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Abstract

The design of systems or models that work robustly under uncertainty and
environmental fluctuations is a key challenge in both engineering and sci-
ence. This is formalized in the design centering problem, defined as finding
a design that fulfills given specifications and has a high probability of still
doing so if the system parameters or the specifications randomly fluctuate.
Design centering is often accompanied by the problem of quantifying the ro-
bustness of a system. Here we present a novel adaptive statistical method
to simultaneously address both problems. Our method, Lp-Adaptation, is
inspired by how robustness evolves in biological systems and by random-
ized schemes for convex volume computation. It is able to address both
problems in the general, non-convex case and at low computational cost.
In this thesis, we describe the concepts of the algorithm and detail its
steps. We then test it on known benchmarks, and demonstrate its real-
world applicability in electronic and biological systems. In all cases, the
present method outperforms the previous state of the art. This enables
re-formulating optimization problems in engineering and biology as design
centering problems, taking global system robustness into account.
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Zusammenfassung

Die Konstruktion von Systemen oder Modellen, welche unter Unsicher-
heit und Umweltschwankungen robust arbeiten, ist eine zentrale Heraus-
forderung sowohl im Ingenieurwesen als auch in den Naturwissenschaften.
Dies ist im Design-Zentrierungsproblem formalisiert als das Finden eines
Designs, welches vorgegebene Spezifikationen erfüllt und dies mit einer ho-
hen Wahrscheinlichkeit auch noch tut, wenn die Systemparameter oder
die Spezifikationen zufällig schwanken. Das Finden des Zentrums wird
oft durch das Problem der Quantifizierung der Robustheit eines Systems
begleitet. Hier stellen wir eine neue adaptive statistische Methode vor,
um beide Probleme gleichzeitig zu lösen. Unsere Methode, Lp-Adaptation,
ist durch Robustheit in biologischen Systemen und durch randomisierte
Lösungen für konvexe Volumenberechnung inspiriert. Lp-Adaptation ist
in der Lage, beide Probleme im allgemeinen, nicht-konvexen Fall und bei
niedrigen Rechenkosten zu lösen. In dieser Arbeit beschreiben wir die
Konzepte des Algorithmus und seine einzelnen Schritte. Wir testen ihn
dann anhand bekannter Vergleichsfälle und zeigen seine Anwendbarkeit in
elektronischen und biologischen Systemen. In allen Fällen übertrifft das
vorliegende Verfahren den bisherigen Stand der Technik. Dies ermöglicht
die Umformulierung von Optimierungsproblemen im Ingenieurwesen und
in der Biologie als Design-Zentrierungsprobleme unter Berücksichtigung
der globalen Robustheit des Systems.
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Nomenclature

Here, we list used acronyms and symbols. Vectors and matrices are printed
in bold face. Other variables may appear.

Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

5D five-dimensional

10D ten-dimensional

20D 20-dimensional

50D 50-dimensional

90D 90-dimensional

ABC-SMC sequential Monte Carlo ABC algorithm

ABC Approximate Bayesian Computation

AFOSM Advanced First-Order Second Moment

AM adaptive Metropolis

AP Adaptive Proposal

CADE Constraint Adaptation by Differential Evolution

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CMA Covariance Matrix Adaptation
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NOMENCLATURE

DPLL digital phase-locked loop

ES Evolution Strategy

GaA Gaussian Adaptation

HK histidine kinase

i.i.d. independent and identically distributed

LF loop filter

MC Monte Carlo

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

PCM pulse code modulation

PD phase detector

PLL phase-locked loop

RC Resistor Capacitor

RR response regulator

SCPCM switched capacitor pulse code modulation

SC Switched Capacitor

TCS two-component system

VCO voltage controlled oscillator

Greek Characters

α acceptance criterion

αc parameter

αµ parameter

β learning rate

δ relative change

ε tolerance, error threshold

η standard normal distributed vector

Γ Gamma function

λ population size (candidate solutions), Eigenvalues

µ accepted candidate solutions, number of feasible points

ω frequency

ψ average phase
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NOMENCLATURE

ρ correlation coefficient

σ standard deviation

σ2 variance

σ(g) step size at generation g, overall scale of the sampling
distribution

τ time delay

θ parameter vector, phase of an oscillator

θ̇ instantaneous frequency

θ′ point in transformed phase space (rotated, reduced, trans-
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Latin Characters

A feasible region, convex body

B ball in a rounding algorithm, Beta function

B matrix

b ratio of two volume approximations

b vector of binary variables

C coupling matrix

C covariance matrix, transformation matrix

c1 weight

cm weight factor for adaptation of mean

cc backward time horizon of the evolution path pc

cµ learning rate

cond condition number

Cov covariance

cσ backward time horizon of the evolution path pσ

cT threshold

d distance function

det determinant

dF Foerstner distance

dr relative difference
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matrix C
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CHAPTER

ONE

Introduction

1.1 Motivation

Design centering is a long-standing and central problem in systems en-
gineering and model inference. It is concerned with determining design
parameters of a system or model that guarantee operation within given
specifications and are robust against random variations. While design op-
timization aims to determine the design that best fulfills (one aspect of)
the specifications, design centering wants to find the design that meets the
specifications most robustly. Traditionally, this problem has been consid-
ered in electronic circuit engineering (Graeb, 2007), where a typical task is
to determine the nominal values of electronic components (e.g., resistances,
capacitances, etc.) such that the circuit fulfills some specifications and is
robust against manufacturing tolerances in the components. Examples of
specifications in electronic circuits are frequency response, harmonic distor-
tion, energy consumption, and manufacturing cost. Recently, related ideas
have also entered the field of synthetic biology with the aim of robustly
designing novel synthetic biological circuits (Barnes et al., 2011; Woods
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CHAPTER 1. INTRODUCTION

et al., 2016). Any criterion that can be verified for a given design can be
used as a specification.

In order to be robust against perturbations, the specifications cannot be
defined too narrowly. This implies that there are usually many designs
that fulfill the specifications. The size or volume of the set of all these
feasible designs is an intuitive measure for the robustness with which the
specifications can be fulfilled. Robustness is therefore related to the prob-
ability that the design still fulfills the same specifications when the design
parameters randomly vary, or the specifications fluctuate. Quantifying this
robustness requires estimating the size or volume of the set of all feasible
designs.

Volume estimation and design centering in the most general form only as-
sume that a given design can be evaluated through a procedure (referred
to as “oracle” (Grötschel et al., 1988)) that checks whether the design
fulfills the specifications, or not. In this general setting, design center-
ing and volume estimation are hard problems. Exhaustively determining
the set of all feasible designs requires exponentially many design trials in
the number of design parameters. Since typical systems or circuits have
tens to hundreds of design parameters, testing all possible combinations is
prohibitive. It is hence intuitive that exact solutions to design centering
are NP-hard (Puchalski et al., 2006), i.e., they cannot be efficiently deter-
mined on a deterministic computer. Less intuitively, it is also NP-hard to
determine the exact volume of a high-dimensional set using a determinis-
tic algorithm (Bárány and Füredi, 1987; Khachiyan, 1989), even if the set
is convex. Efficient approaches to design centering and volume estimation
are hence always approximate. However, even though volume estimation is
closely related to design centering, previous approximate approaches have
considered them separately.

1.2 Prior work

We therefore separately review previous approaches to design centering
and volume approximation.

2



1.2. PRIOR WORK

1.2.1 Previous approaches to design centering

Previous approaches to design centering can be classified into geometri-
cal and statistical approaches (Sapatnekar et al., 1994). Geometrical ap-
proaches use simple geometric bodies to approximate the feasible region,
which is usually assumed to be convex (Schwencker et al., 2000). Exam-
ples of geometrical approaches include Simplical Approximation (Director
and Hachtel, 1977; Vaidya, 1989), which approximates the boundary of
the feasible region by adaptation of a convex polytope. Due to the curse
of dimensionality, however, Simplical Approximation becomes unpractical
in dimensions n > 8 (Soin and Spence, 1980; Harnisch et al., 1997). Sug-
gested improvements to relax the convexity requirement instead assume
differentiability of the specifications (Vidigal and Director, 1982), which
cannot be guaranteed in black-box problems. Another example of a geo-
metrical approach is Ellipsoidal Approximation (Abdel-Malek and Hassan,
1991), which finds the ellipsoid of largest volume that still completely fits
into the feasible region. All endpoints of the ellipsoidal axes and the cen-
ter of the ellipsoid need to be feasible. While Ellipsoidal Approximation
does not strictly require convexity of the feasible region, its approximation
properties strongly depend on it. A third example of a geometrical ap-
proach is the polytope method (Sapatnekar et al., 1994), which also uses
a convex polytope to approximate the feasible region, but then finds the
design center by either inscribing the largest Hessian ellipsoid or by using
a convex programming approach. The latter approach, however, requires
an explicit probabilistic model of the variations in the design parameters,
which is usually not available in practice.

Statistical approaches approximate the feasible region by Monte Carlo sam-
pling. Since exhaustive sampling is not feasible in high dimensions, the
key ingredient of statistical methods is to find a smart sampling proposal,
and concentrate on informative regions. The methods then sample points
from this proposal and evaluate the specifications for these points to de-
cide if they are feasible. The ratio of feasible to infeasible points sam-
pled then provides information about the robustness of a design (Gu and
Roychowdhury, 2010). Constraint adaptation by Differential Evolution
(CADE) (Storn, 1999) is a classical statistical design centering method
based on Differential Evolution (Storn and Price, 1997). It assumes the

3



CHAPTER 1. INTRODUCTION

feasible region to be convex and starts from a population of initial points.
To find those points, the specifications (constraints) are first relaxed and
then tightened successively back to the original ones. After the original
specifications are met, the mean of all points (which have to be feasible) is
used as an approximation of the design center. Another representative sta-
tistical approach is the Advanced First-Order Second Moment (AFOSM)
method (Seifi et al., 1999). It samples candidate points from Lp-balls in or-
der to estimate the yield (i.e., the ratio of feasible to infeasible points) and
approximate the feasible region. Which Lp-norm to use is directly related
to the assumed statistical distribution of the random perturbations. The
proposal Lp-balls are adapted to maximize their volume while still being
completely contained within the feasible region. This therefore does not
allow estimating the total volume of the feasible region. A third example
of a statistical method is the Center of Gravity Method (Soin and Spence,
1980). In each iteration, it computes the center of gravity of the feasible
samples and of the infeasible samples. The design center is then moved
toward the center of the feasible points and away from the center of the
infeasible ones. The Momentum-Based Center of Gravity Method (Tan
and Ibrahim, 1999) extends this idea to include information from the past
two iterations.

1.2.2 Previous approaches to volume estimation

Volume computation is an important problem in many areas, e.g. software
engineering, computer graphics, economics, and statistics (Liu et al., 2007).
Deterministic methods for volume computation of convex polytopes use
for example triangular methods or signed decomposition methods (Büeler
et al., 2000). The former decompose the polytope into simplices whose
volumes are easily computed and summed (Büeler et al., 2000). The latter
decompose the polytope into signed simplices such that the signed sum of
their volumes is the volume of the polytope (Büeler et al., 2000). However,
it has been shown that deterministically computing the volume is NP-
hard (Dyer and Frieze, 1988; Khachiyan, 1988, 1989), even for convex
bodies.

4



1.3. PROBLEM STATEMENT

Using a randomized algorithm, the volume of a convex body can be ap-
proximated to arbitrary precision in polynomial time (Dyer et al., 1991).
Over the years, Dyer, Frieze, and Kannan’s breakthrough-algorithm (with
a theoretical complexity of O?(n23) oracle calls) has been improved in a
sequence of papers until Lovasz and Vempala’s O?(n4)-algorithm1. The
main concepts of randomized volume approximation algorithms, Round-
ing and Multiphase Markov chain Monte Carlo, are further explained in
Section 2.5.

1.3 Problem statement

We consider the design (or parameter) space to be Rn, i.e., the n-
dimensional vector space of real numbers. The region (subspace) of the
parameter space that contains all parameter vectors for which the system
meets or exceeds the specifications is called the feasible region A ⊂ Rn.
We denote the total volume of the feasible region by vol(A), defined as the
integral of the uniform density over A. This volume is a natural measure
for the total amount of feasible designs available and can be used to com-
pare and choose between different designs or competing models (Hafner
et al., 2009). Moreover, the overall shape and orientation of the feasible
region contains information about correlations between design parameters,
which can be exploited for model reduction and to guide experimental
verification of a design.

Depending on the available side-information about the design specifica-
tions, different operational definitions of the design center m ∈ A exist,
including the nominal design center, the worst-case design center, and the
process design center (Seifi et al., 1999). For instance, in the example of
manufacturing an electronic circuit from components with known manufac-
turing tolerances, the design center maximizes the production yield. Here,
we follow the general statistical definition of the design center (Kjellström
and Taxen, 1981) and seek among all points (parameter vector) x ∈ A the
design center m ∈ A that represents the mean of a probability distribution
q(x) of maximal volume covering the feasible region A with a given target
hitting probability P . For convex feasible regions, using the uniform prob-

1the asterisk in the order notation indicates that logarithmic factors in n are omitted
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CHAPTER 1. INTRODUCTION

ability distribution over A and P = 1, the design center coincides with
the geometric center of the feasible region, which historically inspired the
terminology.

When encountering a new problem one usually has no knowledge of the
shape of its feasible region and wants to estimate different properties of
it. If we know that the region is convex, good methods for both design
centering and volume approximations are known. In real-world problems,
however, we usually cannot guarantee convexity of the feasible region, but
still want to get approximations for its design center or its volume. For this,
a more general framework is needed that does not make any assumptions
about the feasible region and can ideally be used for a broad range of
applications.

1.4 Contribution

Here, we jointly consider the problems of design centering and volume
estimation in their most general form. We present an approximate statisti-
cal method that unites the two problems under the same framework. We
also present an efficient computational algorithm, called Lp-Adaptation,
for practical application of this new framework. Our contribution is hence
twofold: a conceptual framework that unites design centering and robust-
ness estimation, and a computationally efficient randomized approxima-
tion algorithm for it.

The proposed conceptual framework exposes several links and trade-offs
between design centering and volume estimation. It is inspired by the ob-
servation that robust designs are a hallmark of biological systems, such as
cell signaling networks, blood vasculature networks, and food chains (Ki-
tano, 2004). Biological systems have to be robust against fluctuations, as
otherwise they would likely not survive in a changing environment. It has
been observed that the robustness of biological networks is related to the
volume of the set of feasible parameters (Dayarian et al., 2009; von Dassow
et al., 2000). This is the same definition of robustness we use for engineer-
ing systems. Nature has hence found a way of approximating both design
centering and volume estimation through self-organization and natural se-
lection. This succession of design alteration and design selection is akin to

6



1.4. CONTRIBUTION

bio-inspired optimization algorithms, such as evolution strategies (Beyer
and Schwefel, 2002) and genetic algorithms (Whitley, 1994), with the im-
portant difference that not optimization is the goal, but design centering
and volume estimation. In our framework, design selection is hence done
by checking whether the specifications are fulfilled. Feasible designs then
undergo random alterations with the specific aim of exploring the space of
all feasible designs as broadly and efficiently as possible.

Efficient and broad exploration of feasible designs is the core of the Lp-
Adaptation algorithm. Following the biological inspiration, the algorithm
is based on stochastic sampling of designs together with a consistent way
of converting the explored samples to an estimate of the robustness and
the design center. Lp-Adaptation is computationally efficient, reaching
or outperforming the previous state of the art, as we show in this thesis.
Most importantly, however, Lp-Adaptation is based on the joint consider-
ation of the two problems and therefore relaxes the limiting assumptions
previous approaches needed to make about either the convexity or smooth-
ness of the set of feasible designs, or the correlations between parameters.
Lp-Adaptation provides the first computationally efficient and versatile
method for approximately solving general, oracle-based and non-convex
design centering and volume estimation problems.

7





CHAPTER

TWO

Preliminaries

In this chapter, we introduce important preliminaries for this thesis.
First, we give a short introduction to Markov chain Monte Carlo meth-
ods and Bayesian inference, specifically to Approximate Bayesian Com-
putation. Our method for design centering and volume approximation,
Lp-Adaptation, which we will describe in Chapter 3, is a statistical
method based on concepts of Gaussian Adaptation (GaA) (Kjellström
and Taxen, 1981) and Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) (Hansen and Ostermeier, 1996). Therefore, we then review
Kjellström’s GaA and give an overview of CMA-ES. We will conclude
with a summary of convex volume estimation.

2.1 Introduction to Markov chain Monte Carlo
(MCMC)

Markov chain Monte Carlo (MCMC) methods are sampling algorithms
that are often used to solve multi-dimensional integrals and optimization

9



CHAPTER 2. PRELIMINARIES

problems in machine learning, physics, statistics and decision analysis,
when no direct analytical method for sampling is available (Andrieu et al.,
2003). Generating unbiased samples from a probability distribution is a
prerequisite for inferring knowledge about the distribution.

Monte Carlo (MC) is a synonym for learning about probability models
by simulating them, e.g. wherever a random process can be simulated,
probabilities and expectations can be calculated by averaging over the
simulations (Geyer, 1998). The core idea of MC simulation is to use inde-
pendent and identically distributed (i.i.d.) samples from the target density
p(x) to approximate the target density (Andrieu et al., 2003). When the
drawn samples are independent, the law of large numbers ensures that the
approximation can be made as accurate as desired by increasing the num-
ber of samples (Gilks et al., 1996). If p(x) is not straightforward to sample
from, rejection sampling, importance sampling, or MCMC methods can
be used (Andrieu et al., 2003).

A Markov chain is a sequence of random variables x(0),x(1),x(2), · · · tak-
ing values in an arbitrary state space S and satisfying the Markov property
that the next state only depends on the present state, independent of the
past:

Pr(x(t+1) = j|x(t) = i, · · · ,x(0) = i0) = Pr(x(t+1) = j|x(t) = i), (2.1)

where i0, · · · , it−1, i, j ∈ S and Pr(j|i) is the transition probability of reach-
ing state j from state i. This transition probability satisfies the two con-
ditions:

Pr(j|i) ≥ 0, i, j ∈ S (2.2)∑
j∈S

Pr(j|i) = 1, ∀i ∈ S (2.3)

and is stationary if the conditional distribution x(t+1) given x(t) does not
depend on t. The joint distribution of a Markov chain is determined by
the initial distribution (the marginal distribution of x(0)) and the transi-
tion probability distribution (the conditional distribution of x(t+1) given
x(t)) (Geyer, 2011).

10
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If the state space is finite, then the initial distribution can be associated
with a vector π(x(0)), and the transition probabilities can be associated
with a matrix P having elements aij defined by

aij = Pr(x(t+1) = j|x(t) = i). (2.4)

For a countable infinite state space, we can think of an infinite vector
and matrix. If the state space is uncountable, we must think of the initial
distribution as an unconditional probability distribution and the transition
probability distribution as a conditional probability distribution (Geyer,
2011).

A Markov chain is stationary (time-homogeneous) if the evolution of the
chain in the state space only depends on the current state of the chain and
a fixed transition matrix.

A transition matrix is irreducible, if, for any state of the Markov chain,
there is a positive probability of visiting all other states. A transition
matrix is aperiodic if the chain does not get trapped in cycles.

If the transition matrix is irreducible and aperiodic, then the Markov chain
will converge to the invariant/stationary distribution for any starting point.
To ensure that a particular p(x) is the desired invariant distribution, the
detailed balance condition

p(i)aij = p(j)aji, (2.5)

is sufficient, but not necessary (Andrieu et al., 2003). An MCMC sampler
that satisfies detailed balance ensures that the stationary distribution of
this chain is the target distribution. An example for an irreducible and
aperiodic Markov chain that converges to a stationary distribution is the
Markov chain with three states and the transition matrix

P =

 0 1 0
0 0.1 0.9

0.6 0.4 0

 .
Figure 2.1 depicts the transition graph. Choosing the probability vector

11
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x2

x1 x3

0.1

0.91

0.4

0.6

Figure 2.1: Transition graph for the Markov chain example with state
space S = {x1, x2, x3}.

for the initial state π(x(0)) = [0.5, 0.2, 0.3], then

π(x(0))P = [0.18, 0.64, 0.18] .

After t iterations (multiplications by P), the product π(x(0))Pt converges
to [0.2213, 0.4098, 0.3689] . Independent of the initial distribution π(x(0)),
this Markov chain will converge to this stationary distribution. We now
describe the most common MCMC algorithm, the Metropolis-Hastings
algorithm.

2.1.1 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hast-
ings, 1970) is a simple and versatile MCMC method. It constructs a
Markov chain on state space S that is ergodic and stationary with respect
to the target probability density p(x). The MH algorithm simulates sam-
ples from a proposal distribution. See Algorithm 1 for details of a generic
MH algorithm. At first, the starting value is chosen, usually by sampling
from the prior distribution. Then, the algorithm continues by looping
through three components:

12
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Algorithm 1: Metropolis-Hastings algorithm

1 Choose proposal distribution q(x)

2 Choose starting value x(0) := (x
(0)
1 , x

(0)
2 , · · · , x(0)

n )
3 for iteration t← 0, 1, · · · do
4 Sample point xcand from q(x(t+1)|x(t))

5 x(t+1) ←

{
xcand with probability α(x(t),xcand)

x(t) with probability 1− α(x(t),xcand)

6 where α(x(t),xcand) = min
(

1, p(x
cand)q(x(t)|xcand)

p(x(t))q(xcand|x(t))

)
1. Generate a candidate (or proposal) solution (or sample) xcand from

the proposal distribution q(x(t+1)|x(t))

2. Use the acceptance criterion α(x(t),xcand) to compute the accep-
tance probability based on the proposal distribution and the full
joint density p(·)

3. Accept the candidate solution with probability α, or reject it with
probability 1− α

The proposal distribution can either be symmetric or asymmetric. It is
symmetric if q(x(t)|x(t−1)) = q(x(t−1)|x(t)). Often used symmetric propos-
als are the Gaussian distribution or the Uniform distribution centered at
the current state of the chain. For example, using the isotropic multivariate
Gaussian distribution, a candidate solution would be sampled according to
xcand ∼ x(t) +N (0, σ2In), where In is the n-dimensional identity matrix
and σ2 is the variance. Algorithms of this form (with a symmetric pro-
posal) are called random walk Metropolis algorithm. A symmetric
proposal distribution leads to a simplified acceptance function

α(x(t),xcand) = min

(
1,
p(xcand)q(x(t)|xcand)
p(x(t))q(xcand|x(t))

)
=

(
1,
p(xcand)

p(x(t))

)
. (2.6)

The ratio p(xcand)
p(x(t))

ensures that the sampler is more likely to visit high

probability areas of the joint density. In other words, as put by Sherlock
et al. (2010), “uphill” proposals are always accepted, whereas “downhill”

13
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proposals are accepted with a probability equal to the relative “heights” of
the posterior at the proposed and current values. Finding a good proposal
for a particular problem can be difficult. Assuming one would sample the
proposed moves from some fixed symmetric distribution, e.g., N (0, σ2In),
then an important issue becomes how to scale the proposal, e.g., how to
choose σ. If the variance is set too small, almost all proposed values will
be accepted and the chain will be slow in exploring the space. Contrary,
if the variance is chosen too high, the proposed moves will nearly all end
up in low-probability areas of the target distribution and thus be rejected.
In both cases, the convergence rate of the algorithm will be slow, and the
chain should not be used for inference. Figures 2.2 and 2.3 illustrate this
problem in a 2D example. To avoid the often manual search for improved
proposal distributions, adaptive MCMC methods have been introduced.

