
Diss. ETH No. 20959

A Domain-Specific Language and Scalable
Middleware for Particle-Mesh Simulations on

Heterogeneous Parallel Computers

A dissertation submitted to
ETH Zurich

for the degree of
Doctor of Sciences

presented by
Omar Awile

M.Sc. Computer Science ETH
born on December 4th, 1981

citizen of Kehrsatz BE, Switzerland

Accepted on the recommendation of
Prof. Dr. Ivo F. Sbalzarini , examiner
Prof. Dr. Jens Walther, co-examiner

Prof. Dr. Petros Koumoutsakos, co-examiner
Prof. Dr. Torsten Hoefler, co-examiner

2013

Declaration of Authorship

This thesis is a presentation of my own original research work. Wherever
contributions of others are involved, every effort is made to indicate this
clearly, with due reference to the literature. The work was done under
the guidance of Professor Ivo F. Sbalzarini at ETH Zurich, Switzerland.
I hereby declare that this thesis has not been submitted before to any
institution for assessment purposes.

iii

Abstract

Alongside theory and experiment, computing has become the third pil-
lar of science. Meeting the increasing demand for computing power, high-
performance computer systems are becoming larger and more complex. At
the same time, the usability and programmability of these systems has to be
maintained for a growing community of scientists that use computational
tools.
In computational science, hybrid particle-mesh methods provide a versatile
framework for simulating both discrete and continuous models either deter-
ministically or stochastically. The parallel particle mesh (PPM) library is
a software middleware providing a transparent interface for particle-mesh
methods on distributed-memory computers.
This thesis presents the design and implementation of algorithms, data
structures, and software systems that simplify the development of efficient
parallel adaptive-resolution particle-mesh simulations on heterogeneous
hardware platforms. We propose a new domain-specific language for par-
allel hybrid particle-mesh methods, the parallel particle mesh language
(PPML). This language provides abstract types, operators, and iterators
for particle-mesh methods, using the PPM library as a runtime system.
We also present a graphical programming environment, called webCG, that
allows rapid visual prototyping of PPML programs from any web browser.
These developments are accompanied by several extensions to the PPM li-
brary itself. We redesign the PPM library core following an object-oriented
paradigm. This allows directly representing abstract types and operators in
PPM, which greatly simplifies the runtime support for PPML. A number
of extensions address the use of PPM on heterogeneous multi- and many-
core platforms, and for adaptive-resolution particle simulations. This first
includes a Fortran 2003 POSIX threads wrapper library, extending PPM to
hybrid multi-processing/multi-threading environments. Second, we present
a generic algorithm for 2D and 3D particle-mesh interpolation on stream-
ing multi-processors, and a portable OpenCL implementation thereof. We
benchmark this implementation on different general-purpose GPUs and
compare its performance with that of sequential and OpenMP-parallel ver-
sions. This extends the PPM library to transparently support GPU accel-
eration. Third, we present a new communication scheduler based on graph
vertex-coloring. We assess the asymptotic runtime and perform bench-

v

marks on graphs of varying sizes and adjacency degrees, outperforming
PPM’s previous communication scheduler in all cases. Fourth, we present a
novel neighbor-finding algorithm for adaptive-resolution particle methods.
Adaptive-resolution neighbor lists retain an asymptotic runtime of O(N),
albeit at the cost of O(N logN) for constructing the data structures. This
extends the PPM library to support adaptive-resolution particle simula-
tions.
We demonstrate the ease of use, flexibility, and parallel scalability of the
new PPM design and of PPML in two example applications. The first one
considers a continuum particle method for reaction-diffusion simulations.
The second application is a discrete Lennard-Jones molecular dynamics
simulation. The first application amounts to a mere 70 lines of PPML code
and sustained 75% parallel efficiency on 1936 cores with less than half a
second of wall-clock time per time step. The second application consists of
140 lines of PPML code and achieved 77% efficiency on 1728 cores.

