
An Algorithm for Whole Genome Shotgun Sequencing

E. Anson G. Myers

1 Introduction

The push to sequence the entire human genome is gearing
up [1]. Recently there has been disagreement within the
genome community as to the best approach for sequenc-
ing the human genome. While many scientists believe that
clone mapping is the best solution, others argue that whole
genome shotgun sequencing is a cheaper and faster alter-
native. Arguments for [2] and against [3] whole genome
shotgun sequencing have been printed. The purpose of this
paper is not to reargue the merits of whole genome shotgun
sequencing, but to outline an algorithm for such sequenc-
ing and, through simulated test cases, to demonstrate its
practicality.

For our algorithms we assume a large database of ran-
domly selected human DNA fragments is availible. These
fragments are dual end sequenced and fall into one of two
classes. Short fragments are size selected so the sequenced
ends overlap. Thus the sequence of the entire fragment
(around 0.4-1.2 kb) is known. Long fragments are 5-20
kb long and sequencing both ends results in two sequences
(reads) whose relative orientation and approximate spacing
is known. For most of our trials we assume the number
of basepairs sequenced results in a 10-fold coverage of the
genome. The goal of whole genome shotgun sequencing is
to reconstruct the genome from this database of fragments.

Random sampling will result in portions of the genome
being uncovered by reads in the database. These uncovered
pieces are called gaps and they make the goal of reconstruct-
ing the entire genome from the database impossible. Instead
we try to reconstruct the represented portion of the genome
by forming contigs. A contig is a set of overlapping reads.
Inclusion of opposite ends of a long fragment in different
contigs gives an ordering of those contigs. A set of such or-
dered contigs is often called a scaffold, though in this paper
it will usually be refered to as a walk. So our revised goal
is to find a walk which spans the genome and in which the
contigs are as large as possible.

We have some additional information about the genome
in the form of sequene tagged sites (STSs). An STS is a
small sequence (around 300 bps) of the genome which is
unique. The order of these STS markers is known (with some

errors) as is the approximate distance between them. Due to
significant progress in this field [5] [4] it is not unreasonable
to assume that such markers will cover the genome and are
spaced every 100-200 Kbps. Thus reconstructing the genome
breaks down to the problem of reconstucting the stretches
of the genome between STS markers. This will sometimes
be refered to as the inter-marker assembly problem. Our
algorithms will focus on this subproblem. One algorithm
will attempt to form a walk connecting the STS markers to
verify their adjacency. The other will try to reconstruct as
much of the genome between the markers as possible.

There are a few obstacles our algorithms must deal with.
One is repeats, which will erroneously make reads which
come from different parts of the genome appear to over-
lap. Repeats are sequences that, up to some variation, are
repeated along the genome. Some, such as Alu’s, are rela-
tively short (approximately 300bp) and occuring frequently.
Others may be long (up to 10 kbp) and with only 2-5 oc-
curances. Since so little of the genome has actually been
sequenced the nature of the repeats is yet unknown. There-
fore our algorithms should be prepared to handle a variety of
repeat types. Another problem is that sometimes the reads
are reported to be opposite ends of a long fragment when
they are not. The algorithm should try to ensure that such
erroneous information is not used in ordering the contigs.

2 DNA Simulator

To test the effectiveness of our algorithms we built a simu-
lator. The simulator must model the database of reads from
a whole human genome in such a way that the overlaps be-
tween the reads can be determined quickly. This allows us
to try out many variations of our algorithm within a man-
ageable time. Memory conservation was also an issue in the
design of the simulator. These concerns had to be balanced
against the need to simulate many possible characteristics
of the genome.

2.1 What is Simulated

The simulator uses a number of variables to define the nature
of the modeled genome. The size of the genome (in base-
pairs) is determined by the variable GENOME LEN, and the
number of types of repeats the genome contains is controled
by the variable NUM CLASSES. For each of these types of re-
peats there are four values to be set, REPEAT LEN, REPEAT PERCENTAGE,
CLUSTER PROB, and CLUSTER DENSITY. The first two deter-
mine a repeat’s size and frequency and the last two deal



with how close together occurances are likely to appear on
the genome.

