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Abstract. We present a round-robin realignment algorithm that improves
a potentially crude initial alignment of an assembled collection of DNA se-
quence fragments, as might, for example, be output by a typical fragment
assembly program. The algorithm uses a weighted combination of two scor-
ing schemes to achieve superior multi-alignments, and employs a banded
dynamic programming variation to achieve a running time that is linear in
the amount of sequence in the data set. We demonstrate that the algorithm
improves upon the alignments produced by other assembly programs in a
series of empirical experiments on simulated data. Finally, we present a pair
of programs embodying the algorithms that are available from the Web site
ftp://ftp.cs.arizona.edu/realigner.
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sensus score/sequence.

1 Introduction

The final step in shotgun DNA sequencing is the multi-alignment of fragment se-
quences in regions where three or more fragments overlap. This multi-alignment
pinpoints errors in individual fragments and results in a consensus sequence repre-
senting the final reconstruction of the source DNA. In earlier steps, the fragments
were compared to determine all pairwise overlaps and a layout specifying the relative
positions of fragments with respect to each other was determined from these over-
laps. Given a layout of the fragments, it is then a simple matter to produce a crude
multi-alignment from the pairwise alignments of the sequences as the differences
between them is rarely greater than 10%. This initial multi-alignment is globally
correct but is locally non-optimal. The realignment problem we consider here is to
refine any multi-alignment into one that is optimal or near-optimal while preserving
its global structure.

Consider sequences Si,Ss,...,Sg over alphabet ¥ where S; = sésé .. ~5;, has
length n;. An alignment of the k sequences is a k by { > maz;{n;} matrix, A = (a;;)
of symbols over alphabet XU {-} such that dash(a;») = S; and a+; # -* where dash
is the homomorphism that removes dashes, a;» denotes the i** row of A, and -* is a
column of k£ dashes. In plain words, a multi-alignment is a rectangular array such that
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removing dashes from row i leaves sequence S; for each i € [1, k], and every column
has at least one sequence symbol in it. Given a scoring function & : (X U {-})* = R
that assigns a score to any column, the optimization problem is to determine a
multi-alignment of minimal score where the score §(A) of an alignment A is the sum
of the scores of its columns, Zé’:l d(az;).

In the context of DNA sequencing, the alphabet ¥ = {a, ¢, g,t} and we believe
the relevant objective is to minimize the consensus score which is:

5(al,a2,...,ak):xergtr%_} | {a; :a; # z}| (1)
A consensus symbol for a column, c¢(ai,as,...,ax), is a choice of z mini-

mizing (1) above. Thus a consensus sequence c¢(A) for an alignment A is
dash(c(as1)e(as) . .. c(ax)). Choosing consensus as the target is an appeal to parsi-
mony as it minimizes the sum of the differences of each fragment from the consensus
sequence. In other words, i1t explains the data with minimum error.

In DNA sequencing our problem is not determining a global multi-alignment
amongst all the fragments, as described above, but rather of multi-aligning the frag-
ments in the regions where they are indicated to overlap in the layout produced in
the previous stage of the assembly process. In such a layout alignment, dashes which
occur before of after all the symbols in a sequence should not affect the consensus
score. These dashes are called end-gaps and are denoted in a layout alignment by
blanks as illustrated in Figure 1. Ignoring end-gaps when applying J to a column
has the required effect.

cctggt-acgta-cact-tgt
tcacgtatccctctgttaga
gta-ccctctgttagaaagctcacgt
ctcacttagttctctg-t
tcactt-gttctgtg-tag
t-gttccgtgctagtagecta

CCTGGTCACGTA-CCCTCTGTTAGAAAGCTCACTT-GTTCTGTG-TAGTAGCTA

Fig. 1. A sample layout alignment and consensus sequence.

The layout phase in DNA sequencing determines where each pair of sequences
overlap. This same information can be gleaned from a layout by noticing that two
sequences S; and S; overlap exacly in the columns of A which do not have an endgap
in either row ¢ or row j. We say an alignment A respects the layout to precision ¢ if
the overlaps implied by A differ from the overlaps implied by the layout by less than
O(¢). Formally, for every pair of integers 1 < 1,7 < k let ij and ij be the positions
in S; of the first and last symbols which overlap with S; according to the layout. If
the fragments do not overlap than let ij = ij = n; + 1 if S; appears before S;
and ij = Li>j = 0 otherwise. Similarly define Afj and Abfj to be the positions of
the first and last symbols of the overlap according to alignment A.



Definition 1: An alignment A respects the layout to precision ¢ if and only if
V1<ij <k,
ij = Afj and ij R Al->j

where z =, y iff 2 € [y — O(e),y + O(e)].

Now, given a layout, our problem is to determine a multi-alignment A such that
d(A) is minimal over all alignments respecting the layout to precision e. Note that
the constraint that the layout be respected is essential, as the multi-alignment which
places the sequences end to end has score 0 as end-gaps are not penalized.

In this paper, we present a round-robin algorithm and encompassing software
tool for optimizing an initial, low-quality layout alignment. That is, the software at-
tempts to produce a minimal cost alignment that respects the layout implied by the
submitted alignment. We call this process realignment and we call our software tool
ReAligner. We present empirical results that show that our round-robin approach
outperforms other software solutions, frequently producing optimal results when ¢
is 10% or less. In addition, our algorithm uses a banding idea in its dynamic pro-
gramming component which effectively renders the method linear in the sum of the
lengths of the fragments. For example, the realignment of a multi-alignment involv-
ing 1,200,000 basepairs of fragment data took 77.5 seconds on a Dec AlphaStation
200 4/233.