2.1.2 Adaptive Markov-Chain Monte Carlo

As shown in the previous section, it is crucial to find the right associ-
ated parameters for an MCMC method. Adaptive MCMC methods have
been developed to avoid manual tuning. They aim to learn parameters
while running and automatically adapt the proposal distribution accord-
ingly. The historically first of these methods, the Adaptive Proposal (AP)
algorithm (Haario et al., 1999), uses a Gaussian proposal distribution
N (x(t), r2C(t)) centered at the current state x(t) with a covariance ma-
trix C calculated from a fixed number of previous iterations and a scal-
ing factor r. Its successor, the adaptive Metropolis (AM) (Haario et al.,
2001) algorithm, uses the full history of the process for adaptation. AM
is non-Markovian, but has correct ergodic properties (Haario et al., 2001).
AM automatically adapts the covariance matrix C, as is summarized in
Algorithm 2. Two conditions ensure convergence of an adaptive MCMC al-
gorithm to its target distribution: diminishing (vanishing) adaptation and
containment (Roberts and Rosenthal, 2007). Vanishing adaptation ensures
that the covariance depends less and less on recently visited samples (An-
drieu and Thoms, 2008). Containment (bounded convergence) requires
that the time to stationarity of a transition kernel remains bounded in
probability as t → ∞. With increasing iteration count t of the AM al-
gorithm, the adaptation of the covariance vanishes because of the chosen
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Figure 2.2: The Metropolis-Hastings (MH) algorithm is sensitive to the
choice of proposal distribution. The region we want to sample from is the
L0.5-ball in two dimensions; the outline is shown in black. In all four
examples, we start the chain at x = [0.6, 0], use a Gaussian proposal, and
let the MH algorithm run for 1000 iterations. Only the standard deviation
parameter σ of the Gaussian distribution differs. We show the trajectories
of obtained samples, where colors indicate the number of iterations. (a)
The chosen σ is too small, and the chain is far from exploring the entire
space. (b) The chain is exploring the entire space, but the samples are
highly correlated. (c) With a good choice of σ, the chain is mixing well
and provides independent samples that approximate the target well. (d)
The chosen σ is too large, the chain is not moving much because most of
the proposed moves are rejected.
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Figure 2.3: Trace plots show how well a Markov chain is mixing. The
target region is the two-dimensional L0.5-ball, for visualization see Fig-
ure 2.2. The trace plot of X1 is shown in red, of X2 in blue. The four
subplots differ only in the choice of σ. (a) A σ too small leads to a
Markov chain that is poorly mixing because most of the proposed steps are
accepted. (b) The chain is exploring the whole space, but the samples are
highly correlated. (c) With a good choice of σ, the chain is mixing well
and provides samples that approximatethe target well. (d) A σ too high
leads to a small acceptance rate and thus also to a poor mixing.
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Algorithm 2: The AM algorithm

Input : Initial x(0), m(0), C(0), r, number of iterations K
Output : Unbiased sample x(0), · · · ,x(K) from target distribution

p(x)

1 for iteration t← 0, 1, · · ·K − 1 do
2 Sample point xcand from N

(
x(t), r2C(t)

)
3 x(t+1) ←

{
xcand with probability α(x(t),xcand)

x(t) with probability 1− α(x(t),xcand)

4 where α(x(t),xcand) = min
(

1, p(x
cand)

p(x(t))

)
5 update running mean and covariance:

6 m(t+1) = m(t) + 1
t+1

(
x(t+1) −m(t)

)
7 C(t+1) = C(t) + 1

t+1

((
x(t+1) −m(t)

) (
x(t+1) −m(t)

)T −C(t)
)

pre-factor of 1
t+1 . This vanishing adaptation is essential to prove ergodicity

for the AM algorithm.

2.1.3 Advantages and disadvantages of adaptive MCMC

The choice of a proposal distribution for a non-adaptive MCMC method
is crucial to its success (e.g. rapid convergence) (Rosenthal et al., 2011).
The search for the right proposal distribution can be demanding because
it is often done manually and especially in higher dimensions this is diffi-
cult. Adaptive MCMC methods overcome this difficulty by automatically
learning a good proposal. Using adaptive proposals, the stationarity of
the target p(x) may not always be preserved, but stationarity can be
guaranteed if adaptations are designed to satisfy certain conditions, see
section 2.1.2. Unfortunately, for most practical applications it is impossi-
ble to verify those conditions directly (Yang, 2016). When using adaptive
MCMC methods in practice usually no guarantees of convergence can be
given (Yang, 2016). To circumvent this problem, it is possible to first
use an adaptive MCMC algorithm to learn the proposal distribution and
then use a non-adaptive MCMC algorithm with this proposal for which
convergence is guaranteed.
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2.2 Bayesian Inference

MCMC methods are widely applied in statistical inference, especially in
Bayesian inference. Statistical inference uses sampling to draw conclusions
about quantities that are not observed, based on data that can have under-
lying variations. According to Casella (2008), there are three approaches
to statistics: the Frequentists, who see sampling as infinite, such that ex-
periments are repeatable and decision rules can be sharp. The Bayesians
who treat unknown quantities probabilistically and say that the state of
the world can always be updated. The Likelihoodists who do single sam-
ple inference based on maximizing the likelihood function, and who are
Bayesians (but don’t know it). The following information about Bayesian
inference is adapted from Gelman et al. (2014).

In Bayesian inference, the aim is to compute and use the full posterior
probability distribution over a set of random variables by updating prior
information with new data. Bayesian data analysis can be divided into
three steps

1. Setting up a full probability model

2. Conditioning on observed data

3. Evaluating the fit of the model and the implications of the posterior
distribution

Probability statements are the Bayesian statistical conclusions that are
made about parameters θ, or unobserved data ỹ. These probability
statements are conditional on the observed data y, and in our notation
are written as p(θ|y) or p(ỹ|y).

Bayes’ theorem is stated as

p(θ|y) =
p(θ)p(y|θ)
p(y)

, (2.7)

where p(θ) is the prior distribution, p(θ|y) is the posterior distribution
and, p(y) the marginal distribution of y, i.e., the probability of observ-
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ing y without prior knowledge. For continuous θ, p(y) =
∫
θ
p(θ)p(y|θ)dθ.

The sampling distribution p(y|θ) (also called likelihood) is the probability
of observing y, given θ. Omitting the normalization factor p(y), which,
assuming fixed y, is a constant, gives the unnormalized posterior density
p(θ|y) ∝ p(θ)p(y|θ).

2.2.1 Approximate Bayesian Computation (ABC)

If likelihood functions are computationally intractable or too costly to
evaluate, Approximate Bayesian Computation (ABC) methods can be
used (Toni et al., 2009). There, the calculation of the likelihood is replaced
by a comparison between the observed and simulated data. As a concep-
tual overview, Figure 2.4 (Sunn̊aker et al., 2013) shows a visualization of
the method.

ABC methods can generate samples from a distribution that is hoped to be
close to the real posterior distribution of interest. Since ABC methods do
not require the computation of a likelihood function, they can be used to
estimate posterior distributions of parameters for simulation-based models.
The general procedure is as follows (Toni et al., 2009):

1. Sample a candidate parameter vector θ? from some proposal distri-
bution p(θ)

2. Simulate a dataset y? from the model described by a conditional
probability distribution f(y|θ?).

3. Compare the simulated dataset, y?, with the experimental data, y0,
using a distance function, d, and tolerance ε; if d(y0, y

?) ≤ ε, accept
θ?. The tolerance ε ≥ 0 is the desired level of agreement between y0

and y?.

The resulting sample of parameters is from a distribution p(θ|d(y0, y
?) ≤ ε)

and will be a good approximation of the posterior distribution p(θ|y) if ε
is small enough (Toni et al., 2009). The distance function d is based on
a given metric, the most popular choice is the Euclidean distance, and
determines the level of discrepancy between y? and y0 (Sunn̊aker et al.,

19



CHAPTER 2. PRELIMINARIES

Figure 2.4: Parameter estimation by Approximate Bayesian computation:
a conceptual overview. (Source: Sunn̊aker et al. (2013))
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2013). The often hard to define distance function between the datasets
d(y0, y

?) can be replaced by a distance specified on a set of m summary
statistics (Toni et al., 2009), where s(y0) are the summary statistics of
the experimental data and s(y?) of the simulated data. Using a weighted
Euclidean distance

d(s(y0), s(y?)) =

√√√√ m∑
i=1

(
si(y0)− si(y?)

σi

)2

, (2.8)

where σi is an estimate of the prior predictive standard deviation of the
ith summary statistic, normalizes the summaries, such that the distance
is not dominated by one summary (Prangle et al., 2016).

The ABC rejection algorithm (Pritchard et al., 1999) is the most basic
form of ABC, see Algorithm 3.

Algorithm 3: ABC rejection

1 for i← 1 to N do
2 Sample θ? from p(θ)
3 Simulate a dataset y? from f(y|θ?)
4 if d(y0, y

?) ≤ ε then
5 accept θ?

6 else
7 reject

If the prior distribution is very different from the posterior distribution,
the acceptance rate is low. To circumvent this disadvantage, one way is
to use sequential importance sampling, which does not directly sample
from the posterior, but from a series of intermediate distributions until
the distance to the posterior is less than a specified εT . The resulting
sequential Monte Carlo ABC algorithm, known as ABC-SMC (Toni et al.,
2009; Barnes et al., 2011) proceeds as described in Algorithms 4 and 5. The
tolerated distance between the simulated and the experimental data set,
ε, equals ∞ at the start and is lowered successively during the iterations,
until it equals the defined final value εT . With every new ε, N data sets
with a distance less than ε to the experimental data, and the corresponding
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parameter vectors, are obtained (see Algorithm 5). The new ε is calculated
automatically, only the final value, εT , has to be specified.

Algorithm 4: ABC-SMC

Input : final value εT
Output :N samples θ1, θ2, · · · , θN from the posterior

p(θ|d(y?, y0) ≤ εT )

1 Initialize ε =∞
2 Set iteration indicator t = 0
3 while ε > εT do
4 for i← 1 to N do
5 [θ??, y?]← getDataset(t,ε,i)
6 Set θit = θ??

7 Set dit = d(y?, y0)

8 Calculate weights wit =

1 if t == 0
p(θit)∑N

j=1 w
j
t−1Kt(θ

i
t|θ

j
t−1)

else

9 Normalize the weights
10 Determine ε such that Pr(dt ≤ ε) = 0.9
11 t = t+ 1

2.2.2 Using ABC for model selection

If the model is not known, or a set of candidate models M is available,
models can be ranked by looking at their marginal posterior distributions
given data y0. To estimate this marginal posterior distribution of a model,
p(m|y0), a joint space of model indicators, m = 1, 2, · · · , |M|, and corre-
sponding model parameters, θ, is defined (Toni et al., 2009). Bayesian
inference on the joint space now allows for model selection. The ABC
rejection algorithm with model selection proceeds as described in Algo-
rithm 6 (Grelaud et al., 2009).
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Algorithm 5: Get a dataset y? that is ε-close to the experimental
dataset y0 and the corresponding parameters θ??

[θ??, y?]← getDataset(t,ε,i)

1 if t==0 then
2 repeat
3 repeat
4 Sample θ?? independently from p(θ)
5 until p(θ??) 6= 0
6 Simulate a candidate dataset y? from f(y|θ??)
7 until d(y0, y

?) ≤ ε
8 else
9 repeat

10 repeat
11 Sample θ? from previous iteration θit−1 with weights

wt−1.
12 Perturb θ? to get θ?? ∼ Kt(θ|θ?) where Kt is the

perturbation kernel
13 until p(θ??) 6= 0
14 Simulate a candidate dataset y? from f(y|θ??)
15 until d(y0, y

?) ≤ ε

Algorithm 6: ABC rejection for model selection

1 repeat
2 Sample m? from prior p(m)
3 Sample θ? from p(θ|m?)
4 Simulate a dataset y? from f(y|θ?,m?)
5 if d(y0, y

?) ≤ ε then
6 accept (m?, θ?)
7 else
8 reject

9 until N samples have been accepted
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The marginal posterior distribution, p(m = m′|y0), is approximated by

p(m = m′|y0) =
# accepted parameter vectors for model m′

N
. (2.9)

ABC-SMC can also be used for model selection in a similar way.

2.3 Gaussian Adaptation

Gaussian Adaptation (GaA) (Kjellström and Taxen, 1981) is a stochas-
tic search heuristic originally developed for electrical network design. It
can be used for design centering (Müller and Sbalzarini, 2011), black-box
sampling (Müller and Sbalzarini, 2010a), and optimization (Müller and
Sbalzarini, 2010b). In optimization, the goal is to minimize an objective
function f : Rn 7→ R. In each iteration g, a new candidate solution
x(g) ∈ Rn is generated by sampling from a multivariate Gaussian proposal
distribution, N (m(g−1),C(g−1)), with mean m(g−1) and n× n covariance
matrix C(g−1). C(g−1) is decomposed:

C(g−1) = r2(Q(g−1))(Q(g−1))T , (2.10)

where r is the scalar step size and Q(g−1) is the normalized square root of
C(g−1).
If f(x(g)) is below a threshold cT , it is used to update the mean m(g)

according to

m(g) =

(
1− 1

Nm

)
m(g−1) +

1

Nm
x(g), (2.11)

and the covariance matrix C(g) according to

C(g) = (1− 1

NC
)C(g−1) +

1

NC
(x(g) −m(g−1))(x(g) −m(g−1))T , (2.12)

where the weighting factors Nm and NC control the influence of the
accepted sample on the mean and the covariance, respectively.
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The acceptance threshold cT is adapted according to

c
(g)
T =

(
1− 1

NT

)
c
(g−1)
T +

1

NT
f(x(g)), (2.13)

where NT is a weighting factor. The step size r is then increased by the
expansion factor fe:

r(g) = fer
(g−1), fe > 1. (2.14)

If f(x(g)) ≥ cT , the mean, the covariance matrix, and the acceptance
threshold are not updated and the step size r is decreased by the contrac-
tion factor fc:

r(g) = fcr
(g−1), fc < 1. (2.15)

Kjellström introduced a mathematical equivalent, but numerically more
robust update rule as an alternative to Eq. 2.12, where he uses the incre-
mental change of the covariance matrix

∆C(g) = (1− 1

NC
)I(g−1) +

1

NC
(η(g−1)η(g−1))T , (2.16)

to update
∆Q(g) = (∆C(g))

1
2 , (2.17)

where η(g−1) ∼ N (0, I). The square root Q(g) of the covariance matrix is
then updated according to:

Q(g) = Q(g−1)∆Q(g+1). (2.18)

Q(g) is normalized such that det(Q(g)) = 1. Thus, the volume of the
covariance is only controlled by r(g).

25



CHAPTER 2. PRELIMINARIES

Parents

Offspring

Recombination/MutationEvaluation/Selection

Figure 2.5: The general procedure of an evolution strategy: through re-
combination and mutation, a population of parents is creating offspring.
After evaluation, the parents of the new generation are selected. This
generation cycle is continued until some termination criterion is met.

2.4 Covariance Matrix Adaptation Evolution
Strategy

An evolution strategy (ES) (Beyer and Schwefel, 2002) is a stochastic op-
timization technique based on concepts from biological evolution, where
mutation, recombination, and selection are applied to a population of indi-
viduals (candidate solutions, samples) in order to evolve a fitter generation
(better solutions); for visualization see Figure 2.5.

In the Covariance Matrix Adaptation (CMA) Evolution Strategy (Hansen,
2016), a population is sampled from a multivariate normal distribution
N (m,C) with mean m ∈ Rn and covariance matrix C ∈ Rn×n. In each
iteration (generation) new candidate solutions are sampled from this dis-
tribution and then used to adapt the distribution such that the whole
population moves towards a region in parameter space that has better
fitness values, e.g., smaller objective function in a minimization task.

For generation g = 0, 1, 2, · · · , new candidate solutions are sampled accord-
ing to

x
(g+1)
k ∼m(m) + σ(g)N (0,C(g)), for k = 1, · · · , λ, (2.19)

where σ(g) ∈ R+ is the step size at generation g, and λ is the population
size (the number of offspring). After the sampling step, the mean, the
covariance matrix, and the step size are adapted.
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2.4.1 Adaptation of the mean

The objective function is evaluated for all λ candidate solutions. The
samples are then sorted, and the weighted average of the µ best candidate
solutions is used as the new mean:

m(g+1) =

µ∑
i=1

wix
(g+1)
i:λ , (2.20)

with

µ∑
i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ > 0, (2.21)

where wi are positive weights for recombination.

2.4.2 Adaptation of the covariance matrix

The covariance matrix adapts to the underlying objective function by
learning the pairwise dependences between variables in order to acceler-
ate convergence. The covariance matrix adaptation consists of three sub-
procedures: rank-µ-update, rank-one-update, and cumulation.

Rank-µ-update

Assuming the population contains enough information to estimate a co-
variance matrix from it reliably, the samples from (2.19) can be used to
estimate the covariance matrix with the empirical covariance:

C(g+1)
emp =

1

λ− 1

λ∑
i=1

x
(g+1)
i − 1

λ

λ∑
j=1

x
(g+1)
j

x
(g+1)
i − 1

λ

λ∑
j=1

x
(g+1)
j

T .
(2.22)
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C
(g+1)
emp estimates the distribution variance within the sampled points. In-

stead of using the mean of the actually realized samples as the reference
value (see (2.22)), the true mean m(g) of the sampled distribution can be
used and weights wi can be included:

C(g+1)
µ =

µ∑
i=1

wi

(
x

(g+1)
i:λ −m(g)

)(
x

(g+1)
i:λ −m(g)

)T
. (2.23)

C
(g+1)
µ is an estimator for the distribution of selected steps. Sampling from

C
(g+1)
µ usually reproduces selected steps. Combining this information with

the previous covariance matrix leads to

C(g+1) = (1− cµ)C(g) + cµ
1

σ(g)2
C(g+1)
µ

= (1− cµ)C(g) + cµ

µ∑
i=1

wiy
(g+1)
i:λ y

(g+1)T

i:λ ,
(2.24)

where cµ ≤ 1 is the learning rate and y
(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g). This

update was introduced by Hansen et al. (2003) and is called rank-µ-update
because it learns information in µ directions by adding the variances of the
µ selected points into the matrix.

Rank-one-update

In contrast to the rank-µ-update, which uses all selected steps from a
single generation, the rank-one-update uses a single selected step y only.
This adaptation increases the likelihood for previously successful steps to
appear again. The rank-one update for the covariance matrix is

C(g+1) = (1− c1)C(g) + c1yyT . (2.25)

28



2.4. CMA-ES

Cumulation

The evolution path is the sequence of successive steps taken over the past
generations. It can be expressed as a sum of consecutive steps, e.g., the
evolution path of three steps of the distribution mean is:

m(g+1) −m(g)

σ(g)
+

m(g) −m(g−1)

σ(g−1)
+

m(g−1) −m(g−2)

σ(g−2)
. (2.26)

The evolution path pc is constructed using exponential smoothing (Hansen,

2016) and starts with p
(0)
c = 0.

p(g+1)
c = (1− cc)p(g)

c +
√
cc(2− cc)µeff

m(g+1) −m(g)

σ(g)
, (2.27)

where cc ≤ 1 and 1/cc is the backward time horizon of the evolution path
pc and

√
cc(2− cc)µeff is the normalization constant for pc. The rank-one

update for the covariance matrix via the evolution path equals (Hansen
and Ostermeier, 1996):

C(g+1) = (1− c1)C(g) + c1p
(g+1)
c p(g+1)T

c . (2.28)

Combining the updates

The final CMA update then reads:

C(g+1) = (1− c1 − cµ)C(g) + c1 p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

+cµ

µ∑
i=1

wiy
(g+1)
i:λ

(
y

(g+1)
i:λ

)T
︸ ︷︷ ︸

rank-µ update

,

(2.29)

where c1, cµ ∈ R+ are the weights for the updates and c1 + cµ ≤ 1.
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2.4.3 Step size control

The optimal step size cannot be known a priori. The evolution path is
hence used to control the overall scale σ(g) of the sampling distribution.
The length of the evolution path is used for step-size control. A short evolu-
tion path, where single steps cancel each other if steps are anti-correlated,
should lead to a decrease in step size, whereas a long evolution path, where
single steps point in similar directions, should lead to an increased step
size. With an optimal step size, steps are (approximately) perpendicular
in expectation, i.e., uncorrelated (Hansen, 2016). The decision whether
the evolution path is long or short is made after comparing the length of
the path with its expected length under random selection because under
random selection consecutive steps are independent and thus uncorrelated.
The evolution path pσ is constructed similarly to equation (2.27):

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeffC(g)− 1

2
m(g+1) −m(g)

σ(g)
, (2.30)

where the initial evolution path for the step size p
(0)
σ = 0, cσ < 1 is the

backward time horizon of the evolution path pσ and
√
cσ(2− cσ)µeff is a

normalization constant. The transformation C(g)−
1
2 re-scales the current

step m(g+1) −m(g), where C(g)−
1
2 is found through Eigen-decomposition

of C(g). The expected length of a standard normal random vector

E ||N (0, I)|| ≈
√
n is the expected length of the evolution path p

(g+1)
σ .

