring, and other uncertainties introduced during image
acquisition.

In image segmentation, the goal is to assign a label to each pixel at pixel
grid (i, j) in I, indicating to which object or region that pixel belongs. The
ill-posedness can be overcome by introducing application-specific prior in-
formation about the solution in order to constrain the problem. The prior
knowledge can, for example, be a smoothness constraint on the segmenta-
tion. Hence, it is required to estimate the segmentation given the observed
image data. This estimation can be done by maximizing the probability
distribution,

P (Γ|I), (2.1)

where probability represents uncertainty about the values of parameters.
In the Bayesian framework, this probability is represented as :

P (Γ|I) =
P (I|Γ) · P (Γ)

P (I)
, (2.2)

where P (I|Γ) is the likelihood, P (Γ) is the prior over the segmentation
and P (Γ|I) is the posterior distribution. The likelihood is the conditional
probabilistic model linking the unknown objects to the observation I. It
expresses how likely it is to observe the image I under a given segmentation
Γ.

The prior distribution is a marginal probabilistic model that introduces
some physical understanding or intuition into the process. It measures how
likely a certain segmentation Γ is. Some priors may impose a smoothness
or regularization constraint, for example, the one proposed by Mumford
and Shah (1989), which penalizes the Euclidean contour length |Γ|. Other
priors may impose shape characteristics and penalize deviations of the
segmentation from the template shape (Kim and Kim, 2000; Belongie et al.,
2002; Osada et al., 2002; Zhang and Lu, 2004; Rose et al., 2009).

The posterior distribution expresses the state of knowledge about the
model after estimating the parameters. One aims to estimate the seg-

10

2.2. REVIEW OF DISCRETE REGION COMPETITION

mentation parameters that maximize this probability. This is known as
the Maximum-A-Posterior; (MAP) estimation. MAP estimation involves
both the likelihood and the prior terms :

max
Γ

P (Γ|I). (2.3)

MAP estimation aims to find the segmentation Γ that maximizes the pos-
terior probability based on the observed image I. We can reformulate the
MAP estimation as a minimization problem. Taking the negative of the
natural logarithm of both sides of 2.2, we get

− logP (Γ|I) = −logP (I|Γ)− logP (Γ) + C, (2.4)

which is the negative posterior log likelihood , and this negative log likeli-
hood is considered as energy. So, maximizing the posterior probability can
be done by simultaneously minimizing two energy terms (the value of con-
stant C does not matter during energy minimization). They correspond
to the likelihood and prior and called external and internal energy, respec-
tively. In a discrete setting, and for a traditional gradient-based energy
minimization approach, the energy gradient becomes an energy difference
∆E when deforming Γ to Γ′. The basic idea is to use a method which
allows a segmentation Γ to deform to Γ′ so as to minimize a given energy
functional in order to produce the desired segmentation.

Here, we review a discrete multi-region gradient descent algorithm to opti-
mize the posterior (minimize energy) locally over possible segmentations.
This general-purpose image-segmentation method is called Discrete Region
Competition (Cardinale et al., 2012).

2.2 Review of Discrete Region Competition

Since the introduction of active contours (Kass et al., 1988), deformable
models have extensively been used for image segmentation. They are char-
acterized by a geometry representation and an evolution law (Montagnat
et al., 2001). Thorough reviews of deformable models can be found in Mon-
tagnat et al. (2001); Zhang and Lu (2004). The geometry representation

11

CHAPTER 2. PRELIMINARIES

of the evolving contours in the image can be continuous or discrete, and
in either case implicit (also called “geometric models”) or explicit (also
called “parametric models”) (Xu et al., 2000).

Inspired by discrete level-set methods (Shi and Karl, 2008), and motivated
by the wish to delineate different objects in an image as individual regions,
Cardinale et al. (2012) presented a discrete deformable model where the
contour is represented by computational particles placed on the pixel grid.
This is illustrated in Fig. 2.1 and provides a geometry representation that
is both explicit and implicit (Shi and Karl, 2008). During the iterative seg-
mentation process, the particles migrate to neighboring pixels and hence
deform the contour. This migration is driven by an energy-minimization
flow. Additional topological constraints ensure that contours remain closed
and/or connected. The algorithm is a discrete version of Region Competi-
tion (Zhu and Yuille, 1996), which converges to a locally optimal solution.
It is called Discrete Region Competition (DRC), since particles from adja-
cent regions compete for ownership over pixels along common boundaries.

Figure 2.1: Illustration of 2 regions (A, light gray and B, dark gray)
in a 2D digital image (grid). Pixels in the background region are white.
Particles are shown as black filled circles. They represent the regions by
marking their outlines. Shaded pixels without a particle are interior points
of the respective region.

The algorithm partitions a digital image domain Ω ⊂ Rd (the dimension
d = 2 or 3) into a background (BG) region X0 and (M − 1) > 0 disjoint
foreground (FG) regionsXi, i = 1, · · · ,M−1, bounded by contours Γi, i =

12

2.2. REVIEW OF DISCRETE REGION COMPETITION

1, · · · ,M − 1 (Cardinale et al., 2012).

FG regions are constrained to be connected sets of pixels. The void space
around the FG regions is represented by a single BG region, which needs
not be connected. Connectivity in the FG regions is defined by a face-
connected neighborhood, i.e., 4-connected in 2D and 6-connected in 3D.
The BG region then has to be 8-connected in 2D and 18 or 26-connected in
3D (Ségonne, 2005). Imposing the topological constraint that FG regions
have to be connected sets of pixels regularizes the problem to the extent
where the number of regions can be jointly estimated with their intensities
and contours (Cardinale et al., 2012).

The evolving contour is represented by computational particles as shown
in Fig. 2.1. The algorithm advances multiple particles simultaneously in
a processing order that does not depend on particle indexing. This en-
sures convergence to a result that is independent of the order in which
particles are visited. Connectedness of the evolving contours is ensured
by topological control. The motion of the particles is driven by a discrete
energy-minimization flow that locally minimizes the segmentation energy
functional (Cardinale et al., 2012):

E = Edata + λElength + αEmerge . (2.5)

Here, λ and α are regularization parameters trading off the weights of
the contour length and region-merging priors, respectively. The first term
is the negative logarithm of the likelihood and measures how well the
current segmentation fits (or explains) the image. The specific forms of
the three terms depend on the image model, imaging model, and object
model used (Cardinale et al., 2012).

The above energy is minimized by approximate gradient descent. The
gradient is approximated by the energy difference incurred by a particle
move. Particles are then moved in order of descending energy reduction
using a rank-based optimizer, hence ensuring that the result is independent
of particle ordering (Cardinale et al., 2012). Since regions may dynamically
fuse and split during energy minimization, the algorithm is able to detect
and segment a previously unknown and arbitrary number of regions.

13

CHAPTER 2. PRELIMINARIES

The algorithm starts from a hypothetical segmentation as an initialization
(frequently: local intensity maxima or an initial thresholding) and then
refines the segmentation in iterations until no further improvement can be
achieved by any particle move. In each iteration, every particle finds the set
of adjacent pixels it could potentially move to. It then computes the energy
differences of all possible moves. Moves that lead to topological violations
are pruned from the list. Then, a graph of causally dependent moves is
constructed. An example of causal dependency is illustrated in Fig. 2.2,
where the possible moves of particle p depend on the move of particle
q. Assume that the energetically most favorable move for particle p is
downward (Fig. 2.2a). If the energetically most favorable move of particle
q is to go left (Fig. 2.2b), this violates the topological constraint that the
light-gray region has to be a 4-connected set of pixels (Fig. 2.2c). Simply
executing the energetically most favorable move for each particle could
hence lead to topological violations. In the situation shown in Fig. 2.2, only
one of the two particles can execute its most favorable move, constraining
the possible moves of the other. In the present greedy descent scheme, the
move that leads to the largest energy decrease has priority.

(a) (b) (c)

Figure 2.2: Illustration of causally dependent moves. Assume that the
energetically most favorable moves are for particle p to move down (a)
and particle q left (b). If both moves are executed, the light gray region
is not connected any more, hence violating the topological constraint (c).
The moves of the two particles hence causally depend on each other.

14

2.2. REVIEW OF DISCRETE REGION COMPETITION

In order to find the set of moves that can be executed concurrently, we
build a graph of all such causal dependencies and sort them by energy.
Figure 2.3 illustrates the construction of this undirected graph of causal
dependencies.

It starts from enumerating all possible moves for all particles (Fig. 2.3a).
Shrinking a region is done by removing the respective particle and inserting
new boundary particles. This is irrelevant for the dependency graph. The
directionality of the moves is also irrelevant and is removed, yielding a set
of undirected edges. A vertex is introduced wherever two edges meet in any
pixel. This defines the final graph (Fig. 2.3b). Moves that are connected
by a path in the graph are causally dependent. Maximal connected sub-
graphs of the final graph (highlighted by different colors in Fig. 2.3b) hence
correspond to dependent sets of moves. They can extend across several
particles, defining long-range chains of dependence.

(a) (b)

Figure 2.3: Illustration of dependency graph construction. (a) All possible
moves are enumerated for all particles. (b) The undirected graph of causal
dependences is obtained by removing directionality and joining edges that
share a common pixel. The maximal connected sub-graphs are represented
by different colors.

Each maximal connected sub-graph can be processed independently. While
the moves within a maximal connected sub-graph are causally dependent,
there are no dependencies across different maximal connected sub-graphs.
In order to find the energetically most favorable set of moves that can be
executed simultaneously, the edges in each maximal connected sub-graph
are sorted by energy difference. In each sub-graph, the move that leads to

15

CHAPTER 2. PRELIMINARIES

the largest decrease in energy is executed.

Splits and fusions of FG regions are topological changes that are allowed by
the energy. They are detected using concepts from digital topology (Bertrand,
1994; Ségonne, 2005; Lamy, 2007; Shi and Karl, 2008; Cardinale et al.,
2012) and accepted if energetically favorable. The BG region is allowed to
arbitrarily change its topology.

2.3 Introduction to MCMC

To provide a measure of segmentation uncertainty or solution robustness,
we introduce an efficient Markov-chain Monte Carlo method to approxi-
mate the posterior probability densities over the high-dimensional space
of segmentations around the solution found by DRC. We start with a brief
overview of Markov chain theory.

Markov-chain Monte Carlo (MCMC) algorithms were first developed for
applications in statistical physics and later in the statistics community.
The Metropolis algorithm has been introduced in the classic paper of Metropo-
lis et al. (1953). Later on, Geman and Geman (1984) presented a special
case of the algorithm and applied it to image processing. Their influential
paper introduced the method for Bayesian applications and started new
works on the Gibbs sampler .

In this section, we briefly review the key concepts behind Markov-chain
Monte Carlo methods in order to make this thesis self-contained. All defini-
tions and theorems in this subsection are selected and adapted from Ó Ru-
anaidh and Fitzgerald (1996) and Bremaud (1999), where the full descrip-
tions and proofs can be found.

Suppose, we have a probability distribution π(.). For example consider
π(.) is the posterior P (Γ|I) of segmentations given the image I (see equa-
tion 2.2). We do not know this distribution explicitly. Also, it is a compli-
cated distribution and non-trivial to sample from. Sampling can help avoid
local minima. Also, sampling contributes to exploring the configuration
space for a full description of the posterior, which results in information
about estimation uncertainty.

16

2.3. INTRODUCTION TO MCMC

Markov Chain Monte Carlo algorithms are one way of sampling from a
difficult or arbitrary distribution. MCMC methods simulate a Markov
chain such that the stationary distribution of the chain is exactly the target
distribution of interest. Fulfilling certain conditions ensure this property.

Cardinale (2013) presented a Markov chain design with an equilibrium
distribution of P (Γ|I). Where, simulating the Markov chain for a long
time and storing all visited states, enables computing uncertainty statistics.
We describe this design in subsection 2.4. First, we briefly review Markov
chain theory in general.

A Markov chain is a random process that undergoes transitions from one
state to another in a state space. The state space of the Markov chain
defines the range of values that the random variables can assume. They
can be either countable, have a discrete distribution, or be continuous. We
only consider discrete state spaces. The set of discrete space variables may
be finite or countably infinite (Ó Ruanaidh and Fitzgerald, 1996).

A Markov chain is defined as a series of random variables X0, X1, · · ·Xn

such that their influence on the future state (or value)Xn+1 is only through
the value of Xn:

Definition 1. Consider X = {Xn : n > 0} is a stochastic process on a
countable set S. It is a Markov Chain if for any i0, · · · , in−1, i, j ∈ S
and for all integers n > 0

P (Xn+1 = j|Xn = i, · · · , X0 = i0) = P (Xn+1 = j|Xn = i) (2.6a)

P (Xn+1 = j|Xn = i) = pij (2.6b)

where pij is the probability for the chain to move from state i to state
j. This transition probability satisfy

∑
j∈S pij = 1, i ∈ S and the matrix

P = (pij) is the transition matrix of the chain.

Definition 2. Condition 2.6a called the Markov property, says that
each state of a Markov chain depends on the previous state only.

From equation 2.6b, we see that the transition probabilities do not depend
on the time parameter n (homogeneous Markov chain). Here, we do not
address the none-homogeneous case where they do.

17

CHAPTER 2. PRELIMINARIES

Since we consider a countable state space, we can label the states by inte-
gers, such as S = {0, · · · ,m}. Under this labeling, the transition matrix
takes the form

P =

p00 p01 · · · p0m

p10 p11 · · · p1m

· · · · · · · · · · · ·
pm0 pm1 · · · pmm

. (2.7)

A Markov chain starts from an initial distribution P{X0 = i0}. From there,
the distribution of all further states Xn on S with transition probabilities
pij and for any i0, ..., in ∈ S and n > 0 is determined,

P{X0 = i0, · · · , Xn = in} = P{X0 = i0} · pi0,i1 · · · pin−1,in , (2.8)

which means, the probability the Markov chain traverses a path i0, · · · in
given by the multiplication pi0,i1 · · · pin−1,in of the probabilities of all
transitions.

A Markov chain may visit some states infinitely often and visit others only
a finite number of times. In order to classify states of the Markov chain
Xn, we review some fundamental properties.

Definition 3. The hitting time τ , is the number of steps for reaching
state j for the first time in the Markov chain sequence and is defined as,

τj = min{n > 1 : Xn = j}, j ∈ S. (2.9)

The probability that the chain starting at i enters j for the first time at
the nth step is,

fnij = Pi{τj = n}, n > 1 (2.10)

where, f1
ij = pij , i, j ∈ S.

The probability that a chain that begins at i ever hits j is,

fij = Pi{τj <∞} =

∞∑
n=1

fnij . (2.11)

18

2.3. INTRODUCTION TO MCMC

Definition 4. A state i is recurrent if the chain returns to i with proba-
bility one (fii = 1). It is positive recurrent if Ei[τi] <∞ and it is null
recurrent if Ei[τi] =∞. A state i is transient if it is not recurrent.

Whether a state i is recurrent or transient depends on the number of times
(N), the Markov chain Xn visits state i,

Ni =

∞∑
n=0

1(Xn = i). (2.12)

State j is accessible from state i, (i → j), if pnij > 0 for n > 1 (i.e.,
fij > 0).

Two states i and j, communicate with each other (i ↔ j), if state j is
accessible from state i and state i is accessible from state j.

Definition 5. C is a set of states in S. Any set C, is said to be irre-
ducible, if for any states i, j ∈ C, states i and j communicate with each
other.

The Markov chain Xn is irreducible if its entire state space S is irreducible.

Definition 6. The states of the Markov chain can be revisited in a periodic
fashion. The period di of a state i is the largest integer such that pnii > 0 if
and only if n is a multiple of di. In other words, di is the greatest common
divisor of all n that satisfy pnii > 0. State i is aperiodic if di = 1.

If a Markov chain is irreducible, all states of the chain are either positive
recurrent, null recurrent or transient, and all states have the same period.

Definition 7. If a Markov chain is irreducible, and its states are positive
recurrent and aperiodic, it is called ergodic.

To characterize the long-term or limit behavior of ergodic Markov chains,
we need to know whether the chain converges to a limiting distribution,
independent of the starting distribution.

19

CHAPTER 2. PRELIMINARIES

Definition 8. A probability distribution π is a stationary distribution
for the Markov chain if,

π(j) =
∑
i∈S

π(i)pij , j ∈ S (2.13)

and π = πP is a matrix notation of this equation.