REPEAT LEN[i] is the length (in base pairs) of repeat oc-
curances of type i. REPEAT PERCENTAGE[i] is the percent of
the genome covered by repeats of type i. These two vari-
ables together with the genome length determine the number
of occurances of a a type of repeat. A repeat type i will have
(GENOME LEN × REPEAT PERCENTAGE[i])/REPEAT LEN[i] oc-
curances. The simulator takes a conservative approach and
assumes that each occurance of a repeat of the same type is
identical.

Repeat occurances of the same type may be clustered
together. For each occurance of a repeat a random number
between 0 and 1 is generated. If this number is less than
CLUSTER PROB[i] then the repeat occurance is added to the
current cluster, otherwise a new cluster containing that re-
peat is started. Notice that if CLUSTER PROB[i] = 0 then
each cluster contains only one repeat occurance (i.e. no clus-
tering). Each cluster which contains more than one repeat
occurance is given a size equal to CLUSTER DENSITY[i] times
REPEAT LEN[i] times the number of occurances of the repeat
in the cluster. These repeat occurances are then placed ran-
domly within the cluster using a uniform distribution and as-
suring they don’t overlap. These clusters, together with the
non-clustered repeat occurances are distributed randomly
across the genome using a uniform distribution and not al-
lowing them to overlap.

The modeled genome also contains STS markers. The
length of these markers is given by the variable MARKER LEN.
The lengths of the separations between the markers are cal-
culated using the variables MARKER SPACING and MARKER VAR,
which give the average spacing and a percentage of varia-
tion. Thus for every pair of adjacent markers the spacing is
uniformly chosen from the interval MARKER SPACING × (1 ±

MARKER VAR). STS markers are unique bits of sequence so
they must be placed so they don’t overlap with any repeats.

The simulator models a database which contains reads
of two types, LONG and SHORT. Both types represent dual
end sequenced fragments. SHORT reads represent fragments
small enough so that the ends sequenced overlap, and thus
the read is the entire fragment. Reads of type LONG come
from the ends of long fragments. These reads do not over-
lap. Thus each LONG read has a mate whose relative position
is known. The lengths of the fragments are determined by
the variables SHORT LEN, LONG LEN, and LEN VARIATION. The
length of each fragment is chosen uniformly from the in-
terval LEN × (1 ± LEN VARIATION). The length of the read
from each end of a long fragment is a constant given by
READ LEN. The ratio of long to short fragments is given by
the variable LS RATIO. The total number of reads generated
depends on this and the variable COVERAGE which specifies
the redundancy of the coverage of the genome. Note this
is the coverage by the reads not the fragments. In other
words, generating a long fragment does not cover LONG LEN

basepairs but 2 × READ LEN the size of the two ends which
are read. The fragments generated are sampled uniformly
from the genome. Sometimes two LONG reads are erroneously
paired (i.e. they don’t actually come from opposite ends of
the same fragment). To simulate this we have the variable
LONG ERR which is the probability that such an error has oc-
cured. When the simulator generates a LONG read which has
an erroneous link, its paired read is taken from a random
location on the genome.

2.2 Simulator Actions

There are two basic actions the simulator must perform.
First, given a subread, the simulator must determine all
reads in the database which appear to overlap that subread.
A subread is just a connected piece of an read. It is specified
by the read and its starting and ending location within the
read. We will call this first action a database query. The
second action is determining if and how two subreads are
joined. This will be called a compare.

When working with real data the database query will in-
volve a pairwise sequence comparison (using some filtering
for speed) of the subread with all the reads in the database.
This will be by far the most costly operation of the assem-
bly process and thus we monitor how many times this op-
eration is required for different versions of our algorithm.
Actually generating a sequence and doing pairwise compar-
isons would be too costly both in terms of time and memory
for our simulation purposes. Instead our simulator speci-
fies all items (markers, repeats, reads) by their location in
the genome. Thus we must establish rules for determining
whether subreads are joined (appear to overlap) which simu-
late a pairwise comparison of sequences. Since the compare
operation also simulates a pairwise comparison of sequences,
these rules are used for that operation too.