If ||p(g+1)
σ || equals E ||N (0, I)|| then the step size σ(g) is unchanged, if it

is larger, the step size is increased and if it is smaller, the step size is
decreased, see the complete update:

σ(g+1) = σ(g) exp

(
cσ
dσ

(
||p(g+1)

σ ||
E ||N (0, I)||

− 1

))
, (2.31)

where dσ ≈ 1 is a damping parameter
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2.5 Convex Volume estimation

Volume computation is an important problem in science and engineering.
The computational cost of computing the volume of a convex body A ∈ Rn,
where A is determined by a membership oracle (Grötschel et al., 1988), is
exponential in n (Bárány and Füredi, 1987). A membership oracle is a
black box that checks whether a point x ∈ Rn is in A or not. Dyer and
Frieze (1988) and Khachiyan (1988, 1989) showed that deterministically
computing the volume is NP-hard. Using a randomized algorithm, the
volume of a convex body can be approximated to arbitrary precision in
polynomial time (Dyer et al., 1991). Dyer, Frieze, and Kannan’s algo-
rithm requires O?(n23) oracle calls1 and has been improved in a sequence
of papers, for an overview see Simonovits (2003). The fastest known al-
gorithm for convex volume estimation needs O?(n4) oracle calls1 (Lovász
and Vempala, 2006). We now explain the main concepts of randomized
volume approximation algorithms: Rounding and Multiphase MCMC.

2.5.1 Rounding

In a rounding algorithm (sandwiching), an affine transformation T is ap-
plied to the convex body A, such that T (A) contains the unit ball B(0, 1)
and is contained in the ball with radius m, B(0,m):

B(0, 1) ⊆ T (A) ⊆ B(0,m), (2.32)

where B(x,R) is the ball centered at x with radius R. The rounded body,
T (A), is referred to as K from here on.

2.5.2 Multiphase MCMC (subdivision and sampling)

After rounding, a series of, for example, l = dn log2me (Ge and Ma, 2015),
concentric balls Bi = B(0, ri) is constructed and placed between B(0, 1)

1the asterisk in the order notation indicates that logarithmic factors in n are omitted
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B0 B1 Bl...

K

Figure 2.6: Multiphase Monte Carlo: To estimate the volume of the con-
vex body K, an increasing sequence of concentric balls B0 ⊆ B1 ⊆ · · · ⊆ Bl
is selected such that B0 ⊆ K ⊆ Bl.

and B(0,m), where

ri = 2
i
n , for i = 0, · · · , l. (2.33)

For an illustration see Figure 2.6. Set

Ki = B(0, ri) ∩K, (2.34)

then
K0 = B(0, 1) and Kl = B(0,m) ∩K = K. (2.35)

The balls are chosen such that the volume ratio of two consecutive balls
is bounded by a constant and thus we also have their intersection with K
bounded:

vol(Ki+1)

vol(Ki)
≤ vol(B(0, ri+1))

vol(B(0, ri))
= 2. (2.36)

The volume of K is then approximated by

vol(K) ≈ vol(Kl) ≈
vol(Kl)

vol(Kl−1)
× · · · × vol(K1)

vol(K0)
× vol(K0). (2.37)
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To estimate the volume ratios, N random points are sampled from Ki+1

and then the number of points in Ki, ci, is counted, thus

vol(Ki+1)

vol(Ki)
=
N

ci
. (2.38)

To sample uniformly from Ki+1, random walk methods are used, such
as ball-walks, grid walks or hit-and-run methods. Hit-and-run yields the
fastest algorithms today.
Lovász and Vempala (2006) were able to design an O?(n4) algorithm
by replacing the sequence of Ki by a sequence of log-concave functions
f0 ≤ f1 ≤ · · · ≤ fm and calculating the ratios of integrals (

∫
fi−1)/(

∫
fi).

There are still some difficulties in applying the described volume estima-
tion algorithms, as well as a lack of practical implementations (Ge and
Ma, 2015). The reasons for this are complex oracles, time-consuming ora-
cle queries, and a very large constant prefactor in the theoretical complex-
ity (Ge and Ma, 2015; Lovász, 1999). This leads to algorithms that are
“almost infeasible even in low dimensions” (Ge and Ma, 2015).

33





CHAPTER

THREE

Lp-Adaptation, An Efficient Algorithm

Uniting Approximate Design Centering and

Volume Estimation

Equipped with the background from Chapter 2, we now introduce our
statistical method, Lp-Adaptation.

Lp-Adaptation unites approximate design centering and volume estima-
tion. It iteratively samples the parameter space using the uniform density
over Lp-balls as proposal distribution q(x). Lp-balls are a good choice
because it is known how to uniformly sample from Lp-balls and how to de-
termine their volume. The choice of Lp-ball reflects assumptions about the
noise performance of the parameters of the system. For example, the L2-
ball assumes a Gaussian perturbation prior, L∞ the worst-case scenario.

An Lp-ball of radius r > 0 is defined as

Lnp (r) = {x ∈ Rn : ‖x‖p ≤ r}, (3.1)
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where

‖x‖p =

(
n∑
i=1

|xi|p
)1
p

(3.2)

and p > 0. Lp-Adaptation successively adapts the proposal distribution to
the unknown feasible region A by adapting position, orientation, and as-
pect ratio of the Lp-balls based on the sampling history. This is inspired by
adaptation concepts introduced in bio-inspired optimization (Kjellström
and Taxen, 1981; Hansen and Ostermeier, 2001) and leads to better sam-
pling efficiency and approximation quality, especially in feasible regions of
high aspect ratio. While strong non-convexity will deteriorate sampling
efficiency, our approach is not limited to convex feasible regions, since it
can dynamically adapt to different areas of a non-convex feasible region.

The dynamic affine adaptation of the Lp-ball is based on the concept of
Gaussian Adaptation (GaA) (Kjellström and Taxen, 1981), which continu-
ously adapts the mean and the covariance matrix (describing correlations
and scaling between the parameters) of a Gaussian proposal based on pre-
vious sampling success. GaA is a classical optimization heuristic that is
linked to maximum-entropy estimation (Müller and Sbalzarini, 2010b) and
provides a unifying algorithmic framework for optimization and sampling
(Müller and Sbalzarini, 2010a). Based on this analogy, GaA has previously
been extended to design centering (Müller and Sbalzarini, 2011). The use
of a Gaussian proposal, however, becomes unfavorable for feasible regions
of non-elliptic shape. For a more detailed description of GaA, see Sec-
tion 2.3.

Efficient design centering and robust volume approximation become possi-
ble in the same framework by combining the adaptation concept of GaA
with the use of Lp-balls (Seifi et al., 1999) as non-Gaussian proposals and
with a schedule for changing (decreasing or increasing) target hitting prob-
abilities, where the hitting probability is the probability that a sample
from the proposal distribution is feasible. Some examples of unit Lp-balls
in two dimensions are illustrated in Figure 3.1a, and for an illustration of
a feasible region and a sampling proposal, see Figure 3.1b.

If Lp-Adaptation runs until it has reached a stationary state (stationary
random process), i.e., the statistics of the proposal distribution, such as
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(a) (b)

0 1

Figure 3.1: (a) Illustrations of some unit Lp-balls in two dimensions:
p → ∞: the L∞-ball (the rectangle), p = 2: the L2-ball (the circle),
p = 1: the L1-ball (the diamond), and p = 0.5: the L0.5-ball (the star).
(b) Samples are randomly drawn from the proposal distribution (blue),
which is an affine transformation of an Lp-ball. The hitting probability
P is the probability that the sample lies inside the feasible region A (red).
For uniform sampling, it is given by the overlap area between the proposal
and the feasible region.

hitting probability and mean volume, do no longer change on average,
although the samples still stochastically fluctuate. Averaging over the
last evaluations then provides the final estimates of the design center and
volume of the feasible region. Since the process converges in distribution,
i.e., the random process becomes stationary, averaging is meaningful.

The design center is approximated by the mean of the current Lp-ball, and
the volume estimate is of the form

ṽol(A) ≈ P · vol(Lnp (r)), (3.3)

where P is the hitting probability,

vol(Lnp (r)) =
(2r · Γ(1 + 1

p ))n

Γ(1 + n
p )

(3.4)
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is the volume of the n-dimensional Lp-ball with radius r, and

Γ(z) =

∫ ∞
0

tz−1e−tdt (3.5)

is the Gamma function.

In the remainder of this chapter, we first explain the concepts of Lp-
Adaptation. Then we detail its steps and describe how to average over
covariance matrices. This is followed by a description on the behavior of
Lp-balls and a demonstration on which information we can extract from
the generated samples and from the evolution of the proposal distribution.
We end this chapter with a short conclusion.

3.1 Concepts of Lp-Adaptation

In this section we introduce the two main concepts of Lp-Adaptation: max-
imizing robustness and exploiting the hitting probability.

3.1.1 Maximizing robustness

Lp-Adaptation can be interpreted as a synthetic evolutionary process that
tries to maximize the robustness, rather than the fitness, of the underlying
system. Robustness is measured in terms of the volume vol(Lnp (r)) of an
n-dimensional Lp-ball with radius r, of which a certain fraction P (i.e., the
target hitting probability) overlaps with the feasible region A.

Using the information gained during each iteration, the algorithm adapts
the proposal to find the largest proposal with a given hitting probability.
This is illustrated in Figure 3.2, showing two proposals that have the same
hitting probability, but differ in size.

Let us denote by Lnp = {p,m,C} the set of all Lp-balls where p is the type

of ball, m ∈ Rn the center of the Lp-ball, and C ∈ Sn×n+ is a symmetric
positive-definite (covariance) matrix defining the affine map for transfor-
mation of the Lp-ball. Lp-Adaptation then seeks to maximize the following
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Figure 3.2: The two proposal distributions (blue) have the same hitting
probability over the red feasible region. The adaptation scheme increases
the size (volume) of the proposal under constant hitting probability.

robustness criterion:

max
Lnp∈Lnp

vol(Lnp )

s.t. ∀x ∈ Lnp
Pr(x ∈ A) = P
m ∈ A.

(3.6)

The volume of an Lp-ball is completely determined by the volume of the
unit Lp-ball (with zero mean and n-dimensional identity matrix In) and
the determinant of the matrix C. Thus, the robustness criterion can be
rewritten as a non-convex log-det maximization problem:

max
Lnp∈Lnp

log det C

s.t. ∀x ∈ Lnp
Pr(x ∈ A) = P
m ∈ A.

(3.7)

This objective function provides a natural non-convex extension of the max-
imum inscribed ellipsoid method of Seifi et al. (1999). For instance, if A is
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(a) (b) (c) (d)

Figure 3.3: Illustration of the effect of different hitting probabilities on a
feasible region. (a) Low hitting probabilities may lead to infeasible design
centers. (b) Increasing the hitting probability (e.g. shrinking the proposal)
leads to a feasible design center. (c) For volume estimation, high hitting
probabilities may under-estimate the volume. (d) Decreasing the hitting
probability leads to better volume approximation.

a convex polyhedron with known parameterization and P = 1, then Prob-
lem (3.7) is a convex problem that can be efficiently solved using interior
point methods. However, in the general case, no efficient algorithms exist
to solve Problem (3.7). Lp-Adaptation approximately solves this problem
by using a synthetic evolutionary process, as described in Section 3.2.

3.1.2 Exploiting the hitting probability

An important feature of the sampling and adaptation process is the ability
to control the target hitting probability P , i.e., the probability of hitting
the feasible region A with a sample. This allows Lp-Adaptation to provide
simultaneous design center and volume estimates.

The hitting probability must be neither too low nor too high. Low hitting
probabilities lead to low sampling efficiencies. High hitting probabilities
result in slower adaptation to the feasible region, which may prevent ex-
ploring remote parts of the feasible region. This trade-off is illustrated
in Fig. 3.3. For a Gaussian proposal and a convex feasible region, a hit-
ting probability of 1/e (i.e., the inverse of the Euler-Mascheroni constant)
is information-theoretically optimal (Kjellström and Taxen, 1981). When
sampling uniformly from Lp-balls over non-convex regions, however, no
such result is available. We hence dynamically adapt the hitting probabil-
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ity depending on the task at hand, starting from 1/e as an initial value.
For design centering, the hitting probability in non-convex regions cannot
be too low, as this could lead to an infeasible design center (Fig. 3.3a). It is
hence successively increased in order to drive the process toward a feasible
design center (Fig. 3.3b). For volume approximation, the hitting proba-
bility must not be too high, as this would miss some parts of the feasible
region (Fig. 3.3c). In this case, it is hence successively lowered until the
volume estimate no longer changes (Fig. 3.3d), leading to a better volume
approximation. This strategy is similar to state-of-the-art multi-phase
Monte Carlo methods (see Section 2.5) for approximate convex volume
estimation (Simonovits, 2003; Vempala, 2010).

3.2 Steps of Lp-Adaptation

Lp-Adaptation draws samples uniformly from an Lp-ball as detailed in Al-
gorithm 7, and iteratively adapts position, orientation, and aspect ratio of
the Lp-ball, see Figure 3.4. This is done by adapting the mean and covari-
ance matrix of an affine mapping applied to the ball prior to sampling. For
improved sampling and adaptation efficiency, Lp-Adaptation uses, at each
iteration, an adaptive multi-sample strategy (Hansen, 2008) that is consid-
ered state-of-the-art in bio-inspired optimization (Hansen and Ostermeier,
2001).

Lp-Adaptation consists of the following four steps: Initialization, Sam-
pling, Evaluation, and Adaptation, which are repeated in iterations un-
til a stopping criterion is fulfilled (e.g., a maximal number of evaluations
of the specifications is reached). The Lp-Adaptation algorithm requires
two inputs: (1) a feasible starting point, and (2) a membership oracle that
checks whether any given point is feasible or not by evaluating the speci-
fications. All other algorithm parameters have default values as given in
Algorithm 8 and do not necessarily need to be set by the user. Below, we
discuss the individual steps of the algorithm in detail.
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start with feasible point sample new points    , evaluate

adapt step size

all points infeasible

sample new points    , evaluate
some point feasible

adapt step size, transformation 
matrix and mean 

(a) (b)

(c)

(e)

(d)

(f)

sample new points, evaluate,
adapt

Figure 3.4: Schematic illustration of the algorithmic procedure of adapting
the proposal distribution (blue ellipse) to the feasible region (red). The
cross represents the mean of the proposal distribution. (a) The algorithm
requires a feasible point so start with. This feasible point is set as the mean
(center) of the initial proposal distribution. The initial proposal ball is
isotropic with a radius of 1. (b,d) New points are drawn from the proposal
and evaluated against the specifications by querying the membership oracle.
(c) If all points are infeasible, the ball radius is reduced in order to increase
the probability of sampling a feasible point next. The shape of the proposal
remains unchanged. (e) If at least one point is feasible, the location, shape,
and radius of the proposal are adapted by moving the mean in the direction
of the center of all feasible points, increasing the radius, and adapting
the affine transformation to include information about the distribution of
feasible points. (f) At the end of the process, the proposal will have the
largest possible volume for the given target hitting probability. Now, the
mean can be used as a design center, and the volume can be approximated
from the determinant of the proposal.
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Algorithm 7: Uniformly sampling from a unit Lp-ball, see Section
4.1 in Ref. (Calafiore et al., 1998)

Input : dimension n, p > 0
Output : real random vector y uniformly distributed in Lnp (1)

1. Sample n real scalars i.i.d. from the generalized Gamma
distribution ξi ∼ G̃( 1

p , p).

2. Construct a vector x ∈ Rn with components xi = siξi, where si are
independent random signs.

3. Compute z = w1/n, where w is a random variable uniformly
distributed in the interval [0, 1].

4. Return y = z x
‖x‖p , where ‖x‖p = (

∑n
i=1 |xi|

p
)1/p.

3.2.1 Initialization

The goal of initialization is to determine the initial shape of the proposal
distribution. Therefore, a user-provided initial feasible point is used as the
mean of the initial proposal distribution. Since the proposal is an Lp-ball,
it is completely determined by:

1. the norm p > 0,

2. the ball radius r ∈ R+, and

3. an affine transformation matrix C = r2(Q)(Q)T ,
where Q ∈ Rn×n and det Q = 1.

The norm p is given by the user or set to its default value p = 2 and never
changes throughout the algorithm. Q and r are dynamically adapted,
usually starting from the initial values Q = I and r = 1. Prior knowledge
about the shape of the feasible region can be incorporated in C.

The sample size per iteration λ ∈ N+ and the target hitting probability
P ∈ [0, 1] are initialized automatically to P = 1

e (information-theoretic
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Algorithm 8: Lp-Adaptation for approximate design centering and
volume estimation with Lp-balls

Input : Initial feasible point m(0) ∈ Rn
membership oracle f : Rn → {0, 1} (check specifications)

Output : Design center m(K), Q(K), radius r(K), empirical hitting

probability P
(K)
emp

Initialize : transformation matrix C(0) ∈ Rn×n, default: I
rank-one update vector pc ∈ Rn,pc = 0
p-norm p > 0, default: p = 2
population size λ ∈ N+, default: 4 + b3 log(n)c
weighting factor cm ∈ [0, 1], default: 1/(en)
learning constant for rank-one update cp, default: 1√

n

window size for Pemp w ∈ N+, such that w
λ ∈ N+,

default: b 300
λ cλ

vector of target hitting probabilities P, where
Pl,l=1·m ∈ [0, 1], default: 0.35
# of iterations K, where Kl,l=1,··· ,m ∈ N+, K0 = 0, such
that Kl −Kl−1 iterations with Pl, default: b 1000

λ cn

1 BDDB← C(0) /* Eigen-decomposition, B orthogonal, D diagonal

with elements sorted ascendingly */

2 Q← BD

3 Q(0) ← 1
(detQ)1/n

Q // normalize Q, such that detQ = 1

4 r(0) ← 2n
√

det C(0) // C = r2QQT , all volume information in r

5 for l← 1 to m do
6 set learning rate β ∈ [0, 1], default: 0.6

(n+1.3)2+Plλ

7 fe ← 1 + β(1− Pl) // expansion factor

8 fc ← 1− βPl // contraction factor

9 for g ← Kl−1 + 1 to Kl do
/* sample λ points, uniformly from Lp-ball with radius r(g),

centered at m(g), deformed by C(g) and evaluate them */

10 [X,b, µ]← SampleEval(λ, p, n, m(g−1), r(g−1), Q(g−1), f)

11 [r(g),m(g),C(g),Q(g),pc
(g)]← Adaptation(λ, µ, fe, fc, cm,

cp, m(g−1), r(g−1), Q(g−1), C(g−1), pc
(g−1), X, b)

12 P
(g)
emp = # of feasibe points in min((g−Kl−1)λ,w) previous evaluations

(min((g−Kl−1)λ,w))
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Algorithm 9: Sample λ points from proposal and evaluate them

[X,b, µ]← SampleEval(λ, p, n, m, r, Q, f)

1 for j ← 1 to λ do
2 Sample y ∼ Lnp (1) // sample uniformly from Lp-ball with radius

1, see Algorithm 7

3 X:,j ←m + r(Qy) // affine transform of samples

4 Evaluate bj = f(X:,j) // if X:,j feasible, bj = 1, else bj = 0

5 count number of feasible points µ

optimum for Gaussian proposals (Kjellström and Taxen, 1981)) and λ =
4 + b3 ∗ log(n)c (default for CMA-ES (Hansen and Ostermeier, 1996)). If
the algorithm should adaptively change the target hitting probability as
described in Section 3.1.2, the user can provide a vector P of target hitting
probabilities. P should then be increasing for a design centering task and
decreasing for a volume approximation task, see Section 3.2.5.

3.2.2 Sampling

Sampling generates candidate solutions by drawing λ random numbers
uniformly distributed in the proposal Lp-ball. This is efficiently done by
first sampling points in the unit Lp-ball in n dimensions, as detailed in
Algorithm 7, and then transforming the samples using the affine map Q
and scaling them to radius r. This is detailed in Algorithm 9, Line 3, and
it samples λ points from the current, adapted proposal distribution.

3.2.3 Evaluation

For each of the λ points, the algorithm needs to evaluate whether it is
feasible or not. For this binary decision, the provided membership oracle
is queried for all points, internally checking them against the specifications,
see Algorithm 9, Line 4. The number of feasible points is called µ.
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Algorithm 10: Adapt radius r, mean m, matrices C and Q, and pc

[r(g),m(g),C(g),Q(g),pc
(g)]← Adaptation(λ, µ, fe, fc, cm, cp,

m(g−1), r(g−1), Q(g−1), C(g−1), pc
(g−1), X, b)

1 Adapt r(g) ← fµe · fλ−µc r(g−1) // adapt ball radius

2 if µ > 0 then
3 Adapt m(g) ← (1− cm)m(g−1) + cm · 1

µ (X · b) // adapt mean

4 set scalars αj ≥ 0, for j = 0, . . . , µ // αj normalize input entries

for matrix C

5 pc ← (1− cp)pc +
√
cp(2− cp)α0(m(g) −m(g−1)) // rank-one

update

6 Cµ ←
∑λ
j=1 bj

1
µα

2
j (X

(g)
:,j −m(g−1))(X

(g)
:,j −m(g−1))T // use all

feasible points for rank-µ update

7 compute learning rates c1 ∈ [0, 1] for rank-1 update, and
cµ ∈ [0, 1] for rank-µ update, see equations (3.15) and (3.16)

8 Adapt C(g) ← (1− c1 − cµ)C(g−1) + c1pcpc
T + cµCµ // adapt

affine transformation matrix

9 BDDB← C(g) // Eigen-decomposition

10 Q← BD

11 Q(g) ← 1
(detQ)1/n

Q // normalize Q, such that detQ = 1

12 else
13 m(g) = m(g−1)

14 pc
(g) = (1− cp)pc

(g−1)

15 Q(g) = Q(g−1)

16 C(g) = C(g−1)
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3.2.4 Adaptation of the proposal

Using the information gained during Evaluation, the algorithm adapts
the proposal toward finding the largest proposal with the given hitting
probability. In order to work toward larger sizes, Q and r are adapted in
each iteration such that the hitting probability remains roughly constant.
Radius, mean, and covariance of the affine map are adapted as detailed
below.