2 Background

While the multiple alignment problem is NP complete in the number of sequences,
there is a well-known O(n") dynamic programming algorithm for finding a global
alignment among k sequences of average length 7. This algorithm extends the basic
pairwise algorithm in the obvious way by filling in an (n1+1) x (no+1) x- - - x (ng+1)
matrix C such that Clpy, pa, - - - pk] is the best multi-alignment of the first p; symbols
of each sequence S;. This algorithm can be specialized to our layout alignment
problem, by restricting the computation to those matrix entries that model a prefix
of an alignment respecting the layout in question. This can be shown to reduce
the complexity of the computation to O(rn¢; L) worst-case time where n,4; is the
maximum length of any sequence in the assembly, r is the length of the reconstructed
sequence, and ¢ is the maximum number of simultaneously overlapping fragments
in the layout. Despite this improved complexity, the algorithm is still impractical as
the maximum fragment length 1is typically 500 and c is typically 10. Thus one must
resort to heuristic approximation algorithms.

One commonly employed heuristic, progressive alignment works as follows. Two of
the k sequences are aligned together, and the resulting pairwise alignment replaces
the two sequences. This gives an alignment problem with & — 1 “sequences”, one
of which is a sequence of aligned pairs (i.e., each of its “symbols” is a column of
the pairwise alignment). Two of those sequences are chosen, aligned together, and
replaced by that alignment, until only a k-way alignment remains. What makes
this possible is that the dynamic programming algorithm for aligning two sequences
can be made to work when one or both of the input sequences is itself a multi-
alignment. This strategy can be traced to a 1984 paper of Waterman and Perlwitz



[10], and has been implemented, with numerous variations on the basic theme, by
many investigators, e.g., [5, 9, 4, 6]. The most common variations require either
O(k*n?) or O(k?n?) time.

In the context of DNA sequencing, every pairwise alignment between sequences
has been computed in an earlier phase, as well as a set of £k — 1 pairwise overlaps that
specify the layout by positioning the sequences relative to one another. An initial,
but crude layout alignment suitable for input to ReAligner can be obtained very
rapidly by the following simplification of progressive alignment. The sequences are
progressively aligned in any order along the k& — 1 overlaps specifying the layout. A
progressive alignment across the overlap between original sequences A and B, does
not perform a de novo comparison between the two multi-alignments containing A
and B, but rather simply aligns these two multi-alignments according to the already
computed alignment between A and B. Overall, the computation of this initial layout
alignment takes only O(km) = O(N) time where N = X;n; is the total number of
basepairs in the layout. Such a simplification would give exceedingly poor results in
contexts such as protein multi-alignment, where the sequences generally share little
identity. However, in our context, the sequencing error rate, €, is less than 10%, so
the alignment obtained is a good initial estimate. Indeed, it is globally optimal in
that only local corrections are needed to arrive at the best possible alignment.

Over a period of several years, we have developed and experimented with vari-
ous heuristics for refining an initial, low-quality layout alignment. One of our first
attempts was a window-sweep approach where the alignment was locally improved
inside a small window as it swept from left-to-right. There are many possible varia-
tions depending on what one decides to do inside a window. All our designs involved
recursively applying progressive alignment to the subsequences in the window. The
most efficient variation used the existing pairwise alignments and simply tried to
choose a merge order that was better suited to the subsequences in the window. We
also experimented with recomputing the pairwise alignments, and using a variety of
scoring schemes. In all variations, we did not compute an alignment between multi-
alignments during the progressive merges as in the general algorithm, but used the
simplified form described in the paragraph above. While these approaches improved
the input layout alignment, the results were not as good as those obtained in our
subsequent work.

Our next attempt involved using hidden Markov models [8, 1], an approach that
has had considerable success in the protein domain. A hidden Markov model is a
probablistic model which can be viewed as either generating or matching sequences
with a probability determined by the model. The idea is to arrive at a model which
is the most likely to have generated the observed sequences. An initial model is built
from the initial layout, and then a gradient descent algorithm refines the model.
Each refinement step consists of first finding the state occupancy of each sequence
in the current model, and then readjusting the emission probabilities of each state
of the model according to these occupancies. The resulting algorithm was very slow
in practice but gave better results than the window-sweep heuristics.

Finally, we arrived at a round-robin algorithm which we present in detail in this
paper. Like the hidden Markov model, it also has the virtue of using the entire multi-
alignment to derive each refinement. The iterative technique was first introduced
in the context of aligning sequences of proteins [2]. Our realization of the round-



robin algorithm iteratively aligns each sequence with the multiple alignment of the
remaining sequences. Thus the algorithm is comparatively efficient since it is just
a series of pairwise alignments where one sequence is ordinary and the other is a
multi-alignment. The process repeatedly realigns the sequences in some order until
the multi-alignment stabilizes. Iterative techniques have been used to align sequences
of proteins, where they generally do not perform as well as progressive alignment or
hidden Markov model approaches. But surprisingly in the context of DNA sequencing
the method gives the best results with the greatest efficiency. We are the first to
apply the round-robin technique to DNA sequence layout alignments. Our novel
contributions consist of the selection of scoring scheme for realignment and a banding
approach to the dynamic programming computation that effectively gives us an

O(N) algorithm.

3 The Algorithm

3.1 The Round-Robin Paradigm

The general round-robin paradigm consists of a series of realignment steps. In a
given realignment step, the multi-alignment is partitioned into two parts, the two
subalignments are pairwise compared, and then merged according to the results of
the comparison. Some of the dimensions of variation on this idea are (1) the nature of
the partition, (2) the method use to select the partition, and (3) the scoring function
used to pairwise compare the two subalignments.