vi

Zusammenfassung

Computing hat sich neben Theorie und Experiment zur dritten Säule der
Wissenschaft entwickelt. Um der steigenden Nachfrage nach Rechenleistung
gerecht zu werden, werden Hochleistungsrechensysteme immer grösser und
komplexer. Gleichzeitig muss die Bedienbarkeit und Programmierbarkeit
dieser Systeme für eine wachsende Anzahl von Wissenschaftlern erhalten
bleiben.
Partikel-Gitter Methoden bieten ein vielseitiges Framework zur determinis-
tischen oder stochastischen Simulation sowohl diskreter wie auch kontinuier-
licher Modelle. Die parallel particle mesh (PPM) Softwarebibliothek bietet
eine transparente Schnittstelle für Partikel-Gitter Methoden auf verteilten
Rechnern an. Diese Dissertation befasst sich mit dem Design und der Im-
plementation von Algorithmen, Datenstrukturen und Software-Systemen,
die die Entwicklung von effizienten parallelen adaptive-resolution Partikel-
Gitter Simulationen auf heterogenen Hardwareplattformen ermöglichen.
Wir stellen eine neue Domain-spezifische Sprache, parallel particle mesh lan-
guage (PPML), für parallele Partikel-Gitter Methoden vor. Diese Sprache
bietet abstrakte Typen, Operatoren und Iteratoren für Partikel-Gitter Meth-
oden an und benutzt die PPM Bibliothek als Runtime-System. Wir präsen-
tieren auch eine grafische Programmierumgebung, genannt webCG, die
graphisches rapid-Prototyping von PPML Programme auf jedem Web-
Browser ermöglicht.
Diese Entwicklungen werden durch mehrere Erweiterungen der PPM Bib-
liothek selbst begleitet. Wir überarbeiten die PPM core Bibliothek nach
einem objekt-orientierten Paradigma was eine verbesserte Repräsentation
von den abstrakten Datentypen und Operatoren in PPM ermöglicht und
eine vereinfachte Runtime-Unterstützung für PPML bietet. Eine Reihe
von Erweiterungen von PPM befasst sich mit der Unterstützung von PPM
für heterogene Multi- und Many-Core-Plattformen und adaptive-resolution
Partikel-Simulationen. Erstens, entwickeln wir eine Fortran 2003 POSIX-
Threads Wrapper-Bibliothek, die PPM auf Hybrid multi-processing/multi-
threading Umgebungen erweitert. Zweitens, stellen wir einen generischen Al-
gorithmus für 2D und 3D Partikel-Gitter Interpolation auf Streaming Multi-
Prozessoren und portabler OpenCL Umsetzung vor. Wir testen dessen
Implementation auf verschiedenen GPUs und vergleichen dessen Leistung
mit den sequentiellen und OpenMP-parallel-Versionen. Drittens, stellen

vii

wir einen neuen auf Graph-Knotenfärbung beruhenden, Kommunikations-
Scheduler vor. Wir analysieren die asymptotische Laufzeit und führen
Benchmarks auf Graphen verschiedener Größen und Adjazenzgraden aus.
Der neue Scheduler übertrifft PPM’s vorherigen Kommunikation-Scheduler
in allen getesteten Fällen. Viertens, präsentieren wir einen neue Zelllisten-
Algorithmus für adaptive-resolution Partikelmethoden. Adaptive-resolution
Zelllisten weisen eine asymptotische Laufzeit von O(N) auf, jedoch benötigt
der Aufbau der Datenstrukturen O(N logN) Zeit. Wir erweitern damit
PPM’s Unterstützung für adaptive-resolution Methoden.
Wir demonstrieren die Benutzung, Flexibilität und die parallele Skalier-
barkeit des neuen PPM Designs und der PPML Sprache in zwei Anwen-
dungsbeispielen. Die erste Anwendung, ist eine kontinuierliche Partikel-
methode zur Simulation von Reaktions-Diffusions System. Die zweite An-
wendung ist eine diskrete Lennard-Jones Molekulardynamik-Simulation.
Die erste Anwendung ist in lediglich 70 Zeilen PPML-Code implementiert
und erreicht 75% parallele Effizienz auf 1936 Prozessor-Cores mit weniger
als einer halben Sekunde Laufeit pro Zeitschritt. Die zweite Anwendung
besteht aus 140 Zeilen PPML Code und erreicht 77% paralleler Effizienz
auf 1728 Cores.