3.2.4.1 radius

The proposal radius r is adapted as shown in Algorithm 10, Line 1, where
fe > 1 is an expansion factor and fc < 1 is a contraction factor (see
Section 3.2). The factors fe and fc are chosen such that the hitting proba-
bility remains constant under stationary conditions, which means that the
volume of the proposal distribution

det(C) = r2n det(QQT ), (3.8)

does not change (Kjellström and Taxen, 1981). For each feasible point,
the radius is increased by a factor fe, and for each infeasible point it is
decreased by a factor fc. Overall, this changes the proposal volume by
factors of f2n

e and f2n
c , respectively. Assume there are S feasible and F

infeasible points at stationarity. Since the total volume must not change,
this leads to the condition

S∏
i=1

(fe)
2n

F∏
i=1

(fc)
2n = 1. (3.9)

Since the effective, empirical hitting probability, Pemp, at stationarity is
equal to the target hitting probability, i.e., the algorithm has converged,
and assuming fe and fc to be near 1, we get:

fe = 1 + β(1− P ) (3.10)

fc = 1− βP, (3.11)
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where P is the target hitting probability, and the learning rate β ∈ [0, 1]
regulates the speed of adaptation. A β that is too large leads to oscillations
in the radius; a β that is too small leads to slow adaptation. We use the
default value

β =
0.6

(n+ 1.3)2 + Pλ
. (3.12)

3.2.4.2 mean

If at least one feasible point was sampled, i.e., µ > 0, the mean of the
proposal is adapted according to:

m← (1− cm)m + cm
1

µ
Xb , (3.13)

where X:,j is the j-th sampled point, and bj is a binary variable indicating
the feasibility of X:,j (1: feasible, 0: infeasible). Therefore 1

µXb is the
center of mass of the µ feasible points found, see Algorithm 10 Line 3.

The parameter 0 ≤ cm ≤ 1 defines how far the mean is moved in the
direction of the center of mass of the new feasible points. If cm = 0,
the mean is not adapted at all, if cm = 1, the mean immediately jumps
to the center of mass of the µ new feasible points. We propose to use
cm = 1/(en) (Müller and Sbalzarini, 2010a). It is also possible to make cm
depend on the number of feasible points per iteration, as cm = min( µen , 0.5),
such that the mean moves faster if more feasible points are found.

3.2.4.3 covariance

If at least one feasible point was sampled, the covariance of the affine
mapping of the proposal is adapted according to:

C← (1− c1 − cµ)C + c1pcpc
T + cµCµ , (3.14)

where the second term is a rank-one update proportional to the difference
between the new and the old mean. The third term is a rank-µ update,
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adding µ linearly independent directions into the matrix, i.e., the infor-
mation in the µ directions learned from the feasible points. The details
of these updates are as previously described (see Section 2.4 and Hansen
(2008)). The learning rates c1 ∈ [0, 1] and cµ ∈ [0, 1] determine the weights
of the rank-one update and the rank-µ update, respectively. Their sum
must be smaller than 1. As suggested previously (Hansen, 2008), we set

c1 = αc
0.2

(n+ 1.3)2 + µ
, (3.15)

and

cµ = 0.2αc
µ− 2 + 1

µ

(n+ 2)2 + αµµ
, (3.16)

where αc = 3 and αµ = 0.2 were found in a parameter study, see Sec-
tion 3.2.4.4. Both c1 and cµ depend on µ, the number of feasible points
in one iteration, such that larger µ give more importance to the rank-µ
update.

3.2.4.4 Parameter study for αc and αµ

To decide for the parameters αc and αµ, we per-
form a grid search over αc = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ×
αµ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. For each point of this
2D grid we check how well the volume of different feasible regions is
approximated over five separate runs with an L1-ball and an L2-ball
as proposal distribution. The feasible regions are Lp-balls with p-norm
0.5, 1, 2, and ∞, each isotropic and stretched along (n− 1) axes such
that the longest axis is ten times longer than the shortest one, and the
lengths of the axes are logarithmically spaced. Every test case is checked
in dimensions 2, 5, 10, 20, and 50. This yields 80 test cases for each
combination of ac and aµ, where each test case is repeated five times. In
Figure 3.5, the results of this parameter study are visualized. The color
code depicts how well the volume was approximated, the smaller the
error value, the better. The error is quantified by the relative difference
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Figure 3.5: Grid search for ac and aµ: for each combination of ac and aµ,
we tested how well Lp-Adaptation approximates the volume with an L1-
proposal (top row) and an L2-proposal (bottom row). The chosen values
ac = 3 and aµ = 0.2 (black square) ensure low errors for all tested cases.
The color code indicates the sum of the relative differences in volume
approximation (the lower the value, the better): (a) Sum of all test cases.
(b) Sum over all test cases in two dimensions. (c) Sum over all test cases
in 20 dimensions. (d) Sum over all test cases where the feasible region
is an L0.5-ball. (e) Sum of all test cases where the feasible region is an
L∞-ball.
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n target hitting probabilites number of iterations

2 (0.35, 0.15) Kmax

(
1
2 ,

1
2

)
5 (0.35, 0.15, 0.06) Kmax

(
2
5 ,

3
10 ,

3
10

)
10 (0.35, 0.15, 0.06, 0.03) Kmax

(
1
3 ,

2
9 ,

2
9 ,

2
9

)
20 (0.35, 0.15, 0.06, 0.03, 0.01) Kmax

(
1
4 ,

1
8 ,

1
8 ,

2
8 ,

2
8

)
50 (0.35, 0.15, 0.06, 0.03, 0.01, 0.005, 0.002) Kmax

(
1
4 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8

)
Table 3.1: Used target hitting probabilities and their corresponding number
of iterations for the test cases in different dimensions n that were used
for a parameter study to find ac and aµ. Kmax = n · 104.

in volume approximation:

dr =
| 15
∑5
k=1 ṽolk(A)− vol(A)|

vol(A)
, (3.17)

where ṽolk(A) is the approximated volume of run k and vol(A) is the
exact volume which is known for these simple test bodies. Every run has a
maximal number of iterations of Kmax = n·104, and a schedule of changing
hitting probabilities P and corresponding numbers of iterations for each
hitting probability as summarized in Table 3.1.

The plots in Figure 3.5 show the sums of the errors for different cases:
the top row shows the results when an L1-ball is used as the proposal
distribution, the bottom row when an L2-ball is used. Subplots 3.5a show
the sum over all test cases, Subplots 3.5b the sum over all cases in two
dimensions, and Subplots 3.5c the sum over all cases in 20 dimensions. In
Subplots 3.5d, all cases where the feasible region is an L0.5-ball are summed
and in Subplots 3.5e all cases where the feasible regions is an L∞-ball. We
exclude the test cases of all L50

0.5- balls when running Lp-Adaptation with
an L2-proposal, because the volume could not be approximated with the
used hitting probabilities. If we would include this high error into the sum,
there would be no difference anymore for the different ac and aµ. The
choice of ac influences the error much more than the choice of aµ. The
chosen values ac = 3 and aµ = 0.2 ensure low errors for all tested cases.
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3.2.5 Adapting the hitting probability

Introducing a schedule for changing the hitting probability makes it possi-
ble to find a better design center or to obtain a better volume approxima-
tion. The sequence of target hitting probabilities can be given as an input
to the algorithm.

It should start from a value around 1
e in order to first learn the location

and rough shape of the feasible region. This information is then used to
perform “warm starts” with the subsequent target hitting probabilities by
changing the target hitting probability according to a fixed, predefined
schedule. In a warm start we do not re-initialize but keep all information
we learned about the feasible region (e.g. r, m and C). Alternatively, a
variable schedule can be used when lowering the hitting probability for
volume estimation, see Algorithm 11.

For the fixed schedule, the user defines in advance after how many function
evaluations the hitting probability is changed, and to what values. For
the variable schedule, the hitting probability is decreased to predefined
values whenever the process is converging. This is decided by looking
at the relative changes of the radius r, the empirical hitting probability
Pemp, and the volume of the axes-aligned bounding box VBB and the
Loewner ellipsoid VL of all feasible points, see Algorithm 12. The Loewner
ellipsoid (Gruber, 2011) of a set of points is the unique minimal-volume
ellipsoid that contains this set of points. If r, P , VBB , and VL are not
changing anymore, we assume that the proposal distribution “has seen”
everything of the feasible region that is possible to see with the current
hitting probability. Then, the target hitting probability is lowered. If
reducing the hitting probability does not lead to a larger estimated volume,
we assume that the proposal has covered the entire feasible region and stop
the algorithm.

We now explain the variable schedule in more detail on Figures 3.6 and 3.7.
They show example trajectories used for the decision when to lower the
hitting probability. In the examples, the feasible regions are a stretched L5

2-
ball (Figure 3.6) and a stretched L5

0.5-ball (Figure 3.7), where (n− 1) axes
are stretched such that the longest one is ten times longer than the shortest
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Algorithm 11: Lp-adaptation for volume estimation with Lp-balls
(variable schedule)

Input : Initial feasible point m(0) ∈ Rn
membership oracle f : Rn → {0, 1} (check specifications)

Output : Design center m(K), Q(K), radius r(K), empirical hitting

probability P
(K)
emp

Initialize : C(0) ∈ Rn×n, pc ∈ Rn, p > 0, λ ∈ N+, cm, cp ∈ [0, 1],
w ∈ N+, vector of m decreasing target hitting
probabilities P, # of iterations Kmax, K0 = 0
for default values see Algorithm 8

1 BDDB← C(0) /* Eigen-decomposition, B orthogonal, D diagonal

with elements sorted ascendingly */

2 Q← BD

3 Q(0) ← 1
(detQ)1/n

Q // normalize Q, such that detQ = 1

4 r(0) ← 2n
√

det C(0) // C = r2QQT , all volume information in r

5 l = 0, g = 0 // count changes of P and iteration count

6 repeat
7 l = l+1

8 set learning rate β ∈ [0, 1], default: 0.6
(n+1.3)2+Plλ

9 fe ← 1 + β(1− Pl) // expansion factor

10 fc ← 1− βPl // contraction factor

11 repeat
12 g = g+1

13 [X,b, µ]← SampleEval(λ, p, n, m(g−1), r(g−1), Q(g−1), f)

14 [r(g),m(g),C(g),Q(g),pc
(g)]← Adaptation(λ, µ, fe, fc, cm,

cp, m(g−1), r(g−1), Q(g−1), C(g−1), pc
(g−1), X, b)

15 P
(g)
emp = # of feasibe points in min((g−Kl−1)λ,w) previous evaluations

(min((g−Kl−1)λ,w))

16 [z1, Vl]← CheckConvergence1(all feasible points found so
far, trajectory of radius obtained with Pl, trajectory of Pemp

obtained with Pl)
17 until z1 == 1 or g = Kmax

18 if l > 2 then
19 z2 ←CheckConvergence2(Vl−1, Vl)

20 Kl = g

21 until z2 == 1 or l == m or g == Kmax
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Algorithm 12: Check if process has converged

[z1, Vl]← CheckConvergence1(all feasible points found so far,
trajectory of radius r obtained with Pl, trajectory of Pemp obtained
with Pl, p, n)

Initialize : error thresholds εr, εP , εL, εB

1 z1 = 0, Vl = []
2 if trajectories long enough then
3 calculate δr, the relative change of r
4 calculate δP , the relative change of Pemp

5 if δr < εr and δP < εP then
6 calculate δL, the relative change of volumes of Loewner

ellipsoids from accepted samples
7 calculate δB , the relative change of volumes of axes-aligned

bounding boxes from accepted samples
8 if δL < εL and δB < εB then
9 z1 = 1

10 Vl = P
(K)
emp · vol(Lnp (r))

Algorithm 13: Check if volume approximation changed

z2 ← CheckConvergence2(Vl−1, Vl)

Initialize : error threshold εV

1 calculate δV , the relative change of Vl−1 and Vl
2 if δV < εV then
3 z2 = 1
4 else
5 z2 = 0
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one and scaled such that the determinant of the transformation matrix
det(C) = 1. Both figures show one example run with an L2-proposal.

As described in Algorithm 12, the relative change of step size r and the
relative change of the empirical hitting probability Pemp are monitored.
This is done by averaging the trajectories over two equisized, subsequent
intervals (red and orange rectangles in Figures 3.6 and 3.7) and comparing
them. Let’s call the averages of two equisized, subsequent intervals of a
trajectory m1 and m2. If

δ =
|m1 −m2|

1
2 (m1 +m2)

< ε (3.18)

for the hitting probability and the radius, then the same is checked for the
upper bounds of the volume: the volume of the Loewner ellipsoid (blue)
and the volume of the axes-aligned bounding box (green). The size of the
averaging intervals increases with lower hitting probability because with
a smaller hitting probability more samples are needed to get the same
information (obtain a similar number of new feasible points). We choose
the size of the intervals to be

s = min

(
30n

P
, 2000

)
. (3.19)

We cap the size to 2000 to avoid very large intervals. The thresholds ε
chosen for the two examples are εr = εP = εL = εB = 0.005. The smaller
the ε, the more equal the averages m1 and m2 and the more likely that
the run of Lp-Adaptation converged. Monitoring the empirical hitting
probability and the radius are more important than monitoring the outer
approximations. The outer approximations are more of an indication that
there is no huge part missing from the feasible region that could have
been “seen” with the current proposal. Before lowering the target hitting
probability P , the volume of the feasible region is estimated by

ṽol(A) = Pemp · vol(Lnp (r̄)), (3.20)

where r̄ is the averaged step size over an interval with size

s =
1

2
(Kl −Kl−1). (3.21)
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P ṽol(A) relative error

0.35 1.637 · 10−4 0.4198
0.25 2.080 · 10−4 0.2629
0.15 2.305 · 10−4 0.1832
0.1 2.580 · 10−4 0.0859
0.05 2.743 · 10−4 0.0278
0.03 3.133 · 10−4 0.1103
0.01 3.117 · 10−4 0.1047

Table 3.2: Volume approximation of an L5
0.5-ball with an L5

2-proposal,
and its relative error, during one run of Lp-Adaptation with a variable
schedule of decreasing target hitting probabilities P , see also Figure 3.7.
The true volume of the feasible region is 2.8219 · 10−4.

Kl−Kl−1 is the number of iterations done with the current target hitting
probability Pl. Starting with the second volume estimate of the feasible
region, the relative change δV (see Equation (3.18)) is calculated, see Algo-
rithm 13. The algorithm stops, if δV is below the threshold εV (in the two
examples εV = 0.01). The threshold εV defines how equal two successive
volume approximations have to be before the algorithm stops. If εV is too
high, Lp-Adaptation may stop too early and underestimate the volume,
whereas if it is too low, Lp-Adaptation may not stop (not before the maxi-
mal number of evaluations is reached) due to the fluctuating nature of the
process. When choosing εV , one should have this trade-off in mind. We
find a choice of εV ∈ [0.005, 0.05] to work well in practice.

The relative errors of the volume approximation of the L5
2-ball are 0.0004,

0.0157, and 0.0225 with a target hitting probability P of 0.35, 0.25, and
0.15, respectively. At the end of the run, the relative error of the volume
approximation of the L5

0.5-ball is 0.1047 with a target hitting probability
P of 0.01. For the volume approximations with the other P and corre-
sponding errors, see Table 3.2.

In our examples, using an L5
2-proposal to approximate the volume of the

L5
0.5-ball (Figure 3.7) with the variable schedule needs about six times

more oracle evaluations than approximating the volume of the L2
2-ball

(Figure 3.6). In Figure 3.6d the volume approximation of the feasible re-
gion does not change with decreasing P . The initial proposal distribution
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Figure 3.6: Example trajectories relevant for adaptation of the hitting
probability. The feasible region is a stretched L2-ball in five dimensions.
In each plot, the different phases with changing target hitting probabilities
(as shown at the top of each plot) are separated by gray vertical lines and
the rectangles indicate intervals where values are averaged and compared
for adaptation. (a) The target hitting probability (black dashed line) and
the evolution of the empirical hitting probability (blue). (b) The radius r
of the proposal. (c) Volumes of the outer approximations Loewner ellip-
soid (blue) and axes-aligned bounding box (green). (d) The approximated
volume of the feasible region. (a-c) are used to decide when to lower the
hitting probability, see Algorithm 12, (d) is used to decide when to stop
Lp-Adaptation if run with a variable schedule, see Algorithm 13.
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Figure 3.7: Example trajectories relevant for adaptation of the hitting
probability. The feasible region is a stretched L0.5-ball in five dimensions.
In each plot, the different phases with changing target hitting probabilities
(as shown at the top and the bottom of each plot, respectively) are sep-
arated by gray vertical lines and the rectangles indicate intervals where
values are averaged and compared for adaptation. (a) The target hitting
probability (black dashed line) and the evolution of the empirical hitting
probability (blue). (b) The radius r of the proposal. (c) Volumes of the
outer approximations Loewner ellipsoid (blue) and axes-aligned bounding
box (green). (d) The approximated volume of the feasible region. (a-c)
are used to decide when to lower the hitting probability, see Algorithm 12,
(d) is used to decide when to stop Lp-Adaptation if run with a variable
schedule, see Algorithm 13.
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is isotropic and does not match the stretched L5
2-ball, therefore the approx-

imated volume increases until the proposal has learned the shape of the
feasible region by around 2000 evaluations and then only fluctuates around
this value. In comparison, when looking at the volume approximation of
the L5

0.5-ball (Figure 3.7d), we see that a hitting probability of P = 0.35 is
not enough for the L2

2-proposal to cover the L5
0.5-ball and that the volume

approximation is increasing with decreasing hitting probabilities.

In general, a better volume approximation can be achieved using a proposal
that is big enough to cover most of the volume of the feasible region and
by averaging over separate runs.

3.3 Averaging of Covariance Matrices

Since the process of adapting the proposal distribution to the location and
shape of the underlying feasible region is only stationary in distribution,
we want to average over the last iterations to get a value for the location
(mean) and the shape (covariance) of the feasible region. Naively averaging
the covariance matrices component-wise will not preserve the directions,
see Figure 3.8.

How to average over covariance matrices has for example been studied in
EEG signal classification (Barachant et al., 2013; Yger et al., 2015). There,
an average covariance matrix is found by solving the optimization problem

min
C

m∑
k=1

d(Ck,C), (3.22)

where Ck,k=1,··· ,m are the covariance matrices that should be averaged, C
is the resulting averaged covariance matrix and d is a distance function.
Examples for distance functions are the Euclidean distance, the LogEu-
clidean distance, and the Riemannian metric (Yger et al., 2015).

Since we can assume that Lp-Adaptation has converged to a stationary
distribution (only then averaging is meaningful), we can use Eigenvalues
and Eigenvectors as a more natural way of averaging covariance matrices.
We require that the Eigenspaces of two successive covariance matrices do
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Figure 3.8: The average covariance matrix C (red ellipse) of the two
covariance matrices C1 (blue ellipse) and C2 (black ellipse). The green
ellipse shows the component-wise average of C1 and C2. Lines represent
their corresponding Eigenvectors.

not change much. The variance between two successive covariance matri-
ces is tolerable if the directions of one covariance matrix can be uniquely
mapped onto the directions of the other.

Under these assumptions, which are trivially fulfilled for Lp-Adaptation,
averaging is then realized by Eigen-decomposition of the m covariance
matrices to be averaged, where we identify consecutive Eigenspaces and
Eigenvalues before averaging them. The detailed algorithm is described in
Algorithm 14 and the Matlab source code can be found in Appendix A.1.
Below, we illustrate the procedure in a simple example.

3.3.1 Example

Here we show a simple 2D example of how to average over two covariance

matrices C1 =

(
2 0
0 1

)
and C2 =

(
3 2
2 2

)
according to the presented procedure, we first get the Eigen-
decompositions BDB−1 ← C of both matrices, where columns of B are
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Algorithm 14: Average covariance matrix

Input : Covariance matrices C1,C2, · · · ,Cm ∈ Rn×n
Output : Average covariance matrix C ∈ Rn×n

1 BoldDoldB−1
old ← C1 /* Eigen-decomposition, columns of Bold are

Eigenvectors of C1, diagonal elements of Dold are corresponding

Eigenvalues. */

2 DΣ = Dold

3 BΣ = Bold

4 for i← 2 to m do
5 set vector w to 0
6 BDB−1 ← Ci /* Eigen-decomposition */

7 for j ← 1 to n do
8 q← B(:, j)

9 v← qTBold

10 idxmax ← arg max
k=1···N

(|vk|) /* get index of previous Eigenvector

that q is most alike to */

11 w(j)← idxmax /* get order of vectors */

12 DΣ(idxmax, idxmax)← DΣ(idxmax, idxmax) + D(j, j) /* add

Eigenvalues */

13 a← qTBold(:, idxmax)
/* check that vectors are pointing in same direction */

14 if a < 0 then
15 p = (−1) · q
16 else
17 p = q

18 B(:, j)← p
19 BΣ(:, idxmax) = BΣ(:, idxmax) + p /* add Eigenvectors */

20 check that mapping of Eigenvectors is bijective
21 Bold ← B(:,w)

22 D← 1
mDΣ

23 normalize each Eigenvector in BΣ

24 C← BΣDB−1
Σ /* get averaged covariance */

25 C← 1
2 (C + CT ) /* symmetrize it */
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Eigenvectors of C and diagonal elements of D are the corresponding Eigen-
values:

BoldDoldB−1
old ← C1

(
0 1
1 0

)(
1 0
0 2

)(
0 1
1 0

)
← C1

BDB−1 ← C2

(
0.6154 −0.7882
−0.7882 −0.6154

)(
0.4384 0

0 4.5616

)(
0.6154 −0.7882
−0.7882 −0.6154

)
← C2

We continue by having a look at the first Eigenvector of C2

q = B(:, 1) =

(
0.6154
−0.7882

)
,

to see which Eigenvector of C1 it best maps to.

We know that the smaller the angle between two vectors q1 and q2, the
larger their absolute scalar product |q1 ·q2| (if they are orthogonal it equals
0, and if they are pointing in the same or opposite direction, it equals 1).
We thus calculate

v = qTBold =
(

0.6154 −0.7882
)( 0 1

1 0

)
=
(
−0.7882 0.6154

)
.

Calculating v tells us which direction of C1 best maps to q and since
|v1| > |v2|, we map (−1) · q onto the first Eigenvector of C1 (To make the
vectors point into the same direction, we multiplied q by (−1)). Checking
the same for q = B(:, 2), the second Eigenvector of C2, it gets multiplied
by (−1) and mapped to the second Eigenvector of C1.
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The matrix of the sums of Eigenvectors now equals

BΣ =

(
0 1
1 0

)
+

(
−0.6154 0.7882
0.7882 0.6154

)
=

(
−0.6154 1.7882
1.7882 0.6154

)
.

The matrix with the sums of Eigenvalues in the diagonal equals

DΣ =

(
1 0
0 2

)
+

(
0.4384 0

0 4.5616

)
=

(
1.4384 0

0 6.5616

)
.

To get the averaged covariance matrix, we normalize the summed Eigen-
vector to unit length. The averaged Eigenvectors then equal

Bm =

(
−0.3254 0.9456
0.9456 0.3254

)
,

and the averaged Eigenvalues equal

Dm =
1

2
DΣ =

(
0.7192 0

0 3.2808

)
.

This leads to the averaged covariance matrix:

C = BmDmB−1
m =

(
3.00 0.7882

0.7882 0.9905

)
.