An alignment B is a subalignment of alignment A if B can be obtained from
A by deleting a number of rows and then removing any columns that consist only
of dashes. In the partition step, a set of rows P C [1,k] of A is selected and the
subalignments Ap and Ag result, where Ap is the subalignment consisting of the
rows in P and Ag is the subalignment over the remaining rows @ = [1, k] — P.
Suppose p is the size of P and ¢ = k — p 1s the size of ). Next observe that Ap is a
sequence of columns each of which may be thought of as meta-symbol in the alphabet
X, = (XU{-})? — {-P}. Similarly, Ag may be thought of as a sequence over alphabet
X, Thus the comparison step requires a function d5 : (X, U{-7}) x (Z,U{-7}) —» R
that scores pairwise alignments of the sequences of meta-symbolsin Ap and Aqg. If
X = [z1,29,...,2p] is a symbol in X, and Y = [y1,¥2,...,¥,] Is a symbol in X,
then d2(X,Y) is the score of aligning X and Y, §(X,-%) is the score of leaving X
unaligned, and d2(-?, ) is the score of leaving Y unaligned. If the overall objective
is to produce an optimal multi-alignment with respect to column scoring function 4,
then a common choice of d5 is to define it so that:

62(X7y) :5(33171’27~~~7l‘p7y17y27~~~7yq)
62(X,—q) I(5(331,1‘2,...,l‘p,—,—,...,—)
6?(_]9“);) :6(_a_a~"1_7y17y27"'ayq)

That is, the score of aligning two columns X € £, U {-?} and Y € £, U {-7} is
exactly the score § assigns to the column X - Y of p + ¢ = k symbols obtained
by concatenating the two columns. In brief, §5(X,Y) = §(X - V). The final merge
step consists of optimally aligning Ap and Ag with respect to é; and then simply

Ut



returning conceptually to viewing the meta-symbols of the two subalignments as
columns of symbols.

For our work, we chose the following instantiation of the general paradigm. The
nature of the partition is to choose a single sequence and compare it against a
multi-alignment consisting of all the rest, i.e., p=1 and ¢ = k — 1. The method for
selecting the partition is to iteratively choose each sequence in turn. Thus in outline,
our realignment algorithm is as follows:

ReAligner(A: a layout alignment of Sy, S, ..., Sk)
1. repeat

2. fori =1 to k do

3. { Q< [1,k]—{i}

4. Compute an alignment a such that d5(S; ~ Ag) is minimal over
all @ such that S; ||* Ag respects the layout to precision .

5. A+ Sz Ha AQ

6.

7. until §(A) does not decrease in an execution of Steps 2-6.

The notation S; ~ Agq simply asserts that a is an alignment (correspondence of
symbols) between S; and Ag when both are viewed as sequences of symbols. The
notation S; ||* Ag denotes the multi-alignment that results if the columns of S;
and Ag are aligned according to alignment a. Note that because we are dealing with
layout alignments we must restrict ourselves to considering in Step 4 only alignments
between S; and Ag that if subsequently merged in Step 5 give an alignment that
respects the layout in question. Our banded alignment approach described in Section
3.3 will effectively guarantee this.

A somewhat awkward problem arising in the context of layout alignments is
that the value of §3 becomes position dependent because end-gap dashes are ignored
whereas inter-sequence dashes are not. For example, if one were to define §3(z,-%~1)
to be §(x,-,...,-) where ¢ is the consensus scoring function, then the score of insert-
ing the symbol z of S; depends on which column of Ag, the symbol is being inserted
after. The insertion will have the effect of placing the k — 1 dashes in question right
after the indicated column of Ag. Given this context it is easy to determine which
dashes will be end-gap and which will not. In our example, the score of inserting z
is 1 if at least one dash will not be in an end-gap, and 0 otherwise. Henceforward
we make the simplifying assumption that the underlying comparison algorithm will
distinguish end-gap dashes as it proceeds, and remove them from any meta-symbol
given to ds. So in our example, if a comparator requires the value of inserting z in
a context where all dashes introduced into the other subalignment will be end-gap,
it scores inserting z as da(z,-°) = d(z) = 0.

3.2 The Scoring Function

We experimented with two distinct choices for d, presented below and eventually
determined that an evenly weighted combination of the two gave the best results
in practice. In what follows, we will assume that S is the sequence that has been
selected to be realigned, and that B is the remaining layout subalignment of A.



Our first choice of pairwise scoring function, d., is based on the consensus symbols
of B and 1s defined as follows:

Je(z, X) :{

Oifzee(X)or X =¢ @)
1 otherwise
where ¢(X') is the set of consensus elements of column X. Note carefully that there
may be more than one symbol that minimizes Equation 1 of the introduction, and
here we define ¢ as the function returning the set of all these symbols, whereas
¢ of the introduction arbitrarily returns one of these. We similarly define the full
consensus of A as ¢(A) = dash(c(as1), (a'72) -¢(az)) where dash removes a set
from the resulting sequence of sets only if it is the singleton set {-}.

First observe that we are effectively comparing S to the full consensus ¢(B)
under the standard edit-distance scoring scheme, diff, that minimizes the number of
mismatches, insertions, and deletions in an alignment. Formally, this observation is:

3c(S ~ B) = diff(S ~2(B)) (3)

where one considers a symbol and a set containing that symbol as a match, and
where one does not count end-gaps as differences. For example, in Figure 2, we
illustrate the selection of the third sequence in the layout of Figure 1 as S and the
resulting full consensus ¢(B) that it gets compared against. Note in this example
that A breaks into two parts when S is removed. Thus B consists of two sequences
that are relinked by alignment with S as illustrated in the figure. The columns X
of B for which ¢(X') is a set are denoted by placing the members of the set between
square braces.

cct ggt - acgt a- cact - t gt
tcacgtatccctctgttaga
[ gta-ccctctgttagaaagct cacgt |
ctcacttagttctctg-t
tcactt-gttctgtg-tag
t-gttccatgctagtagcta

gt accct ct gt t agaaagct cacgt

c(B) ////HHHHH i

cctggt [Clacgtaltc@ctctgttaga ctcacttgttcﬂéhgtagtagcta

Fig. 2. Sample round-robin consensus comparison.

From the definition of ., it follows immediately that é.(z, X) = §(z - X') — §(X).
Applying this to each column of an alignment leads directly to the following lemma.