Two subreads are joined if their locations on the genome
overlap by at least MIN OVERLAP basepairs. Two subreads
may also be joined if the left end of one and the right end
of the other are in different occurances of the same type
of repeat. They must overlap within the repeat by at least
MIN OVERLAP basepairs. This means if the repeat occurances
were transposed so that they coincide, then the ends of the
fragments would overlap by at least MIN OVERLAP basepairs.
To allow for errors the end of an read is considered to lie
within a repeat occurance even if it extends a small distance
beyond the repeat. For example, if the right end of an read
is at location a and the right end of a repeat is at location
b < a, we say the right end of the read lies within the repeat
if a − b < MIN OVERLAP.

Suppose in the above case that a−b ≥ MIN OVERLAP, but
the repeat occurance did overlap with the read (i.e. the re-
peat’s ending location was at least MIN OVERLAP greater than
the read’s starting location). Further suppose the left end
of another read was within another occurance of the same
type of repeat, but the read’s right end extended beyond the
repeat occurance. Then when doing a comparison of the two
sequences, the two will match well for the portions within
the repeats, but then the scores will suddenly start going
bad. This case is illustrated in figure 1. Using the correct
scoring function it is possible to determine where the scores
start going bad with good accuracy. Thus we may locate
the place on the read where its overlap with the repeat oc-
curance ends (e.g. location b in the example above). Since
the simulator does not generate sequence information, we
tested our repeat edge detection algorithm separately over a
large number of cases, varying the sequencing errors of the
fragments and the average differences between occurances of
the repeats (assuming they were identical here would be un-
fair). The tests confirmed that the algorithm works, so we
added the assumption to our simulator that in these cases
repeat edges may be detected.

The information returned from a data base query on a
subread is a list of all reads which appear to overlap the
subread, how they overlap the subread, and if and where a
right and/or left repeat edge is detected. If a subread has
an end within an occurance of a type of repeat that has
a high frequency, then a very large number of reads will



meet the criteria for being joined to that subread. Thus we
limit the number of reads a database query can return to
MAX OVERLAPS. If this limit is reached then the above case
has almost surely occured.

3 Quick Scan

The first algorithm we describe tries to form a walk con-
necting adjacent STS markers. The object of this algorithm
is to quickly confirm that the markers are indeed adjacent.
The speed of the algorithm will be measured by the number
of database queries it generates. We use this metric since
database queries will be by far the most time intensive op-
eration. Putting a limit on the number of database queries
allowed, we determine how frequently our algorithm can find
a connecting walk between adjacent markers. Knowing this
helps us determine the probability of two markers not being
adjacent when the algorithm fails.

3.1 Definition of Terms and Moves

A basic data structure we will be using is a footprint. A
footprint is a contig with some additional information. A
contig of course is a list of reads with information on how
they overlap. Additionally a footprint records the direction
of the walk the footprint is from (left to right or right to left),
how far the reads are estimated to be from the originating
footprint, a list of footprints one step to the right or left,
and other things which will be explained as they come up in
the description of the algorithm. Two footprints are said to
be one step away if they contain corresponding reads of type
long. Since two long reads may be thought to correspond
when they really don’t, in our algorithm footprints must
contain two pairs of corresponding reads to be considered
one step apart.

The algorithm has several actions it can take. One is
called taking a step. This action takes one footprint and
creates another footprint which is one step away from the
first. Since there are errors in the information about corre-
sponding long reads, and since taking a step based on such
erroneous information could result in many useless database
queries, take step will only use confirmed steps. Suppose we
have a list of reads whose corresponding read is in the foot-
print and who lie in the direction of the walk. (i.e. If the
footprint is part of a walk from left to right, the reads lie to
the right of the footprint.) A comparison is done pairwise
on these reads. Those that are found to overlap form the
base of a possible confirmed step. In order for this step to
be bad both of the reads must be paired in error and also
overlap on the genome. Assuming the randomness of the
location of mismatched pairs, this situtation is practically
impossible.