A stationary process is also called “in equilibrium” or a steady-state pro-
cess. If an initial distribution of a Markov chain is a stationary distribution,
it remains stationary. So, a chain that has reached the stationary distribu-
tion remains stationary in all subsequent moves.

An ergodic Markov chain converges to a unique stationary distribution
regardless of the initial state.

A positive recurrent Markov chain has a unique stationary distribution π
that satisfies the balance equations π = πP.

Using the samples from a stationary Markov chain, it is possible to estimate
the expectation of E[f(X)] (∼ f̄), for any function of interest f .

Definition 9. Let {Xn}n>0 be an irreducible positive recurrent Markov
chain with the stationary distribution π. Then,

f̄ = lim
N→∞

1

N

N∑
k=1

f(Xk) (2.14)

is called an ergodic average.

Convergence to the required expectation is ensured by the ergodic theorem.

Equation 2.14 shows that a Markov chain can be used to estimate the
expectation of f , where the expectation is taken over it’s stationary distri-
bution. However, first, we need to build a Markov chain in a way that its
stationary distribution is exactly our target distribution π(.). So, we need
to ensure the correct stationary distribution and prove convergence. The
Metropolis-Hastings algorithm provides such a method.

20

2.3. INTRODUCTION TO MCMC

2.3.1 The Metropolis-Hastings algorithm

Metropolis et al. (1953) developed an algorithm that constructs a transi-
tion distribution from a symmetric proposal distribution such that the sta-
tionary distribution is exactly the given desired target distribution. Later
the algorithm was generalized by Hastings (1970) for non-symmetric pro-
posal distributions and referred to as Metropolis-Hastings (MH) algorithm.
The derivation of the Metropolis-Hastings algorithm starts with the condi-
tion of detailed balance.

Definition 10. If π(i) and π(j) be some probability distributions that the
Markov chain is in state i and j, respectively. Detailed balance requires
that each transition i→ j be reversible.

π(i) · pij = π(j) · pji (2.15)

furthermore, satisfying detailed balance guarantees that π is a stationary
distribution of the chain.

Detailed balance is a sufficient, but not necessary, condition for equilib-
rium. This means that a Markov chain can also have π as a stationary
distribution without satisfying Equation 2.15.

Hastings (1970) showed that sampling with transition probability αij

αij = min

(
πj · pji
πi · pij

, 1

)
(2.16)

results in a Markov chain that satisfies the detailed balance condition. The
constructed transition distribution subjects the newly proposed sample to
an accept or reject step. The ratio

πj ·pji
πi·pij is typically referred to as the

Hastings ratio.

The MH algorithm, therefore, guarantees that the target distribution is a
stationary distribution of the chain. Furthermore, Markov chain theory
states that the resulting Markov chain is guaranteed to converge uniquely

21

CHAPTER 2. PRELIMINARIES

to the stationary distribution, if it is ergodic.

Algorithm 1: Metropolis-Hastings algorithm

Initialize X0 and set t = 0 ;
repeat

Set Xt ← i and draw a state j from pit ;
Sample a uniform(0,1) random variable U ;

if U 6 αij = min
(
πj ·pji
πi·pij , 1

)
then

Xt+1 ← j;
else

Xt+1 ← i;

until convergence;

The fraction of accepted moves among all trials is called an acceptance rate
(AR). The term

πj
πi

is called the posterior ratio and
pji
pij

is called forward-

backward ratio (FBR). The MH algorithm allows sampling from an arbi-
trary distribution with some user-specified proposal distribution. Directly
sampling from the target distribution is typically infeasible (which moti-
vates the need for MCMC sampling), but this observation gives insight
in designing good proposals. The choice of the proposal distribution will
often greatly impact the burn-in time, which is the time it takes for the
chain to reach its stationary distribution. In particular, the closer the pro-
posal distribution is to the target distribution, the faster the convergence.
From the MH ratio, we see that the decision to move only depends on a
ratio, so we only need to query an unnormalized version of π(·).

Cardinale (2013) has designed such a Markov chain for image segmenta-
tion that is irreducible and aperiodic.

2.4 Review of Discrete Region Sampling

In Discrete Region Competition, the solution is a (local) maximum-a-
posteriori (MAP) estimate, obtained in an iterative process. In this ap-
proach, the segmentation is a local maximum of a posterior and might not
be the best solution. The results can also be sensitive to the initialization

22

2.4. REVIEW OF DISCRETE REGION SAMPLING

or regularization parameters. Even if the algorithm finds a global opti-
mum, there is no information about the sensitivity or robustness of the
obtained segmentation.

Inspired by the work of Chang and Fisher III (2011), and motivated by the
need to quantify the uncertainties of segmentation results, Cardinale (2013)
presented an efficient Markov-Chain Monte Carlo (MCMC) sampling from
the posterior distribution P (Γ|I) induced by the energy. The distribution
is not known explicitly, but given the image I and imaging model, it is
possible to evaluate the posterior P (Γ|I) of segmentation. By drawing
multiple samples from the distribution, the goal is to find a collection of
segmentations. Here the idea is to construct a stochastic process, a Markov
Chain, whose visited states mimic samples from the target distribution
and its equilibrium distribution is the posterior distribution P (Γ|I). The
stochastic nature of the MCMC sampling approach enables overcoming
local probability maxima. The method is called Discrete Region Sampling
(DRS) and using Equation 2.14 over visited states; we can compute the
desired statistics.

The MH algorithm (Metropolis et al., 1953; Hastings, 1970) by construc-
tion, produces a Markov Chain that is reversible, aperiodic, and irreducible.
The reversibility, aperiodicity, and irreducibility are sufficient conditions
for converging to the correct equilibrium distribution (Smith and Roberts,
1993).

DRS performs many small steps with a relatively high acceptance rate and
differs from Chang and Fisher III (2011), where they try to increase the
step sizes by drawing and applying multiple samples per move. Small step
becomes possible by taking advantage of efficiently computing the energy
difference for small shape deformation.

Objects are closed regions, represented by a label image L. Label image
(or label function) L maps a discrete space coordinate x to the region label
currently assigned to that pixel (Cardinale et al., 2012). Applying a move
means adding pixels, or removing them, or both to a region. This causes
a transition from one state (segmentation) to another. In this approach,
the proposal is a discrete probability distribution, enabling computation
of the probability of selecting an individual point when calculating the
forward-backward ratio.

23

CHAPTER 2. PRELIMINARIES

Figure 2.4: Illustration of a region A in a 2D digital image (grid). (a)
Particles are shown as filled circles, with their colors indicating the can-
didate label. (b) Applying a move p causes the label image to inherit p’s
candidate label at position (i,j) (Cardinale, 2013).

Like in DRC, points are computational particles. Here, the particle proper-
ties are a candidate label and a weight. Particle weight is an unnormalized
discrete probability. Weighted particles bias the proposal toward smooth
contours. Without bias, every particle has the same weight as 1. To
compute weight, we use length approximations for contours and surfaces
introduced by Boykov and Kolmogorov (2003). The discrete probability
mass function assigns a probability to each particle or set of particles (Car-
dinale, 2013).

Applying a move means the label image L inherits the particle’s candidate
label at that position. This is illustrated in Fig. 2.4.

To ensure reversibility, every move must have an associated reverse move
to make a change back to the previous state possible. Figure. 2.5 illustrates
the situation where applying particle p to move from state Xt to Xt+1, the
reverse particle p′ is not part of any region contour. The particle definition
is hence augmented in this sense.

In order to distinguish the two types of particles, we call them regular
and floating particles. Regular particles are bound to a contour (see
Fig. 2.4) such that the label of the particle at position x is different from
its candidate label, and it has at least one n-connected neighbor with label

24

2.4. REVIEW OF DISCRETE REGION SAMPLING

Figure 2.5: Illustration of a situation where applying particle p and mov-
ing from state Xt to Xt+1, the reverse particle p′ is not part of any region
contour. The gray region is a foreground region and the background region
is white.

l′ ∈ [0;M] (the number of regions is fixed to M).

Any particle that is not regular is a floating particle. Figure 2.5 shows a
transition from a regular to a floating particle as a hole is closed. A reverse
change from a floating to a regular particle is also possible.

A joint set of regular and floating particles (P∪Pf) is used for the discrete
proposal distribution.

Since the label image L does not contain floating particles, the state space
S is augmented as,

S = L × {Pf}, (2.17)

where L = {Li} is the collection of segmentations and {Pf} are all possible
floating particle sets. This state space is huge. The size of S for M
topologically unconstrained regions is

|S| = M |Ω| · (|Ω| − 1)M−1, (2.18)

where |Ω| is the number of pixels in the image.

The Markov chain moves from state Xt to Xt+1 by either applying par-
ticles or changing the particle set, for example from floating to regular
particles (Cardinale, 2013).

25

CHAPTER 2. PRELIMINARIES

The algorithm starts from an initial label image L0. L0 is either the result
of DRC or any initialization approach (frequently: local intensity maxima
or an initial thresholding). In either case, L0 defines the number of regions
M , which is fixed from then on. L0 and an empty set of floating particles
represent the initial state of the Markov chain, X0. P is the set of regular
particles in the initial segmentation. Prior knowledge can be incorporated
by biasing the proposal. For example, a smooth shape bias favors target
distributions with smooth contours. Any bias can be incorporated through
discrete proposals using particles weight (Cardinale, 2013).

Sampling a particle is efficiently done by splitting the particle set into
subsets according to the region they belong. Sampling then chooses a
region l from a uniform distribution, where every region has an equal
probability of 1

M−1 . Note that any other splitting of the particle set can
be used as well (Cardinale, 2013).

A particle is sampled either from the floating or regular particle sets. Dur-
ing the burn-in phase, the algorithm explores interesting regions away from
the contour with probability qf (off-boundary sampling) or with probabil-
ity 1− qf from the whole set P ∪Pf . Off-boundary sampling samples over
floating particles, applying or deleting a particle from Pf . It explores parts
of the image with large intensity gradients |∇I| and can be disabled by
setting qf = 0.

After drawing a particle, we remove it from either P or Pf and insert the
reverse particle in the appropriate set. Updating the particle weights in
the neighborhood of the applied particle is accompanied by deleting all
particles that do not satisfy the topological constraints.

For the new proposed state X ′, we can compute the backward proposal
and energy difference ∆E incurred by the particle move. From Markov
chain theory, we can evaluate posterior ratios (π

′

π = exp (−∆E)). Now, it is
possible to apply the MH algorithm to accept or reject the move (Cardinale,
2013).

A DRS approach is more robust to initialization and local optima than
DRC and provides confidence bands for segmentations. But, it is compu-
tationally expensive, and the algorithm requires more memory than DRC.
To address these problems we exploit parallel hardware and distributed

26

2.5. DISTRIBUTED COMPUTING

computing.

2.5 Distributed computing

Based on the fundamental principle of dividing large problems into smaller
ones, and solving them simultaneously with multiple resources, parallel
computing, and distributed systems have been employed for many years.

A distributed computing system is a computer network in which compo-
nents located on networked computers communicate and coordinate over
the network to achieve a common goal. Solving computational problems
using distributed systems in a general sense is called distributed computing.
Distributed computing has been of increasing interest in the scientific com-
munity since the early 1980’s. With the rapid improvement and availability
of high-performance components, the power of distributed computing be-
comes more and more apparent. A tremendous amount of research has
been done to overcome the intrinsic problems of distributed architectures
and to perform robust computations ensuring high performance.

In distributed computing, each computing component has a private mem-
ory, and components exchange information by passing messages. Dividing
a large problem into many parts, each component solves one part. The
different components communicate with each other to ultimately solve the
whole problem. Taking advantage of multiple resources, more memory and
more computing power are available to address larger computational prob-
lems which otherwise are impossible or limited to the computing power
and physical memory of a single source.

Although distributed computing is highly desirable, it is hard and chal-
lenging, since every component can only be aware of the information that
it stores and has only a partial view of the entire problem.

We provide systematic solutions to difficulties and challenges in distributed
parallelization of image segmentation and uncertainty quantification for
large fluorescence-microscopy images in chapters 3 and 4.

In our approach, the parallel implementation is realized using the Parallel

27

CHAPTER 2. PRELIMINARIES

Particle Mesh (PPM) library (Sbalzarini et al., 2006; Awile et al., 2010,
2013). This is natural due the particle-methods character of DRC and
DRS.

2.5.1 Middleware for distributed computing: PPM

A primary focus in high-performance computing is the efficient execution
of computer codes with the best utilization of a full range of software and
hardware platforms. This requires significant intellectual and architec-
tural investment and months or years of code development. One possible
approach to alleviating this is to use the middleware that sits in between
the applications and the distributed hardware platforms.

Since our methods of interest in image processing (segmentation and un-
certainty quantification) are particle-mesh methods, we use the Parallel
Particle Mesh (PPM) library (Sbalzarini et al., 2006; Awile et al., 2010,
2013) as a middleware for distribution and orchestration of the parallel
communication.

PPM provides a processor-independent, data-transparent programming
model for distributed-memory computers and hides the Message Passing
Interface (MPI) from the application program. It introduces an additional,
transparent layer between libraries such as MPI, METIS (Karypis and Ku-
mar, 1998), or FFTW and an application program implementing an algo-
rithm using particles, meshes, or a combination of the two, without losing
generality concerning the models.

To further reduce code development times, a domain-specific programming
language (DSL) for particle methods has been developed. This PPML (Aw-
ile et al., 2013; Awile, 2013) language exposes the PPM abstractions in an
embedded DSL (eDSL), embedded in Fortran 2003. The PPML source-to-
source translator converts PPML code to standard Fortran 2003 code that
links against the PPM library as its runtime system.

In this thesis, for the first time, we extend the PPM to a non-simulation
task, namely image analysis.

28

CHAPTER

THREE

Parallel distributed-memory Discrete

Region Competition algorithm

3.1 Introduction

We parallelize the Discrete Region Competition (Cardinale et al., 2012)
algorithm in a distributed-memory environment by applying a domain-
decomposition approach to the image. Here, we describe the design and
implementation of the parallel approach. Our approach is specifically de-
signed to support parallel execution on heterogeneous clusters and parallel
machines.

3.2 Data distribution by domain decomposition

The input image is decomposed into disjoint sub-images that are dis-
tributed to different computers. This is illustrated in Fig 3.1. Domain
decomposition and data distribution are done transparently by the PPM

29

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Figure 3.1: An illustrative example showing domain decomposition and
distribution of an image across four computers (numbered 0 to 3).

library (Sbalzarini et al., 2006; Awile et al., 2010, 2013). Reading the input
image from a file is also done in a distributed way, where each computer
only reads certain image planes. The PPM library then automatically re-
distributes the data so as to achieve a good and balanced decomposition.
Each computer only stores its local sub-image, and no computer needs to
be able to store the entire image data.

3.2.1 Initialization

The algorithm is initialized locally on each computer, using only the local
sub-image. The boundary information between sub-images is communi-
cated between the respective computers with ghost layers. Ghost layers
are extra layers of pixels around each sub-image that replicate data from
the adjacent sub-images on the other processors, as illustrated in Fig. 3.2.
The width of these ghost layers is determined by the number of pixels
required to compute energy differences, i.e., by the radius of the energy
kernel (see Ref. (Cardinale et al., 2012) for details). The width of the
ghost layer defines the communication overhead and hence the parallel

30

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

Figure 3.2: Ghost layers communicate information between neighboring
sub-images residing on different computers. In the example from the pre-
vious figure, processor 0 receives ghost data from processors 1, 2, and 3,
as shown for a ghost layer width of 10 pixels. The same is also done on
all of the other processors. This allows the particles (boundary pixels of
red regions) to smoothly migrate across computers, and energy differences
to be evaluated purely locally on each sub-image.

scalability of the algorithm. PPM ghost mappings (Sbalzarini et al., 2006;
Awile et al., 2010, 2013) are used to transparently update and manage
ghost layer information whenever the corresponding pixels on the other
computer have changed.

The initial segmentation from which the algorithm starts can be deter-
mined in a number of ways. Figure 3.2 shows an example of an initial
segmentation given by uniformly distributed circles (shown in red). From
there, the algorithm evolves to the final result. Using an initialization
that is so far from the final result, however, increases the runtime and also
bears the risk of converging to a sub-optimal local energy minimum. In
practice, we hence usually initialize by a local-maximum detection or an
initial intensity thresholding.