Lemma 1: For all pairwise alignments a between S and B,
§(S || B) = 8(B) + dc(S ~ B) (4)

That is, the consensus score of the alignment obtained by aligning S with B according
to a is the sum of the consensus score of B and the §. score of a. A consequence of



this lemma is that the consensus score of A cannot increase with any application of
Steps 4 and 5. To see this, observe that if the alignment between S and B implied by
Ais, say b, then §(A) = §(S ||® B) = §(B)+J.(b) by Lemma 1. In Step 4, an optimal
alignment, say a is found, and by definition J.(a) < é.(b). Thus the alignment S ||* B
formed in Step 5 has a lesser or equal score to that of A by another application of
Lemma 1. Thus, using J., our round-robin algorithm produces progressively better
alignments until there is no change in a cycle through all k& sequences.

Another property that follows from Lemma 1 is that minimizing J.(S 2 B) is
equivalent to minimizing (S ||* B) as J(B) is constant. Thus using d. is exactly
equivalent to using ds (T, i) = 6(7?) as discussed in Subsection 3.1. The difference
is that d. can be computed in O(1) time versus O(|X|) = O(k) time for the standard
choice of d5. Doing so requires computing ¢(A) at the start of the computation, and
then incrementally computing ¢(B) and the changes to ¢(A) as the computation
progresses. So from one point of view J. is simply a more efficiently computable
formulation of the standard comparison objective function.

A final property of d. is that in the final layout alignment, call it A*, produced
by the round-robin algorithm, every sequence is optimally aligned, under the diff
measure, with the consensus ¢(A*) of A*. Suppose that A* = B || S for an arbitrary
choice of sequence S and let a? be the alignment between S and A* that aligns
every symbol of S with the copy of S in the multi-alignment A*. By the property
of monotone improvement it must be that diff(S ~ B) is optimal. We claim that

diff(S o ¢(A*)) is also optimal. We term a column z - X' of A* where z € S an
z-pivot iff z = ¢(z - X) — ¢(X), i.e., x is a consensus symbol for the column only if
it is in the column. For any alignment b between S and A* it then follows by the
definition of §, that:

diff(S 2 (A7) = diff(S R Z(B)) — Nopiwor (S % T(A%))

where Nopiyor(S L ¢(A*)) is the number of z-pivot columns in A* aligned by b with
an z in S, and b] is the subalignment obtained by deleting the copy of S in A*

from the multi-alignment S [|> A*. Now b = a1 minimizes diff(S bze 2(B)) and

maximizes Nopiyot (S L ¢(A*)), thus diff(S 4 ¢(A*)) is minimal over all alignments
between S and A*.

Our round-robin algorithm with d. is superior to our earlier window-based and
hidden Markov model designs. Even so, it does not always give optimal results
as illustrated in Figure 3. The alignment at left is not realigned into the optimal
acct
at-t
when S = acct is the third sequence and ¢(B) = att. In some sense, the problem
is that the two ¢’s in the second column are not represented in the consensus att.

In an attempt to remedy the preceding situation, we then tried a scoring function
which fractionally scored aligning a symbol of S according to the content of a column
of B instead of assigning a 0-1 score based on the consensus of the column. Let 4,

be defined as follows:

5a($: (a1:a2’ ’ "’a”)) = { l){al el E::’Ll z 8 (5)

alignment at right if the pairwise alignment chosen in Step 4 happens to be



act-t act-t

act-t act-t
a-cct acc-—-t
a-c-t ac--t
a-t-t a-t-t
a-t-t a-t-t
Score = 5 Score = 4

Fig. 3. An alignment (left) not improved to its optimum (right) by round-robin with §..

That is, the score for aligning a symbol z of S with a column of B is equal to the
fraction of symbols in the column not equal to z.

As shown in Section 4 on experimental results, 1t is usually the case that the
round-robin algorithm using §, produces better results than when using d.. However
there are cases where the scoring scheme §,. produces better results than §,. Figure
4 gives an example where J, fails to realign the alignment at left into the optimal
one at right (whereas J. does). To see why, observe that for any choice of S as one
of the six sequences, the best alignment between S and the resulting B is always
the existing alignment at a score of 0 4+ 3/5+ 3/5+ 0 = 6/5. The cost of aligning
one of the last three sequences with its B in a manner which moves its ¢ to the
left, is 04+ 14 2/5+4 0 = 7/5. Thus the alignment at left does not change under the
application of round-robin with §,.

gact gact
gact gact
gact gact
gc-t g-ct
gc-t g-ct
gc-t g-ct
Score = 6 Score = 3

Fig.4. An alignment (left) not improved to its optimum (right) by round-robin with d,.

In using d, we lose some of the properties of d. discussed above. Namely, the
consensus scores of the multi-alignments obtained through each iteration of the al-
gorithm do not necessarily form a nondecreasing sequence, and the fragments are
not necessarily optimaly aligned with the consensus that results. Empirical evidence
indicates that it is extremely rare for the consensus score to increase but it can
happen, thus the termination condition in Step 7 is carefully phrased as “6(A) does
not decrease”. One method of correcting the problem of the fragments not being
optimally aligned to the consensus is to do the iterative realignment process twice.
First using the J, scoring scheme and then using d.. While this works well the time
required to do the iterative process twice isn’t clearly worth the resulting improve-
ment in the alignment. In the end, we settled on a scoring scheme that is an evenly



weighted combination of d. and §,. Formally we used, d44., defined as:
date(r, X) =5 0c(2, X))+ .5 4(x, X) (6)

Tests show that using d,4. gives results identical to those obtained from applying
the iterative algorithm twice, once using d, and once using d., in almost every
case. Unfortunately even this choice is still a heuristic and thus an optimal layout
alignment cannot be guaranteed. For example, Figure 5 shows an alignment at left
which is not realigned to its optimum at right for any weighted combination of d.

and J,.

c--tg-ggc ct-g-gg-c¢
ca-tg-gac ca--tggac
ca-ggtggc caggtgg-c
cagtg-ggc ca-gtgggc
c--ggtgsgc cg-gtgg-c
Score = 8 Score =7

Fig.5. An alignment (left) not improved to its optimum (right) by any choice of 45.