The matrices C1, C2, and their average C, are illustrated in Figure 3.8.
In summary, we average covariance matrices by averaging their Eigenvec-
tors and Eigenvalues and then reconstructing the average matrix from this
average Eigen-decompostion. This guarantees that the directions are pre-
served.

3.4 Behavior of Lp-balls in different dimensions

Since we are using Lp-balls as proposal distributions, we want to compre-
hend their behavior.
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Figure 3.9: The fraction of the volume of the Lp(1)-ball that is covered by
itself depending on its radius r is shown for dimensions n = 2, 3, 5, 10, 20,
and 50.

As dimension increases, an increasing proportion of the volume of an Lp-
ball is found near its surface, see Figure 3.9. In this figure, we shown
how much of the volume of an Lp-ball is covered by itself depending on
its radius. In 50 dimensions, 95% of the volume is in the region where
r ≥ n
√

0.05 = 0.94, whereas in two dimensions it is where r ≥ 0.22.

To understand the behavior of Lp-balls better and to get an insight into
how to choose target hitting probabilities, we now look at how much vol-
ume of an Lpf (1)-ball is covered by Lpp -balls of different radii, where
pf 6= pp. In Figure 3.10 we show how the volume of an L0.5-ball (top
row) is covered by an L1-ball, L2-ball, and an L∞-ball, and how the vol-
ume of an L1-ball (bottom row) is covered by an L0.5-ball, L2-ball, and an
L∞-ball. In Figure 3.11 we show how the volume of an L2-ball (top row)
is covered by an L0.5-ball, L1-ball, and an L∞-ball, and how the volume
of an L∞-ball (bottom row) is covered by an L0.5-ball, L1-ball, and an L2-
ball. In each subplot, this is shown for dimensions n = 2, 3, 5, 10, 20, and
50. All curves are sigmoidal and get steeper with increasing dimensions.
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Figure 3.10: The fraction of the volume of the L0.5(1)-ball (top row) and
L1(1)-ball (bottom row) that is covered by different Lpp(r)-balls (columns)
depending on their radii in dimensions n = 2, 3, 5, 10, 20, and 50. The
radii are plotted until the Lpp(r)-ball completely encloses the Lpf (1)-ball.
If pf ≤ pp, this occurs when r = 1, if pf = 1 and pp = 0.5, this occurs
when r = n.

Most of the volume is then in a shell of the proposal, which gets thinner
with increasing dimension.

If pp is greater than pf , the proposal Lpp -ball with radius 1 covers the
feasible Lpf (1)-ball completely. With increasing dimension, the radius of
the Lpp -ball that is needed to cover almost all of the Lpf -ball, gets smaller.
Equally, with increasing pp, the radius of the Lpp -ball required to cover
the same fraction is smaller.

If pp < pf , the proposal needs to have a larger radius than the feasible
Lpf -ball in order to cover it completely. How large the radius has to be
is visualized in Figure 3.12 for 2D. If the radius of the L∞-ball is set to
r∞, than the Euclidean distance to the corners, which is the radius of the
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Figure 3.11: The fraction of the volume of the L2(1)-ball (top row)
and L∞(1)-ball (bottom row) that is covered by different Lpp(r)-balls
(columns) depending on their radii in dimensions n = 2, 3, 5, 10, 20, and
50. The radii are plotted until the Lpp(r)-ball completely encloses the
Lpf (1)-ball. If pf ≤ pp, this occurs when r = 1. For the cases where
pf > pp, see Figure 3.12.
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rn r
2

√nr

nr

Figure 3.12: The L∞(r)-ball (purple) is completely enclosed by the
L2(
√
nr)-ball (green), the L1(nr)-ball (blue), and the L0.5(n

2r)-ball (red).

enclosing L2-ball is

r2 =

√√√√( n∑
i=1

|r∞|2
)

=
√
nr∞, (3.23)

the radius of the enclosing L1-ball is

r1 =

n∑
i=1

|r∞| = nr∞, (3.24)

and the radius of the enclosing L0.5-ball is

r0.5 =

(
n∑
i=1

√
|r∞|

)2

= n2r∞. (3.25)

If pp < pf , all lines for the different dimensions and a specific pp,pf -
combination, intersect at one point, which means that the proposals cover
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the same fraction of the feasible Lp-balls when they have the same relative
radius.

The fraction of an Lpp -ball overlapping with an Lpf -ball is the probability
of drawing a point inside the latter when sampling from the former. Assum-
ing the Lpf -ball is completely enclosed by the Lpp -ball, we can calculate
this fraction by

Pr
(
x ∈ Lnpf (rf )|x ∼ Lnpp(rp)

)
=

vol(Lnpf (rf ))

vol(Lnpp(rp))
. (3.26)

For pf = 1, pp = 2, and n = 50 this value is:

Pr
(
x ∈ L50

1 (1)|x ∼ L50
2 (1)

)
=

vol(L50
1 (1))

vol(L50
2 (1))

= 2.1 · 10−37. (3.27)

This hitting probability is too small to be used in Lp-Adaptation. But, as
we can see in Figure 3.10, the radius of the proposal does not have to equal
the feasible region’s radius in order to cover the volume. A smaller radius
leads to a higher hitting probability. In Table 3.3 we summarize how low
the hitting probability needs to be such that the proposal Lp-ball covers
90% of the feasible Lp-ball’s volume for dimensions n = 2, 3, 5, 10, 20, and
50. The higher the dimension, the lower the hitting probability has to be
to cover the same percentage of the feasible region. Covering 90% of an
L50

1 (1)-ball with an L50
2 -proposal is possible with a hitting probability of

0.0012.

To allow for better volume approximations, we lower the hitting probability
in Lp-Adaptation such that the proposal covers more of the feasible region’s
volume. In this study we see, that the feasible region does not have to be
completely enclosed to cover most of its volume. These theoretical insights
can be used as a guideline for the user how to set the final target hitting
probability when doing volume approximation with Lp-Adaptation.
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n = 2 n = 3 n = 5 n = 10 n = 20 n = 50
feasible L0.5(1)-ball

L1-proposal 0.84 0.66 0.41 0.13 0.019 4.1 · 10−5

L2-proposal 0.60 0.33 0.092 0.0031 3.6 · 10−6 7.4 · 10−16

L∞-proposal 0.47 0.18 0.019 2.2 · 10−5 3.3 · 10−12 6.2 · 10−36

feasible L1(1)-ball
L0.5-proposal 0.87 0.75 0.58 0.31 0.10 0.0057
L2-proposal 0.92 0.81 0.59 0.26 0.057 0.0012
L∞-proposal 0.75 0.48 0.16 0.0052 1.7 · 10−6 1.2 · 10−18

feasible L2(1)-ball
L0.5-proposal 0.72 0.52 0.28 0.068 0.0049 3.6 · 10−6

L1-proposal 0.92 0.83 0.68 0.42 0.18 0.019
L∞-proposal 0.91 0.78 0.48 0.10 0.0020 1.7 · 10−9

feasible L∞(1)-ball
L0.5-proposal 0.57 0.32 0.097 0.0051 1.6 · 10−5 1.1 · 10−12

L1-proposal 0.74 0.54 0.26 0.041 0.0011 3.2 · 10−8

L2-proposal 0.92 0.78 0.53 0.18 0.022 5.1 · 10−5

Table 3.3: Hitting probability that is necessary to cover 90% of a feasible
Lp-ball with a proposal of different p-norm.
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3.5 Extracting information from generated
samples and from the evolving proposal

distribution

Using Lp-Adaptation, the volume approximation and the estimated design
center are not the only information we can obtain about the feasible region.
Lp-Adaptation approximates the feasible region with an adaptive proposal
distribution. In this section we show, how the collected samples X and
the evolving proposal distribution itself can be used to extract information
about correlations and sensitivity of the design parameters, as well as about
the shape of the feasible region.

3.5.1 Correlations and sensitivity of parameters

From the sample covariance matrix of the accepted points, the Pearson
correlation coefficient between parameters xi and xj can be estimated as:

ρxi,xj = Corr(xi, xj) =
Cov[xi, xj ]

σxiσxj
, (3.28)

where σxi and σxj are the standard deviations. The correlation coefficient
is a dimensionless number between -1 and 1 and measures the linear de-
pendences between xi and xj . If there is a perfect linear proportionality,
it equals 1, and if there is a perfect linear anti-proportionality, it equals
−1.

The Eigen-decomposition of the transformation matrix C

BDB← C (3.29)

gives D, a diagonal matrix of Eigenvalues λi in increasing order and B,
a matrix whose columns are the corresponding Eigenvectors. The Eigen-
vectors are also called principle directions. The most sensitive direction is
the one with the smallest Eigenvalue, where sensitive means that in that
direction a perturbation renders a feasible solution infeasible most easily.
Such information can be useful for example when designing an electri-
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cal circuit where the design parameters are some properties of electrical
components. Detecting the most sensitive direction could be followed by
investing in components with smaller tolerance in those directions.

3.5.2 Shape of the feasible region

Information about the shape of the feasible region can be extracted from
the evolution of the proposal distribution and the collected samples. We
discuss six shape features that can be obtained.

3.5.2.1 Upper bounds on approximated volume

The Loewner ellipsoid (Gruber, 2011) of a set of points is the unique min-
imal volume ellipsoid that contains this set of points. To approximate
this ellipsoid we use Anye Lis Matlab implementation of Khachiyans
algorithm (Khachiyan, 1996). Looking at the volume of the Loewner el-
lipsoid and the axes-aligned bounding box of the set of all feasible points
found during one run of Lp-Adaptation, gives upper bounds for the vol-
ume approximation of the feasible region. Analysis of its evolution over
time shows how well the feasible region is explored. As long as the vol-
ume of the Loewner ellipsoid is increasing, new parts of the feasible region
are still being found. These bounds provide additional global geometric
insight about the feasible region, e.g., if a Loewner ellipsoid or an axis-
aligned bounding box gives a tighter bound on the feasible region and
thus approximates it better. Large variances of the Loewner ellipsoids
and axes-aligned bounding-boxes of several runs suggest that the feasible
region is highly non-convex or disconnected.

3.5.2.2 Distortion of feasible region

A measure of distortion is the condition number of the covariance matrix C.
The condition number cond(C) ≥ 1 is the ratio of the largest to smallest
value in the singular value decomposition of the matrix. It indicates how
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much a unit sphere is distorted under the transformation by the matrix:
the larger the condition number, the longer and thinner the unit sphere
becomes. A well-conditioned matrix has a small condition number, an ill-
conditioned matrix a large condition number. This provides information
about the sphericity or aspect ratio of the feasible region.

3.5.2.3 Marginal statistics

A feasible region can be visualized by its univariate and bivariate marginal
distributions, which can be plotted.
Let X1, X2, · · · , Xi, Xi+1, · · · , Xn denote n continuous random variables,
then the univariate marginal distribution of Xi is

fXi(xi) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, · · ·xn)dx1, · · · , dxi−1, dxi+1, · · · , dxn (3.30)

and the bivariate marginal distribution of X1 and Xi is

fX1Xi(x1, xi) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, · · ·xn)dx2, · · · , dxi−1, dxi+1, · · · , dxn.

(3.31)
From the collection of samples obtained by Lp-Adaptation we can extract
the i-th component sample to obtain the marginal distribution of Xi. To
decrease sampling bias, we discard the samples obtained at the beginning
of a run and use only those obtained after the burn-in period (the phase
where the Markov-chain did not reach a high-probability region yet). With
the remaining samples we do a kernel density estimation to get a smooth
estimate of the marginal distribution.

3.5.2.4 Convexity and Connectivity

Usually, we use several runs of Lp-Adaptation, each using a different start-
ing point. We then check if the runs were exploring the same part of the
feasible region, i.e., find indications if the region is non-convex or discon-
nected. We do this by comparing:
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• the means and the transformation matrices of the proposals

• the sample means and the sample covariances

• the approximated volumes and

• the outer approximations, Loewner ellipsoids, and axes-aligned
bounding boxes.

If the variation between the upper bounds for the volume of the separate
runs is still significant when every individual run seems converged, this is
a first indication that the proposals did not approximate the same part of
the feasible region and that the feasible region is likely to be non-convex
and/or disconnected. If the outer approximations of the separate runs do
not overlap, one could start investigating the area in-between to investigate
if the different parts of the feasible region are connected. This could be
done by sampling points along a line between two feasible points from
different parts of the feasible region found (Hafner, 2010).

3.5.2.5 Find p if feasible region is close to Lp-ball

The sample covariance of a sample uniformly drawn from a transformed
Lp-ball and the transformation matrix C are equal up to a pre-factor that
depends on n and p.

Lacko and Harman (2012) obtain the following proposition:
Let X ∼ Lnp (r), then

(i)E[X] = 0n, and (3.32)

(ii) Cov[X] =
B( 3

p ,
n+p
p )

B( 1
p ,

n+p+2
p )

r2In, (3.33)

where

B(a, b) =

∫ 1

0

νa−1(1− ν)b−1dν =
Γ(a)Γ(b)

Γ(a+ b)
(3.34)
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is the Beta function,

Γ(z) =

∫ ∞
0

tz−1e−tdt (3.35)

is the Gamma function, and

Γ(z + 1) = zΓ(z). (3.36)

This leads to

Cov[X] =
Γ( 3

p )Γ(n+p
p )

Γ( 3+n+p
p )

·
Γ( 1+n+p+2

p )

Γ( 1
p )Γ(n+p+2

p )
r2In (3.37)

=
Γ( 3

p )Γ(np + 1)

Γ( 1
p )Γ(n+2

p + 1)
r2In. (3.38)

Applying Equation (3.36), it follows:

Cov[X] =
n

n+ 2
·

Γ( 3
p )Γ(np )

Γ( 1
p )Γ(n+2

p )
r2In. (3.39)

If we now have a sample X from an Lnp -ball with known radius r and
transformation matrix C

X ∼ Lnp (r,C), (3.40)

then the sample covariance equals

Cov[X] =
n

n+ 2
·

Γ( 3
p )Γ(np )

Γ( 1
p )Γ(n+2

p )
·C. (3.41)

If the feasible region is close to an Lp-ball, this information can be used
to choose a better proposal by finding the p with which the distance of
the sample covariance and the transformation matrix C learned by Lp-
Adaptation is minimized

arg min
p>0

dF

(
Cov[X], n

n+2 ·
Γ( 3
p )Γ(np )

Γ( 1
p )Γ(n+2

p )
·C
)
, (3.42)
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where

dF (A,B) =

√√√√ n∑
i=1

ln2 λi(A,B) (3.43)

is the Foerstner distance (Förstner and Moonen, 1999) between two sym-
metric positive definite matrices A and B, with Eigenvalues λi(A,B) from
|λA−B| = 0. This tells to which Lp-ball the feasible region is most similar
in shape.

3.5.2.6 Proposal changes with sequence of hitting
probabilities

Besides giving better volume approximations and design centers, using
a schedule of changing hitting probabilities also enables us to get more
information about symmetries of the feasible region.

Assuming a fixed mean, looking at the ratio of two volumes approximated
with different hitting probabilities, e.g.

b =
ṽol(A)P1=0.35

ṽol(A)P2=0.85

, (3.44)

tells us how much volume of the larger proposal (P1 = 0.35) was not
included in the smaller proposal (P2 = 0.85). If P1 in the numerator is
smaller or equal to P2 in the denominator, b ≥ 1. If P1 6= P2 and b = 1,
i.e., the volume approximations are identical, the used Lp-ball is a good
approximation of the shape of the feasible region. We can be more certain
about it being a good shape approximation if the difference of the target
hitting probabilities is large enough. We found that using the default initial
value of target hitting probability 0.35 to be a good choice for P1 and a
value above 0.65 a good chocie for P2. If we use L2-balls as proposals,
the higher the value b, the more different the feasible region is from an
ellipsoid, and b can be interpreted as a compactness measure.

Assuming the normalized transformation matrix Cn = C
det(C)1/n

is not

changing with changing P , i.e., the proposals only differ in size, but not
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in shape, then a proposal mean m, that does not change with changing
hitting probabilities, indicates that the feasible region is symmetric.

3.6 Conclusion

We have presented Lp-Adaptation, a statistical method that unites ap-
proximate design centering and volume estimation into a single framework.
The method is based on using Lp-balls as proposals for sampling, which
are dynamically adapted based on the previous samples in order to effi-
ciently explore the feasible region. Maximizing the robustness (volume of
the proposal) and the ability to control the hitting probability are the key
concepts of Lp-Adaptation. Using a schedule of increasing or decreasing
target hitting probabilities enables us to get better design centers and bet-
ter volume approximations, respectively. The hitting probability in the
design centering problem can be interpreted as the yield. If the shape
of the feasible region and the proposal differ, a decreasing hitting prob-
ability ensures that more feasible volume can be ’seen’ by the proposal,
thus providing a better volume estimation. However, especially in higher
dimensions (≥ 50D), this can require a very low hitting probability, which
may lead to high computational costs.

The quality of the approximate solutions obtained from Lp-Adaptation
depends on the unknown shape of the feasible region, the dimensionality
of the problem, and the starting point. In practice, we thus recommend
doing multiple Lp-Adaptation runs from different starting points found by
initial optimization or brute-force sampling, and checking the quality of
the resulting design centers and volume estimates.

If prior knowledge about the shape of the feasible region is available, it can
be included in the initial covariance matrix. From there, the covariance
matrix then automatically adapts to the feasible region. For an example,
see Figure 3.13, where the feasible region is shaded in gray (its shape
is similar to the example from Storn (1999) discussed in Section 4.1). It
consists of a large rectangle with a thin attached arm. The initial proposal
distribution (red circle) is isotropic and has its mean at the very tip of
the thin arm. If we would fix the proposal to be isotropic (green circle),
the chance of finding the large rectangle is much lower than if we allow
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Figure 3.13: Illustration of covariance matrix adaptation. The feasible
region is shaded in gray. It consists of a larger rectangle with a thin arm
attached to it. If we start with an isotropic proposal distribution at the tip
of this arm (red circle), Lp-Adaptation finds the larger rectangle by con-
tinuously adapting the proposal. The blue ellipse shows the adaptation to
the thin arm. Fixing the proposal to be isotropic would shrink it, to main-
tain the target hitting probability (green circle), and make it impossible to
adapt to the thin arm.

the proposal to adapt its shape (blue ellipse). We recommend to only
fix the covariance matrix if one is interested in the yield of a specific
point (e.g., a previously found design center) without affine covariance
adaptation. When fixing the covariance matrix to be isotropic, the radius
of the proposal associated with a specific target hitting probability P tells
how far the design center can be perturbed in any direction and still remain
feasible with probability P (see also Section 5.1, Figure 5.2, where we
compare the robustness of three design centers using this method).
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CHAPTER

FOUR

Validation

We demonstrate the properties of Lp-Adaptation in some benchmark cases,
where the correct answers are known. First we consider three simple 2D
test cases from the literature. This is followed by basic Lp-balls in up to
90 dimensions.

4.1 Illustration in two dimensions

Figure 4.1 shows the behavior of Lp-Adaptation in a classic 2D test case
from the literature (Storn, 1999). The feasible region is shaded in gray. It
consists of a large rectangle (x2 ∈ [−10, 10] and x1 ∈ [5, 10]) with a thin
attached arm (x2 ∈ [−0.1, 0.1] and x1 ∈ [0, 5]). The region is not convex,
and the thin arm is deceiving for an algorithm. We start Lp-Adaptation
from a feasible point at the very tip of this arm, at (0, 0) (red cross in
Fig. 4.1). The initial proposal distribution (red ellipse) is isotropic with a
radius of 1, which does not allow the algorithm to “see” the large rectangle
initially. After 355 function evaluations, however, the proposal distribution
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Figure 4.1: Illustration of Lp-Adaptation using the test case of Storn
(1999). The feasible region (shaded gray) is non-convex and deceiving,
consisting of a large rectangle with a thin arm attached to it. The algo-
rithm is started from the tip of the arm, which is the hardest possible stat-
ing point (red). Even though it initially cannot “see” the large rectangle,
the proposal distribution adapts to the shape of the arm (blue) within 355
evaluations and discovers the large rectangle after 775 evaluations (green).
The evolution of the design center is shown by crosses, the L2 proposal is
shown as ellipses. Colors correspond to the evaluation numbers indicated.
The two inset plots show the evolution of the hitting probability and the
volume estimate versus the number of function evaluations. The dashed
black lines indicate the target hitting probability and ground-truth volume,
respectively. The final design center and volume (purple) are obtained by
averaging over the last 600 evaluations.
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has adapted to the shape of the thin arm (blue ellipse) and points in the
large rectangle start to be found. This progressively moves the center of the
proposal toward the large rectangle, which is reached after 775 evaluations
(green ellipse). The algorithm is run until 2500 evaluations, when it has
reached a stationary state (stationary random process). Averaging over the
last 600 evaluations (purple areas in the inset figures) provides the final
estimates of the design center and volume of the feasible region. Since
the process converges in distribution, i.e., the random process becomes
stationary, averaging is meaningful. The final volume estimate is 100.8
(true value: 101.0) and the design center is (7.45, -0.62). This compares
well with the exact center of the large rectangle, which is (7.5, 0.0). Any
point with x1 = 7.5 and x2 ∈ [−7.5, 7.5] has maximum distance from any
border of the feasible region.

Before the proposal distribution has adapted to the shape of the thin
arm, the effective, empirical hitting probability is lower than the target
hitting probability (dashed line in the inset figure). Thereafter, the hitting
probability increases until the mean of the proposal distribution has moved
into the large rectangle. After around 1200 evaluations the target hitting
probability is reached and maintained. The lower inset plot shows how
the algorithm “discovers” the large part of the feasible region. Around
775 evaluations (green line), the estimated volume sharply increases as
the large rectangle becomes visible, and it finally fluctuates around the
true value of 101.0 (dashed line).