Starting from the initial segmentation, each FG region is identified by
a globally unique label (Cardinale et al., 2012). This requires care in

31

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a) (b)

Figure 3.3: Region label initialization starts by each processor assigning
unique labels to the FG regions in its sub-image (a). This, however, leads
to conflicts for regions extending across multiple sub-images, as they will
receive multiple, conflicting labels. Using a parallel connected-component
algorithm (Flanigan and Tamayo, 1995), these conflicts are resolved in a
second step, leading to a globally unique label for each FG region (b).

a data-distributed setting, since different computers could use the same
label to denote different regions. In our implementation, each processor
first performs an intermediate local labeling of the regions in its sub-image.
Using the processor number (i.e., processor ID), this is done such that no
two labels are used twice (see Fig. 3.3a). All regions are hence labeled
uniquely. However, regions extending across more than one sub-image will
be assigned multiple, conflicting labels. In a second step, the algorithm
resolves these conflicts, ensuring that each FG region is uniquely labeled.

Using the definition that a FG region has to be a connected set of pixels,
uniquely labeling them can be done using a parallel connected-component
algorithm (Flanigan and Tamayo, 1995; Knop and Rego, 1998; Teuler and
Gimel, 2000; Tiggemann, 2001; Wang et al., 2003; Moloney and Pruessner,
2003).

32

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

3.2.2 Parallel connected-component labeling

We implement and use the parallel connected-component labeling algo-
rithm proposed by Flanigan and Tamayo (1995), which is based on an iter-
ative relaxation process. During this, each sub-image exchanges boundary-
crossing labels with neighboring processors. The labels are then replaced
by the minimum of the two labels from the two processors. This process
continues in iterations until a fixed point (labels do not change anymore
on any processor) is reached (Flanigan and Tamayo, 1995). This is only
done once, during the initialization, and leads to a result as illustrated in
Fig. 3.3b. Every FG region now has a globally unique, unambiguous label,
independent of which sub-image it lies in, or across how many computers
the image has been distributed.

This iterative approach is efficient as long as the initial regions span only
a few processors, as the blob-like structures of cell nuclei, where one or
two iterations suffice to converge to the fixed point. If, however, an object
spans across many sub-images, like a vascular network, a large number of
iterations may be required.

The maximum number of iterations needed in this scheme for informa-
tion to travel from one corner to the opposite corner of a slab domain-
decomposition is 3×P 1

3 (Teuler and Gimel, 2000), where P is the number
of processors. For other decompositions, this can be even higher. Fig. 3.4
illustrates an example of an object that spans over all processors, along
with the iterations required to reach a unique connected-component label-
ing. The diffusive nature of the method thus prevents fast initialization in
cases where regions span many processors by requiring many iterations.

33

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Figure 3.4: Distributed parallel connected-component labeling (Flanigan
and Tamayo, 1995) on eight processors. Region label initialization starts
by each processor assigning unique labels to the FG regions in its sub-
image (a). Seven iterations are required in this example to converge to a
globally unique label (b)-(h).

34

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

To address this problem, Moloney and Pruessner (2003) proposed a master-
slave method for connected-component labeling on distributed-memory
machines. The algorithm also starts by all slave processors independently
labeling their local parts of the objects in parallel using the Hoshen-Kopelman
algorithm (HKA) (Hoshen and Kopelman, 1976) (see Fig. 3.5).

Figure 3.5: Every processor independently labels the local part. The border
around each processor is pixelated for clarity and different labels are shown
with different colors.

In the following step, the border pixels of each sub-image are indexed from
1 to L on each processor, where L is the local length of the border. For every
component connected to the border, the algorithm assigns the first pixel
in the border as the root of that component. This is done by traversing
the border in succession from 1 to L. The first site of a previously unseen
label is called the root and marked with a negative value. All other pixels
of the same label in the border refer to the pixel index of the root. This is
illustrated in Fig. 3.6. This relabeling allows identifying the root directly
from every pixel of a region.

35

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a) (b)

Figure 3.6: (a) An example of region labels in one sub-image. (b) The
border labels that will be sent to the master node. Border scan starts at
border pixel one. Region roots are marked with negative labels and all
other pixels of the same region in the border point to the position (border
pixel index) of the root.

This border relabeling procedure is detailed in Algorithm 2.

Algorithm 2: Border relabeling

Create an empty hash map M ;
for i← 1 to L do

value = M.find(|label(i)|);
if value 6= NULL then // label exists in M

label(i) = value;
else // label does not exists in M

if label(i) 6= 0 then
M.insert (label(i), i);
label(i) = −label(i);

After border relabeling, all processors send a representation of their bor-
ders to the master node. The master node combines them into an ordered
arrangement (Moloney and Pruessner, 2003). To do this, the master node
requires enough memory to hold all incoming borders, while the slaves only
need to store local data.

36

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

The master node combines the incoming borders by first concatenating
them (see Fig. 3.7a). The pixel indices of the incoming borders are shifted
by the size of the previous borders in order to render them globally unique.
Figure 3.7a illustrates the configuration of the borders and the starting
index of each one of them on the master processor after receiving and
concatenating them from the other processors. In this example, the lengths
of all borders are equal to L.

The master processor then iterates through all connected pixels from adja-
cent borders (red ellipses in Fig. 3.7b) and merges them. Merging is done
by setting one of the roots (the one with the bigger label) to point to the
other root, as shown in Fig. 3.7c.

In the example of Fig. 3.7b, the connected pixels marked with a dashed
red ellipse. The lowest root (−A) has index 20. At the other connected
pixel, the value is 521, meaning they point to the root at index 521 with
region label B. Since A < B, the merge happens by changing the root at
pixel index 521 to point to pixel index 20 (i.e., change the value −B to
20).

This method is efficient and scales to large lattices. The authors reported
results on a lattice of size 22.2 · 106 × 22.2 · 106 (Moloney and Pruess-
ner, 2003). But, to find the connected components in the initialization
step of our image-segmentation task and label them, especially for three-
dimensional images, the serialization on the master processor would be a
bottleneck.

We address this issue by modifying the algorithm, and introducing a new
parallel connected-component labeling algorithm. In our approach, instead
of gathering the pixel border information on a master processor, we further
reduce and contract the results locally. This is made possible by the ghost
layer, which we require anyway. On every processor, we thus create an
array of unique pairs of connected components on the border using the
ghost-layer information. This step is local and fast, as we only save the
unique pairs in an array. This is illustrated in Fig. 3.8 for processor ID 2
from Fig. 3.5.

37

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a)

(b) (c)

Figure 3.7: Every processor sends its border to the master node (Here
processor with ID 0). (a) The configuration of borders on the master
processor after receiving and concatenating them from the other processors.
The pixel indices of the incoming borders are shifted by the size of previous
borders to render them unique. (b) Red ellipses mark connected pixels
from adjacent borders. A negative number is a component root at the
border. A positive number is the pixel index of the root. (c) Merging is
done by setting one of the roots of the connected pixels (the one with the
bigger label) to point to the other root. Labels that have changed after the
merging procedure are shown in white.

38

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

Figure 3.8: Part of the border, ghost layer, and pixel labels on processor
ID 2. Red ellipses mark connected pixels. Colored circles connected by a
line indicate connected components. An array of unique pairs of connected
components is created by removing duplicates.

39

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

We then use bitwise operations on pairs of labels (i.e., two integer numbers)
in order to combine them into one long integer:

long bo th l abe l s = (long) f i r s t l a b e l << 32 | s econd labe l ,

where << is a left bit-shift and | is a bitwise inclusive-OR operation.

These long integers are then sorted into an array in ascending order, which
in most cases enables finding any pair (one long integer) inO(1) time and at
worst in logarithmic time (Knuth, 1998). Two MPI Allgather operations
are then sufficient for every processor to have a complete collection of
unique label pairs. The first MPI Allgather communicates the sizes of the
arrays, in order to determine the total size of the global array. The second
one gathers the array entries from all processors.

We use the global array of unique pairs to create an undirected graph
locally on each processor, where each pair is an edge, and its two labels
are the vertices of that edge.

Figure 3.9: The global array of all unique pairs is used to create an undi-
rected graph, where each pair is an edge, and its two labels are the vertices
of that edge. The smallest label within each connected sub-graph is the new
component label.

40

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

Connected sub-graphs of this graph then correspond to the connected com-
ponents in the image. The smallest label within each connected sub-graph
is the new component label. This is illustrated in Fig. 3.9.

Since this information is local to every processor, there is no need for
further communication. Then, by traversing each connected sub-graph,
for each vertex, we replace the corresponding label in the image with the
new component label.

Traversing the global array and building the graph is fast, as the size of
the array is limited to unique pairs across all processors. This approach
hence accelerates the initialization of the algorithm for objects that span
across many sub-images on large numbers of processors.

The algorithm only requires one iteration that involves two global commu-
nications. Our algorithm hence minimizes the amount of data exchange
between processors and it is optimal in the number of communication
rounds and in the amount of data transfer. The total number of commu-
nicated pairs equals the number of regions connected to or crossing any
border. In our vasculature example of Fig. 3.4, there is only one unique
pair per processor.

This benefit significantly shows on more than 32 processors, where the
iterative approach performs considerably worse. The poor performance of
the iterative approach is due to the number of iterations it requires. In
our experience, the meantime of our algorithm for a constant problem size
scales with O(logP), where P is the number of processors.

3.2.3 Parallel contour propagation

Following initialization and initial region labeling, particles move across
the image as driven by the energy-minimization flow in order to compute
the segmentation. As outlined in section 2.2, this involves construction
of a dependency graph of causally dependent particle moves, followed by
selecting a maximal set of non-interfering moves. In a data-distributed
setting, the problem occurs that every computer only knows the part of
the graph that resides in its local sub-image. If graphs span across pro-

41

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

cessor boundaries, correct move selection cannot be guaranteed without
additional communication. This communication between computers is re-
quired to find a globally consistent set of independent moves, but should
be kept to a minimum in order to guarantee algorithm scalability.

In our implementation, finding a globally consistent set of moves starts
by each processor P creating a local undirected graph GP , comprising its
interior and ghost particles. Disconnected parts of the graph that entirely
lie within the local sub-image are called interior sub-graphs Gi

P . Parts of
the graph that extend across sub-image boundaries are called boundary
sub-graphs Gb

P .

Identifying compatible moves in an interior sub-graph can be done inde-
pendently by each processor. Resolving boundary sub-graphs, however,
requires information from all sub-images across which the sub-graph ex-
tends. This is challenging because the sub-graphs sizes, structures, and
distributions are not known a priori, as they depend on the input image.

Traditionally, master-slave approaches have been used to solve this prob-
lem on distributed machines. This is illustrated in Fig. 3.10. In this
approach, the boundary sub-graphs Gb

P from all processors are gathered
on one single processor, the master processor. This master processor then
determines the move sets and sends them back to the respective other pro-
cessors. Meanwhile, the other processors work on their interior sub-graphs.

This approach is easy to implement, but carries substantial overhead due
to the global communication and the task serialization on the master pro-
cessor. As we later show (Fig. 3.26), this approach does not scale and
prevents acquisition-rate image analysis.

We address this problem by introducing a new parallel contour propaga-
tion algorithm, which does not require global communication and incurs
no serialization. In theory, it hence scales perfectly. Instead of gather-
ing all boundary sub-graphs Gb

P on one master processor, we propose to
use the locally available boundary sub-graph on each processor and iden-
tify the compatible moves only on that local part. If all processors did
this in parallel, however, conflicting moves across sub-image boundaries
would occur. We avoid this by decomposing the processors into two sets:

42

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

Figure 3.10: The master-slave approach to finding the global independent
move set by gathering all boundary sub-graphs on a single master proces-
sor and then sending back the results. In this example, processor 0 is the
master.

black and white processors. Since FG regions are face-connected, using a
checkerboard decomposition as illustrated in Fig. 3.11 ensures that bound-
ary sub-graphs always cross from black to white processors, or vice versa.
They never cross sub-image boundaries within one color, hence avoiding
boundary conflicts if the processing is done by color. Therefore, the black
processors start by determining the viable moves on their boundary sub-
graphs, while the white processors work on their interior sub-graphs. Then,
the black processors communicate their boundary decisions to the neigh-
boring white processors using a ghost particle mapping (Sbalzarini et al.,
2006). Finally, the white processors resolve their boundary sub-graphs
using the received decisions as boundary conditions, while the black pro-
cessors work on their interior sub-graphs. This procedure is illustrated in
Fig. 3.11. It effectively avoids conflicts and determines a globally viable
move set within two rounds of local ghost communication.

43

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a) (b)

Figure 3.11: Distributed sub-graph algorithm to determine a globally con-
sistent set of particle moves. The processors are divided into black and
white ones using a checkerboard decomposition. (a) Compatible moves are
identified simultaneously on all boundary sub-graphs (black) on the black
processors, while the white processors work on their interior sub-graphs
(gray). (b) Boundary particles are send from the black to the white proces-
sors in order to provide the boundary condition for the boundary sub-graph
processing on the white processors. The ghosts are not altered by the white
processors, but immediately accepted as moves (symbolized by the check
marks). This avoids conflicts and only requires local communication.

Taking advantage of non-blocking MPI operations, the whole procedure is
executed in an asynchronous parallel way, as detailed in Algorithm 3. This
largely hides the communication time of the ghost mappings, resulting in
better scalability and speed-up on a distributed memory parallel machine.

44

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

Algorithm 3: Parallel distributed-memory contour propagation al-
gorithm

Find: interior and boundary maximal connected sub-graphs, Gi
P

and Gb
P

if Black processor then
Receive: ghost information from white neighbor processors

foreach boundary sub-graph Gb
P do

identify compatible moves

Send: non-blocking send of updated boundary particle
information to white neighbor processors

foreach interior sub-graphs Gi
P do

identify compatible moves

Wait: for non-blocking send to complete

if White processor then

Send: non-blocking send of boundary particle information to
black neighbor processors

Receive: non-blocking receive of ghost information from black
neighbor processors

foreach interior sub-graph Gi
P do

identify compatible moves

Wait: for non-blocking receive to complete

foreach boundary sub-graphs Gb
P do

identify compatible moves under ghost constraints

45

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Breaking the boundary sub-graphs along sub-image boundaries changes
the sorting order of compatible moves, and hence the convergence trace
of the algorithm in energy space. Enforcing boundary conditions at the
break points of the boundary sub-graphs amounts to an approximation of
the original problem. This approximation is not guaranteed to determine
the same global move set as the sequential approach, because the moves
are only sorted by energy locally in each sub-graph, and not globally in
the entire graph. However, as long as the statistical distribution of break
points in the graph is uniform, the optimizer is still guaranteed to con-
verge, albeit the path of convergence may differ. This is a famous result
from Monte Carlo (MC) approaches to the Ising model (Pawley et al.,
1985), where it has been shown that unbiased randomization of the moves
may even accelerate convergence toward an energy minimum. In our case,
the distribution of break points is indeed unbiased. This is because it is
the result of a domain decomposition that depends on the number of pro-
cessors used, and the graphs depend on the unpredictable image content.
Therefore, independent unbiased breaking is satisfied, and the distributed
approach converges.

We empirically confirm this convergence by comparing the energy evolution
of the original sequential algorithm (Cardinale et al., 2012) and our new
distributed method on different 2D benchmark images from the Berkeley
database (Martin et al., 2001). The result for four example images is shown
in Fig. 3.12 using different numbers of processors and hence different sub-
graph decompositions. In all tested cases, both methods converge. The
largest observed difference in final energy is less than 0.5%.

46

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

 1

 10 20 30 40 50 60 70 80

Number of iterations

E
n
er

g
y

sequential DRC
parallel DRC on 4 processors
parallel DRC on 8 processors

Image 3096

Image 100007

Image 8068

Image 42049

 1

Figure 3.12: Energy evolution of the sequential DRC algorithm (Cardinale
et al., 2012) and the present parallel algorithm on four different images
from the Berkeley database (Martin et al., 2001) on 4 and 8 processors.
Despite the boundary sub-graph decomposition (see main text), the results
are pixel-wise identical in all cases except for image 100007, where two
pixels on 4 processors and 3 pixels on 8 processors differ from the sequen-
tial result due to contour oscillations, as discussed in the main text.