3.3 Speeding Up Realignment

Step 4 of the round-robin algorithm computes the best alignment with respect to d
between a selected sequence S and the rest of the multi-alignment B = Ag. In order
to preserve the layout, not all alignments are permitted, but only those positioning
S with respect to B so that the first and last symbols of S are within O(e) of the
columns they were originally aligned against. Thus the columns of B that may be
realigned to match the first symbol of S are in a small “band” about the column
initially aligned to this symbol. The same is true about what may be aligned to the
last symbol of S. Figure 6 illustrates this for a band of width 3.

riginal Alignment
agg-t-agcgct a- age- a-atttcgece /O & &
a-t acagg-t aagcgct a- aac- agat t t cgt ccagggeccga
aat acagg-t - agcgct a- agc- a- att t cgcccagg- cccga
aat acagggt - agcgct a- agcca- att - cgec- agt - cc- ga

? ? | New Alignment
agg-t - agcgcet a- age- a-atttcgec

Fig. 6. Possible realignment positions for a sequence.

Recall that the assumption in a realignment scheme such as ours is that the
initial layout alignment is globally correct but locally non-optimal due to an error
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rate of up to, say 10%, in the sequences. This, combined with the restriction on the
start and end of alignments noted above, implies that the final alignment of .S will
not be radically different from its original alignment. Realignment is expected to
shift each symbol a few column left or right of its original position. This naturally
gives rise to the idea of performing the standard dynamic programming comparison
of S and B within a narrow band of the current alignment of S and B. The banding
approach provides efficiency, but equally importantly, guarantees that the layout is
preserved.

Suppose that we have determined to realign within a band of fixed radius r. Fur-
ther suppose C' is the dynamic programming matrix for the unrestricted comparison
of S and B and that prior to realignment a is the alignment between S and B, i.e.,
A =5 ||* B. Now a corresponds to a path in the dynamic programming matrix as
illustrated in Figure 7. The band of radius r about a is the set of all entries CJi, j]
such that there exists C[z, j] € a such that i € [z —b, 2 +b] or there exists C[i,y] € a
such that j € [y — b,y + b]. Figure 7 illustrates a band of radius 3. Note that the
band is a connected region of the matrix delimited by an upper and lower boundary.
Computing the boundaries of a band as the banded alignment proceeds is a simple
exercise. For a fixed radius, computing the best alignment between S and B within
the band takes O(|S|) time. Thus with this optimization realigning a layout takes
O(CN) time where C' is the number of complete iterations through the sequences
required for convergence. As we will see C' is effectively bounded in practice giving
us O(N) expected performance.

Original Alignment _
N - ¢(B)——~

- —

A ——
Band of Radius 3

Fig.7. Band of radius 3 around a hypothetical original alignment.

The critical empirical issue for our banding scheme is the choice of radius r to use.
A large r ensures that S has sufficient room to realign with B in an optimum way.
A small r results in faster realignment of individual sequences. However, increasing
r can occasionally decrease the total time taken because allowing the sequences
more room to realign per iteration results in the multi-alignment stabilizing in fewer
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cycles C'. We ran a series of trials to determine the smallest choice of r that was large
enough to ensure that the results are as good as those obtained without banding.

The trials involved a series of simulated data sets where we varied the average
column height or coverage C' of the multi-alignments and the average amount of er-
ror € present in the data. A data set for a given trial was generated as follows. First
a 100,000 basepair DNA sequence was generated by selecting each of the four bases
with probability i. Fragments of length chosen uniformly between 300 and 500 bases
were selected from the source sequence with a starting base selected uniformly from
the positions available for the chosen length. Fragments were collected until the total
number of bases in all the fragments N became greater than C'-100, 000. In expecta-
tion this amounted to selecting approximately C - 250 fragments. Each fragment was
reverse complemented with probability % and then errors were introduced into the
fragment according to a linear ramp [%E, %?]. That is, for a fragment of length n, an
error was introduced at position j with probability ¢+ ;—‘ZLE. The error chosen was a
substitution, insertion, or deletion with equal probability. This data set of fragments
was then assembled into a layout by our FAKII software suite and an initial crude
layout alignment was produced as detailed in the third paragraph of the background
section. This initial, unrefined layout alignment, possibly comprising several contigs,
constituted the input for a given trial.

Tables 1 through 3 present the results of our experiments. Each table is for trials
with € equal to 2.5%, 5.0%, and 7.5%, respectively. For each of these choices of €, we
ran trials with the coverage, C, set to 3, 6, 9, and 12. For each choice of € and C, we
generated an initial alignment and for band radius from 2 to 9, we report the time
taken, the average number, I of round-robin iterations required over all contigs, and
the consensus score of the resulting multi-alignment(s). As € and C' increase the size
of the band required to ensure results as good as those without banding increases.
In all cases a band of size 8 was sufficient and we have chosen this band radius as
our standard for ReAligner.