Figure 4.2 shows two other classic 2D test cases from the literature: the
“Handle” (Lasserre, 2014) (Fig. 4.2a) and the “Folium” (Henrion et al.,
2009) (Fig. 4.2b). Again, the feasible regions are shaded in gray. The
volume approximations obtained by different methods are shown in the
panels below. Lp-Adaptation (red stars) uses an ellipsoidal proposal dis-
tribution (p = 2) and starts from ten random feasible points. The results
are compared with those from uniform sampling (“bruteforce”, gray dia-
monds) and with the upper bounds provided by Loewner ellipsoids (Gru-
ber, 2011) (blue circles) and the axes-aligned bounding box (green squares)
of all feasible samples. The true volume is indicated by the dashed black
line. Brute-force sampling provides the most accurate result, but is ex-
ponentially inefficient with dimension. After around 600 evaluations for
the “Handle” and 150 evaluations for the “Folium”, the results from Lp-
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Figure 4.2: Two 2D test cases from the literature: (a) the “Han-
dle” (Lasserre, 2014), given by the parametric equation x6 + y6 −
1.925x3y3 ≤ 1, and (b) the “Folium” (Henrion et al., 2009) parameter-
ized by −(x2 + y2)3 + 4x2y2 ≥ 0. Both feasible regions (shaded gray) are
non-convex. The red stars are the averaged design centers (of ten individ-
ual runs). (c,d) Average and standard deviation (over ten independent
runs) of the volume estimates obtained with Lp-Adaptation (red stars)
and brute-force exhaustive sampling (gray diamonds). Upper bounds are
obtained from the Loewner ellipsoid (blue circles) and axes-aligned bound-
ing box (green square) of the samples generated by Lp-Adaptation. The
true volume is indicated by the dashed black line.
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Figure 4.3: Average and standard deviation over ten independent runs of
Lp-Adaptation to estimate the volume of the “Handle” ((Lasserre, 2014)).
The results are compared with brute-force sampling. Two different upper
bounds are obtained from the standard Loewner ellipsoid and the axis-
aligned bounding box of all feasible points. The four panels use different
Lp-balls as proposal distributions.

Adaptation are within the error bars from the correct volume. The final
centers of the estimated volumes are shown by red dots in the upper panel
of Figure 4.2. In both cases they are at the geometric center of the body.
However, the geometric center of the estimated volume need not be a ro-
bust design center, as evident for the “Folium”.

The large variances of the Loewner ellipsoids and the axes-aligned bound-
ing boxes for the “Handle” indicate that the individual runs differ in how
well they explore the outermost arms of the Handle. Figures 4.3 and 4.4
show the results with other Lp-balls and for higher numbers of function
evaluations. Similar to what we observed for p = 2, Lp-Adaptation pro-
vides a good volume approximation in all cases. Not only the Lp-balls with
p = 2, but also with p = 0.5, 1, and∞ lead to good results. Initially the ra-
dius of all Lp-balls is set to 1. Therefore, the first volume approximation is
larger the higher the chosen p-norm of the Lp-ball. As long as the volumes
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Figure 4.4: Average and standard deviation over ten independent runs of
Lp-Adaptation to estimate the volume of the “Folium” (Henrion et al.,
2009). The results are compared with brute-force sampling. Two differ-
ent upper bounds are obtained from the standard Loewner ellipsoid and
the axis-aligned bounding box of all feasible points. The four panels use
different Lp-balls as proposal distributions.

of axis-aligned bounding box and Loewner ellipsoid are increasing, new
points in the corners of the test bodies are found. We conclude that the
choice of p-norm for the proposal is irrelevant in these low-dimensional ex-
amples and that the estimation accuracy of Lp-Adaptation is comparable
with that of brute-force sampling.

4.2 Synthetic Lp−balls

In order to test the algorithm also in higher dimensions, we consider syn-
thetic Lp-balls as feasible regions. Unlike the fixed-dimensional test cases
from the literature, these can be scaled to arbitrary dimension with the
true result still known in all cases. We use Lp-Adaptation to estimate the
volumes of these Lp-balls, which is particularly interesting when the true
p and the proposal p do not match.
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Figure 4.5: Average and standard deviation (over ten independent
runs) of the relative volume (estimated volume / true volume) of ten-
dimensional unit Lp-balls (p = 0.5, 1, 2,∞) approximated with proposal
distributions of different p. The results are shown for decreasing target
hitting probability, starting from the default initialization 0.35, as indi-
cated at the top of each plot. The dashed line shows the true volume.
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Figure 4.6: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume / true volume) of stretched ten-
dimensional Lp-balls (p = 0.5, 1, 2,∞) approximated with proposal distri-
butions of different p. The feasible Lp-balls are stretched along (n− 1)
axes such that the longest axis is

√
1000 times longer than the shortest

one, and the lengths of the axes are logarithmically spaced. The results
are shown for decreasing target hitting probability, starting from the de-
fault initialization 0.35, as indicated at the top of each plot. The dashed
line shows the true volume.
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Figure 4.5 shows the normalized estimated volumes for different feasible
regions (feasible regions with p-norms 0.5, 1, 2, and ∞) when using dif-
ferent proposals (proposal p-norms 0.5 (red), 1 (blue), 2 (green), and ∞
(purple)) in 10 dimensions. The true volume is indicated by the dashed
black line. All feasible regions are unit Lp-balls, e.g. their condition num-
ber is 1. In Figure 4.6, all feasible regions are stretched along (n− 1) axes
such that the longest axis is

√
1000 times longer than the shortest one,

and the lengths of the axes are logarithmically spaced. Therefore the con-
dition number is 1000. The figures show the volume estimates versus the
number of function evaluations. We start from the standard target hitting
probability of 0.35 in order to first learn the shape of the feasible region.
As indicated at the top of the plots, we then successively lower it to 0.15,
0.06, 0.03, and 0.01 in order to refine the volume estimate. Intuitively,
one would assume that the results are best when the Lp-ball used as a
proposal for sampling matches the true shape of the feasible region, i.e., if
the two p values are identical. However, if the feasible region is isotropic,
the L2-proposal is always better than the other proposals (Figure 4.5). In
the cases where the Lp-ball is stretched (Figure 4.6) the other proposals
catch up and the ’true’ p is actually better for p = 1, p = 2, and p = ∞,
but with decreasing P , the estimation with an L2-proposal (for L1-ball
and L∞-ball) or L1-proposal (for L2-ball) is equally good. The volume
estimation of the L0.5-ball is best with an L1-proposal, but with decreas-
ing P , the L0.5-proposal obtains equally good results. With increasing
dimension (see Figure 4.7 for 20D), it becomes more prominent that using
either an L1-ball or an L2-ball as proposal seems to be a good choice in-
dependent of the shape of the feasible region. In 50D the volumes of the
L0.5-ball and the L∞-ball are not estimated well anymore by any proposal,
see Figure B.1.

In 20D we also test GaA (Müller and Sbalzarini, 2010a) on all four
anisotropic test bodies and the state-of-the-art convex volume estimation
algorithm of Cousins and Vempala (Cousins and Vempala, 2016) on the
convex anisotropic test cases (p = 1, 2,∞), see Figure 4.7. Compared to
GaA (orange) with fixed hitting probability 0.01, Lp-Adaptation works bet-
ter in all cases. GaA consistently underestimates the volume except when
the feasible region is an L2-ball, which matches the shape of the Gaus-
sian proposal. The convex volume estimation algorithm of Cousins and
Vempala (Cousins and Vempala, 2016) (gray) equals or outperforms Lp-
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Figure 4.7: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume / true volume) of stretched 20-
dimensional Lp-balls (p = 0.5, 1, 2,∞) approximated with proposal distri-
butions of different p. The feasible Lp-balls are stretched along (n− 1)
axes such that the longest axis is

√
1000 times longer than the shortest

one, and the lengths of the axes are logarithmically spaced. The results
are shown for decreasing target hitting probability, starting from the de-
fault initialization 0.35, as indicated at the top of each plot. The dashed
line shows the true volume. For comparison, we also show the results
obtained with Gaussian Adaptation and Cousins’ convex volume estima-
tor (Cousins and Vempala, 2016).

Adaptation for convex Lp-balls. This is expected because the algorithm
is specialized in convex bodies and has direct access to the underlying
geometric description of the body (a polytope or an ellipsoid) whereas
Lp-Adaptation requires no prior knowledge. Remarkably, Lp-Adaptation
shows similar convergence for L1-balls and L2-balls when using the same
bodies as proposals. We conclude that Lp-Adaptation performs better
than Gaussian Adaptation and reaches the same accuracy as specialized
algorithms for convex bodies, albeit without requiring convexity or prior
knowledge about the shape of the feasible region.
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Figure 4.8: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume/true volume) of Loewner ellip-
soids (top row) and axis-aligned bounding boxes (AABB, bottom row) of
isotropic ten-dimensional Lp-balls (p = 0.5, 1, 2,∞) approximated with
proposal distributions of different p.

By looking at the volumes of the outer approximations of the feasible re-
gion, i.e., the Loewner ellipsoids and the axis-aligned bounding boxes, we
can see how explorative a proposal is. The higher the volume of the outer
approximations, the better a feasible region is explored. In Figure 4.8
we show the relative volumes of the Loewner ellipsoid (top row) and the
axis-aligned bounding box (bottom row) of isotropic 10-dimensional Lp-
balls explored with different Lp-proposals. In 10D, explorativeness of the
L2-proposal is independent of the condition of the feasible region, see Fig-
ure B.6. For the other proposals it makes a difference, whether the fea-
sible region is isotropic (see Figure 4.8) or stretched along the axes (see
Figure 4.9). If the feasible region is a L2-ball (isotropic or stretched), all
proposals are equally good in exploring the feasible region such that the
volume of the associated Loewner ellipsoid is close to 1, see Figure B.2.
Similarly, if the feasible regions is a L∞-ball (isotropic or stretched), the
volume of the associated axis-aligned bounding box is close to 1, see Fig-
ure B.3. In the isotropic cases, the different proposals are equally explo-
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Figure 4.9: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume/true volume) of Loewner ellip-
soids (top row) and axis-aligned bounding boxes (AABB, bottom row) of
stretched ten-dimensional Lp-balls (p = 0.5, 1, 2,∞) approximated with
proposal distributions of different p. The feasible Lp-balls are stretched
along (n− 1) axes such that the longest axis is

√
1000 times longer than

the shortest one, and the lengths of the axes are logarithmically spaced.

rative for the L1-ball, L2-ball, and L∞-ball as feasible regions (Figure 4.8),
whereas in the non-isotropic cases (Figure 4.9) the explorativeness differs
depending on the proposals shape. In terms of explorativeness, using an
L∞-proposal is of advantage only if the feasible region is an L∞-ball. In
the other cases, the L0.5-proposal reaches the highest volumes for both
outer approximations (Figure 4.9). The pointy shape of an L0.5-proposal
is particularly well-suited for exploration of those cases. It seems like a
contradiction, that the L0.5-proposal is the most explorative proposal in
those cases, but not among the best regarding the volume approximation.
A possible reason for this could be that an L0.5-proposal is more sensitive
to small rotations than the other proposals.

In general, we see that an Lp-proposal with matching p can explore an Lp-
ball better if the condition of the ball is higher. We suspect that a reason
for this could be that with higher aspect ratios less dimensions have to be
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Figure 4.10: Trajectories of proposal means (of five independent runs),
where the feasible region is a L10

∞-ball that is stretched along (n− 1) axes
such that the longest axis is

√
1000 times longer than the shortest one,

and the lengths of the axes are logarithmically spaced. In each plot, a
different proposal p is shown. The color code shows the components of
the mean in ten dimensions.

found correctly since most of the mass of the feasible region is found along
fewer dimensions.

L0.5-proposals and L1-proposals are more explorative for an isotropic L∞-
ball than for a stretched L∞-ball, see Figures B.4 and B.5. L2-proposals
are equally explorative for L∞-balls (see Figure B.6), independent of their
condition. An L∞-proposal is more explorative for isotropic Lp-balls (for
p = 0.5, 1, 2) than if they are stretched, see Figure B.7. These are in-
teresting observations, but to fully understand them, further theoretical
investigations would be necessary.

In Figure 4.10 we show trajectories of five runs of the proposal means,
where the feasible region is the stretched L10

∞-ball. In Figure 4.11, we show
the corresponding Eigenvalues of the normalized transformation matrix C
of the proposal. Note that the runs are plotted until 30000 evaluations (all
other plots are shown until the end of the runs at n·105 evaluations). After
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Figure 4.11: Eigenvalues of the normalized transformation matrix C ob-
tained from five runs of Lp-Adaptation, where the feasible region is a
L10
∞-ball, that is stretched along (n− 1) axes such that the longest axis is√
1000 times longer than the shortest one, and the lengths of the axes are

logarithmically spaced. In each plot, a different proposal p is shown. The
black dashed lines show the true Eigenvalues.

2 · 104 evaluations, the means of all proposals are fluctuating around the
true mean of 0. The means of the L1-proposals and the L2-proposals con-
verge faster than the means of the L0.5-ball and the L∞-ball (Figure 4.10).
After 1.5 · 104 evaluations all proposals have learned the rough shape of
the stretched L10

∞-ball (Figure 4.11).

To test how many evaluations we need to reach a certain precision of
the volume approximation, we use L1-, and L2-balls as feasible regions,
both isotropic and stretched along the axes such that the longest axis is√

1000 times longer than the shortest one, and the lengths of the axes
are logarithmically spaced in 2, 5, 10, 20, 50, 70, and 90 dimensions. For all
cases we test an L1-proposal and an L2-proposal with a variable schedule of
changing hitting probabilities. As shown in Figure 4.12, in all but one case
(approximating an isotropic L90

1 -ball with L90
1 -proposal) the volume of the

feasible regions can be approximated with a relative error of 0.1 with the
used proposals. Approximating the L2-ball is easier than approximating

92



4.2. SYNTHETIC LP−BALLS

2510 20 50 70 90
10

0

10
2

10
4

10
6

Dimension

N
u
m
b
e
r
o
f
S
a
m
p
le
s

feasible region: L1 -ball

2510 20 50 70 90
10

0

10
2

10
4

10
6

Dimension
N
u
m
b
e
r
o
f
S
a
m
p
le
s

feasible region: L2 -ball

 

 

L1-proposal

L2-proposal

isotropic

stretched

Figure 4.12: Number of samples required until relative error of the vol-

ume approximation | vol(A)−ṽol(A)|
vol(A)

≤ 0.1, where the feasible region A is

an L1-ball (left) and an L2-ball (right), respectively, both isotropic (con-
tinuous line) and stretched along the axes (dashed line). The proposal
distributions are L1-balls (blue diamond) and L2-balls (green circle).

the L1-ball. The L2-proposal reaches this relative error faster than the
L1-proposal. The number of evaluations needed to reach this precision
scales roughly polynomial with space dimension.
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4.3 Conclusion

We have illustrated the behavior of Lp-Adaptation in several 2D examples
and found that the choice of the p-norm for the proposal was irrelevant in
low dimensional examples and that the accuracy is comparable to exhaus-
tive sampling. Furthermore, we showed that the mean and the covariance
converge to the correct shape. By testing L1-balls and L2-balls as feasible
regions in up to 90D, we found that Lp-Adaptation scales polynomially
with dimension and not exponentially (as is the case with exhaustive sam-
pling).

Increasing the dimension, we saw interesting behavior of the proposal ex-
plorativeness depending on the p-norm of both the feasible region and the
proposal, and the condition number of the feasible region. If the p-norm
of feasible region and proposal match, the proposal is more explorative the
higher the condition number gets. A possible explanation for this could be
that the higher the condition number, the more mass of the feasible region
is distribution in fewer dimensions and thus the problem becomes easier for
a proposal of same shape. Further theoretical investigations could lead to a
better understanding of the behavior. This could then be used for a guided
optimization of the algorithmic parameters of Lp-Adaptation concerning
the update of the transformation matrix C and the proposal’s mean m
depending on the p-norm of the proposal.

In our studies we see that using either the L1- or the L2-ball as a proposal
is at least as good as using the shape of the underlying feasible region.
For unknown feasible regions we therefore suggest to use the L2-ball as a
default proposal.
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Application

Here we show the application of Lp-Adaptation in three examples. First
we show how Lp-Adaptation can be used to design a switched capacitor
filter and, second, how we can use it to quantify basin stability of synchro-
nized states in mutually delay-coupled oscillators. In the third presented
application, which is from systems biology, we compare the robustness of
two bacterial two component systems.

5.1 Designing a Switched Capacitor Filter

Switched Capacitor (SC) filters are a modern replacement for Resistor Ca-
pacitor (RC) filters. They are well suited for integration on silicon chips,
due to reduced sensitivity of their transfer function to manufacturing inac-
curacies. While the basic design processes of SC and RC filters are similar,
a key challenge in SC filter design is parasitic capacitance. Here, we con-
sider a design scenario for an SC-based pulse code modulation (PCM)
low-pass filter with parasitic capacitances, as introduced as a test case by
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Storn (1999). The circuit diagram of this example is shown in Figure 5.1a.
The transfer function of this SC-PCM filter is:

H(f) =
Vout

Vin
= H1(f) ·H2(w) ·H3(w) (5.1)

with

w = j · tan
πf

fa
(5.2)

and
j =
√
−1, (5.3)

where fa is the sampling frequency of the filter and f is the signal frequency.
The chosen fa for H2(w) is 128 kHz, and 32 kHz for H3(w), as in the
original publication (Storn, 1999).

The transfer function of the analog RC lowpass pre-filter is:

H1(f) =
1

1 + j · 2πf ·R0 · C0
=

1

1 + j · f · v1
. (5.4)

For the SC-PCM lowpass filter with parasitic capacitances, the transfer
functions H2(w) and H3(w) can be written as (Storn, 1999)

H2(w) =
w2

[(
v32 − γ

2

) (
v12β + γ

2

)
+ v132

γ
2

]
+ w [α(v32 − v132) + v12βα] + α2

w2
[(
v32 + v532 − γ

2

) (
v12β + γ

2

)
+ v132

γ
2

]
+ w [α(v32 + v532 − v132) + v12βα] + α2

H3(w) =
w2

[(
v33 − γ

2

) (
v13β + γ

2

)
+ v133

γ
2

]
+ w [α(v33 − v133) + v13βα] + α2

w2
[(
v33 + v533 − γ

2

) (
v13β + γ

2

)
+ v133

γ
2

]
+ w [α(v33 + v533 − v133) + v13βα] + α2

,

where α =
(
1 + γ

2

)
, β = (1 + ε) and the constants γ ∈ [2.55%, 10.5%] and

ε ∈ [0.1%, 1%] represent the parasitic effects. We set γ = 5% and ε = 0.5%,
as in the original publication (Storn, 1999).

According to these expressions, the filter has nine design parameters:
{v1, v12, v32, v132, v532, v13, v33, v133, v533}, defining a 9-dimensional design
space. The feasible region consists of all points in that space for which
|H(f)| lies within the specifications given by the solid black lines in Fig-
ure 5.1b. They define the gain, ringing, and sharpness characteristics of
the filter. A filter fulfills the specifications if the magnitude of its transfer
function, |H(f)| is above {1.0, 1.0292, 1.0, 0.031623} at frequencies
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{0, 200, 3600, 4600}Hz and below {0.0, 0.97162, 0.94951, 0.90157, 0.0} at fre-
quencies {0, 300, 2400, 3000, 3400}Hz.

We start Lp-Adaptation from ten different initial feasible points found by
parameter optimization using the Gaussian adaptation (GaA) algorithm
(Kjellström and Taxen, 1981; Müller and Sbalzarini, 2010b). For this ini-
tial optimization, we allow v1 to vary within the interval [e−9, e3] and all
other parameters in [e−3, e3]. The objective function is the sum of squared
deviations between the realized |H(f)| and the prescribed upper and lower
specification boundaries of the transfer function across the frequency range
f . The optimization starts from ten different points, sampled uniformly
in the natural logarithm of the entire parameter domain.

Figure 5.1c shows four selected pairwise density contour plots of the feasi-
ble points obtained by the ten runs of Lp-Adaptation. A high density of
feasible points is shown in red, low density in blue. The lines are curves
of constant density. The black trajectory shows the evolution of the mean
of the proposal distribution for the run that yielded the largest volume
approximation. Individual iterations of the algorithm are shown by stars.
The yellow star is the final design center found by this run. Because the
feasible region in this example is not convex, different runs find different
design centers in different parts of the feasible region. Two design centers
found by Storn (1999) in the same part of the feasible region is indicated
by the green diamond and the magenta circle.

We assess the robustness of the design centers found by Lp-Adaptation by
comparing with the results reported by Storn (1999). Robustness is mea-
sured by the size (radius) of a hyper-cube or hyper-ellipsoid that contains
a given fraction of feasible points as discussed in Section 3.6, see Figure 5.2.
In all cases, the design centers found by Lp-Adaptation are more robust
than the previous results, as indicated by the larger radii for all target
hitting probabilities.
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Figure 5.1: (a) Circuit diagram of the Switched Capacitor (SC) filter.
(b) Specifications for the transfer function of the filter (black lines) and
one example satisfying the constraints (blue line). (c) Pairwise density
contour plots of the feasible points obtained by ten runs of Lp-Adaptation
with different starting points in the nine-dimensional design space. The
black trajectory show the evolution of the mean for the run that yielded the
largest volume approximation. The yellow star is the final design center
obtained by this run. Two design centers reported by Storn (1999) are
indicated by the green diamond and the magenta circle.
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Figure 5.2: Comparison of the robustness of three different design centers,
the larger the radius, the more robust the design centers: one found by Lp-
Adaptation (yellow star) and two reported by Storn (Storn, 1999) (green
diamond and magenta circle). We run Lp-Adaptation for these different
design centers with a fixed mean and a decreasing schedule of the hitting
probability as shown at the top of each plot. In the top row we show
the results for the runs with fixed covariances (identity matrix), in the
bottom row we allow covariance adaptation. We test two proposals: L∞
(left, hyper-cube) and L2 (right, hyper-sphere), both with (bottom row)
and without (top row) affine covariance adaptation. The plots show the
radius of a hypercube/hypersphere such that approximately {0.35%, 0.55
%, 0.75%, 0.95%} of the points in this body are feasible, as indicated by
the target hitting probabilities at the top of each plot.
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5.2 Quantifying basin stability of synchronized
states in mutually delay-coupled oscillators

In this section we present ongoing work in a collaboration with Lucas
Wetzel, Daniel Platz, Benjamin Friedrich and Alexandros Pollakis.

Phase-locked loops (PLLs) are electronic control systems (circuits) that are
able to synchronize by evaluating mutual phase differences and adjusting
their frequencies accordingly (Pollakis et al., 2014; Wetzel et al., 2017).
As illustrated in Figure 5.3, a PLL consists of three main parts: a phase
detector (PD), a loop filter (LF), and a voltage controlled oscillator (VCO).
These components are organized in a loop. The output voltage of the PD
represents the phase relation between the input signal and the feedback
from the VCO. The LF dampens the high-frequency components, and the
remaining low frequency components, i.e., the phase differences, are the
input signal for the VCO (Pollakis et al., 2014).

PD LF VCOinput output

Figure 5.3: Schematic illustration of a phase-locked loop (PLL). A PLL
consists of a phase detector (PD), a loop filter (LF), and a voltage con-
trolled oscillator (VCO).