A footprint keeps a list of all the reads which have corre-
sponding reads within the footprint and lie in the direction
of the walk. We will call this list the possible steps. It also
keeps a status of these fragments including which are con-
firmed and which portions are known to lie within repeats.
In addition every read in the database has a field which
tells which, if any, footprint it is included in. The take step
algorithm then works as follows:

• Find the confirmed read which lies furthest from the
footprint and is not part of another footprint

• If no such read exists, return FAILED

• Query the data base using the portion of the read not
known to contain a repeat

• If a repeat edge is detected

– Record that information

– Use the nonrepetitive portion of the read to up-
date the status (confirmed or no confirmed) of the
possible steps

– Go to top

• Else if MAX OVERLAPS reads returned or reads returned
are inconsistant

– The queried read probably is contained in a re-
peat. Mark it as such.

– Update the status of the possible steps. (Those
confirmed only by the queried read are no longer
confirmed)

– Go to top

• The estimated distance from start of the walk for the
new footprint is the estimated distance of the read
which corresponds to the queried read plus LONG LEN.

• The new footprint records the footprint which was sent
to the take step procedure as it’s parent. (This is used
for backtracking)

• The list of footprints one step to the right and left
of the new footprint is calculated by looking at the
long reads which correspond to reads in the footprint.
Any footprint which contains at least two such reads
is added to the appropriate list.

• If the new footprint ’bumps’ into another footprint,
those footprints are joined.

Basically the algorithm takes a confirmed possible step
(read with a corresponding read in the footprint), and does
a database query on it. If there are no problems, this infor-
mation is used to build another footprint that is one step
further in the direction of the walk. If the data base query
reveals a portion of the read to overlap a repeat occurance,
this portion of the read must not be used. This will change
which possible steps are confirmed since reads which only
overlap within a repetitive portion should not be concidered
to be confirmed. Note that if this read remains confirmed it
will be chosed again (it is still the furthest confirmed possi-
ble step) and the nonrepetitive portion will be used to query
the data base. If the read used to query the data base is con-
tained completely in an occurance of a repeat, the query will
not detect a repeat edge and reads which come from differ-
ent portions of the genome (where the occurances of the
repeat of this type are located) will be returned. If the re-
peat has a high frequency (large number of occurances), the
number of reads returned will be varMAX OVERLAPS and
thus we will know of the problem. On the other hand, if it is
a low frequency repeat, then this error could go undetected.
There is, however, one detection method for some special
types of this case. If the queried read is near the edge of
the repeat, then some of reads returned will extend beyond
the edge of the repeat. If two of these reads come from dif-
ferent portions of the genome, then they will both overlap
on the same side of the queried read, but will not overlap
with each other. In this case we say the returned reads are
inconsistant and know that the queried fragment must be
within a repeat. Lastly if the queried read lies close to an
existing footprint, some of the reads returned by the data
base query might be part of that footprint. We say that the



new footprint bumps into the existing footprint and the two
are then joined into a single footprint. We will talk more
about joining footprints later. Note that the new footprint
can bump into at most two different footprints, one on its
left and one on its right.

Another basic action that can be done to a footprint
is an expansion. The algorithm for expanding has as its
arguments a footprint and a direction. It queries the data
base with the read in the footprint which extends furthest
in the direction of the expansion. The footprint is then
updated by adding the new reads returned. The algorithm
looks like this:

• query the data base with the read in the footprint
which extends furthest in the desired direction

• if a repeat edge is detected

– requery using the portion of the read not con-
tained in the repeat

• else if the number of reads returned is MAX OVERLAPS

or the reads returned are inconsistant

– The whole footprint might lie within a repeat.
Record that.

– return FAILED

• add the new reads to the footprint, updating the right
and left links and the status of possible steps

• if the expansion bumped into another footprint, join
the footprints

• if the footprint has not changed (i.e. no new reads
where returned) then return FAILED