Figure 3.13 shows histograms of the energy differences for 25 images from
the Berkeley database. Three metrics are shown: (a) the maximum energy
difference occurring anywhere along the convergence path, (b) the differ-
ence in the energy of the final converged state, (c) the difference in the
number of iterations requires to reach convergence.

47

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

0

5

10

15

20

25

N
u
m

b
er

 o
f

im
ag

es

N=4 processors
N=8 processors

-0.004 -0.002 0 0.002 0.004

max∆E = max(EDRC − EN)

(a)

0

5

10

15

20

25

N
u

m
b

er
 o

f
im

ag
es

-0.004 -0.002 0 0.002 0.004

N=4 processors
N=8 processors

∆E
final

= (EDRCfinal
− ENfinal

)

(b)

0

5

10

15

20

25

N
u

m
b

er
 o

f
im

ag
es

N=4 processors
N=8 processors

-2 0 2 4
∆ = (Number of iterations)DRC − (Number of iterations)N

(c)

Figure 3.13: Comparison of the results from the distributed DRC algo-
rithm and the original sequential implementation (Cardinale et al., 2012)
on 25 2D images from the Berkeley benchmark database (Martin et al.,
2001). (a) Histogram of the maximum energy difference occurring any-
where along the energy evolution path; EDRC is the sequential algorithm
and EN the distributed algorithm on N computers. (b) Histogram of the
final energy difference of the converged solutions. (c) Histogram of the
difference in the total number of iterations required to reach the converged
final solution.

48

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

The results in Figs. 3.12 and 3.13 show that the parallel algorithm is in
good agreement with the original sequential algorithm (Cardinale et al.,
2012). Both algorithms show the same energy-evolution trend and con-
verge to almost the same energy level with less than 0.5% difference any-
where during energy evolution. Figure 3.13c also confirms the Ising-model
result that the randomized parallel algorithm on average converges in fewer
iterations than the sequential method.

The question arises, however, if these small energy differences are signifi-
cant in terms of the final segmentation. While no general guarantee can
be given, the final segmentations were close in all cases tested, with at
most 3 pixels differing between the sequential and parallel solutions. All
observed pixel differences stemmed from contour oscillations around the
converged state, as confirmed by pixel-wise comparison of the final segmen-
tations. These oscillations are an inherent property of the energy descent
method used in DRC (Cardinale et al., 2012). They are suppressed by re-
ducing the number of concurrently accepted moves whenever oscillations
occur (Cardinale et al., 2012). This is required in order to guarantee con-
vergence of DRC. In our distributed DRC implementation, oscillations are
detected locally by each computer. Also, the number of accepted moves
per iteration is set locally, and potentially differently, by each computer.
The oscillation pattern close to the final converged state is hence different
than the one in sequential DRC. An example is shown in Fig. 3.14 where
the only differences between the two segmentations are the two oscillatory
particles shown in white. Since they may stop their oscillations at differ-
ent locations, the final segmentations may differ in these two pixels, which
explains the small energy difference. The final segmentations are, however,
geometrically close, and the algorithm converges toward the same local
energy minimum. It is also important to keep in mind that the sequential
DRC algorithm uses an approximate local optimizer that may not find
the globally best segmentation. Sometimes, the slightly different result
obtained by the distributed method is therefore better in terms of energy
(see Fig. 3.13b).

49

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a) (b) (c)

Figure 3.14: The small energy differences between the distributed and
the sequential DRC implementations result from local pixel oscillations.
An example is shown with a synthetic image using a piecewise smooth
image model for segmentation. (a) Result on a single computer. (b)
Result from the distributed algorithm on 8 computers. (c) Overlay of the
two results with differences shown in white. These are two oscillatory
particles jumping back and forth between two neighboring pixels. The
final segmentation results are hence very close and amount to alternative
pixelations of the object border line.

3.2.4 Parallel topology processing and data-structure
update

After having determined the set of compatible acceptable moves, the par-
ticles (and hence the contours) propagate in parallel on each processor.
This changes the region labels of the corresponding pixels, as regions move,
shrink, or grow. Particles that move across sub-image boundaries are com-
municated to the respective destination processor using the local neigh-
borhood mappings of PPM (Sbalzarini et al., 2006). This ensures global
consensus about the propagating contours.

In addition to propagating, contours can also split or fuse if that is ener-
getically favorable. This corresponds to a region splitting into two, or two
regions merging. While digital topology allows such topological changes
in the segmentation to be efficiently detected using only local informa-
tion (Cardinale et al., 2012), the labels of the involved regions may change
across sub-image boundaries. Whenever region labels change as a result
of a split or fusion, a seeded flood-fill is performed in the original DRC
algorithm (Cardinale et al., 2012), in order to identify the new connected

50

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

components. This again requires additional care in a distributed setting,
as illustrated in Fig. 3.15.

Figure 3.15a shows the two critical situations: two regions touching at a
sub-image boundary that are not supposed to fuse (by the image energy
model) and a split in a region that extends across multiple sub-images. The
parallel connected component algorithm (see section 3.2.2) used during
initialization would unnecessarily re-label all regions that cross any sub-
image boundary and erroneously fuse the two touching regions (Fig. 3.15b).
In order to obtain the correct result, we propose a particle-based update
method, as detailed in Algorithm 4.

(a) (b)

Figure 3.15: Distributed region split and merge algorithm. In the upper
row, the evolving contours are shown by dashed lines and the underlying
objects to be segmented by the black solid regions. (a) The situation before
re-labeling the regions. Two regions (B/C) touch at a sub-image bound-
ary, but should not fuse according to the image energy model. The region
A extends across multiple sub-images and splits in sub-image 3. (b) Ap-
plying a parallel connected-component algorithm would erroneously fuse
regions touching at sub-image boundaries and unnecessarily re-label all
regions with new unique labels.

51

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Taking advantage of the particle representation of the evolving contours,
information about region label changes at sub-image boundaries is commu-
nicated through PPM’s ghost-get mappings (Sbalzarini et al., 2006). For
each region, however, only two particles are communicated instead of the
full ghost layer of pixels. This is illustrated in Fig. 3.16. Moreover, this
only happens when the region label on the source processor did actually
change. In this case, the corresponding boundary particles are activated.
By default, all boundary particles are deactivated. Activated particles,
which we call “hot particles” from now on, as inspired by the classical
forest-fire algorithm, are then sent to the neighboring processor.

(a) (b)

Figure 3.16: Boundary particles are activated upon region label changes
in the local sub-image. Only activated (“hot”) boundary particles are com-
municated to the neighboring processor, restricting re-labeling to affected
regions and avoiding communication of a full ghost layer of pixels. (a)
All boundary particles (black disks) are deactivated (“cold”) before local
region label update. (b) Boundary particles of re-labeled regions are acti-
vated (red disks, “hot”) and propagate the label change to the neighboring
processor.

The neighboring processor receiving the hot ghost particles starts a local
forest-fire algorithm for seeded flood filling of the region, using the hot
ghosts as seeds. Since this may propagate the label change across multiple
processors, the procedure proceeds in iterations until no more hot particles
are detected anywhere. This is determined by a global MPI Allreduce

operation of local flags for the presence of hot particles in each sub-image.
Regions are always re-labeled using the lower of the two labels. This
means that hot particles only propagate changes with new labels lower

52

3.2. DATA DISTRIBUTION BY DOMAIN DECOMPOSITION

than existing ones. Therefore, the procedure is guaranteed to terminate,
as oscillations or loops cannot occur.

The complete procedure is detailed in Algorithm 4. Again, all communica-
tion (mappings) is done asynchronously using non-blocking MPI operations.
After execution of the algorithm, all regions are again identified by glob-
ally unique labels, but only necessary changes due to region splits/fusions
have been made. Regions that did not undergo topological changes re-
tain their previous labels. This prevents spurious region fusions and keeps
the data-structure updates to a minimum. Also, communicating only hot
ghost particles, instead of full pixel layers, significantly reduces the com-
munication overhead.

53

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Algorithm 4: Distributed region re-labeling

Reconstruct: label image L

hotpart← false

Create an empty list S

if contour particle label changes at sub-image boundary then
activate particle as a hot particle

hotpart← true

Ghost mappings: Particle

if there is any hot ghost particle then
add it as a seed to the list S

Global: reduce operation on hotpart

while hotpart do
Reconstruct label image L using flood fill from the seeds in S

Empty: S

Ghost mappings: Particle

if there is any hot ghost particle then
add it as a seed to the list S

hotpart← false

if contour particle label changes at particle ghost layer then
activate particle as a hot particle

hotpart← true

Global: reduce operation on hotpart

54

3.3. RESULTS

3.3 Results

We first show correctness and efficiency of the distributed parallel algo-
rithm and then illustrate its application to acquisition-rate image segmen-
tation in 3D light-sheet fluorescence microscopy. We demonstrate correct-
ness by comparison with the original reference implementation of Cardinale
et al. (2012) on synthetic and real-world images taken from the original
DRC paper (Cardinale et al., 2012). Then, we assess the parallel efficiency
and scalability of the present implementation using scalable synthetic im-
ages in both a weak-scaling and a strong-scaling experiment.

All computations were performed using the PPM library (Sbalzarini et al.,
2006; Awile et al., 2010, 2013) in its 2015 version on the Bull cluster
“Taurus” at the Center for Information Services and High Performance
Computing (ZIH) of TU Dresden. The cluster island used consists of 612
Intel Haswell nodes with 24 cores per node and 2.5 GB of main memory per
core. The parameter settings for all test cases are summarized in Table 3.1.
They were determined following the guidelines given in the original DRC
publication (Cardinale et al., 2012).

Table 3.1: Parameter settings used for the cases shown in this chapter
(PC: piecewise constant; PS: piecewise smooth). See Cardinale et al.
(2012) for parameter meaning and guidelines.

Initialization Algorithm parameters Edata Energy parameters

Icecream PC 2D, 130 × 130, Fig. 3.17

6 × 6 bubbles θ = 0.02, Rκ = 4 PC λ = 0.04

Bird, 481 × 32, Fig. 3.19

32 × 21 bubbles θ = 4.5, Rκ = 5 PC λ = 0.2

Cell nuclei, 672 × 512, Fig. 3.20

local maxima θ = 0.02, Rκ = 4 PC λ = 0.06

Icecream PS 2D, 130 × 130, Fig. 3.21

5 × 5 bubbles θ = 0.2, Rκ = 4 PS λ = 0.04, β = 0.05, R = 8

Elephants 2D, 481 × 321, Fig. 3.23

21 × 14 bubbles θ = 0.2, Rκ = 8 PS λ = 0.2, β = 0.05, R = 4

Zebrafish embryo germ cells 3D, 188 × 165 × 30, Fig. 3.24

bounding box Rκ = 4 PS λ = 0.08, β = 0.005, R = 9

Synthetic unit cell test image 3D, 256 × 256 × 256, Fig. 3.25

local maxima θ = 0.02, Rκ = 4 PC λ = 0.04

Drosophila embryo 3D, 1824 × 834 × 809, Fig. 3.28

local maxima from blob detector θ = 0.001, Rκ = 8 PC λ = 0.005

Drosophila embryo 3D, 1824 × 834 × 809, Fig. 3.29

local maxima from blob detector θ = 0.001, Rκ = 8 PS λ = 0.005, β = 1.0, R = 8

zebrafish vasculature 3D, 1626 × 988 × 219, Fig. 3.30

Li thresholding θ = 10.0, Rκ = 8 PS λ = 0.02, β = 0.001, R = 12

55

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

3.3.1 Correctness of the distributed algorithm

Results using a piecewise constant image model. We first check
that the distributed algorithm produces the same results as the sequential
benchmark implementation in the case of a multi-region piecewise con-
stant (PC) image model. In this model, the assumption is that different
FG regions have different intensities that are, however, spatially constant
within each region. We use the same test image as Cardinale et al. (2012)
in order to compare the results. The result from the present distributed
implementation is shown in Fig. 3.17 using one, four, and eight processors.
Pixel-wise comparison shows that all segmentation results are identical to
the one reported by Cardinale et al. (2012) for the sequential benchmark
implementation.

56

3.3. RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Distributed segmentation of a synthetic test image using a
piecewise constant image model. (a) Initialization on a single processor
with particles shown in red. (b) Final result on a single processor. (c)
Initialization on four processors. (d) Final result on four processors. (e)
Initialization on eight processors. (f) Final result on eight processors.
The results are identical to those by Cardinale et al. (2012) in all cases.

57

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Figure 3.18 shows the energy evolution of the distributed cases compared
with the original sequential benchmark implementation of Cardinale et al.
(2012). If anything, the graph randomization used in the present dis-
tributed algorithm slightly accelerates convergence in the first half of the
iterations. All methods reach the same final energy.

Figure 3.18: Energy evolution of the sequential DRC algorithm of Car-
dinale et al. (2012) in comparison with the present distributed algorithm
processing the piecewise constant test image from Fig. 3.17 on four and
eight processors.

58

3.3. RESULTS

We further compare the results from the present distributed implementa-
tion with the original sequential algorithm on real image data. The same
natural-scene image as considered in the original publication (Cardinale
et al., 2012) is shown in Fig. 3.19. Again, the present implementation
running on one and four processors produces the exact same result as the
benchmark implementation.

(a) (b)

(c) (d)

Figure 3.19: Distributed segmentation of a natural-scene image using a
piecewise constant image model. (a) Initialization on a single processor
with particles shown in red. (b) Final result on a single processor. (c)
Initialization on four processors. (d) Final result on four processors. The
results are identical to those by Cardinale et al. (2012) in both cases.

As a second real image, we consider the same fluorescence microscopy
image of nuclei as in the original publication (Cardinale et al., 2012). The
results on one and 16 processors are shown in Fig. 3.20. The algorithm
is initialized with a circular region around each local intensity maximum
after blurring the image with a Gaussian filter of width σ = 10 pixel. This
is the same initialization as used by Cardinale et al. (2012). The results
are identical, pixel by pixel.

59

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a) (b)

(c)

(d)

Figure 3.20: Distributed segmentation of fluorescently labeled cell nuclei
(raw image: Dr. Prisca Liberali, FMI Basel) using a piecewise constant
image model. (a) Initialization on a single processor. (b) Result on a
single processor. (c) Initialization on 16 processors. (d) Result on 16
processors. The results are identical to those by Cardinale et al. (2012)
in both cases. 60

3.3. RESULTS

Results using a piecewise smooth image model. The DRC algo-
rithm is generic over a wide range of image models, including the more
complex piecewise smooth (PS) model. In this model, each region is al-
lowed to have a smooth internal intensity shading. We again use the same
synthetic test image as Cardinale et al. (2012) and illustrate the result in
Fig. 3.21. Pixel-to-pixel comparison of the final segmentation results shows
differences in two oscillatory pixels on eight processors (see also Fig. 3.14).
This is consistent with the way boundary oscillations are detected and
handled in the distributed algorithm in comparison with the sequential
one.

61

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a) (b)

(c) (d)

(e) (f)

Figure 3.21: Parallel segmentation of a synthetic image using a piecewise
smooth image model. (a) Initialization on a single processor with particles
shown in red. (b) Final result on a single processor. (c) Initialization on
four processors. (d) Final result on four processors. (e) Initialization
on eight processors. (f) Final result on eight processors. Two oscillatory
pixels differ with respect to the result of Cardinale et al. (2012) (see also
Fig. 3.14).

62

3.3. RESULTS

The energy evolution for this case is shown in Fig. 3.22 in comparison with
the original sequential DRC algorithm of Cardinale et al. (2012). Again,
the two convergence traces are almost identical with small differences stem-
ming from the graph decomposition used in the present implementation.
The difference in final energy is due to the two oscillatory pixels, as dis-
cussed above and shown in Fig. 3.14.

Figure 3.22: Energy evolution of the sequential DRC algorithm of Car-
dinale et al. (2012) in comparison with the present distributed algorithm
processing the piecewise smooth test image from Fig. 3.21 on four and
eight processors.