PLLs are widely used in electronic applications, such as radio, communi-
cations, and computers. We study systems of mutually coupled digital
phase-locked loops (DPLLs). We want to analyze synchronized states of
delay-coupled DPLL systems. Linear stability analysis allows to analyze
how small perturbations affect synchronized states, but the dynamics of
larger perturbations are not described. Here, we use Lp-Adaptation to
study the effect of (larger) perturbations on synchronized states. The set
of initial points in phase space from which the system converges to such
a synchronized state, is called the basin of attraction of that state. The
basin’s volume can be seen as a measure of its stability (Menck et al.,
2013). Menck et al. (2013) estimate the basin’s volume in Watts-Strogatz
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networks of Rössler oscillators by uniformly sampling points from an a-
priori defined subspace of the state space and counting the number of
points that arrive at the synchronized state. Using Lp-Adaptation for a
similar problem, we can estimate the basin’s volume without any prior
knowledge of its size because our method adaptively learns the size of the
basin (i.e., the feasible region). In the remainder of this section, we first
describe the phase model for the mutually coupled DPLLs and the Ku-
ramoto order parameter, then we explain the membership oracle we use
for Lp-Adaptation. We conclude this section with results we obtain from
Lp-Adaptation.

5.2.1 The model

We use a phase model of coupled electronic clocks to study the dynamics
of synchronization (Jörg et al., 2015; Wetzel et al., 2017). A system of N
coupled oscillators can be described as follows:

θ̇k(t) = ω +
K

nk

N∑
l=1

ckl

∫ ∞
0

du p(u)h(θl(t− τ − u)− θk(t− u)), (5.5)

where θk(t), with k = 1, 2, · · · , N , corresponds to the phases of the indi-
vidual oscillators at time t with the intrinsic frequency ω, the coupling
strength K between the oscillators, and a 2π-periodic coupling function h.
θ̇k(t) correspond to the instantaneous frequencies. The coupling matrix
C = (ckl) with ckl ∈ {0, 1} describes the connections between the oscilla-
tors: if oscillator k has a connection from oscillator l, ckl = 1. The total
number of incoming connections of oscillator k is nk =

∑N
l=1 ckl. The fil-

ter kernel p(u) describes the properties of the low-pass filter, and τ is the
communication delay. We investigate homogeneous systems with constant
and equal delays and identical intrinsic frequencies.

5.2.2 The Kuramoto order parameter

The real part zK(t) of the complex-valued Kuramoto order parameter (Ku-
ramoto, 1975) is a measure of synchrony of a system of N coupled phase
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Figure 5.4: In a system of three mutually coupled oscillators, there are
three different m-twist solutions with z(t,m) = 1. An m-twist solution
is a synchronized state where all oscillators have a common frequency
with constant phase relations between neighboring oscillators. In the unit
circle, the state of oscillator k can be represented by its phase θk(t).

oscillators:

zK(t)eiψ(t) =
1

N

N∑
k=1

eiθk(t), (5.6)

where θk(t) with k = 1, 2, · · · , N , correspond to the phases of the indi-
vidual oscillators, zK(t) ∈ [0, 1] measures the coherence of the oscillator
population, and ψ(t) is the average phase (Acebrón et al., 2005). In syn-
chronized states with no phase differences, the oscillators are completely
synchronized and zK(t) = 1 (Wetzel, 2012). Other synchronized states for
which zK(t) = 0 (Wetzel, 2012), can exist, see Eq. (5.6). Synchronized
states are for example m-twist solutions with m > 0 (Peruani et al., 2010;
Wiley et al., 2006), where all oscillators share a common frequency and
where the phases are equally arranged in [0, 2π) (the phase difference is
identical between all adjacent pairs of oscillators) (Wetzel, 2012). We now
consider such m-twist solutions only for systems of oscillators that have
bidirectional nearest neighbor interactions in a 1D ring (periodic boundary
conditions) configuration. Figure 5.4 visualizes the existing m-twist states
in a system of three coupled oscillators. Since we also want to study m-
twist solutions, we use a generalization of the Kuramoto order parameter
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that can distinguish between the different twist-states:

z(t,m)eiψ(t) =
1

N

N∑
k=1

ei[θk(t)+k 2πm
N ], (5.7)

where m is the twist number, θk with k = 1, 2, · · · , N , correspond to the
phases of the individual oscillators, and N is the total number of oscillators.

For in-phase synchronization (0-twist), where all frequencies and phases
are identical,

z(t,m)eiψ(t) =
1

N

N∑
k=1

eiθk(t) (5.8)

recovers the Kuramoto order parameter zK(t). We can use Eq. (5.7) to de-
termine how close a set of phases is to an m-twist solution. In Figure 5.4 we
show snapshots of the phases in the three possible m-twist configurations
for N = 3 oscillators. Note that the 2-twist corresponds to the −1-twist,
i.e., the order of the oscillators is reversed, see Figure 5.4. The integer
m ∈ 0, 1, · · · , N − 1 denotes how many multiple of 2π accumulate when
summing over all phase differences of adjacent oscillators in the ring of N
oscillators (Wetzel, 2012).

5.2.3 Space transformation

Points on the main diagonal in phase space describe the states, where
all oscillators have identical phases (0-twist). All other m-twist solutions
are represented by parallel lines to this diagonal, see Figure 5.5a. We
are interested in the volume of the basin of attraction, which can be a
measure of its stability (Menck et al., 2013). With Lp-Adaptation a volume
approximation can be obtained, but in order to allow Lp-Adaptation to
converge, we look at a finite subspace of the phase space [0, 2π]N . Since
the coupling function h is 2π-periodic, this is sufficient. m-twist states
are characterized by specific points in phase space (which is a snapshot at
t = t1 when the system is synchronized):

θk+1 = k
2πm

N
, (5.9)
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Figure 5.5: Transformation of phase space illustrated in 2D. (a) All m-
twist solutions are parallel to the main diagonal in the phase space spanned
by the oscillator phases θ1, · · · , θn. (b) The first oscillator θ1 is rotated
onto the main diagonal of the phase space. A point in this rotated phase
space is called θ?. We do not consider perturbations that affect all phases
the same, thus we fix θ?1 = 0 in the rotated phase space. We translate the
reduced rotated phase space such that its origin coincides with the point
that characterizes the m-twist to be studied: in 2D this can be (c) a point
that characterizes the 0-twist or (d) a point that characterizes the 1-twist.
A point in this transformed phase space is called θ′.

where 2πm
N defines the phase differences between neighboring oscillators.

We first rotate the phase space such that the phase of the first oscil-
lator θ1 is rotated onto the main diagonal of the N -dimensional phase
space, see Figure 5.5b. We call a point in this rotated phase space
θ? = (θ?1 , θ

?
2 , · · · , θ?N ). A perturbation in θ?1 direction means that the

phases of all N oscillators are changed by the same amount. We now re-
duce the rotated phase space by fixing θ?1 = 0 because we do not consider
perturbations that affect all phases the same. We then translate the re-
duced rotated phase space such that its origin coincides with the specific
point of the studied m-twist, see Figures 5.5c and 5.5d and consider pertur-
bations around this origin in transformed coordinates. We call a point in
this transformed phase space θ′ = (θ′1, · · · , θ′N−1). This transformation
of the phase space gives us a basin of attraction that is more connected
and thus easier to approximate with Lp-Adaptation.
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Figure 5.6: Schematic trace plots of the phases of the oscillators for n = 2.
The oscillators are in a frequency synchronous state (1-twist) for t < 0.
(a) If the phases are not perturbed, the phases are in the same synchronous
state at t = t1. (b,c) The phases are perturbed at t = 0. (b) At t = t1 the
phases are back in the same synchronized state, thus the oracle classifies
this perturbation as a feasible point. (c) At t = t1 the phases are not
back in the synchronized state, the oracle classifies this perturbation as a
infeasible point.

5.2.4 Membership oracle

Lp-Adaptation operates on the rotated and reduced phase space. We
study the influence of different parameters on the basin of attraction of a
stable synchronized state. Linear stability analysis is used to find those
states and to approximate the simulation time. The membership oracle f
decides whether a given perturbation vector θ′ ∈ RN−1 leads back to the
synchronized state the system was in before. Then the perturbation be-
longs to the basin of attraction (the feasible region A). To do so, the phase
model is simulated for the original phases θk, for k = 1, · · · , N . We assume
that the simulation time t1 depends on the decay of the slowest perturba-
tion mode. For an illustration of the system with two oscillators and the
1-twist as synchronized state, see Figure 5.6. Assuming we investigate the
basin of attraction of an m-twist state that is stable, then, if the system
is not perturbed at t = 0, it is still at the synchronized state at t = t1, see
Figure 5.6a, i.e., the oracle classifies a perturbation of 0 as a feasible point.
The perturbation used to perturb the system at t = 0 is classified as a fea-
sible point if at t = t1 the phases are in the prior synchronized state again
(Figure 5.6b). The perturbation is classified as infeasible, if the phases did
not reach the same synchronized state at t = t1 (Figure 5.6c). To decide
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whether the synchronized state (m-twist) was reached, we use the order
parameter z(t1,m), see Equation (5.7).

5.2.5 Results

We want to study how the basins of attraction of stable synchronized states
depend on different design parameter of a DPLL network. We are for exam-
ple interested in the effects of the cutoff frequency Fc, the communication
delay τ , and the coupling strength K. In low dimensions (numbers of os-
cillators), this can be studied by exhaustively sampling the phase space or
its discretization. An example of how the basins of attraction change with
those parameters for N = 3 and intrinsic frequency F = 1Hz is shown in
Figure 5.7. Changing one parameter at a time, we observe that increasing
K can lead to an increase in size of the basin of attraction. The delay τ in-
fluences whether an m-twist synchronized state will be stable or unstable,
a larger τ leads to smaller decay rates.

Exhaustively sampling the space becomes computationally infeasible for
an increasing number of oscillators. Lp-Adaptation can nevertheless be
used to obtain a volume approximation of the basins of attraction. To
study the cutoff frequency’s influence on the size of the basin of attraction,
see Figure 5.8, we run Lp-Adaptation with a fixed schedule of increasing
hitting probabilities P = (0.35, 0.55, 0.75, 0.9) and a fixed initial mean
m0 located at θ′ = (0, 0), hence the feasible m0 is the start value for
all ten runs. The higher the hitting probability, the smaller the volume
approximation becomes, which mean that the shape of the feasible region
is not a simple ellipsoid.

For Fc = 0.1, 0.5, 1, and 10, Figure 5.9 shows the corresponding trans-
formed phase spaces with points (θ′1, θ

′
2). For each hitting probability,

Lp-Adaptation obtains a transformation matrix C. The ellipsoids shown
in Figure 5.9 correspond to the averaged transformation matrices of ten
runs. The DPLL system with a filter cutoff frequency of 0.5 has the largest
volume of its basin of attraction among the studied systems. Comparing
the ratios of the volumes obtained with a target hitting probability of 0.35
and of 0.9, we see that the basin of attraction is also most scattered for
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Figure 5.7: Basin of attraction depending on the parameters of a DPLL
network of N = 3 coupled oscillators. The color code shows the value
of the order parameter z(0, t1) at the end of the simulation. We show
examples for changing coupling strength K (green), changing delay τ (or-
ange), and changing filter cutoff frequency Fc (blue). The phase space is
transformed, as described in Section 5.2.3. This figure was prepared in
collaboration with Lucas Wetzel.
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Fc = 0.5. We will investigate the influence of other design parameters in
the near future.
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Figure 5.8: The volume of the basin of attraction of the synchronized
state is a measure for its robustness. We plot the volume of the basin
of attraction of the in-phase synchronized state (0-twist) in a 1D ring of
n=3 DPLLs with nearest neighbor coupling, τ = 0.44, K = 0.25, and
ω = 1.215. A perturbation θ′ is feasible if z ≥ 0.995. Different lines
correspond to different target hitting probabilities in Lp-Adaptation. For
Fc = 0.1, 0.5, 1, and 10, the basins of attraction are visualized in Fig-
ure 5.9.
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Figure 5.9: We study the basin of attraction of the in-phase synchronized
state (0-twist) in a 1D ring of n=3 DPLLs with nearest neighbor coupling.
The communication delay τ = 0.44s, and the coupling strength K = 0.25.
The color code shows the order parameter z(0, t), where z = 1 if the
DPLLs are in-phase synchronized at time t, i.e., the perturbations decayed.
A point in the transformed phase space (θ′1, θ

′
2) is feasible if z ≥ 0.995.

Ellipsoids (largest to smallest) show the results obtained by Lp-Adaptation
with target hitting probabilities of 0.35, 0.55, 0.75, and 0.9, respectively.
The systems differ in the filter cutoff frequency Fc: (a) Fc = 0.1 Hz, (b)
Fc = 0.5 Hz, (c) Fc = 1 Hz, and (d) Fc = 10 Hz. Yellow dots show
the different possible m-twist states. The brute-force results used for this
figure were produced by Lucas Wetzel.
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5.3 Comparing Robustness of Two Bacterial Two
Component Systems

As a third real-world example, we consider a network model from sys-
tems biology: the bacterial two-component system (TCS). The TCS sig-
naling network allows bacteria to sense and respond to environmental
changes. The TCS is an evolutionarily conserved stimulus-response mech-
anism found in all bacterial species, and to a lesser extent also in archaea
and eukaryotes such as plants, molds, and yeast.

Stimulus sensing in the TCS relies on a sensor histidine kinase (HK), which
auto-phosphorylates and, upon stimulus, passes the phosphate group on
to a response regulator (RR) protein. As a response to the stimulus S, the
phosphorylated RR regulates the transcription of target genes (Kim and
Cho, 2006). TCS occur in nature in different flavors, all sharing the same
working principle. Here, we compare two TCS differing in the number
of phosphate binding domains on the HK. This includes the most com-
monly found TCS with two binding domains and an alternative form with
four stimulus-binding domains. Following the terminology of Barnes et al.
(2011), we call them the “orthodox system” and the “unorthodox system”,
respectively, as depicted in Figure 5.10.

We compare both systems’ ability to robustly achieve different input-
output characteristics by tuning their parameters (Barnes et al., 2011).

5.3.1 Ordinary differential equations models

The ordinary differential equation models describing the dynamics of both
systems are as follows:
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Figure 5.10: Two different bacterial two-component systems (TCS). Re-
actions involving phosphate groups are represented by arrows with the
respective reaction rates indicated. Left: the “orthodox system”, in which
the histidine kinase (HK) auto-phosphorylates upon sensing a stimulus S
and passes the phosphate group on to the response regulator (RR) protein.
The orthodox system has two phosphate binding domains. Right: the “un-
orthodox system”, in which the HK has three binding domains: H1, D1,
and H2. Together with the binding domain on the RR, this system has a
total of four phosphate binding domains.

Orthodox system

The model assumes that the total concentrations of the HK and RR pro-
teins sum up to 1, hence:

HK +HKp = 1

RR+RRp = 1,

where a subscript p denotes the phosphorylated form of the molecule. This
leads to the following model equations for the time dynamics of the con-
centrations [·] of all involved chemical species:

d[HK]

dt
= k2(1− [HK])(1− [RRp]) + k3(1− [HK])− k4[HK][RRp]

− k1[HK][S]

d[RRp]

dt
= k2(1− [HK])(1− [RRp])− k4[HK][RRp]− k5[RRp].
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Unorthodox system

In the unorthodox TCS, HK has three phosphorylation sites: H1, D1, and
H2. This leads to eight different phospho-species of HK, HK1...8, with
the following phosphorylation states (1=phosphorylated, 0=unphosphory-
lated):

H1 D1 H2
HK1 1 1 1
HK2 0 1 1
HK3 1 0 1
HK4 1 1 0
HK5 0 0 1
HK6 0 1 0
HK7 1 0 0
HK8 0 0 0

Again it is assumed that the total concentrations of HK and RR sum up
to 1:

8∑
i=1

HKi = 1

RR+RRp = 1.

This leads to the following model equations for the time dynamics of the
concentrations [·] of all involved chemical species:

d[HK1]

dt
= k4[HK4](1− [RRp]) + k6[HK3]− k7[HK1][RRp] + k8[HK2]

− k1[HK1][S]

d[HK2]

dt
= k4[HK6](1− [RRp]) + k6[HK5]− k7[HK2][RRp]− k8[HK2]

+ k1[HK1][S]− k2[HK2]
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d[HK3]

dt
= − k3[HK3] + k4[HK7](1− [RRp]) + k5[HK4]− k6[HK3]

− k7[HK3][RRp] + k8[HK5]− k1[HK3][S] + k2[HK2]

d[HK4]

dt
= k3[HK3]− k4[HK4][1−RRp]− k5[HK4] + k6[HK7]

+ k7[HK1][RRp] + k8[HK6]− k1[HK4][S]

d[HK5]

dt
= − k3[HK5] + k4(1−

7∑
i=1

[HKi])(1− [RRp]) + k5[HK6]

− k6[HK5]− k7[HK5][RRp]− k8[HK5] + k1[HK3][S]

d[HK6]

dt
= k3[HK5]− k2[HK6]− k4[HK6](1− [RRp])− k5[HK6]

+ k6(1−
7∑
i=1

[HKi]) + k7[HK2][RRp]− k8[HK6] + k1[HK4][S]

d[HK7]

dt
= k2[HK6]− k4[HK7](1− [RRp])− k6[HK7] + k7[HK3][RRp]

+ k8(1−
7∑
i=1

[HKi])− k1[HK7][S]

d[RRp]

dt
= k4(1− [RRp])(1− [HK1]− [HK2]− [HK3]− [HK5])

− k7[RRp]([HK1] + [HK2] + [HK3] + [HK5])− k9[RRp].

Note that in the original paper (Barnes et al., 2011) the equation for d[HK5]
dt

has a typo. The first term should be −k3[HK5], as shown above, and not
−k3[HK3].

5.3.2 Membership oracles

The membership oracle numerically solves the dynamic equations in order
to decide whether a given vector x ∈ Rn (n = 5 for the orthodox system,
n = 9 for the unorthodox system) of kinetic rate constants leads to a
reaction network that fulfills the specifications, or not. All simulations
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are done in Matlab 8.2.0 (R2013b) using the “Systems Biology Toolbox
2” and the “SBPD Extension Package” (Schmidt and Jirstrand, 2006)
with a time step size of 0.001 until final time 10. The specifications are
given in terms of the input/output behavior of the network. The output
is the concentration of RRp in response to a specific input signal S over
time points T = {tk}1≤k≤N where t1 = 0, tN = 10, and tk+1 = tk +
0.001. All variables are in the range [0, 1000]. We consider four different
cases, corresponding to different network design goals and hence different
membership oracles, as described below.

5.3.2.1 fast response

The “fast response” case aims to design a network that rapidly follows a
sudden change of the input, see Figure 5.11a. The following input signal
is considered, which has two sudden changes:

[S] =

{
1, if tk ∈ [2, 4]

0, else.

Desired output: The network fulfills the specifications if the maximum
response of the output is reached within 0.1 time units after the pulse
starts, and the minimum no more than 0.1 time units after the pulse ends.
The specifications hence are:

tmax = arg max
k

[RRp](tk)

tmin = arg min
k

[RRp](tk > tmax)

where x is feasible iff 0 ≤ tmax − 2 ≤ 0.1 and 0 ≤ tmin − 4 ≤ 0.1.

5.3.2.2 steady output

The “steady output” case aims to design a network that produces a station-
ary output upon a constant input signal of the same magnitude, see Fig-
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Figure 5.11: Design centering for four different desired input-output be-
haviors of the two TCS. Top row: Chemical concentrations as a function
of time for the input signal S (red line) and the output signal RR (blue
line). For each case, one or several example outputs are shown that ful-
fill the specifications. Bottom row: The corresponding performances of
the orthodox and unorthodox TCS as estimated by three different meth-
ods: brute-force sampling, Lp-Adaptation, and approximate Bayesian
computation based on sequential Monte Carlo (ABC-SMC) (Barnes et al.,
2011). Performance is quantified by the posterior probability for each
model (ABC-SMC) or by the normalized volume (Lp-Adaptation and
brute-force) (Hafner et al., 2009). (a) The “fast response” case re-
quires the network output to react to sudden changes in the input with no
more than 0.1 time units delay. (b) The “steady output” case requires the
output to remain constant at the level of the input at most 2 time units
after the input started. (c) The “noise rejection” case requires the output
to remain constant at the mean of a rapidly fluctuating input. (d) The

“signal reproduction” case requires the output to reproduce the shape of the
input signal with no more than 20% magnitude error and no more than
1 time unit delay.
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ure 5.11b. We consider the constant input

[S] = 1.

Desired output: The network fulfills the specifications if the output is
steady at the same level at most 2 time units after the input appeared.
The specifications are:

ε =
NB
N2

∑
k

tk≥2

([RRp](tk)− 1)
2
,

where N2 is the number of elements in T = {tk}, tk ≥ 2, and NB = 160 is
the number of elements used by Barnes (Barnes et al., 2011). The vector
x is feasible iff ε ≤ 0.01.

5.3.2.3 noise rejection

The “noise rejection” case aims to design a network that removes high
frequencies from the input signal, see Figure 5.11c. We consider the input
signal:

[S] = 0.5 + 0.4 · sin(8πt),

consisting of a constant (DC) part and an oscillatory (AC) signal. Desired
output: The network fulfills the specifications if the output signal rejects
the oscillatory (AC) part after at most 2 time units. The specifications
hence are:

ε =
NB
N2

∑
k

tk≥2

([RRp](tk)− 0.5)
2

with the same definitions as above. The vector x is feasible iff ε ≤ 0.3.

116



5.3. COMPARING ROBUSTNESS OF TWO BACTERIAL TWO
COMPONENT SYSTEMS

5.3.2.4 signal reproduction

The “signal reproduction” case aims to design a network where the output
reproduces the input within a certain tolerance, see Figure 5.11d. We
again consider as input the square pulse:

[S] =

{
1, if tk ∈ [2, 4]

0, else.

Desired output: The network fulfills the specifications if the output signal
rises above 0.8 within 1 time unit after the pulse starts, and drops to below
0.2 within 1 time unit after the pulse ends. The specifications hence are:

tmax = arg max
k

[RRp](tk)

tmin = arg min
k

[RRp](tk > tmax)

where x is feasible iff 0 ≤ tmax − 2 ≤ 1 and 0 ≤ tmin − 4 ≤ 1 and
(1−max([RRp])) < 0.2 and min([RRp](tk > tmax)) < 0.2.