viii

Acknowledgements

First and foremost, I thank Ivo for his supervision during my PhD studies.
His enthusiasm, optimism and perseverance have always been an inspiration
to me. I thank Ivo for the trust and friendship he offered to me at the
beginning of this journey and ever since. I truly enjoyed working with Ivo
and look back to many fond memories of my time in the MOSAIC group.

I feel privileged to have been part of the MOSAIC group, a place that is
far more than the sum of its parts. Working with this exceptional group of
people gave me the opportunity to learn many much broader skills than my
PhD studies. It was an honor and great joy to work together with Sylvain.
I admire his math skills and patience! Thanks go also to Rajesh, my first
office-mate, who was always there for a quick chat or a good laugh. Birte,
Jo, and Christian, the first MOSAICians, I thank them for their collegiality
and advice that helped me on many occasions. I learned a lot from Greg’s
broad knowledge and always enjoyed our discussions, thank you! Thanks
also to Ömer with whom I wrote many lines of code in the first year of
our PPM adventure :). Ferit deserves special mention for his unresting
commitment to our projects and his good spirits - even at 3 in the morning.
Finally, I am especially thankful to Janick. He has not only been a great
colleague but also a friend who has made these last months of our PhDs,
despite the pressure we were facing, always fun. It is thanks to him that I
kept my sanity :). I’m glad we could share that office up in the attic.

To my best friends Yves and Fred: Thank you for your friendship, for the
good times, and for your many advices. You guys rock in so many ways!

Tamara, thank you for being my companion, friend, love. I cannot begin to
express how much I value you. I have learned, through your relentless efforts
to make things right and to make the people in your life happy, to become
a better human and for this I thank you. I consider myself immensely lucky
to be part of that small team that we are and I look forward to conquering
the world together with you!

ix

Above all, I would like to thank my family. Thank you for providing me
with everything I needed to be able to get to this point and for teaching
me the most important lesson of my life: I can achieve anything I dream
of, if I just try hard enough. Thank you.

Zurich, December 2012

Omar

x

Contents

Abstract v

Introduction xvii

I. Preliminaries 1

1. A brief introduction to hybrid particle-mesh methods 3
1.1. Continuum particle methods 4

1.1.1. Particle function approximation 5
1.1.2. Operator approximation 7

1.1.2.1. Pure particle methods 7
1.1.2.2. Hybrid particle-mesh methods 9

1.1.3. Particle-mesh interpolation 9

2. The Parallel Particle Mesh Library 13
2.1. Features . 14

2.1.1. Topologies . 15

xi

Contents

2.1.2. Mappings . 16
2.1.3. Neighbor lists and particle interactions 17
2.1.4. Particle-mesh interpolations 18
2.1.5. PPM numerics modules 18