Coverage 3 H 6 H 9 H 12

Band Radius|Time| T |Score||Time| T |Score ||Time| T |Score ||Time| I |Score

2 9.3 |1.91|6,981|| 21.9 |3.25|14,863|| 38.4 |3.50(22,258|| 52.1 |3.50(|29,740
9.6 |1.86|6,980(| 22.2 |3.00|14,863(| 33.9 |3.00(22,232|| 45.0 |3.00|29,735
9.9 |1.86|6,980(| 23.5 |3.00|14,863|| 35.6 |3.00(22,232|| 47.2 |3.00|29,735
10.4 |1.86(6,980|| 24.7 |3.00|14,863|| 37.0 |3.00(22,232|| 49.5 |3.00(|29,735
10.8 [1.86(6,980|| 25.6 |3.00|14,863|| 39.0 |3.00(22,232|| 51.9 |3.00(|29,735
11.3 [1.86(6,980|| 26.6 |3.00|14,863|| 40.3 |3.00(22,232|| 54.2 |3.00|29,735
11.7 |1.86(6,980|| 27.7 |3.00|14,863|| 41.9 |3.00(22,232|| 56.5 |3.00(|29,735
12.3 |1.86(6,980|| 28.7 |3.00|14,863|| 43.8 |3.00(22,232|| 58.7 |3.00(|29,735

Q| 0~ O Ot b= | W

Table 1. Band radius trials for € = 2.5%
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Coverage 3 H 6 H 9 H 12

Band Radius|Time| I |Score [|Time| I |Score ||Time| I |Score ||[Time| I | Score

2 9.7 12.25|14,052]| 25.7 |3.10{29,384|| 50.6 (3.33|44,192|| 68.2 |5.00{59,181
10.0 {2.19(14,049|| 25.6 (2.80|29,368|| 40.5 |2.67|44,176|| 61.0 |4.00{59,124
10.5 [2.15[14,049]| 26.6 (2.70]29,364(| 42.7 |2.67|44,173|| 63.9 [4.00(59,117
11.0 |2.15]14,049]| 27.9 (2.70|29,364|| 48.6 |2.83|44,170(| 67.7 |4.00{59,115
11.6 [2.15(14,049]| 29.2 (2.70|29,364|| 47.0 |2.67|44,170(| 71.4 |4.00{59,115
12.1 2.15(14,049]| 30.5 (2.70]29,364|| 49.4 |2.67|44,170|| 74.4 |4.00{59,115
12.6 [2.15]14,049|| 32.3 (2.70|29,364|| 51.3 |2.67|44,170|| 77.5 |4.00{59,115
13.3 [2.15]14,049|| 33.2 (2.70|29,364|| 53.4 |2.67|44,170(| 81.3 |4.00{59,115

O 00| ~I| O] U = | W

Table 2. Band radius trials for € = 5.0%

Coverage 3 H 6 H 9 H 12

Band Radius|Time| [ |Score [|Time| I |Score ||Time| I |Score ||[Time| [ | Score

2 11.2 {2.68(20,444|| 31.4 (3.86|43,975|| 58.8 |4.50|66,132(| 72.1 |4.00|88,839
11.7 |2.66|20,387|| 32.7 (3.71|43,881|| 45.9 |4.00|65,979|| 78.3 |4.00|88,630
12.2 {2.64|20,387|| 34.5 3.71|43,878|| 49.5 |4.00|65,965|| 69.7 |3.50(88,576
12.8 [2.64|20,387|| 36.2 3.71|43,877|| 52.2 |4.00|65,965|| 86.8 |4.00|88,568
13.4 {2.64|20,387|| 38.1 3.71|43,875|| 54.7 |4.00|65,964|| 76.6 |3.50|88,566
14.1 {2.64|20,387|| 39.9 (3.71|43,875|| 57.1 |4.00|65,959(| 80.7 |3.50(88,566
14.6 [2.64|20,387|| 41.6 (3.71|43,875|| 59.4 |4.00|65,959|| 83.7 |3.50(88,496
15.4 {2.64|20,387|| 43.4 (3.71|43,875|| 62.2 |4.00|65,959(| 86.9 |3.50(88,496

O 00| ~I| O] Ut = | W

Table 3. Band radius trials for € = 7.5%

4 Results

We ran several tests giving as input to ReAligner the multi-alignments produced
by other fragment assembly programs to measure how much ReAligner improved
their results. We used the simulated data sets described in the previous section as
the source of input to each assembler. Recall that we considered twelve data sets
characterized by coverage C' and average error rate €.
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The experiments involve three assemblers:

CAP2:
CAP2 by Xiaoqui Huang of Michigan Technological University [7].

FAKS3.12:

FAKII Version 3.12, an earlier version of our assembly suite using a window-sweep
heuristic to refine its layout alignment (as described in Section 2).

FAK.MST:

FAK II Version 4.1, our current assembler, with round-robin refinement turned
off. That is, the multi-alignment is just the one produced by merging pairwise
alignments as described earlier.

The last case 1s used as a baseline reference and the output of ReAligner for this case
is exactly the output of FAK II Version 4.1. Because different overlap and layout
algorithms are used by each assembler, the layout alignments produced by each are
generally different, at least in the details of their multi-alignments. The point of
the experiments here is not to compare assemblers, but to show the improvements
that result from applying ReAligner to the output of any assembler. Indeed in several
cases applying ReAligner to CA P2 multi-alignments produced slightly better scoring
results than applying ReAligner to FAK.MST multi-alignments.

The results of our experiments are shown in Tables 4-6, one table for each assem-
bler. In each table there is a row for each of the twelve combinations of € and C. We
report the number of contigs in the assembly produced by the program as an indica-
tion of the degree of fragmentation of the solution. The two columns labeled <X >
Input give information about the multi-alignment produced by program X, and the
two columns labeled ReAligner Qutput give the same type of information for the
multi-alignment produced by ReAligner given the multi-alignment produced by X
as input. The column labeled Score gives the consensus alignment score of the spec-
ified multi-alignment. The column labeled Miscalls gives the number of differences
between the consensus sequence of the specified multi-alignment and the original se-
quence from which the fragments were produced. Note that the the original sequence
is known because we are using simulated data.