There is also a small difference at energy level in computing the PS energy
value by the sequential DRC algorithm using source code of Cardinale
et al. (2012) (an image filter in the Insight Toolkit (ITK) image-processing
library (Ibanez et al., 2005)) and the present implementation. In our imple-
mentation at the image border for spherical patches we consider the outside
pixels with zero intensity while they are cut in (ITK) image-processing li-
brary. This difference does not change anything in the algorithm as we are
only interested in the energy difference and not on its absolute value.

63

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Figure 3.23 illustrates the sequential and distributed segmentations of a
natural-scene image using the PS image model. By pixel-to-pixel compari-
son, the segmentation result on four processors (Fig. 3.23d) is identical to
the one computed by a single computer (Fig. 3.23b).

(a) (b)

(c) (d)

Figure 3.23: Distributed segmentation of a natural-scene image using a
piecewise smooth image model. (a) Initialization on a single processor
with particles shown in red. (b) Final result on a single processor. (c)
Initialization on four processors. (d) Final result on four processors. The
two results are identical.

As a first 3D test image, we use the same fluorescence confocal image of ze-
brafish germ cells that was also used by Cardinale et al. (2012). Figure 3.24
shows the raw image along with the PS segmentation results on one and
four processors. By pixel-wise comparison, the results are identical.

64

3.3. RESULTS

(a) (b)

(c)

Figure 3.24: Distributed segmentation of zebrafish primordial germ cells
using a piecewise smooth image model. (a) Raw 3D confocal fluorescence
microscopy image showing three cells with a fluorescent membrane stain
(image: M. Goudarzi, University of Münster). (b) Segmentation result
on a single processor. (c) Segmentation result on four processors. The
two results are identical.

65

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

3.3.2 Efficiency of the distributed algorithm

Performance of a distributed parallel algorithm is influenced by many fac-
tors, including the structure of the input data, computer memory archi-
tecture, communication network, disk space, and background load. While
it is impossible to reproduce or control all of these, we present empirical
tests in order to assess the overall performance of the present algorithm
in terms of parallel scalability and speed. Scalability (parallel efficiency)
quantifies how well a distributed algorithm utilizes the computer resources
as the number of computers/processors increases. Therefore, we provide
results for both weak and strong scaling on synthetic benchmark images.
Weak scaling measures how well the algorithm scales to very large images
that do not fit into the memory of a single computer. Strong scaling mea-
sures how quickly the algorithm can solve a problem of fixed size when it
is distributed across an increasing number of computers. We use synthetic
images in order to control for variations in the result stemming from image
contents. Moreover, synthetic images can easily be scaled to arbitrary size,
as required for the weak scaling tests.

The two synthetic images used here are shown in Fig. 3.25. Both are
3D images, and Fig. 3.25 shows maximum-intensity projections. The top
row in Fig. 3.25 shows the “unit cells”, from which the test images are
generated by periodic concatenation as shown in the panels below. In
the first image (Fig. 3.25a), all objects are local, i.e., there are no objects
that cross sub-image boundaries. The second image (Fig. 3.25b) contains
objects that cross sub-image boundaries. Comparing the results of the two
allows us to estimate the communication overhead from the parallel graph-
handling and region labeling algorithms introduced here. In all cases, the
algorithm is initialized with circular regions around each local intensity
maximum after blurring the image with a Gaussian filter of σ = 5 pixel.

In the weak scaling, the workload per processor remains constant, while
the overall image size increases proportionally to the number of processors.
This way, the workload on 512 processors is an image of 8192 × 4096 ×
256 pixels containing 18 944 objects. Periodically repeating the “unit cell”
image, rather than scaling it, ensures that the workload on each processor
is exactly the same, since every processor locally “sees” the same image.

66

3.3. RESULTS

(a) (b)

(c) (d)

Figure 3.25: Maximum-intensity projections of the synthetic 3D test im-
ages used to assess the parallel performance and scalability of the dis-
tributed algorithm. (a) 256×256×256 pixel unit cell of the first test image
where no object touches or crosses the boundary. The image contains 37
ellipsoidal objects of different intensities. All objects are non-overlapping
in 3D, even though they may appear overlapping in the maximum projec-
tion shown here. (b) 256×256×256 pixel unit cell of the second test image
with objects touching and crossing the boundary. The image contains 48
ellipsoidal objects of different intensities. The object number is higher
than in the first image, because some objects are partial, but the fraction
of FG pixels vs. BG pixels is the same as in (a) in order to keep the
computational cost (i.e., the number of particles) constant. (c) Synthetic
workload image of type 1, generated from 4 unit cells by periodically con-
catenating them. (d) Synthetic workload image of type 2, generated from
4 unit cells by periodically concatenating them.

67

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Figure 3.26 shows the resulting parallel efficiency (weak scaling) for the two
test images. For comparison, it also shows the parallel efficiency when us-
ing the classical master-slave approach to graph processing (see Fig. 3.10).
The master-slave approach does not scale, as the parallel efficiency rapidly
drops when using more than 32 processors. This results from the commu-
nication overhead due to global communication, and from the additional
serialization. The present randomized approach scales for both test im-
ages.

Segmentation of the second dataset using the present parallel approach on
1, 64, and 512 processors took less than 12, 24, and 29 seconds respectively,
corresponding to image sizes of 32 MB, 2 GB, and 16 GB, respectively, in
this weak-scaling test. Comparing the results for the first test image, where
no objects cross sub-image boundaries, with those for the second test image
reveals that about half of the communication overhead is due to boundary
particles.

Strong scaling measures how efficiently a parallel algorithm reduces the
processing time for an image of a given and fixed size by distributing it
across an increasing number of processors. Since the workload per pro-
cessor decreases as the number of processors increases in a strong scaling,
the relative communication overhead steadily grows. Strong scalability is
hence always limited by problem size with large problems scaling better.
We therefore show tests for two different image sizes: a moderate image
size of 512× 512× 512 pixels (black circles in Fig. 3.27) and a large image
of 2048× 2048× 2048 pixels (red squares in Fig. 3.27).

For the first image of size 512×512×512 pixel, the decrease in efficiency be-
yond 8 processors is due to communication between the processors, which
increases relatively to the smaller and smaller computational load per pro-
cessor. A 30-fold speedup is achieved for this image size on 64 processors.
On 512 processors, every processor only has a sub-image of size 64×64×64
pixel with ghost layers of width 5 pixel all around. Segmentation of this
image on 8, 64, and 512 processors took 16, 4.2, and 1.6 seconds, respec-
tively.

For the larger image of size 2048× 2048× 2048 pixel, segmentation on one
processor is not possible, since it would require 62 GB of main memory.
On 8 and more processors, segmentation becomes feasible and takes 6870

68

3.3. RESULTS

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 32 64 128 256 512

P
ar

al
le

l
E

ff
ic

ie
n

cy

Number of Processors P

Parallel DRC (present approach) on 1st dataset
Parallel DRC (present approach) on 2nd dataset
Parallel DRC (master-slave approach) on 2nd dataset

Figure 3.26: Weak scaling parallel efficiency of the present method in com-
parison with the classical master/slave approach. Time t1 is the runtime
of the algorithm to process a “unit cell” image on one processor, and tP is
the runtime to segment a P -fold larger periodic concatenation image dis-
tributed over P processors. The images on 1 to 16 processors are shown
below the abscissa for illustration.

69

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

 1

 8

 64

 512

 1 8 64 512

R
el

at
iv

e
S

p
ee

d
u
p

Number of Processors P

Parallel DRC (present approach) on image of size
Parallel DRC (present approach) on image of size

optimal line

(t
1
/t

P
)

512× 512× 512
2048× 2048× 2048

2048× 2048× 2048
512× 512× 512

Figure 3.27: Strong scaling speedup versus number of processors P for
two different image sizes of 512 × 512 × 512 pixel (black circles) and
2048× 2048× 2048 pixel (red squares). The two images are shown in the
insets.

70

3.3. RESULTS

seconds on 8 processors. On 64 and 512 processors, the result is computed
in 860 and 145 seconds, respectively. A 48-fold speed is achieved on 512
processors relative to 8 processors, which corresponds to a scalability close
to the optimal line.

3.3.3 Application to acquisition-rate segmentation of 3D
light-sheet microscopy data

We present a case study applying the present algorithm to segment 3D
image data from light-sheet microscopy, demonstrating that acquisition-
rate segmentation is possible. We use the image data shown in Figs. 3.28a
and 3.30a. Both are 3D light-sheet fluorescence microscopy images.

The first image shows a whole live Drosophila melanogaster embryo at
cellular blastoderm stage with nuclei labeled by a histone marker. This
data was acquired on an OpenSPIM microscope (Pitrone et al., 2013)
in the Tomancak lab at MPI-CBG. The size of the original image file is
4.6 GB at 32 bit depth. The image has 1824×834×809 pixels. During the
segmentation, a total of about 64 GB of main memory is required for DRC.
Distributed across 128 processors, this is 500 MB per processor, which fits
the memory of the individual cores. The segmentation results using the
present distributed algorithm with the PC image model on 128 processors
is shown in Fig. 3.28b.

Figure 3.28c shows the sub-image from one of the processors, and Fig. 3.28d
the corresponding part of the segmentation result. Communication across
sub-image boundaries ensures that the processors collectively solve the
global problem without storing all of it.

71

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a)

(b)

Figure 3.28 (continued)

72

3.3. RESULTS

(c) (d)

Figure 3.28 (previous page): Application of the present implementation
to acquisition-rate segmentation of a 3D light-sheet microscopy image us-
ing a piecewise constant (PC) image model. All 3D visualizations were
done using ClearVolume (Royer et al., 2015).
(a) Raw image showing a Drosophila melanogaster embryo at cellular blas-
toderm stage with fluorescent histone marker (image: Dr. Pavel Toman-
cak, MPI-CBG). In addition to the nuclei, there are fluorescent beads
embedded around the sample as fiducial markers for multi-view fusion
and registration (Preibisch et al., 2010). (b) Segmentation result using
the present distributed implementation of DRC with the PC image model
distributed across 128 processors. The total time to compute the segmen-
tation was 60 seconds, while the microscope acquired a 3D image every
90 seconds. (c) Example of a sub-image from one of the processors. (d)
Corresponding part of the segmentation as computed by that processor.

73

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

Segmenting this image distributed across 128 processors took less than
60 seconds, which is shorter than the time of 90 seconds until the mi-
croscope acquires the next time point. We hence achieve acquisition-rate
image segmentation in this example, using a state-of-the-art model-based
segmentation algorithm that produces high-quality results. If necessary,
more processors can be used to further reduce processing time, as we have
shown the present implementation to scale well up to 512 processors.

We compare our approach with the TWANG (Stegmaier et al., 2014)
pipeline on 14 cores of one compute node (TWANG uses shared-memory
multi-threading). TWANG (Stegmaier et al., 2014) required 24 minutes
to compute the segmentation using the 14 cores, which does not allow
acquisition-rate processing. The comparison is mainly in terms of compu-
tational performance, since TWANG was optimized for segmenting spher-
ical objects, whereas the nuclei in our image are rather elongated. The
result from DRC hence shows better segmentation quality.

Due to the inhomogeneous fluorescence intensity across the sample, the
PC segmentation shown in Fig. 3.28b misses some of the nuclei at the
left tip of the embryo. This can be improved using the PS image model
instead, which allows for intensity gradients within regions, in particular
within the background region. This is shown in Fig. 3.29. Figure 3.29a
shows a low-intensity region where the PC model misses some nuclei. Fig-
ure 3.29b shows a high-intensity regions where the PC model fuses several
nuclei together. The corresponding results when using the PS image model
are shown in the panels below, in Figs. 3.29c and 3.29d. The whole-image
result when using the PS image model is shown in Fig. 3.29e. The PS
model improves the segmentation since it adjusts to local intensity vari-
ations in the objects and the background, which is also why it captures
more of the fiducial beads around the embryo. This demonstrates the
flexibility of DRC to accommodate for different image models, enabling
application-specific segmentations that include prior knowledge about the
image. The segmentation quality can further be improved by including
shape priors (Zhang and Lu, 2004; Veltkamp and Hagedoorn, 2001), as
has been demonstrated for DRC (Cardinale, 2013), or by using Sobolev
gradients for which DRC is uniquely suited (Sbalzarini et al., 2014).

74

3.3. RESULTS

(a) (b)

(c) (d)

Figure 3.29 (continued)

75

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(e)

Figure 3.29 (previous page): Comparison of the piecewise constant (PC)
and piecewise smooth (PS) image models. All visualizations were done
using ClearVolume (Royer et al., 2015). (a) Segmentation (red) overlay
in a low-intensity region using the PC model. (b) Segmentation (red)
overlay in a high-intensity region using the PC model. (c) Segmentation
(red) overlay in the same low-intensity region using the PS model. (d)
Segmentation (red) overlay in the same high-intensity region using the
PS model. (e) Complete result using the PS model on 128 processors.
The total processing time was 250 seconds for this case.

Using the PS image model, however, is computationally more involved
than using the PC model. The segmentation shown in Fig. 3.29e required
250 seconds to be computed on 128 processors. Acquisition-rate processing
using the PS model hence requires about 512 processors.

76

3.3. RESULTS

The second image shows the tail of a live zebrafish embryo 3.5 days post
fertilization with the vasculature fluorescently labeled by expressing GFP
in endothelial cells (Tg(flk1:EGFP)s843). This image was acquired by
the Huisken lab at MPI-CBG using a state-of-the-art light-sheet micro-
scope (Huisken et al., 2004). The geometric structure of a vascular net-
work is very different from blob-like nuclei, illustrating the flexibility of
DRC to segment arbitrary shapes. This image is intractable for special-
ized blob-segmentation pipelines like TWANG (Stegmaier et al., 2014).
Figure 3.30a shows the raw data. The image has 1626 × 988 × 219 pix-
els. Figure 3.30b shows the segmentation result using Li’s minimum cross-
entropy thresholding (Li and Lee, 1993), as implemented in the software
package Fiji (Schindelin et al., 2012). We use this thresholding as an ini-
tialization for our method. Figure 3.30c is the segmentation result using
the PS image model with a Gaussian noise model. Distributed process-
ing on 32 processors took 248 seconds. In this segmentation, some vessels
appear non-contiguous and the caudal vessels (caudal artery and caudal
vein) are not properly resolved. This changes when replacing the Gaus-
sian noise model with a Poisson noise model (Paul et al., 2013), as shown
in Fig. 3.30d. Using the correct noise model clearly improves the result,
providing further illustration that flexible frameworks like DRC are impor-
tant. The result in Fig. 3.30d was obtained on 32 processors in less than
200 seconds.

77

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

(a)

(b)

(c)

Figure 3.30 (continued)

78

3.3. RESULTS

(d)

Figure 3.30 (previous page): Application of the present method to seg-
menting zebrafish vasculature in a light-sheet microscopy image. All vi-
sualizations were done using ClearVolume (Royer et al., 2015). (a) Raw
image showing the tail part of the vasculature in a developing zebrafish em-
bryo 3.5 days post fertilization (image: Stephan Daetwyler, Huisken lab,
MPI-CBG). (b) Initialization using Li thresholding (Li and Lee, 1993).
(c) Segmentation result using the PS image model with Gaussian noise
model on 32 processors. The total processing time was 248 seconds.
(d) Segmentation result using the PS image model with Poisson noise
model (Paul et al., 2013) on 32 processors. The total processing time was
less than 200 seconds.

79

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

3.4 Summary

We have presented a distributed-memory parallel implementation of the
Discrete Region Competition (DRC) algorithm (Cardinale et al., 2012) for
image segmentation. Efficient parallelization was made possible by a novel
parallel independent sub-graph algorithm, as well as optimizations to the
parallel connected-component labeling algorithm. The final algorithm was
implemented using the PPM library (Sbalzarini et al., 2006; Awile et al.,
2010, 2013) as an efficient middleware for parallel particle-mesh methods.
The parallel implementation includes both piecewise constant (PC) and
piecewise smooth (PS) image models.

The distributed-memory scalability of the presented approach effectively
overcomes the memory and runtime limitations of a single computer. None
of the computers or processors over which a task is distributed needs to
store the entire image. This allows segmenting very large images. The
largest synthetic image considered here had 1.7 ·1010 pixels, corresponding
to 32 GB of uncompressed memory. A real-world light-sheet microscopy
image of 1824 × 834 × 809 pixels (amounting to 4.6 GB of uncompressed
memory) was segmented in under 60 seconds when distributed across 128
processors. This was less than the 90 seconds until the microscope acquired
the next time point, hence providing online, acquisition-rate image analysis.
This is a prerequisite for smart microscopes (Scherf and Huisken, 2015) and
also enables interactive experiments.