The main complications here happen if queried read over-
laps a repeat. If it’s outer (with respect to the footprint)
edge is revealed to be in a repeat, then the data base is
queried again using the nonrepetitive portion. By doing
this a read may be found which spans the repeat, allowing
the footprint to be further expanded. At the very least addi-
tional reads may be safely added to the footprint increasing
its knowledge of links and possible steps. A repeat edge dis-
covered that indicates a repeat which is on the interior side
of the fragment, can mean one of two things. First it might
be part of the repeat spanned by the footprint (the footprint
keeps track of repeats it contains so this is known). In this
case the data base should be queried with the outer, non-
repetitve portion of the read. If the interior side of the read
lies within the repeat and the other edge of the repeat is not
known, then the footprint must have been formed within a
repeat. These footprints cannot be safely expanded as the
queried read may or may not be from the same area of the
genome as the footprint’s original read. Also if no repeat
edge is detected, but the number of reads returned by the
query is MAX OVERLAPS or the reads returned are inconsis-
tant, then the entire queried read lies within a repeat. Since
this wasn’t previously discovered, the entire footprint prob-
ably lies with a repeat. In these cases the expansion fails
and the footprint must be marked as ’bad’. If the data base
query returns reads that are part of another footprint, then
we join that footprint to the expanding footprint. It is pos-
sible if a footprint ends in a gap or a repeat that cannot be
spanned that the expansion algorithm will add no reads to
the footprint. In that case the expansion fails.

Joining footprint B to footprint A, involves added all the
reads in B to A. This will change the list of footprints one

step away from A and the status of possible steps. There
also should be a data base query on an read which links the
two footprints to make sure that all reads interior to the
new combined footprint are present. Lastly all references to
footprint B must be deleted.

3.2 The Algorithm

The basic idea of the algorithm is simple enough. The goal,
as we stated earlier, is to create a walk connecting two adja-
cent markers using as few data base queries as possible. We
start by creating a footprint that contains each marker. We
then start walking from each of these footprints toward the
other one. We walk from both directions since it is much
more likely that these two walks will meet somewhere than
that a single walk will find the target marker. We walk by
taking a step if possible, if not, expand the footprint until
a step is possible. If this expansion fails, take a step back
and try again. This is a form of depth first search. Each
walk continues until the walks meet or until the estimated
distance traveled is at least as far as the average distance be-
tween markers, or the walk has run out of option (becomes
stuck). While both directions are still active, we alternate
steps between them.

If the initial described above has not resulted in the walks
meeting, further action must be taken. There are two ac-
tions that can be taken on each footprint to increase the
chance the walks will meet. The footprints can be expanded
or a new step can be taken from them. The order each of
these actions can be applied can be varied and we tried sev-
eral different schemes to see which would be fastest. The
schemes tried were:

1. For each footprint, do an exapansion if possible, oth-
erwise take a step

2. For each footprint, take a step if possible, otherwise
do an expansion

3. Loop through the footprints alternating a step and ex-
pansion round

4. For each footprint take a step, expanding if necessary
until a step is possible (or can no longer expand)

5. For each footprint, expand as much as possible and
then take all steps

Notice that with all these approaches we loop through
the set of footprints. In the first three one action is taken
on each footprint per iteration. In the last approach all
actions that can be to a footprint are, so each footprint is
only acted on once. Expansion on a footprint is always done
first in the direction of the walk if possible. If expansion is
no longer possible in that direction, it is then done in the
other direction. One exception to this is that if a footprint’s
estimated distance from the walk’s starting point is larger
than the distance betweeen markers, expansion is not done
in the direction of the walk. Likewise a step is never taken
from such a footprint. To avoid doing unnecessary data base
queries each footprint records when it is no longer possible
to be expanded in a given direction.

The tests resulted in a clear win for approach 4, perhaps
because it saturated one area of the genome. We also ran
tests to see the best order in which to examine the footprints.
These did not result in large differences, but there was a
slight advantage by examining the footprints in the middle
of the walks first, and working our way to the outside.



Lastly notice that our algorithm for taking a step will
not create a footprint in the middle of a repeat if it can de-
tect it. A footprint in the middle of a repeat is bad because
it will contain reads which overlap with occurances of the
repeat from all over the genome. Thus the step out of that
footprint could be into a completely unrelated portion of
the genome. It would take many extra data base queries to
deal with walk that wandered outside of the markers in this
way. Low frequency repeats (2-3 occurances) may easily be
stepped into without being detected. However, the cover-
age of such footprints might be suspeciously high. We thus
include with each footprint a status variable that can have
the values: GOOD, BAD, UNKNOWN, or SUSPECIOUS. A footprint
that is known not to be within a repeat is marked GOOD.
This can be determined if a repeat edge is detected where
the repeat lies (partially) outside the footprint. A footprint
that is known to lie within a repeat is marked BAD. How
such a footprint is determined and marked was included in
the description of the algorithms for taking a step and ex-
panding. No steps are taken from or expansions done on a
BAD footprint. When the operation take step creates a new
footprint, it calculates the average coverage of the queried
subread. If this coverage exceeds a certain amount (tests
show 1.5× COVERAGE to be a good number), the footprint is
marked as SUSPICIOUS. A SUSPICIOUS footprint is not used
during the first part of the algorithm (the depth first search),
and if the walks have not met and further expansion of the
footprints are needed, SUSPICIOUS footprints are only oper-
ated on after all other footprints have been tried. If there is
more than one SUSPICIOUS footprint to be operated on, the
ones with the smallest coverage are done first.