2.2. Previous applications of the PPM library 19
2.3. Summary . 19

II. Extending PPM 21

3. Toward an object-oriented PPM core 23
3.1. Overall design . 24
3.2. The PPM core library . 27

3.2.1. Using the new API 29
3.2.2. New PPM core utilities 29

3.3. The PPM numerics library 31
3.4. Performance benchmarks 31
3.5. Summary and Conclusions 34

4. Fast neighbor lists for adaptive-resolution particle simulations 37
4.1. Adaptive-resolution cell lists 39

4.1.1. Constructing AR cell lists 41
4.1.2. Operations on AR cell lists 43
4.1.3. Using AR cell lists 46

4.2. Results . 50
4.2.1. Benchmarks . 50
4.2.2. Example application 57

4.3. Conclusions . 58

5. A new edge-coloring-based communication scheduler 61
5.1. A heapified implementation of DSATUR for communication

scheduling . 63
5.1.1. Using heapified DSATUR in PPM 64

5.2. Benchmarks . 66
5.3. Summary and Conclusion 68

xii

Contents

6. PPM on multi- and manycore platforms 71
6.1. A pthreads wrapper for Fortran 2003 75

6.1.1. Features and limitations 76
6.1.2. Using forthreads in hybrid MPI/pthread programs . 81

6.1.2.1. Particle-mesh interpolation using forthreads 82
6.1.2.2. Multigrid Poisson solver with computation-

communication overlap 83
6.1.2.3. Interactive computing with the PPM li-

brary and forthreads 87
6.1.3. Summary and Conclusion 88

6.2. An OpenCL implementation of particle-to-mesh and mesh-
to-particle interpolation in 2D and 3D 91
6.2.1. GPU Programming with OpenCL 93
6.2.2. Method . 94

6.2.2.1. Strategies for interpolation on the GPU . . 95
6.2.2.2. Data structures 96
6.2.2.3. Mapping of the data structures into OpenCL 99
6.2.2.4. Interpolation algorithms for the GPU . . . 101

6.2.3. Integration in the PPM Library 104
6.2.4. Benchmarks . 108

6.2.4.1. Accuracy 109
6.2.4.2. Runtime 110

6.2.5. Conclusions and Discussion 116

III. A domain-specific language for particle methods 121

7. The Parallel Particle Mesh Language 123
7.1. Domain-Specific Languages 124
7.2. PPM abstractions . 126
7.3. PPML syntax and features 130
7.4. Implementation . 131

7.4.1. Parsing . 134
7.4.2. Code generation . 134
7.4.3. PPML Macro collection 134

7.5. The PPM client generator 136
7.5.1. A minimal PPML example 137

xiii

Contents

7.6. A visual programming interface for PPM 138
7.6.1. Architecture . 141

7.6.1.1. Client-side architecture 141
7.6.1.2. Server-side architecture 143

7.7. Summary and Conclusions 144

8. PPML benchmark clients 145
8.1. The benchmark system . 146
8.2. Simulating a continuous reaction-diffusion model using PPML146
8.3. Simulating molecular dynamics using PPML 152
8.4. Conclusion . 156

IV. Conclusions 157

9. Conclusions and future work 159

Appendix A. The PPML ANTLR grammar 165

Appendix B. A minimal PPM client 175

Appendix C. A webCG PPML showcase 185

Bibliography 191

Index 207

Publications 209

Curriculum Vitae 211

xiv

Nomenclature

API Application programming interface

APU Accelerated processing unit

AST Abstract Syntax Tree

CPU Central processing unit

CUDA Compute Unified Device Architecture

DOM Document Object Model

DSL Domain-Specific Language

eDSL embedded domain specific language

FPGAs Field-programmable gate array

xv

Contents

GPGPU General purpose graphical processing unit

MPI Message passing interface

NUMA Non uniform memory access

OpenCL Open Computing Language

OpenMP Open Multiprocessing

POSIX Portable Operating System Interface, a set of standards specified
by IEEE to allow for operating system compatibility.

PPML Parallel Particle-Mesh Language

SDK Source development kit

SIMD Single instruction, multiple data

SPMD Single program multiple data, parallelization technique for example
employed in MPI

SVG Scalable Vector Graphics

TCP Transmission control protocoll

VTK Visualization Toolkit

xvi

Introduction

In the past decades, computational science has advanced from a supporting
role in engineering and physics to an important pillar of scientific innova-
tion. Today, computing is an integral tool complementing scientific theory
and experiment. Computing enables us to explore systems that are difficult
or impossible to study experimentally. Examples include star formation in
astrophysics, global climate models in geophysics, and biomolecule folding
and interactions in biology. Computer simulations are by now ubiquitous
in the sciences, including the social sciences [Michel et al., 2011]. In engi-
neering, computation in general and simulations in particular have become
essential parts of product design and testing.