We have demonstrated the parallel efficiency and scalability of the present
implementation using synthetic images that can be scaled to arbitrary size.
We have further reproduced the benchmark cases from the original DRC
paper (Cardinale et al., 2012) and have shown that the parallel implemen-
tation produces the same or very close results as the original sequential
reference implementation. Small differences may occur, but are limited to
isolated oscillatory pixels, which are due to local oscillation detection. This
local detection is preferable because it avoids global communication and
improves parallel scalability with respect to the traditional master/slave
approach.

Although our performance figures are encouraging, there is room for fur-
ther improvements. One idea could be to compress the particle and image

80

3.4. SUMMARY

data before communication. This would effectively reduce the communi-
cation overhead and improve scalability. Furthermore, spatially adaptive
domain decompositions and dynamic load balancing could be used to re-
duce load imbalance. Depending on the image contents, not all processors
may have an equal amount of particles. This causes asynchronous waiting
times that may limit scalability. Due to the checkerboard decomposition
used in the graph handling, however, the current implementation is limited
to Cartesian domain decompositions, while spatially adaptive trees might
be better. Lastly, the local evaluation of energy differences for all possible
particle moves can be accelerated by taking advantage of multi-threading
and graphics processing units (GPUs). This is possible for DRC, as has
already been shown (Ebrahim, 2011), suggesting that processing could be
further accelerated by a factor of 10 to 30, depending on the image model.

This leaves ample opportunities for further reducing processing times as
required by the microscopy application. Already the present implemen-
tation, however, illustrates the algorithmic concept, which is based on
randomized graph decomposition and hybrid particle-mesh methods. This
enables acquisition-rate segmentation of 3D fluorescence microscopy im-
ages using different image models, opening the door for smart microscopes
and interactive, feedback-controlled experiments.

81

CHAPTER 3. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION COMPETITION ALGORITHM

82

CHAPTER

FOUR

Parallel distributed-memory Discrete

Region Sampling algorithm

4.1 Introduction

In the previous chapter, we presented a distributed-memory parallel imple-
mentation of the DRC algorithm for image segmentation. The presented
parallel approach overcomes the memory and runtime limitations of a sin-
gle computer. However, no information is provided about the sensitivity
or robustness of the segmentation.

Accuracy and robustness of segmentation affect the quantitative results in
an image analysis pipeline. In a pipeline, uncertainty quantification of the
segmentation is crucial. Knowing the uncertainty in the results minimizes
user interactions by highlighting critical locations in the solution and their
quality. Uncertainty quantification of segmentation can provide a measure
to guide the user to areas where the uncertainty is highest.

83

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

DRS provides such a measure of segmentation uncertainty. It does this by
MCMC sampling from the posterior around the DRC segmentation result.
The proposed transitions move the Markov chain from state Xt to Xt+1, by
small alterations. Knowing that the stationary distribution of the Markov
Chain is the segmentation posterior, we can construct the transition kernel
and calculate the probability of applying each move. The length of the
burn-in phase, or the number of iterations required for convergence, is
an unsolved problem and beyond the scope of this thesis. Empirically, it
takes thousands of iterations for the chain to converge, and then it needs
to explore enough of the state space to detect and assign probabilities to
alternative modes. How many samples are required to detect alternative
modes is uncertain.

Here, we address the runtime and memory issues of DRS by parallelizing it
across multiple computers. Parallelization at a first glance is an impossible
task, since each state in the chain depends on the previous state. Thus,
subsequent moves can not be performed independently. Nevertheless, sev-
eral attempts at parallelization have been taken previously.

4.1.1 Previous approaches

There are several approaches to parallelization of MCMC for image anal-
ysis. We review the traditional methods of Rosenthal (2000) and Geyer
(1991) and give an overview of the more recent method of Byrd (2010).
We describe why these methods are not suitable here. Then, among many
available MCMC algorithms for particle simulations, we review the recent
works of Heffelfinger and Lewitt (1996); Anderson et al. (2013, 2016), where
the parallelization strategy relies on a domain-decomposition scheme. We
describe why these algorithms are not suitable for parallel MCMC sam-
pling in image analysis, but, they inspire us to develop our new parallel
algorithm.

Parallel processing strategies for MCMC in image analysis can be designed
in various ways. The traditional way is the typical Monte Carlo paralleliza-
tion (Rosenthal, 2000). In this way, the simulation starts using multiple
chains on multiple computers, each with a separate initial state and ran-
dom number generator. In this method, even though multiple chains run

84

4.1. INTRODUCTION

on multiple computers independently, the average burn-in time for each
chain does not change. Therefore, it does not solve the runtime nor mem-
ory issues on the extremely large state spaces of images.

Another approach to reducing the runtime of MCMC applications there-
fore is to improve the convergence rate. Geyer (1991) proposed a technique
known as Metropolis-Coupled MCMC that promotes mixing by using mul-
tiple MCMC chains with different stationary distributions. From time to
time, chains exchange their states according to the Metropolis-Hastings
criterion. The parallel implementation runs each chain on a different pro-
cessor. This approach reduces the number of iterations required for the
chains to converge, but it does not solve the runtime nor memory issues
on large state spaces.

Byrd (2010) introduced a periodic parallelization approach. This method
at first performs all the sequential MCMC moves that are not possible
to do in parallel. This includes everything that alters the configuration
or impacts calculations across the entire image (global moves). Then, it
randomly partitions the image and simultaneously continues in each parti-
tion, performing the moves that are possible to do in parallel. These moves
only affect a small area and make no changes to the global properties (lo-
cal moves). After recombining the changes in all partitions into the whole
image, the cycle repeats starting again with global MCMC moves on the
whole image. The sequential (global) moves make large-scale alterations
to the image, while the parallelized (local) moves fine tune specific fea-
tures. This cycle repeats until the partitioning into global and local moves
is statistically insignificant. The random partitioning prevents boundary
anomalies. Even though this approach scales and produces reliable results,
it is limited by the serialization of the global moves on the master node.
Those extensions of this approach either require preprocessing the whole
image, which is limited to images with independent features, or requires
post-processing on the partitions which can create artifacts from the par-
titioning (Byrd, 2010).

85

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

Parallelizing MCMC simulations using particles is widely considered. A
number of works for particle simulations in systems with short ranged
interactions used checkerboard techniques (Heffelfinger and Lewitt, 1996;
Anderson et al., 2013, 2016).

Heffelfinger and Lewitt (1996) presented a spatial decomposition approach,
in which the sub-images are further divided into 2d cells (where d is the
dimension of the space). Figure 4.1 illustrates this for four sub-images
divided into sixteen cells. By choosing the cell size sufficiently large, each
processor can perform MCMC sampling independent of its neighboring
processors. For example, all a-cells in different sub-images (and thus on

Figure 4.1: An image with four sub-images (on four processors) divided
into sixteen cells.

different processors) are separated by at least one cell. Therefore, sampling
in the a-cells of neighboring sub-images can be done independently if the
cell edge length is larger than the radius of the energy kernel. Figure 4.2
illustrates an example of sampling two particles simultaneously in the a-
cells of two neighboring sub-images.

Each processor works first in the a-cell, in the corresponding sub-image,
sampling a test move (i.e., a test-particle). The processors then succes-
sively visit the other cells and continue sampling in the b,c, and d-cells, re-
spectively. Each processor then sends its test-particles to its neighbors and

86

4.1. INTRODUCTION

receives test-particles from them. Using this information, sampling com-
pletes by accepting or rejecting the proposed test-particles. The boundary
information between sub-images is communicated between the respective
processors with ghost layers.

Figure 4.2: An example of sampling two particles simultaneously in two
sub-images (different processors). Both processors (with IDs 0 and 1) are
applying the sampled particles moves (p and q) independently on their
a-cells.

Due to the extra memory required for the test particles, however, this
approach is not suited for the large state space of images. It also causes
waiting times for the completion of the additional send and receive oper-
ations between neighboring processors. More importantly, it introduces a
bias in the sampling process.

Anderson et al. (2013) addressed the bias problem, caused by sampling
cells in order, and presented a parallel MCMC for particle simulations
on GPUs. They used a checkerboard decomposition with a cell-list data
structure. They shuffled the checkerboard sets and assured a random per-
mutation. They showed medium-scale simulations on GPUs and assessed
the scalability of the approach. Anderson et al. (2016) generalized the do-

87

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

main decomposition parallelization on many CPUs and many GPUs using
MPI and to simulations with large particle size disparity. In this paral-
lelization, each processor domain is divided into an active and an inactive
area, where the right and bottom edges of each domain (in 2D) are inactive
areas. After N trial moves on the active area, and accepting or rejecting
the moves, all the particles are shifted with a random displacement vector.
This is followed by migrating the particles to new processors if required,
and updating the ghosts.

All of these works do not directly apply to MCMC sampling in the large
state spaces of images. They either do not solve the runtime and memory
issues or, in the case of Anderson et al. (2016), they are not suited for
images where the objects are fixed.

Our goal here is to find a representative collection of segmentations and
to estimate the uncertainty of the output due to the variability of the
segmentations in the large state space of the image. We draw inspiration
from the previous works of Heffelfinger and Lewitt (1996); Anderson et al.
(2013, 2016) and introduce a novel distributed-memory MCMC approach.
We parallelize the DRS algorithm (Cardinale, 2013) for uncertainty quan-
tification of segmentations in a distributed environment by applying a
domain-decomposition approach to the image.

Our solution is appropriate for image models with limited computational
support, such as piecewise constant and smooth energies, where energy
computation does not require the global information over the image. We
describe the design and implementation of the parallel approach. Our
approach is specifically designed to support parallel execution on hetero-
geneous clusters and distributed-memory machines.

88

4.2. ALGORITHM

4.2 Algorithm

We again design the algorithm using a domain-decomposition approach
in order to scale to large numbers of processors. Thus, we identify the
computation that can be executed simultaneously in each sub-image. Ef-
ficient simultaneous computation requires the development of a parallel
algorithm that minimizes inter-processor communication and synchroniza-
tion. We use a checkerboard decomposition to organize independent sets
that can be executed simultaneously without conflicts between neighboring
processors.

4.2.1 Domain decomposition

The domain decomposition for uncertainty quantification takes advantage
of finite computational support of the energy. Processors can thus work
simultaneously, as long as the regions in which they operate are separated
by a distance larger than the number of pixels required to compute energy
differences, i.e., by the radius of the energy kernel.

The input image is decomposed into disjoint sub-images that are dis-
tributed to different computers (see Section. 3.2). Domain decomposition
and data distribution are done transparently by the PPM library (Sbalzarini
et al., 2006; Awile et al., 2010, 2013). Reading the input image from a file
is also done in a distributed way, where each computer only reads certain
image planes. The PPM library then automatically redistributes the data
so as to achieve a good and balanced decomposition. Each computer only
stores its local sub-image, and no computer needs to be able to store the
entire image data.

The algorithm is then initialized locally on each computer, using only the
local sub-image. The initial label image L0 is the result of any previous
segmentation, like results from DRC, manual, or semi-manual segmenta-
tions, or any other initialization approach. Good initializations start the
chain close to the posterior equilibrium distribution.

A significant difference to the DRC algorithm is that we need to fix the

89

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

number of regions for sampling. This is because we want to sample a
segmentation space of known dimension.

4.2.2 Checkerboard decomposition

A two-dimensional example of a Cartesian domain decomposition of an
image into sixteen sub-images is depicted in Fig. 4.3. In each sub-image,
we create a cell list data structure. Cell lists work by dividing each sub-
image into equisized cells with edge length ∆rmax, greater than or equal
to the radius of the energy kernel. This ensures that cells to be updated
independently (Heffelfinger and Lewitt, 1996).

Using this structure, we describe our algorithm for parallel updates and
asynchronous communication between processors.

(a) (b)

Figure 4.3: An image distributed into sixteen sub-images on sixteen pro-
cessors. (a) Each sub-image is partitioned into cells, where the edge length
∆rmax is bigger than the radius of the energy kernel. (b) A greedy graph
coloring (Coleman and Moré, 1983) algorithm defines the independent
sets (four colors a, b, c, and d in two-dimensional image) across proces-
sors. The white letter on each sub-image is the color label.

90

4.2. ALGORITHM

We first assign the sub-images into sets that can be updated independently.
To determine independent sets of sub-images, we use the fast greedy graph
coloring heuristic of Coleman and Moré (1983). Graph coloring assigns
labels “colors” to vertices of a graph such that no two adjacent vertices
have the same color (Diestel, 2012). Here, every sub-image (processor)
is a vertex of a graph and adjacency with other sub-images (neighbors)
introduces edges between the vertices. Figure 4.3b shows the results of
graph coloring so that no two adjacent sub-images have the same color
(four and eight colors in two-dimensional and three-dimensional images,
respectively). This determines the independent sets of processors, where
each color indicates a label (a, b, · · ·). This step is done once at the start of
the program and is valid for arbitrary domain decompositions, also beyond
Cartesian ones.

Second, in each sub-image, we identify a cell of the local cell list by its
coordinate ((x, y) and (x, y, z) in two and three-dimensional sub-images
respectively). The coordinates of each cell determine its checkerboard
set (Anderson et al., 2013) as,

Cc2D =

a if (x is even) and (y is even),
b if (x is odd) and (y is even),
c if (x is even) and (y is odd),
d if (x is odd) and (y is odd),

Cc3D =

a if (x is even) and (y is even) and (z is even),
b if (x is odd) and (y is even) and (z is even),
c if (x is even) and (y is odd) and (z is even),
d if (x is odd) and (y is odd) and (z is even),
e if (x is even) and (y is even) and (z is odd),
f if (x is odd) and (y is even) and (z is odd),
g if (x is even) and (y is odd) and (z is odd),
h if (x is odd) and (y is odd) and (z is odd),

where, a,b,· · · also indicate the labels of the checkerboard sets. So Cc =
{a, b, c, d} for two-dimensional images.

91

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

In contrast to Cardinale (2013), in our strategy particle positions (and
not region labels) determine the order of updates. The order will thus
change as region contours change. Consequently, care is required to ensure
unbiased results.

We draw many samples in parallel (Heffelfinger and Lewitt, 1996). There-
fore, we also need to generate independent parallel random number streams.

4.2.3 Parallel Pseudo random number generation

For unbiased sampling, we use a Mersenne Twister random number genera-
tor (MTRNG) (Matsumoto and Nishimura, 1998). To assure a unique seed
on every processor, we mix the processor ID and the user seed with the
mixing procedure of a hash-based random number generator, Saru (Afshar
et al., 2013), as:

seed2+=seed1<<16;

seed1+=seed2<<11;

seed2+=((signed int)seed1)>>7;

seed1^=((signed int)seed2)>>3;

seed2*=0xA5366B4D;

seed2^=seed2>>10;

seed2^=((signed int)seed2)>>19;

seed1+=seed2^0x6d2d4e11;

seed1 = 0x79dedea3*(seed1^(((signed int)seed1)>>14));

seed2 = (seed1 + seed2) ^ (((signed int)seed1)>>8);

seed1 = seed1 + (seed2*(seed2^0xdddf97f5));

seed2 = 0xABCB96F7 + (seed2>>1);

seed1 = 0x4beb5d59*seed1 + 0x2600e1f7;

seed2 = seed2+0x8009d14b + ((((signed int)seed2)>>31)&0xda879add);

MTseed=(seed1 ^ (seed1>>26))+seed2;

MTseed=(MTseed^(MTseed>>20))*0x6957f5a7;

where seed1 and seed2 are set to the processor ID and user seed, respec-
tively. << and >> are left and right bit-shift operations, respectively, ^ is
a bitwise exclusive-OR operation and & is a bitwise AND operation.

92

4.2. ALGORITHM

Seeding a random number generator is a highly nontrivial task, since one
has to eliminate all structures of the input seeds (Afshar et al., 2013). The
above initial mixing does not create any correlation and MTseed is used to
seed MTRNG (the test harness ensures that the behavior of this seeding
is indeed chaotic). This seeding assures uncorrelated RNG streams on
different processor ID. We then use MTRNG to generate as many random
numbers as needed for DRS sampling.