The primary thing to notice in all the tables, is that ReAligner improves both the
consensus scores and the number of miscalls for all programs under all conditions.
The improvement is the least when coverage and error rate are low, but as either one
or both of these are increased the difference begins to become substantial. The results
further show that both the FAKS3.12and CA P2 programs could have produced better
multi-alignments. At an error rate of 2.5%, CAP2 produces multi-alignments that
are improved on just slightly, but when error rates are high the change in the number
of miscalls is as high as 75%. While the change in the number of miscalls clearly
demonstrates that an alignment is superior, the change in consensus scores is harder
to interpret. In some cases this score improves while the number of miscalls remains
roughly the same. What is happening in these case is that the alignment improves
the evidence that the given consensus symbol is indeed correct, in say, the sense of
the Church-Waterman statistic [3]. For example, in Figure 8 a portion of a CAP2
multi-alignment at left was improved by ReAligner to the portion at right. While
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FAK.MST Input||[ReAligner Output
Error Rate|Coverage|Contigs|| Score |Miscalls || Score | Miscalls

3 43 || 7,013 | 1,944 || 6,980 1,664
2.5 6 4 19,063 684 14,863 238

9 2 30,593 387 22,232 38

12 2 44,806 409 29,735 14

3 53 ||16,281| 4,143 [[14,049] 3,457
5.0 6 10 40,198 | 1,985 (29,364 798

9 6  ||67,468 | 1,427 ||44,170] 233

12 T || 98,851 | 1,176 ||59,115] 29

3 44 || 24,332 | 6,055 ||20,387] 4,890
7.5 6 7 /62,519 | 3,399 |[43,875| 1,204

9 2 |[107,397] 2,687 ||65,959| 269

12 2 159,199| 2,453 ||88,496 50

Table 4. Effect of ReAligner on FAK.MST Layout Alignments.

FAK3.12 Input||ReAligner Output
Error Rate|Coverage|Contigs|| Score |Miscalls|| Score | Miscalls
3 43 ||7,087] 1,682 [6,979| 1,663
2.5 6 4 15,263 270 14,864 238
9 2 22,041 45 22,233 39
12 1 23,041 45 22,233 11
3 53 ||14,336] 3,553 ||14,045] 3,457
5.0 6 10 30,686 904 29,365 799
9 2 46,770| 180 ||44,262 123
12 1 63,453 45 59,111 26
3 44 ||21,125] 5,131 [|20,386] 4,884
7.5 6 7 |[46,548] 1,594 ||43,880] 1,295
9 2 70,885 420 /65,958 268
12 1 96,585 99 88,570 38

Table 5. Effect of ReAligner on FAK3.12 Layout Alignments.

CAP2 Input ||ReAligner Output
Error Rate|Coverage|Contigs|| Score |Miscalls|| Score | Miscalls

3 49 || 7,030 | 1,668 [ 6,967 | 1,658
2.5 6 4 15,164 254 14,861 232

9 2 22,882 41 22,232 38

12 1 30,889 11 29,737 11

3 54 || 14,389 | 3,457 |[14,077| 3,380
5.0 6 8 30,771 802 29,431 716

9 2 47,167 153  ||44,256 123

12 1 64,126 43 59,121 28

3 56 || 21,068 | 5,046 ||20,323] 4,804
7.5 6 6 ||47,040 | 1,454 ||43,877| 1,263

9 3 72,838 382 65,949 260

12 1 100,697| 119 ||88,560 31

Table 6. Effect of ReAligner on CAP2 Layout Alignments.




the consensus GCACG[TCITGTT[G-]AAA versus GCACGTTGTAAA changes by only 1-3
miscalls (depending on how the tied consensus classes are resolved), the change in
consensus score 1s dramatic and one much more clearly sees the evidence for the
consensus at right.

a-cac-—-c--ttgtaaa
g-cacg-ttgtt--aa-
ggcacg-ttgt-—--aaa
g-c———ac-gttgtaaa
gcacgttgtaaa
g-c———ac-gttgtaac
g-c———ac-gttgtaaa
g-c———ac-gttgtaaa
gg-acg-ttgt---aaa
g-c——g-c-gtcggaaa
g-cacg-ctgtc--aaa
ggcacg-ttgt---aaa
g-cacg-ttgt---aaa
g-cacg-ttgt---aaa
g-cacg-ttgt-—--aa-
tgttgtaaa

Score = 68

a-caccttgt-aaa
g-cacgttgt-taa
ggcacgttgt-aaa
g-cacgttgt-aaa
g-cacgttgt-aaa
g-cacgttgt-aac
g-cacgttgt-aaa
g-cacgttgt-aaa
g-gacgttgt-aaa
g-cgecgtcggaaa
g-cacgctgtcaaa
ggcacgttgt-aaa
g-cacgttgt-aaa
g-cacgttgt-aaa
g-cacgttgt--aa

tgttgt-aaa

Score = 14

Fig. 8. A portion of a CAP2 multi-alignment (left) and after given to ReAligner (right).

5 The Software

From the perspective of building software tools, the most problematic issue in dealing
with layout alignment is the variety of possible input and output formats. To resolve
this issue, we built two separate programs, ReAligner and Converter both freely
available at £tp://ftp.cs.arizona.edu/realigner. Converter translates between
various formats allowing Realigner to handle the single task of realigning a multi-
alignment according to our round-robin algorithm. Thus if one wants to produce a
realigned multi-alignment in format Y, given the initial multi-alignment in format X,
one simply applies Converter to translate from format X to the unique form accepted
by Realigner; then applies Realigner to refine the multi-alignment; and finally uses
Converter to translate the refined alignment to format Y. On machines using the
UNIX operating system, this may be written as a simple “pipe”: Converter <X |
ReAligner | Converter >Y.

There are two distinctly different encodings of multi-alignments: horizontal and
vertical. Typically a human reader prefers to see a layout with each fragment written
horizontally across the page. On the other hand, it is much simpler for a program to
input and parse a layout in which fragments are written vertically down the page.
To describe each format concisely, begin by considering the £ by [ matrix A used
to formally describe a layout alignment. The number of rows k& may be reduced
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significantly by placing several fragments in a row when they are mutually non-
overlapping with at least one blank symbol between them. Formally, an assignment
row(i) of each fragment S; is legal if row (i) = row(j) implies [bega(i)—1, enda(i)+1]
N [bega(j),enda(j)] = 0. Greedily allocating each fragment to the next available row
in a left-to-right sweep gives a legal assignment involving the fewest rows, say c. Let
A’ be the resulting ¢ by ! matrix.