As a result, the demand for larger, more powerful and more capable com-
puter systems has been steadily increasing. Modern computer systems,
however, are increasingly complex with several levels of parallelism and
memory hierarchy. This is particularly true in high-performance comput-
ing. The peak performance of the fastest supercomputer has increased from

xvii

INTRODUCTION

41 TFlop/s in November 20021 to 27 PFlop/s in November 20122 and is
expected to reach the exascale by 2018.

The introduction of multicore processors in 2005, and more recently the use
of graphics processing units (GPUs) for general purpose computing, have
enabled a continuous increase in computing power [Asanovic et al., 2009,
Geer, 2005]. This, however, comes at the cost of reduced programmabil-
ity. Moreover, memory capacity is growing faster than memory bandwidth.
This is further aggravated by the fact that several processor cores often
share the same memory bus. To harness the full power of today’s fastest
computers, intimate knowledge of distributed- and shared-memory par-
allelism and heterogeneous computer architectures is required. Sbalzarini
[2010] summarized these developments with the terms performance gap, and
knowledge gap. The performance gap is the decreasing fraction of sustained
performance of simulation codes over the theoretical peak-performance of
the hardware. The knowledge gap is the increasingly specialized knowledge
required for efficient use of high-performance computers.

Much work has been done to address the performance and knowledge gaps
[Asanovic et al., 2009]. A common approach to improving the sustained
performance of computer simulation codes, and simplifying the use of het-
erogeneous parallel hardware platforms, is to introduce abstraction layers.
These abstraction layers may be implemented as software libraries or as
domain-specific languages (DSL).

Numerous libraries provide abstractions for parallel infrastructure, parallel
algorithms, and parallel numerical methods. Examples of low-level infras-
tructure libraries include AMPI [Chao et al., 2007] providing dynamic load
balancing and multithreading within the message passing interface [MPI
Forum 2012], pthreads [POSIX, 2004], a standard library for shared-memory
parallelism, and the parallel utilities library (PUL) [Chapple and Clarke,
1994]. Mid-level libraries such as the parallel particle mesh (PPM) library
[Sbalzarini et al., 2006a, Awile et al., 2010], a portable middleware for the
parallelization of hybrid particle-mesh methods, provide abstractions to
a class of numerical methods, hiding the parallel implementation behind
a transparent API, while allowing for flexibility within the framework of

1Earth-Simulator, http://www.top5��.org/system/167148
2Titan, http://www.top5��.org/system/177975

xviii

http://www.top500.org/system/167148
http://www.top500.org/system/177975

the numerical method. Other examples include PETSc [Balay et al., 2004]
providing algorithms and data structures for solving partial differential
equations on parallel hardware platforms, Trilinos [Heroux et al., 2005],
and POOMA [Reynders et al., 1996, Karmesin et al., 1998], a parallel C++
template library for particle and mesh methods. High-level abstraction
libraries provide implementations of entire numerical solvers. Examples
include FFTW, PARTI [Moon and Saltz, 1994], a library for Monte-Carlo
simulations, and pCMAlib [Mueller et al., 2009], a numerical optimization
library.

Another approach to providing abstractions is by means of a domain-specific
language (DSL) [Mernik et al., 2005]. For instance, OpenMP and OpenCL
are domain-specific extensions to the C programming language that, along
with their runtime libraries, allow the user to write portable shared-memory-
parallel code. Distributed-memory parallelism is provided by C/C++-like
languages and DSLs such as unified parallel C [UPC, 2005], Charm++
[Laxmikant and Gengbin, 2009], an object-based parallel programming sys-
tem, Linda [Carriero and Gelernter, 1989], and X10 [Charles et al., 2005], a
parallel programming language using the partitioned global address space
(PGAS) model.

These DSLs provide tools for writing parallel applications with little or no
restrictions on the numerical method. The DSLs provided through FEn-
iCS [Logg, 2007, Logg and Wells, 2010], Liszt [DeVito et al., 2011], and
DUNE [Dedner et al., 2010], however, limit the programmer to a certain
class of numerical methods. In return, they offer a higher level of abstrac-
tion, providing a simpler parallel programming model, or entirely hiding
parallelism.