4 Inter Marker Assembly

The goal of this algorithm is to fill in as much of the genome
as possible between two adjacent STS markers. The even-
tual output of this algorithm should therefore be a set of
ordered, maximal contigs (or footprints). By maximal we
mean that no reads from the database can be added to the
contigs.

The possible actions and datastructures are that same
as for the quick scan algorithm. However, there the goal
was a speedy confirmation of the STS markers, so the algo-
rithm attempted to cross the distance between the markers
as quickly as possible. Here we’re trying to assemble the
whole genome between the markers so the goal is to move
as completely and safely as possible. Thus in the above al-
gorithm the basic idea was step when you can to quickly
cover the distance, while the basic idea here will be expand
while you can to completely cover the distance. Since we are
filling in everything as we move the markers can be linked
they will be when enough distance is traveled and so there
is no longer a need to walk simultaneously from both direc-
tions. Thus each footprint need not record the direction of
the walk. Also we add a direction to the algorithm to take
a step so that a step from a footprint can be taken in either
direction.

4.1 The Algorithm

The algorithm for inter marker assembly

• Create a footprint containing the left STS

• Create a target footprint containing the right STS

• Expand this footprint to the right as much as possible.
The expansion will end for one of the following reasons

1. A repeat which cannot be spanned is encountered

2. A gap is found

3. The target STS is reached

4. The distance covered is more than DIST

• If case 3 or 4 causes the expansion to end, our algo-
rithm is finished. Otherwise do the following

• Repeat while able to take new steps

– Take a step to the right if new footprint is esti-
mated to be less than DIST from the originating
STS marker

– Expand the new footprint to the left while possi-
ble

– The expansion will end for one of the following
reasons:

1. A gap or repeat is encountered (hopefully the
same gap or repeat which ended the right ex-
pansion of the previous footprint.)

2. It is discovered the footprint was created in a
low frequency repeat (by the discovery of the
repeat’s left edge).

– If case 2 occurs, and the footprint links to the
creating footprint, they will be joined, noting the
repeat edge

– Expand the footprint to the right as much as pos-
sible

– If at any time during a footprint’s creation or ex-
pansion the target STS is reached, DIST is set to
be the estimated distance between the markers
based on the connecting walk

– Add footprint to que

• while the cue is nonempty, for each footprint in the
cue repeat the above loop. Adding taking a step to the
left if such a step does not result in a fooprint which
appears to be to the left of the starting footprint. (i.e.
estimated distance less than zero)

DIST is a cap on how far to try filling in the genome be-
fore giving up. It should start out with a value which is large
enough to guarentee reaching the target marker if possible.
This value will depend largely on LEN VARIATION the varia-
tion in the marker spacing and in the long fragment length.
Notice that the estimated distance from the starting marker
should be more accurate here than in the quick scan algo-
rithm since we are covering the distance using fewer steps.
(Distance between fragments in the same footprint is known
exactly, it’s only the distance between the footprints that is
estimated.) If the target STS marker is found, then DIST

is reset to the estimated distance to this marker. The idea
being that we want to fill in all of the genome possible be-
tween markers, so we do not take a step or expand outside
of these boundaries.