To avoid bias in our sampling, we shuffle the independent cell sets. For
shuffling, every processor must use the same permutation. This is neces-
sary for consistent communication with neighboring sub-images. To do
this, we use the Saru random number Generator (SRNG) (Afshar et al.,
2013). At each iteration, we use two input seeds (iteration number and
user seed) to initialize an independent RNG stream. Then, we use the
seeded RNG to shuffle the order of the cell sets with the Fisher-Yates
shuffle algorithm (Durstenfeld, 1964). This shuffling guarantees a random
permutation (Anderson et al., 2013), and the permutation results are the
same on all processors. Algorithm 5 implements the Fisher-Yates shuffle.

Algorithm 5: Fisher-Yates shuffle

// To shuffle an array A of n elements

for i← n− 1 to 1 do
U ← RNG.uniform(0, 1);
j ← (int)(i× U);
Exchange: a[j] and a[i]

We start sampling by iterating over cells and applying DRS independently
to the particles in each cell.

93

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

4.2.4 Iteration structure

In each sub-image, we divide the cells into boundary cells and interior cells.
This is illustrated in Fig. 4.4.

We use an array Cb to store all the boundary cell indices and an array Ci to
store all interior cell indices. Interior cell indices are sorted based on their
color set label. The range of each set is stored in an array Cn, where Cn
is an integer array (of length five in 2D and nine in 3D), and every entry
in the Cn array specifies the displacement (relative to Ci). For example,
suppose that for a two-dimensional image, we have 460 interior cells in one
sub-image. Then, Cn = {0, 110, 210, 310, 460} means that the first 110 cell
indices, starting from index 0 + 1 to 110 in Ci are indices of a-cells and the
next 100 cell indices in Ci, starting from index 110 + 1 to 210 are indices
of b-cells, and so on.

Sampling in interior cells can be done independently on each processor.
Sampling in the boundary cells, however, requires information from neigh-
boring sub-images to prevent anomalies at the sub-image borders. Con-
current sampling on the border cells of two neighboring sub-images would
break the independent sets.

94

4.2. ALGORITHM

Figure 4.4: Illustration of boundary cells and interior cells in each sub-
image. Boundary cells are at the border of each sub-image, indicated by
dashed lines. For an example sub-image, boundary cells are marked with
bc in the right panel.

To ensure statistically correct sampling, we design the iterator with sub-
sweeps. Every iteration consists of five sub-sweeps over cells in two dimen-
sions (nine in three dimensions). One iteration and its five sub-sweeps are
illustrated in Fig. 4.5 for four adjacent sub-images (on four processors)
from Fig. 4.4.

95

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

(a) (b)

(c) (d)

Figure 4.5 (continued)

96

4.2. ALGORITHM

(e)

Figure 4.5 (previous page): Illustration of the five sub-sweeps over cells
comprise one iteration of our algorithm. Active (selected) cells are sepa-
rated by one row or by one column of inactive cells. The color of each
sub-image is shown in a circle at the corner of the sub-image. Here the
independent set Cc = {a, b, c, d}, and processors ID 0,1,4, and 5 have col-
ors a, b, c, and d respectively. (a) An active processor ID 0 samples in
the boundary cells and processors ID 1,4, and 5 sample in active interior
cells. (b) The second sub-sweep, where processor ID 1 with color b is active
and samples in the boundary cells, while processors ID 0,4, and 5 sample
in active interior cells. (c) The third sub-sweep, where processor ID 4
with color c is active and samples in the boundary cells, while processors
ID 0,1, and 5 sample in active interior cells. (d) The fourth sub-sweep,
where processor ID 5 with color d is active and samples in the boundary
cells, while processors ID 0,1, and 4 sample in active interior cells. Ev-
ery sub-sweep over the boundary cells is followed by a ghost-layer update
communication (see Algorithm 6). (e) Illustration of the last sub-sweep,
where all processors sample in active interior cells.

97

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

While processors of the same color sample in their boundary cells, their
neighboring processors of different colors sample in their interior cells. Us-
ing this strategy, we ensure independent samples.

Algorithm 6 outlines the structure of our parallel strategy at each iteration
with the corresponding sub-sweeps.

Algorithm 6: Parallel MCMC Iteration

0 Initialize: RNG ← Saru(iteration number, user seed)
11 Shuffle: Cc using Fisher-Yates shuffle
22 Shuffle: Cb using Fisher-Yates shuffle
33 Require: Npmax is the maximum number of particles in any cell
4 k ← 0;
5 for i← 1 to 4 (or 8 in 3D) do
6 if processor color is Cc(i) then
7 subsweep(Cb);
88 Send: non-blocking send of updated label information at

the boundary to the neighbors
99 Wait: for non-blocking send to complete

10 else
1111 Receive: non-blocking receive of ghost information from

neighbor processors with color Cc(i)

12 k ← k + 1;
13 subsweep(Ci (Cn(k) + 1 to Cn(k + 1)));

1414 Wait: for non-blocking receive to complete
1515 Update: the border cells from changes in the updated

ghosts

16 k ← k + 1;
17 subsweep(Ci (Cn(k) + 1 to Cn(k + 1)));

98

4.2. ALGORITHM

Algorithm 7: Sub-sweep in cells

0 Procedure: subsweep(Cin)

1 for c ∈ Cin do
2 Np ← len(c.particles) // number of particles in cell c
3 U ← RNG.uniform(0, 1);

4 if U <
Np

Npmax
then

5 DRS sampling from c.particles[P ∪ Pf]

Algorithm 6, line 2 shuffles the array of border cells (Cb). In each iteration,
during a sub-sweep i, (i← 1 to 4 (or 8 in 3D)), boundary cells of processors
with the same color as Cc(i) are active. Thus, these processors are sampling
in their boundary cells (line 7). In the other processors, all interior cells
(c ∈ Ci) of the same color as Cc(k) are active, where (k ← 1 to 4 (or 8 in
3D)). These processors are sampling in their active interior cells (line 13).

Sorting the particle set P into cell subsets amounts to discretely stratified
sampling. To sample from cells, we thus compute the ratio of the particles
in the cell to the maximum number of particles in any cell (algorithm 7,
line 4). If a uniform random number is less than this ratio, we sample
from the particles in that cell using the DRS algorithm (Cardinale, 2013).
DRS applies the MH algorithm to particles in the cell.

While algorithm 6 implements one iteration, practical MCMC sampling
requires tens of thousands of iterations. The amount of useful work done in
each iteration is proportional to the number of moves (accepted or rejected
particles).

Figure 4.6 illustrates the communication rounds after sampling boundary
cells in each sub-sweep of Fig. 4.5.

Following this strategy, the total communication volume is the same as
one full ghost communication, where every processor sends the border in-
formation as a ghost layer to neighboring processors and receives the ghost
information from them. But, in our strategy, the number of times that pro-
cessor synchronization has to take place is limited, with a lower bound for

99

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

(a) (b)

(c) (d)

Figure 4.6: Illustration of the ghost communications after sampling in
active boundary cells at each sub-sweep of an iteration.

100

4.2. ALGORITHM

a larger interior region compared to the border region. This ratio is im-
portant to ensure that the computation time exceeds the communication
time.

We use this strategy to parallelize the DRS algorithm. In each independent
set of the checkerboard decomposition, we run DRS to sample particles.
Cardinale (2013) has shown that this algorithm by construction produces
a Markov chain that is reversible, aperiodic, and irreducible and presented
a proof for that. Using the MH algorithm with an acceptance-rejection
scheme (Cardinale, 2013), we can therefore simulate the chain, guarantee-
ing convergence.

The communication can be improved by taking advantage of remote mem-
ory access (RMA) or one-sided communication. This allows an active
processor to directly access remote memory on the neighboring processors
(active on the interior cells) and “put” data there. The program running
on the neighbor processor (remote) does not need to call any routines to
match the put operation (Gropp et al., 2014). This strategy results in
better performance due to less synchronization.

4.2.5 Data structure

The choice of data structures is important for the performance of algo-
rithm. In particle methods, we usually store particles in a flat array with
n elements. Such a data structure is not appropriate in our parallel ap-
proach as it would be expensive to rebuild the array and the cell-lists after
each sub-sweep. We instead store particle positions directly in the cells.
This enables O(1) insertion and deletion of particles from each cell, and
random access as dictated by the RNG. We therefore use an enumerated
set of one vector and one hash map. We use particle positions and particle
labels as keys to the hash map. This is done using bitwise operations to
combine them into one long integer as the key. For two-dimensional images
we have,

long key = (long) Pa r t i c l eLabe l ;
key = (key << 32) | y << 16 | x ;

101

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

and for three dimensional images we use,

long key = (long) Pa r t i c l eLabe l ;
key = (key << 11) | z ;
key = (key << 22) | y << 11 | x ;

as the key to the hash map.

Thus, we enforce a limit on the size of each sub-image per processor, which
is 65535 × 65535 and 2047 × 2047 × 2047 for two and three-dimensional
sub-images, respectively. This is a size limit per processor and does not
limit the overall size of the image that is distributed across processors.

Using this data structure, we achieve an overall complexity in O(1) to
access entries randomly, insert, and delete particles.

4.3 Results

Even a slight mistake in the parallelized distribution of DRS leads to bi-
ased samples and statistically incorrect results. This provides a sensitive
measure to verify correctness of our implementation. We check correctness
of the distributed parallel algorithm in comparison with the original ref-
erence implementation of Cardinale (2013) on two-dimensional synthetic
images. To compare the results, we calculate the pixel-wise L1 and L2

distances. We initialize both algorithms identically. Our results of the
parallel algorithm on four processors agree with the sequential results of
the original algorithm.

This is the very initial results of the correctness of parallel algorithm. Many
more further tests are required to provide the validity and correctness
of the algorithm. In future, we provide the efficiency of the distributed
parallel algorithm both for synthetic and real images and finally we provide
the uncertainty of segmentation in 3D light-sheet fluorescence microscopy
images.

102

4.4. SUMMARY

4.4 Summary

We have presented a distributed-memory parallel implementation of the
Discrete Region Sampling (DRS) algorithm (Cardinale, 2013) for uncer-
tainty quantification of image segmentation. Parallelization was made pos-
sible by domain decomposition, graph coloring and a lean one-sided com-
munication scheme after each sub-sweep. The parallel strategy resolves
the memory issues on the large state spaces of images, but its runtime
efficiency remains to be shown.

The algorithm was implemented using the PPM library (Sbalzarini et al.,
2006; Awile et al., 2010, 2013) as an efficient middleware for parallel
particle-mesh methods.

The parallelization strategy follows the idea of performing many small,
computationally cheap moves, but accept only some of them. This is pos-
sible for local shape perturbations and energies with limited computational
support. Following Cardinale (2013), we used the proposals that locates
particles in the neighborhood of the contour and assigns the weights to
particles favoring moves towards a smooth contour.

103

CHAPTER 4. PARALLEL DISTRIBUTED-MEMORY DISCRETE
REGION SAMPLING ALGORITHM

104

CHAPTER

FIVE

Conclusions and Future work

We have addressed the problem of acquisition-rate segmentation of large
images from fluorescence microscopes by developing a parallel distributed-
memory framework. A major challenge in acquisition-rate segmentation
of large images are the memory requirements of the image data and the
analysis algorithm. Pixel-accurate segmentation is a computationally ex-
pensive task that continuously presents performance challenges due to the
increasing volume of image data. We addressed both issues by paralleliz-
ing a generic, general purpose, model-based image segmentation algorithm,
DRC (Cardinale et al., 2012). A distributed-memory parallel implementa-
tion of the DRC algorithm for image segmentation developed. Efficient par-
allelization was made possible by a novel parallel independent sub-graph
algorithm, as well as optimizations to the parallel connected-component
labeling algorithm. The final algorithm was implemented using the PPM
library (Sbalzarini et al., 2006; Awile et al., 2010, 2013) and includes both
piecewise constant (PC) and piecewise smooth (PS) image models.

The distributed-memory scalability of the presented approach effectively
overcomes the memory and runtime limitations of a single computer. None

105

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

of the computers or processors over which a task is distributed needs to
store the entire image. This allows segmenting very large images. We have
shown that a real-world light-sheet microscopy image of 1824× 834× 809
pixels (amounting to 4.6 GB of uncompressed memory) was segmented in
under 60 seconds when distributed across 128 processors. This was less
than the 90 seconds until the microscope acquired the next time point,
hence providing online, acquisition-rate image analysis.

We have demonstrated the parallel efficiency and scalability of the present
implementation. Correctness of the parallel implementation was shown by
comparison with the original sequential reference implementation.

Furthermore, we have developed a novel parallel connected-component la-
beling algorithm that requires only one round of communication to con-
verge. The presented algorithm scales more consistently than the itera-
tive labeling algorithms of Flanigan and Tamayo (1995) and Moloney and
Pruessner (2003) for objects that span across several sub-images.

We have then presented a general algorithm for parallelizing an inherently
sequential MCMC algorithm (DRS) and used it to provide a measure of
segmentation uncertainty or solution robustness. Our approach applies
to energy evaluations of limited computational support, such as piecewise
constant and smooth energies, where energy computation does not require
global information. The main contribution is the parallelization in a statis-
tically unbiased way that can be executed on many CPU cores. It addresses
the memory issues for extremely large state spaces of images.

This thesis, hence addressed the acquisition-rate image segmentation prob-
lem and provided a measure of segmentation uncertainty or solution ro-
bustness, in multi-dimensional and high-resolution images from modern
fluorescence microscopes. We hope that the frameworks and analysis of
the parallel DRC and DRS algorithms help researchers use images more
effectively and open the door for the smart microscopes of the future.

Despite the encouraging results shown here, there is still room for further
performance improvements. One idea could be to compress the particle
and image data before communication. This would effectively reduce the
communication overhead and improve scalability. Furthermore, spatially
adaptive domain decompositions and dynamic load balancing could be

106

used to reduce load imbalance. Depending on the image contents, not
all processors may have an equal amount of particles. This causes asyn-
chronous waiting times that may limit scalability. Due to the checkerboard
decomposition used in the graph handling of DRC, however, the current
implementation is limited to Cartesian domain decompositions, while spa-
tially adaptive trees might be better. The DRS scheme is not limited to
any specific domain decomposition.

In the future, we will extend also DRC to spatially adaptive domain de-
compositions and present the performance. This extension is possible by
extending the checkerboard decomposition to a maximal independent sets
decomposition, where independent sets can be used for handling the graph.

The local evaluation of energy differences for all possible particle moves
can be accelerated by taking advantage of multi-threading and graphics
processing units (GPUs). This is possible for DRC, as has already been
shown (Ebrahim, 2011), suggesting that processing could be further accel-
erated by a factor of 10 to 30, depending on the image model.

Due to the independent sets in the parallel MCMC, this strategy is inher-
ently suited for multi-threading and graphics processing units. In future
we hence investigate hybrid parallelization strategies for MCMC sampling.

The present parallel algorithm inherits DRC’s flexibility and can accom-
modate for different image models that include prior knowledge about the
image-formation process and the imaged objects. In the future, we further
investigate this quality for example by including shape or size priors to
further improve the segmentation quality.

All presented algorithms can also be further optimized for a specific ap-
plication, like zebrafish vasculature segmentation. They can then be used
to address biological questions and alleviate a major challenge in compu-
tational bio-image analysis. This can provide a solution to the big-data
problem of multi-dimensional and high-resolution images. The parallelized
algorithms are capable of real-time segmentation and uncertainty quantifi-
cation. Ultimately, we may not need to store the raw data any more, but
directly store the analysis results and their associated uncertainties.

Even though DRC provides pixel-accurate segmentation results, it suffers

107

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

from the user having to adjust many parameters, especially for 3D image
segmentation. Generally, the adjustment of these parameters is done by
trial and error, and is tedious. Evolutionary algorithms could address
parameter adjustments. This can in the future be used to provide assisted
parameter tuning or automatic parameter learning for a specific, given
image. The presented parallel algorithms also significantly accelerate this
tuning process, and uncertainty information from DRS can be used to
guide the learning.