5.3.3 Results

Figure 5.11 shows four different desired input-output behaviors, as de-
tailed above, along with the respective design specifications. In the lower
panels, the corresponding performances of the orthodox and the unortho-
dox systems are compared. Performance is quantified by how well a sys-
tem achieves the task compared to the other system, as computed with
three different approaches: brute-force sampling, Lp-Adaptation, and ap-
proximate Bayesian computation based on sequential Monte Carlo (ABC-
SMC) (Barnes et al., 2011). ABC-SMC compares the posterior probabil-
ities of the two systems, where the posterior probability in ABC-SMC is
the fraction of accepted samples for the given system compared to the
total number of accepted samples for both systems. Lp-Adaptation and
brute-force sampling compare the normalized volumes of the systems, see
Section 2.2.2. The normalized volume is the fraction of the proposal vol-
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ume for the given system compared to the total volume for both systems.
In order to compare models of different dimensionality, volumes are nor-
malized as n

√
vol (Hafner et al., 2009). The error bars for the brute-force

sampling are obtained by bootstrapping ten samples of size 5 · 106 for the
orthodox and of size 9 · 106 for the unorthodox system. The error bars for
Lp-Adaptation show the standard deviation across ten runs, each with a
sample size of 5 ·104 for the orthodox and 9 ·104 for the unorthodox system.
The error bars for ABC-SMC show the variability in the marginal model
posteriors over three runs (Barnes et al., 2011).

The “fast response” case requires the network to rapidly react to abrupt
changes in the input stimulus S (Figure 5.11a). Here, all three approaches
reach the same conclusion: both systems are able to achieve the desired
input-output response, but the orthodox system outperforms the unortho-
dox system. Faithfully reproducing a constant input stimulus is the goal
of the “steady output” case (Figure 5.11b). Here, Lp-Adaptation agrees
with brute-force sampling that the unorthodox system can more robustly
produce this behavior, whereas ABC-SMC prefers the orthodox system.
The “noise rejection” case aims to design a network that reproduces a
constant signal while rejecting high-frequency fluctuations about it (Fig-
ure 5.11c). This is much more robustly realized in the unorthodox system,
as agreed by all three methods. Finally, the “signal reproduction” case is
to design a TCS network where the output signal reproduces the shape of
the input stimulus within specified tolerances (Figure 5.11d). Again, Lp-
Adaptation agrees with brute-force sampling that the unorthodox system
better achieves this behavior, whereas ABC-SMC considers the orthodox
system better.

Lp-Adaptation can be used for model selection, since the volume of the
feasible region is a measure for the robustness of the system. Our results
agree with the exhaustive brute-force approach, but only require a fraction
of the samples. Figure 5.12 shows the evolution of the estimated normal-
ized volumes versus the number of function evaluations for the orthodox
models in the top row and for the unorthodox models in the bottom row.
The normalized volume is a measure for the robustness of the system,
quantifying the subspace of rate constants for which the system fulfills
the specifications. The volumes of the axes-aligned bounding box (green
squares) and the Loewner ellipsoid (blue circles) of all feasible samples
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Figure 5.12: Averages and standard deviations of the normalized volume
( n
√
vol (Hafner et al., 2009)) estimation of the feasible region over ten

independent runs of Lp-Adaptation. We show the orthodox TCS (top
panel) and the unorthodox TCS (bottom panel) using an L2-ball proposal.
The results for the L1 proposal are visually indistinguishable and hence
omitted. For comparison, the ground-truth baseline obtained by exhaustive
brute-force sampling is shown as a dashed black line. Brute-force sampling
using the same number of function evaluations as Lp-Adaptation is shown
in grey. The upper bounds obtained from Loewner ellipsoids and axes-
aligned bounding boxes of the Lp-Adaptation samples are in blue and green,
respectively. Their large variance indicates that the feasible region is non-
convex or disconnected.
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Figure 5.13: Normalized volume ( n
√
vol) estimation of the feasible regions

of all four cases for both TCS models. The 10 independent runs of Lp-
Adaptation using an L2-ball proposal are shown as individual red lines in
each case. The ground-truth baseline obtained by exhaustive brute-force
sampling is shown as a dashed black line. Brute-force sampling using the
same number of function evaluations as Lp-Adaptation is shown with gray
diamonds and error bars (standard deviation over 10 brute-force runs).
The schedule of reducing the target hitting probability is shown at the top
of each plot.
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are shown as upper bounds. An L2-ball is used as proposal distribution.
The hitting probability is dynamically reduced according to the schedule
shown on top of each plot. The dashed black line shows the baseline result
obtained by exhaustive brute-force sampling the orthodox system 7.5 · 106

times and the unorthodox system 1.5 · 107 times. The results of all indi-
vidual runs and all eight cases are shown in Figure 5.13. Lp-Adaptation
converges toward the baseline in all cases. In the noise-rejection cases,
however, the different runs cover different parts of the non-convex feasible
region and some of them do not converge to the baseline. This is man-
ifested in the larger error bars in the unorthodox noise-rejection case in
Figure 5.12, and clearly visible in the two families of curves in Figure 5.13.
Nevertheless Lp-Adaptation performs much better than brute-force sam-
pling using the same number of function evaluations (grey diamonds) and
is able to sample the feasible region much more efficiently. Cases where
brute-force sampling reaches the baseline faster are indicative of a feasible
region that fills almost the entire space, as also confirmed by the larger
normalized volumes in these cases (fast-response and signal-reproduction
cases). The normalized volume of the entire parameter space is 1000 in this
example. When the feasible region is significantly smaller than the whole
space, Lp-Adaptation performs better and more reliably than brute-force
sampling (steady-output and noise-rejection cases). The orthodox noise-
rejection case has a particularly small feasible region. In this case, none
of the 10 brute-force sampling runs finds any feasible solution, whereas
Lp-Adaptation reaches the baseline in 8 out of 10 runs.

Marginal distributions

We provide additional figures of the marginal and pairwise distributions
of parameters for the TCS in order to assess the space exploration of
Lp-Adaptation. For all pairwise distribution plots, we used a less biased
version of the set of all feasible points obtained in all runs by omitting the
samples obtained during the burn-in period (the phase where the Markov-
chain did not reach a high-probability region yet) and after this, we thin
our samples by only using every 5th feasible point found. Figure 5.14
shows the joint pairwise distributions and the marginal densities of the
feasible points of the unorthodox system for the noise-rejection case. Com-
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Figure 5.14: Marginal densities (diagonal) and joint pairwise distribu-
tions of feasible points for the unorthodox TCS in the noise-rejection case.
Colors show the density of the feasible points obtained.
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Figure 5.15: Comparison of the marginal densities for each of the nine de-
sign parameters of the unorthodox TCS in the noise-rejection case. Red:
marginals obtained by approximate Bayesian computation based on se-
quential Monte Carlo (ABC-SMC) (Barnes et al., 2011); blue: marginals
obtained by Lp-Adaptation; green: marginals from points obtained by uni-
formly sampling the entire parameter space (brute-force sampling).

paring the distributions with those shown in Barnes’ appendix, Figure 5 of
Ref. (Barnes et al., 2011), we see that our method explores the parameter
space more comprehensively.

Figure 5.15 compares the marginal distributions obtained by ABC-SMC
(Barnes et al., 2011), Lp-Adaptation, and brute-force sampling. Using
brute-force sampling, 228 feasible points were found by sampling 1.5 · 107

points. Lp-Adaptation finds 159,140 feasible points by sampling 9 · 105

points in 10 runs, each with a different starting point. This indicates that
Lp-Adaptation provides an efficient way of exploring feasible regions that
are small compared to the total space. Using only 6% of the function
evaluations of brute-force sampling, the number of feasible points found
by Lp-Adaptation is almost 700-times higher than that of brute-force sam-
pling, amounting to five orders of magnitude better sampling efficiency.

Figure 5.16 shows the joint pairwise distributions and the marginal densi-
ties of the feasible points of the orthodox system for the signal-reproduction
case. This is the same case also shown by Barnes et al. (2011). Figure 5.17
again compares the marginal densities obtained by the three different meth-
ods. The conclusions are commensurate with those from the orthodox
system.

For the sake of completeness we show the pairwise distributions and the
marginal densities of the remaining cases in Appendix C.
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Figure 5.16: Marginal densities (diagonal) and joint pairwise distribu-
tions of feasible points of the orthodox TCS in the signal-reproduction
case. Colors show the density of the feasible points obtained.
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Figure 5.17: Comparison of the marginal densities for each of the five de-
sign parameters of the orthodox TCS in the signal-reproduction case. Red:
marginals obtained by approximate Bayesian computation based on se-
quential Monte Carlo (ABC-SMC) (Barnes et al., 2011); blue: marginals
obtained by Lp-Adaptation; green: marginals from points obtained by uni-
formly sampling the entire parameter space (brute-force sampling).

5.4 Conclusion

We presented the application of Lp-Adaptation in three examples. In most
cases tested here, Lp-Adaptation produced approximations comparable to
exhaustive sampling, albeit at a fraction of the computational cost. In
the examples where the feasible region was small compared to the whole
design space, orders of magnitude fewer design trials were needed by Lp-
Adaptation than by exhaustive sampling. Taken together, these results
show that Lp-Adaptation produces results that agree with the brute-force
baseline, albeit at a much lower computational cost. This is true for both
design centering and volume estimation.

In many cases, Lp-Adaptation also produced better-quality results than
previous approaches. In the real-world example of the switched capacitor
filter, for example, the design center found had a better robustness than
the ones previously used as a benchmark. Furthermore, in all four biologi-
cal network cases, Lp-Adaptation selected the same system as brute-force
sampling, whereas previously published results deviated in two cases.

We therefore expect Lp-Adaptation to be of practical use, also because it is
effectively parameter-free. All algorithm parameters have default settings
that only need to be changed in exceptional cases. All results presented
here were obtained using the default settings. The only requirement for
using Lp-Adaptation is that a feasible starting point is known. This also
makes Lp-Adaptation an ideal candidate for being used as a base sampler
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in other parameter exploration methods, which approximate the feasible
region by concatenations of ellipsoids (Zamora-Sillero et al., 2011) or by
approximate posterior distributions through the ABC methodology (Toni
et al., 2009; Barnes et al., 2011).
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SIX

Conclusions and Future Work

We have presented a general framework that unites design centering and
volume approximation. To efficiently explore a feasible region, the pro-
posal distribution is dynamically adapted based on previous samples. The
feasible region is defined by specifications that the design is required to
fulfill. The design center is robust against fluctuations or perturbations in
the design parameters and the specifications, with robustness quantified
by the volume of the feasible region. The volume of the feasible region is a
proxy for the number of feasible designs that exist, and hence provides an
intuitive robustness measure. Both design centering and volume estima-
tion are hard computational problems, which have so far been considered
separately. To our knowledge, Lp-Adaptation is the first algorithm to pro-
vide approximate solutions to both problems simultaneously and hence
unite them under a single framework.

We illustrated Lp-Adaptation in several 2D examples and tested it on Lp-
balls in up to 90D as feasible regions with known ground truth. Finally, we
have shown the applicability of Lp-Adaptation in three diverse real-world
examples, indicating the broad range of possible applications.
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Running Lp-Adaptation for problems with Lp-balls as feasible regions, we
made interesting observations: If the p-norm of the proposal and the fea-
sible region match, the proposal is more explorative the more the feasible
region is stretched, i.e., the higher its condition number is. We think that
an explanation for this could be that with higher condition numbers, more
mass of the feasible region is distributed in fewer dimensions and thus eas-
ier to approximate for a proposal of same shape. To fully understand all of
the Lp-balls behavior, further theoretical investigations would be needed.
A better understanding of the behavior could then be used for a guided
optimization of those algorithmic parameters that could directly be influ-
enced by the proposal’s shape (e.g. update of the transformation matrix
and the proposal’s mean).

In our studies we see that with our default algorithmic parameters, using
either the L1- or the L2-ball as a proposal is at least as good as using the
shape of the underlying feasible region. For unknown feasible regions we
therefore suggest to use the L2-ball as a default proposal.

A critical feature of Lp-Adaptation in its present form is the sequence of
hitting probabilities that is used to steer the process between finding a
robust design center and estimating the feasible volume. Successively de-
creasing the hitting probability allows more accurate volume estimation,
yet renders an infeasible design center increasingly likely. In practice, we
thus recommend doing multiple Lp-Adaptation runs from different start-
ing points found by initial optimization or brute-force sampling, and to
check the quality of the resulting design center and volume estimates. Fur-
thermore, one can also extend the principal idea of learning position, scale,
and orientation of the Lp-balls to other convex or quasi-convex bodies, such
as closed convex polytopes, that better capture the shape of the feasible
points derived from Lp-Adaptation. The only requirement for these al-
ternative (quasi-)convex bodies is the ability to efficiently sample uniform
points from them.

In the future, performance improvements could be realized by adding the
possibility of fixing the transformation matrix C to be diagonal as done
for CMA-ES (Ros and Hansen, 2008). For feasible regions whose main di-
rections are aligned with the coordinate system, this could yield a speedup
because it reduces the degrees of freedom of the transformation matrix to
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be learned by the proposal. Postponing the update of the transformation
matrix until after a specific number of iterations (Ros and Hansen, 2008)
and not updating it in every iteration, are other possibilities that could be
further explored to achieve a better scaling behavior for Lp-Adaptation.

The quality of the approximate solutions obtained from Lp-Adaptation
depends on the unknown shape of the feasible region, the dimensionality
of the problem, and the starting point. No theoretical guarantees can be
given. Rigorous analysis of the algorithmic complexity and solution quality
of design centering and volume-approximation schemes hinges on the con-
vexity of the feasible region (Simonovits, 2003; Lovász and Vempala, 2006),
which is an unrealistic assumption in practice and not the intended appli-
cation domain for Lp-Adaptation. Nevertheless, because Lp-Adaptation
can be understood as a simultaneous rounding and volume-computation
scheme (Simonovits, 2003), we expect the number of function evaluations
that are required to reach a certain level of accuracy to scale polynomially
with problem dimensionality. Our results for the synthetic Lp-balls point
in the same direction. Considering arbitrary, non-convex feasible regions,
future theoretical analysis of Lp-Adaptation might be possible in the PAC
(Probably Approximately Correct) framework (Valiant, 2013), which has
previously been successfully applied to biological and bio-inspired algo-
rithms. This, however, is beyond the scope of our present work.

Notwithstanding these open questions, the benchmarks presented here ad-
vance the state of the art in general design centering and volume estimation.
Versatile default parameters and the availability of open-source implemen-
tations render Lp-Adaptation practically useful, and we expect a number
of engineering and biological problems, including novel designs of synthetic
biological circuits (Woods et al., 2016; Hold et al., 2016), to benefit from
a re-interpretation in the design centering framework.

The source code of Lp-Adaptation is freely available as a Matlab toolbox
on http://mosaic.mpi-cbg.de and via anonymous git from https://

github.com/Joe1909/LpAdaptation_Code.
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APPENDIX

ONE

Matlab source code

Code A.1: Matlab source code to average over covariance matrices

1 function [out averageCov,warningCell]= averageCov(cellC)
2 %% Function to average over all covariance matrices found ...

in cellC
3 %% Input: cell of covariance matrices
4 %% Output: struct out averageCov with
5 %% the average covariance out averageCov.C
6 %% the asymmetric part out averageCov.C asym
7 %% a cell of warnings out averageCov.warningCell
8

9 dim = size(cellC{1},1);
10 numLast = size(cellC,1);
11 warningCell=cell(numLast,1);
12 warningCnt = 1;
13

14 % save average Eigenvalues and Eigenvectors
15 eigVal m = nan(dim,1);
16 eigVec m = nan(dim);
17

18 if numLast == 1
19 % use last covariance

133



APPENDIX A. MATLAB SOURCE CODE

20 C = cellC{end};
21 C sym = C;
22 C asym = [];
23 warningCell{warningCnt} = 'only one covariance';
24 else
25 for k =1:numLast
26 % get MC Covariance in each step
27 C = cellC{end-numLast+k};
28 % Eigen-decomposition
29 [eigVec,eigVals] = eig(C);
30

31 if k==1
32 % to save average Eigenvalues and Eigenvectors
33 eigVal m = diag(eigVals);
34 eigVec m = eigVec;
35 % Eigenvectors from previous iteration
36 eigVec old = eigVec;
37 else
38 check = zeros(dim,1);
39 order = zeros(dim,1);
40 for v=1:dim
41 % for each Eigenvector, find corresponding ...

Eigenvector from
42 % previous iteration
43 q = eigVec(:,v);
44 [¬,idx max] = max(abs(q' * eigVec old));
45

46 check(idx max) = check(idx max) + 1;
47 order(v) = idx max;
48

49 % add Eigenvalues
50 diag eigVals = diag(eigVals);
51 eigVal m(idx max) = eigVal m(idx max) + ...

diag eigVals(v);
52

53 % check that vectors are pointing in same ...
direction

54 projection = q' * eigVec old(:,idx max);
55 if projection < 0
56 p = q * (-1);
57 else
58 p = q;
59 end
60 eigVec(:,v) = p;
61 % add Eigenvectors
62 eigVec m(:,idx max)=eigVec m(:,idx max) + p;
63 end
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64 if ¬isempty(find(check==0, 1))
65 error('Eigenvectors too different, not ...

clear which Eigenvectors to map to ...
which ');

66 end
67 % Eigenvectors to compare with in next iteration
68 eigVec old = eigVec(:,order);
69 end
70 end
71

72 % divide by numLast --> get mean
73 eigVec = eigVec m./numLast;
74 eigVals = eigVal m./numLast;
75

76 % normalize eigvectors
77 for d=1:dim
78 eigVec(:,d) = eigVec(:,d)./norm(eigVec(:,d));
79 end
80 % get covariance
81 C p = eigVec * diag(eigVals) * inv(eigVec);
82 % symmetrize C
83 C sym = 0.5 * (C p + C p');
84 % asymmetric part
85 C asym = 0.5 * (C p - C p');
86 end
87

88 out averageCov.C = C sym;
89 out averageCov.C asym = C asym;
90

91 warningCell = warningCell(1:(warningCnt-1));
92 out averageCov.warningCell = warningCell;
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Additional figures for Section 4.2
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Figure B.1: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume / true volume) of stretched 50-
dimensional Lp-balls (p = 0.5, 1, 2,∞) approximated with proposal distri-
butions of different p. The feasible Lp-balls are stretched along (n− 1)
axes such that the longest axis is

√
1000 times longer than the shortest

one, and the lengths of the axes are logarithmically spaced. The results
are shown for decreasing target hitting probability, starting from the de-
fault initialization 0.35, as indicated at the top of each plot. The dashed
line shows the true volume.
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Figure B.2: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume/true volume) of Loewner ellip-
soids (top row) and axis-aligned bounding boxes (AABB, bottom row) for
ten-dimensional L2-balls approximated with proposal distributions of dif-
ferent p. The feasible L2-balls are stretched along (n− 1) axes such that
the longest axis is

√
Condition times longer than the shortest one, and

the lengths of the axes are logarithmically spaced.

139



APPENDIX B. ADDITIONAL FIGURES FOR SECTION 4.2

L0 .5 -proposal L1 -proposal L2 -proposal L∞ -proposal

0 2 4 6 8

x 10
5

0.5

1

1.5

2

2.5

3

3.5

x 10
−4 Condition: 1

R
e
la
ti
v
e
v
o
lu
m
e
L
o
e
w
n
e
r

hittP 0.35 0.15 0.06 0.03

0 2 4 6 8

x 10
5

0.5

1

1.5

2

2.5

3

3.5

x 10
−4 Condition: 10

hittP 0.35 0.15 0.06 0.03

0 2 4 6 8

x 10
5

0.5

1

1.5

2

2.5

3

3.5

x 10
−4 Condition: 100

hittP 0.35 0.15 0.06 0.03

0 2 4 6 8

x 10
5

0.5

1

1.5

2

2.5

3

3.5

x 10
−4 Condition: 1000

hittP 0.35 0.15 0.06 0.03

0 2 4 6 8

x 10
5

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

Evaluations

R
e
la
ti
v
e
v
o
lu
m
e
A
A
B
B

 

 
hittP 0.35 0.15 0.06 0.03

0 2 4 6 8

x 10
5

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

Evaluations

hittP 0.35 0.15 0.06 0.03

0 2 4 6 8

x 10
5

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

Evaluations

hittP 0.35 0.15 0.06 0.03

0 2 4 6 8

x 10
5

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

Evaluations

hittP 0.35 0.15 0.06 0.03

Figure B.3: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume/true volume) of Loewner ellip-
soids (top row) and axis-aligned bounding boxes (AABB, bottom row) for
ten-dimensional L∞-balls approximated with proposal distributions of dif-
ferent p. The feasible L∞-balls are stretched along (n− 1) axes such that
the longest axis is

√
Condition times longer than the shortest one, and

the lengths of the axes are logarithmically spaced.
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Figure B.4: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume/true volume) of Loewner ellip-
soids (top row) and axis-aligned bounding boxes (AABB, bottom row) for
ten-dimensional Lp-balls of different condition approximated with L0.5-
proposals.
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Figure B.5: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume/true volume) of Loewner ellip-
soids (top row) and axis-aligned bounding boxes (AABB, bottom row)
for ten-dimensional Lp-balls of different condition approximated with L1-
proposals.
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Figure B.6: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume/true volume) of Loewner ellip-
soids (top row) and axis-aligned bounding boxes (AABB, bottom row)
for ten-dimensional Lp-balls of different condition approximated with L2-
proposals.
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Figure B.7: Average and standard deviation (over ten independent runs)
of the relative volume (estimated volume/true volume) of Loewner ellip-
soids (top row) and axis-aligned bounding boxes (AABB, bottom row)
for ten-dimensional Lp-balls of different condition approximated with L∞-
proposals.
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APPENDIX C. ADDITIONAL FIGURES FOR SECTION 5.3
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Figure C.1: Marginal densities (diagonal) and joint pairwise distributions
of feasible points of the orthodox TCS in the fast response case.
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Figure C.2: Marginal densities (diagonal) and joint pairwise distributions
of feasible points of the orthodox TCS in the steady output case.
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Figure C.3: Marginal densities (diagonal) and joint pairwise distributions
of feasible points of the orthodox TCS in the noise rejection case.
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Figure C.4: Marginal densities (diagonal) and joint pairwise distributions
of feasible points of the unorthodox TCS in the fast response case.
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Figure C.5: Marginal densities (diagonal) and joint pairwise distributions
of feasible points of the unorthodox TCS in the steady output case.
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Figure C.6: Marginal densities (diagonal) and joint pairwise distributions
of feasible points of the unorthodox TCS in the signal reproduction case.
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