It is possible for the above algorithm to end without
finding the target marker. If this happens, we repeat the
algorithm, this time starting at the target marker. There
are a couple ways this could result in a connecting walk. A
footprint in this walk might have two long reads whose cor-
responding reads both belong to the same footprint in the
previous walk. Thus these two footprints would be linked.
The previous walk did not take a step into this location be-
cause the two reads did not overlap and thus were not con-
firmed. Another way the walks may connect is if a footprint



in the previous walk was created in a low frequncy repeat
and its expansion thus ends at the edge of the repeat. If
the new walk has a footprint on the other side of the re-
peat, those two footprints can be joined, thus connecting
the walk. Note that some caution should be used here since
if the repeat type has more than one occurance between the
markers, this join may not be correct.

This algorithm can incorporate information from the quick
scan algorithm, and thus both can be run without doing
redundant data base queries. When taking a step, if the
chosen read is part of a footprint formed in the quickscan
algorithm, one incorporates that footprint, changing it’s es-
timated distance accordingly, rather than doing a database
query and forming a new footprint.

5 Empirical Results

This section will give the simulated test results of these al-
gorithms.

5.1 Quick Scan Results

The first results here should be used to justify our chosen
algorithm. The pieces that need to be decided on are:

• How to expand walks which have traveled a sufficient
distance, but not yet met

• At what level of coverage should a potential step be
considered ‘suspect’

• After how many queries should the algorithm give up

Then we will want to show the success rate for our chosen
algorithm under varying physical conditions. Success is the
rate at which the algorithm finds connecting walks. Also
of interest might be the average time it takes to find these
walks. Some of the conditions that might be altered are:

• The Coverage

• The Types and Frequency of Repeats

• The Clustering of Repeats (not tried)

• Error rates in the pairing of reads (not tried)

• Potential differences in small read sizes, large read
sizes, and marker spacing (I suspect this might not
be of interest)

• Average large read size (not tried)

• Long/Short ratio (not tried)

Another thing which came up but is not currently pos-
sible in the simulator is to allow several different types (av-
erage size) of long reads in one simulation. Would this be
somethnig I want to try to take the time to do?

5.2 Inter Marker Assembly Results

Here what we care about is how much of the genome can be
sequenced and how many errors are made (both corrected
and not) while doing it. These things should be examined
under some of the same conditions as in the section above.

5.3 Edge Detection Results

I’m not sure if we want this here or not. What would be
of interest here is how accurately the edge of a repeat is
detected. The conditions that might vary here are:

• Error rate in sequencing the fragments

• Rate of difference between repeat occurences

• Coverage

References

[1] E. Marshall and E. Pennisi. NIH Launches the Final
Push To Sequence the Genome. Science 272 (1996),
188-189

[2] J. Weber and G. Myers. Human Whole Genome Shot-
gun Sequencing. Genome Research 7 (1997), 401-409

[3] P. Green. Against a Whole-Genome Shotgun. Genome
Research 7 (1997), 410-417

[4] T.J. Hudson, L.D. Stein, S.S. Gerety, J. Ma, A.B.
Castle, J. Silva, D. Slonim, R. Baptista, L. Kruglyak,
S. Xu, X. Hu, A.M.E. Colbert, C. Rosenberg, M.P.
Reeve-Daly, S. Rozen, L. Hui, X. Wu, C. Vester-
gaard, K.M. Wilson, J.S. Bae, S. Maitra, S. Ganiat-
sas, C.A. Evans, M.M. DeAngelis, K.A. Ingalls, R.W.
Nahf, L.T. Horton, M.O. Anderson, A.J. Collymore,
W. Ye, V. Kouyoumjian, I.S. Zemsteva, J. Tam, R.
Devine, D.F. Courtney, M.T. Renaud, H. Nguyen,
T.J. O’Connor, C. Fizames, S. Faure’, G. Gyapay, C.
Dib, J. Morissette, J.B. Orlin, B.W. Birren, N. Good-
man, J. Weissenbach, T.L. Hawkins, S. Foote, D.C.
Page, and E.S. Lander. An STS-Based Map of the
Human Genome. Science 270 (1995), 1945-1954

[5] M. Olson, L. Hood, C. Cantor, and D. Botstein. A
Common Language for Physical Mapping of the Hu-
man Genome. Science 245 (1989), 1434-1435



Repeat Occur A Repeat Occur B

Read X Read Y

ab

Read X

Read Y

Match

Poor
MatchGood

b

Figure 1: Repeat Edge Detection.