108

Bibliography

Y. Afshar, F. Schmid, A. Pishevar, and S. Worley, “Exploiting seeding
of random number generators for efficient domain decomposition paral-
lelization of dissipative particle dynamics,” Comp. Phys. Commun., vol.
184, no. 4, pp. 1119–1128, 2013.

Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam, “Improved auto-
matic detection and segmentation of cell nuclei in histopathology im-
ages,” IEEE T. Bio-Med. Eng., vol. 57, no. 4, pp. 841–852, April 2010.

F. Amat, W. Lemon, D. P. Mossing, K. McDole, Y. Wan, K. Branson,
E. W. Myers, and P. J. Keller, “Fast, accurate reconstruction of cell
lineages from large-scale fluorescence microscopy data,” Nat. Methods,
vol. 11, no. 9, pp. 951–958, Sep. 2014.

J. A. Anderson, E. Jankowski, T. L. Grubb, M. Engel, and S. C. Glotzer,
“Massively parallel monte carlo for many-particle simulations on gpus,”
J. Comput. Phys., vol. 254, pp. 27–38, 2013.

J. A. Anderson, M. E. Irrgang, and S. C. Glotzer, “Scalable metropolis
monte carlo for simulation of hard shapes,” Comp. Phys. Commun., vol.
204, pp. 21–30, 2016.

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing,
second edition ed., ser. Applied Mathematical Sciences. Springer New
York, 2006, vol. 147.

109

BIBLIOGRAPHY

O. Awile, “A domain-specific language and scalable middleware for
particle-mesh simulations on heterogeneous parallel computers,” PhD
Thesis, Diss. ETH No. 20959, ETH Zürich, 2013.

O. Awile, O. Demirel, and I. F. Sbalzarini, “Toward an object-oriented
core of the PPM library,” in Proc. ICNAAM, Numerical Analysis and
Applied Mathematics, International Conference. AIP, 2010, pp. 1313–
1316.

O. Awile, M. Mitrović, S. Reboux, and I. F. Sbalzarini, “A domain-specific
programming language for particle simulations on distributed-memory
parallel computers,” in Proc. III Intl. Conf. Particle-based Methods
(PARTICLES), Stuttgart, Germany, 2013, p. p52.

R. Beare and G. Lehmann, “The watershed transform in ITK - discussion
and new developments,” The Insight Journal, 06 2006.

S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,” vol. 24, no. 4, pp. 509–522, 2002.

G. Bertrand, “Simple points, topological numbers and geodesic neighbor-
hoods in cubic grids,” Pattern. Recogn. Lett., vol. 15, no. 10, pp. 1003–
1011, 1994.

Y. Boykov and V. Kolmogorov, “Computing geodesics and minimal sur-
faces via graph cuts,” in Proc. IEEE Intl. Conf. Computer Vision
(ICCV), vol. 1. Los Alamitos, CA, USA: IEEE Computer Society,
2003, pp. 26–33.

P. Bremaud, Markov chains : Gibbs fields, Monte Carlo simulation and
queues. Springer, 1999, iSBN: 0-387-98509-3.

J. M. R. Byrd, “Parallel markov chain monte carlo,” Ph.D. dissertation,
University of Warwick, June 2010.

J. Cardinale, “Unsupervised segmentation and shape posterior estimation
under Bayesian image models,” PhD Thesis, Diss. ETH No. 21026, MO-
SAIC Group, ETH Zürich, 2013.

J. Cardinale, G. Paul, and I. F. Sbalzarini, “Discrete region competition for
unknown numbers of connected regions,” IEEE Trans. Image Process.,
vol. 21, no. 8, pp. 3531–3545, 2012.

110

BIBLIOGRAPHY

V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” Int. J.
Comput. Vis., vol. 22, no. 1, pp. 61–79, 1997.

J. Chang and J. Fisher, “Efficient topology-controlled sampling of implicit
shapes,” in Image Processing (ICIP), 2012 19th IEEE International Con-
ference on, 2012, pp. 493–496.

J. Chang and J. W. Fisher III, “Efficient MCMC sampling with implicit
shape representations,” in Computer Vision and Pattern Recognition
(CVPR), IEEE Conference on, IEEE. IEEE, 2011, pp. 2081–2088.

T. F. Coleman and J. J. Moré, “Estimation of sparse jacobian matrices
and graph coloring problems,” SIAM J. Numer. Anal., vol. 20, no. 1,
pp. 187–209, 1983.

D. Cremers, M. Rousson, and R. Deriche, “A review of statistical ap-
proaches to level set segmentation: Integrating color, texture, motion
and shape,” Int. J. Comput. Vision., vol. 72, no. 2, pp. 195–215, 2007.

A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approximate
energy minimization with label costs,” Int. J. Comput. Vision, vol. 96,
no. 1, pp. 1–27, 2012.

R. Diestel, Graph Theory: Springer Graduate Text GTM 173, ser. Springer
Graduate Texts in Mathematics (GTM). Math. Forschungsinst., 2012.

R. Durstenfeld, “Algorithm 235: Random permutation,” Commun. ACM,
vol. 7, no. 7, pp. 420–421, Jul. 1964.

E. Ebrahim, “Energy-based image segmentation using GPGPU,” Master
thesis, Technische Universität München & MOSAIC Group, ETH Zurich,
2011.

M. Flanigan and P. Tamayo, “Parallel cluster labeling for large-scale monte
carlo simulations,” Physica A: Statistical Mechanics and its Applications,
vol. 215, no. 4, pp. 461–480, 1995.

A. Galizia, D. D’Agostino, and A. Clematis, “An MPI–CUDA library for
image processing on HPC architectures,” J. Comput. Appl. Mech., vol.
273, pp. 414–427, 2015.

111

BIBLIOGRAPHY

S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 6, no. 6, pp. 721–741, 1984.

C. Geyer, “Markov chain Monte Carlo maximum likelihood,” in Computer
Science and Statistics, 23th Symposium of the Interface, April 1991, pp.
156–163.

W. Gropp, T. Hoefler, E. Lusk, and R. Thakur, Using Advanced MPI: Mod-
ern Features of the Message-Passing Interface, ser. Computer science &
intelligent systems. MIT Press, 2014.

W. Hastings, “Monte Carlo sampling methods using Markov chains and
their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

G. S. Heffelfinger and M. E. Lewitt, “A comparison between two massively
parallel algorithms for monte carlo computer simulation: An investiga-
tion in the grand canonical ensemble,” J. Comput. Chem., vol. 17, no. 2,
pp. 250–265, 1996.

J. Hoshen and R. Kopelman, “Percolation and cluster distribution. i. clus-
ter multiple labeling technique and critical concentration algorithm,”
Phys. Rev. B, vol. 14, no. 8, pp. 3438–3445, October 1976.

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by
multidirectional selective plane illumination microscopy (mspim),” Opt.
Lett., vol. 32, no. 17, pp. 2608–2610, Sep 2007.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer,
“Optical sectioning deep inside live embryos by selective plane illumina-
tion microscopy,” Science, vol. 305, pp. 1007–1009, 2004.

L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software Guide,
2nd ed., Kitware, Inc., 2005.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp.
359–392, 1998.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,”
Int. J. Comput. Vis., pp. 321–331, 1988.

112

BIBLIOGRAPHY

W. Kim and Y. Kim, “A region-based shape descriptor using Zernike mo-
ments,” Signal Processing: Image Communication, vol. 16, no. 1, pp.
95–102, 2000.

F. Knop and V. Rego, “Parallel labeling of three-dimensional clusters on
networks of workstations,” J. Parallel. Distr. Com., vol. 49, no. 2, pp.
182–203, 1998.

D. E. Knuth, The Art of Computer Programming. Sorting and Searching.,
2nd ed. Addison Wesley, May 1998, vol. 3.

J. Lamy, “Integrating digital topology in image-processing libraries,” Com-
puter Methods and Programs in Biomedicine, vol. 85, no. 1, pp. 51 – 58,
2007.

C. H. Li and C. K. Lee, “Minimum cross entropy thresholding,” Pattern
Recognition, vol. 26, no. 4, pp. 617–625, 1993.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human seg-
mented natural images and its application to evaluating segmentation al-
gorithms and measuring ecological statistics,” in Proc. IEEE Intl. Conf.
Computer Vision (ICCV), Vancouver, BC, Canada, 2001, pp. 416–423.

M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM
Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan. 1998.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
J. Chem. Phys., vol. 21, pp. 1087–1092, 1953.

N. R. Moloney and G. Pruessner, “Asynchronously parallelized percolation
on distributed machines,” Phys. Rev. E, vol. 67, p. 037701, Mar 2003.

J. Montagnat, H. Delingette, and N. Ayache, “A review of deformable
surfaces: topology, geometry and deformation,” Image and Vision
Comput., vol. 19, no. 14, pp. 1023 – 1040, 2001.

D. Mumford and J. Shah, “Optimal approximations by piecewise smooth
functions and associated variational problems,” Comm. Pure Appl.
Math., vol. 42, pp. 577–685, 1989.

113

BIBLIOGRAPHY

J. J. K. Ó Ruanaidh and W. J. Fitzgerald, Numerical Bayesian methods
applied to signal processing. Springer-Verlag New York, 1996.

E. Olmedo, J. D. L. Calleja, A. Benitez, and M. A. Medina, “Point to point
processing of digital images using parallel computing,” International
Journal of Computer Science Issues, vol. 9, no. 3, pp. 1–10, 2012.

R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distribu-
tions,” ACM Trans. Graph., vol. 21, no. 4, pp. 807–832, 2002.

G. Paul, J. Cardinale, and I. F. Sbalzarini, “Coupling image restoration
and segmentation: A generalized linear model/Bregman perspective,”
Int. J. Comput. Vis., vol. 104, no. 1, pp. 69–93, 2013.

G. S. Pawley, K. C. Bowler, R. D. Kenway, and D. J. Wallace, “Concur-
rency and parallelism in MC and MD simulations in physics,” Comput.
Phys. Commun., vol. 37, no. 1–3, pp. 251–260, 1985.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W.
Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-
sheet microscopy platform,” Nat. Methods, vol. 10, no. 7, pp. 597–598,
Jul 2013.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software
for bead-based registration of selective plane illumination microscopy
data,” Nat Meth, vol. 7, no. 6, pp. 418–419, Jun. 2010, 00086.

J.-L. Rose, C. Revol-Muller, D. Charpigny, and C. Odet, “Shape prior
criterion based on Tchebichef moments in variational region growing,”
in Image Processing (ICIP), 2009 16th IEEE International Conference
on, Nov. 2009, pp. 1081 –1084.

J. S. Rosenthal, “Parallel computing and monte carlo algorithms,” Far
East Journal of Theoretical Statistics, vol. 4, pp. 207–236, December
2000.

L. A. Royer, M. Weigert, U. Günther, N. Maghelli, F. Jug, I. F. Sbalzarini,
and E. W. Myers, “ClearVolume: open-source live 3D visualization for
light-sheet microscopy,” Nat. Methods, vol. 12, no. 6, pp. 480–481, Jun.
2015.

114

BIBLIOGRAPHY

I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis,
and P. Koumoutsakos, “PPM – a highly efficient parallel particle-mesh
library for the simulation of continuum systems,” J. Comput. Phys., vol.
215, no. 2, pp. 566–588, 2006.

I. F. Sbalzarini, S. Schneider, and J. Cardinale, “Particle methods enable
fast and simple approximation of Sobolev gradients in image segmenta-
tion,” arXiv preprint arXiv:1403.0240v1, pp. 1–21, 2014.

N. Scherf and J. Huisken, “The smart and gentle microscope,” Nat. Biotech-
nol, vol. 33, no. 8, pp. 815–818, 08 2015.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair,
T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tin-
evez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Car-
dona, “Fiji: an open-source platform for biological-image analysis,” Nat.
Methods, vol. 9, no. 7, pp. 676–682, 2012.

B. Schmid, G. Shah, N. Scherf, M. Weber, K. Thierbach, C. P. Campos,
I. Roeder, P. Aanstad, and J. Huisken, “High-speed panoramic
light-sheet microscopy reveals global endodermal cell dynamics,” Nat
Commun, vol. 4, Jul. 2013, 00013.

F. Ségonne, “Segmentation of medical images under topological con-
straints,” Ph.D. dissertation, Massachusetts Institute of Technology
(MIT), December 2005.

Y. Shi and W. C. Karl, “A real-time algorithm for the approximation of
level-set-based curve evolution,” IEEE Trans. Image Process., vol. 17,
no. 5, pp. 645–656, 2008.

A. F. M. Smith and G. O. Roberts, “Bayesian computation via the Gibbs
sampler and related Markov chain Monte Carlo methods,” J. Roy. Stat.
Soc. B. Met., vol. 55, no. 1, pp. 3–23, 1993.

J. Stegmaier, J. C. Otte, A. Kobitski, A. Bartschat, A. Garcia, G. U.
Nienhaus, U. Strähle, and R. Mikut, “Fast segmentation of stained nuclei
in terabyte-scale, time resolved 3d microscopy image stacks,” PLoS ONE,
vol. 9, no. 2, p. e90036, 02 2014.

115

BIBLIOGRAPHY

J. M. Teuler and J. Gimel, “A direct parallel implementation of the hoshen–
kopelman algorithm for distributed memory architectures,” Comp. Phys.
Commun., vol. 130, no. 1–2, pp. 118–129, 2000.

D. Tiggemann, “Simulation of percolation on massively-parallel comput-
ers,” Int. J. Mod. Phys. C., vol. 12, no. 06, p. 871, 2001.

R. Veltkamp and M. Hagedoorn, “4. state of the art in shape matching,”
Principles of visual information retrieval, p. 87, 2001.

K.-b. Wang, T.-l. Chia, Z. Chen, and D.-c. Lou, “Parallel execution of a
connected component labeling operation on a linear array architecture,”
J. Inf. Sci. Eng., vol. 19, pp. 353–370, 2003.

G. Winkler, Image analysis, random fields and Markov chain Monte Carlo
methods: A Mathematical Introduction, 2nd ed. Springer, 2003.

C. Xu, J. Yezzi, A., and J. Prince, “On the relationship between paramet-
ric and geometric active contours,” in Signals, Systems and Computers,
2000. Conference Record of the Thirty-Fourth Asilomar Conference on,
vol. 1, 29 2000-nov. 1 2000, pp. 483 –489 vol.1.

D. Zhang and G. Lu, “Review of shape representation and description
techniques,” Pattern Recognition, vol. 37, no. 1, pp. 1–19, 2004.

S. C. Zhu and A. Yuille, “Region competition: Unifying snakes, region
growing, and Bayes/MDL for multiband image segmentation,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 18, no. 9, pp. 884–900, Sep.
1996.

116

Curriculum Vitae

Name: Yaser Afshar

Born: April 26th, 1980

Citizen of: Tehran, Iran

1998 - 2004 B.Sc. Mechanical Engineering at Khaje
Nasir Toosi University of Technology,
Tehran, Iran

2004 - 2007 M.Sc. Mechanical Engineering at Isfahan
University of Technology, Isfahan, Iran

2012 - 2016 Ph.D. studies in Computer Science at
Dresden University of Technology, Dresden,
Germany.
Ph.D. project carried out at the Center for
Systems Biology Dresden and the Max
Planck Institute of Molecular Cell Biology
and Genetics under the supervision of Prof.
Dr. Ivo F. Sbalzarini

117

	Declaration of Authorship
	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Thesis Outline and Contributions

	Preliminaries
	The Bayesian image Segmentation Paradigm
	Review of Discrete Region Competition
	Introduction to MCMC
	The Metropolis-Hastings algorithm

	Review of Discrete Region Sampling
	Distributed computing
	Middleware for distributed computing: PPM

	Parallel distributed-memory Discrete Region Competition algorithm
	Introduction
	Data distribution by domain decomposition
	Initialization
	Parallel connected-component labeling
	Parallel contour propagation
	Parallel topology processing and data-structure update

	Results
	Correctness of the distributed algorithm
	Efficiency of the distributed algorithm
	Application to acquisition-rate segmentation of 3D light-sheet microscopy data

	Summary

	Parallel distributed-memory Discrete Region Sampling algorithm
	Introduction
	Previous approaches

	Algorithm
	Domain decomposition
	Checkerboard decomposition
	Parallel Pseudo random number generation
	Iteration structure
	Data structure

	Results
	Summary

	Conclusions and Future work
	Curriculum Vitae