To display A’ in horizontal mode at width w and separation s, one first divides
A’ into ¢ by w blocks, save for the last which may have [(mod w) columns. Each
block is displayed in order with each row of a block occupying a line of the output. If
the last few rows in a block consist solely of blank symbols, then these rows are not
output. The last printed row of each block is followed by a line of w dashes and then
s blank lines. If there is more than one contig, then each contig is output as above
and another line of w dashes separates it from the next contig. The key motivation
for the format above is that it has the property that one can unambiguously tell
when a fragment has been broken across a line, and thus one can unambiguously
reconstruct A’ given such a representation as input. Figure 9.a gives an example.

Cc
cctggt - acg||cacttagttc| |€C Aaa | .. ... S | a
ccacg|[cactt-gttc| |Tt Ggg [ ..¢ LS | D
g t-gttc % ﬁ aa |T ttt P |
-------------------- a e - - - - —— - = - == - -
CCTGGTCACG| CACTT-GrTC | Ife A a 6 & CCTGGTCACG]|| CACTT- GTTC
Aaa Cc g X 21
ta-cact-tg &e Tttt g g .a. .-
tatccctctg|[tctg-t ©99 |ccce |@ ¢ too.. .C..
ta-ccctctg|/tgtg-tag TL JAgaa (T ¢ | |eeeio|i
---------- cgtgctagta| |Ad@a |Ccce (A 4 cieiiiiiillleiien
TA- CCCTCTG|-=-=------ —ot- o Tgtt TA- CCCTCTG|- == ----==
TGIG TAGTA %gg TEttt TGTG TAGTA
- a__
t ct &ee |G
ttaga  t S 34 I N L
tt agaaagct Gee Teee) |
__________ tit | coe
TTAGAAACGCT||gct a _(I:"ggg T ttc TTAGAAAGCT .
Tt |G cyg
GCTA Tttt |7ttt GCTA
cacgt G ggg . g.
(a) Horizontal (b) Vertical (c) Consensus+Dots

Fig. 9. Encodings of the layout alignment of Figure 1 on 10 x 22 paper.

To display A’ in vertical mode, one simply outputs each column per line of output
in sequence. Note that each line is ¢ symbols long, save that trailing blanks may be
removed from the end of each line. A blank line separates contigs. Further note
that this form is especially easy to input and output, and especially suitable for any
auxiliary computation that computes column-based information, e.g. a consensus
symbol or quality measure for each column. Figure 9.b gives an example.

An alignment may optionally have a consensus sequence. In horizontal format
this follows the line of dashes at the end of each output block. In vertical format
it is assumed to be the sequence in the first column. While Converter will compute

17



and output a consensus sequence as defined in this paper, this sequence can be
computed by a user-supplied program. If one provides a consensus then there is
another desirable representation of the alignment in which all symbols in a column
equal to the consensus symbol of that column are displayed as a period symbol.
This form of display makes it easy to see where fragments differ from the consensus.
Figure 9.c gives an example.

Both ReAligner and Converter are designed as UNIX pipes, taking data from the
standard input, stdin, and placing results on the standard output, stdout. Within
an alignment, the programs recognize the characters a, ¢, g, t, 4, €, G, T, -
as the four bases and the intra-fragment pad character. All other characters are
treated as if they were the symbol n which does not match anything (including
itself). Both ReAligner and Converter preserve the case of input letters. Comments
lines are permitted in the input to the programs and are designated by beginning
a line with the character “%”. Comment lines are copied to the output without
alteration. All comments that appear within a contig in the input are printed at the
beginning of that contig in the output.

ReAligner expects an input alignment in vertical mode, without a consensus and
outputs the realignment in the same format. ReAligner takes one optional argument
of the form -b# giving the size # of the band radius to use (the default is 8).

Converter accepts input in any of the formats described above, but it must be
told specifically what format is forthcoming. The lower-case options below describe
this expected input format while their upper-case counterparts describe the output
format desired.

h/H horizontal format
v/V vertical format
c/C consensus string in input/output

d/D dots in input/output
s/S#  use # lines for horizontal block separation (default 3)
r/R# use a row length of # for horizontal block width (default 80)

The use of some options is context dependent. Namely, one can elect the -d(D)
option only if the —c(C) option is specified, and one must give the -s(S) and -r(R)
options if the =h (H) option is specified and the the default value is not correct and/or
desired. All options may be run together as a single string as in:

Converter -vHCD # Convert from vertical without consensus to horizontal with
consensus, dots, and default separation and width

save for the separation and width options which must be specified individually as
in:

Converter -hcVC -s2 -r50 # Convert from 2x50 horizontal format with con-
sensus to vertical format with consensus

Note carefully, that in the first example Converter computes the consensus as we
have defined it in this paper and outputs it with 1ts horizontal display. In the second
example, since a consensus came with the input, Converter does not need to compute
one for the output but simply passes the input consensus on to the vertical output.
It is further the case that Converter has the side effect of printing to stderr a
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summary consisting of the consensus score and percentage of characters that do not
match the consensus sequence.

We conclude by re-emphasizing that the role of Converter is not just so that
ReAligner has the convenience of inputing and outputting vertical alignments, but
also for the user who may wish to do their own pre- or post-processing to alignments.
For example, a user can easily write a program, say MyConsensus, that reads a
vertical alignment without consensus and outputs the vertical alignment with a
consensus sequence computed according to whatever definition they prefer. One
may then build the UNIX pipe:

converter -hV <X | ReAligner | MyConsensus | converter -vcHC >Y

to improve the alignment of a horizontally coded alignment and attach their concept
of consensus to the result.
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