In this thesis we present a domain-specific language for parallel hybrid
particle-mesh methods using the PPM library as a runtime system [Sbalzarini
et al., 2006a, Sbalzarini, 2010]. Furthermore, we extend the PPM library
in several ways to include support for multi- and many-core hardware
platforms, as well as adaptive-resolution particle methods. The thesis is
structured as follows:

xix

INTRODUCTION

Part I: Preliminaries

We start by briefly recapitulating the key concepts of hybrid particle-mesh
methods and of the PPM library. Focusing on continuum particle methods,
we summarize function and operator approximation using particles, and
briefly describe hybrid particle-mesh methods.

The PPM library provides abstractions for parallel particle-mesh methods.
We discuss the library’s overall design and describe particles, meshes, topolo-
gies, and mappings, the main abstraction types and operations implemented
in PPM. We conclude Part I by surveying some previous simulations and
applications that have used the PPM library.

Part II: Extending PPM

In Part II we describe the several extensions to the PPM library that we
have designed and implemented as part of this thesis.

One possible approach to simplifying the design of software is by encapsu-
lation, particularly by using abstract data types. In chapter 3 we describe a
new design of the PPM library using Fortran 2003 object-oriented language
features. We implement the PPM abstractions [Sbalzarini, 2010] as derived
types. Operation abstractions, such as PPM mappings, are implemented
as type-bound procedures. Furthermore, we extend the PPM library with
several new utilities. This includes VTK file output for particles and meshes
and a configuration-file and runtime-argument processing framework that
allows easy creation and processing of runtime parameters for PPM client
applications. A third new utility implements Peano-Hilbert curve sorting
for improved memory-locality of particles. We present benchmarks com-
paring a client application written for the original version of PPM with an
updated client using the new PPM design.

The inherent adaptivity of particle methods is particularly appealing when
simulating multiscale models or systems that develop a wide spectrum
of length scales. Evaluating particle-particle interactions using neighbor-
finding algorithms such as cell lists [Hockney and Eastwood, 1988] or Ver-
let lists [Verlet, 1967], however, quickly becomes inefficient in adaptive-

xx

resolution simulations where the interaction cutoff radius is a function of
space. Chapter 4 presents a novel adaptive-resolution cell list algorithm
and the associated data structures that provide efficient access to the inter-
action partners of a particle, independent of the (potentially continuous)
spectrum of cutoff radii present in a simulation. We characterize the com-
putational cost of the proposed algorithm for a wide range of resolution
spans and particle numbers, showing that the present algorithm outper-
forms conventional uniform-resolution cell lists in most adaptive-resolution
settings.

The problem of finding an optimal communication schedule between proces-
sors can be abstracted as a graph-coloring problem. In chapter 5 we propose
a new communication scheduler based on the DSATUR vertex-coloring al-
gorithm [Brélaz, 1979] and present its implementation. We benchmark the
implementation on a number of graphs of different sizes and adjacency
degrees, and compare it with Vizing’s algorithm, which was previously
used in PPM. The new implementation shows an overall improved runtime
performance and lower computational complexity than Vizing’s algorithm.

In section 6.1 we present the design and use of a Fortran 2003 wrapper for
POSIX threads, called forthreads. Forthreads is complete in the sense that
it provides native Fortran 2003 interfaces to all pthreads routines where this
is possible. We demonstrate the usability and efficiency of forthreads for
SIMD parallelism and task parallelism. We present forthreads/MPI imple-
mentations that enable hybrid shared- and distributed-memory parallelism
in Fortran 2003. Our benchmarks show that forthreads offers performance
comparable to that of OpenMP, but better thread control and more freedom.
We demonstrate the latter by presenting a multi-threaded Fortran 2003
library for POSIX internet sockets, enabling interactive PPM simulations
with run-time control.

A key component of hybrid particle-mesh methods is the forward and back-
ward interpolation of particle data to mesh nodes. These interpolations
typically account for a significant portion of the computational cost of a sim-
ulation. Due to its regular compute structure, interpolation admits SIMD
parallelism, and several GPU-accelerated implementations have been pre-
sented in the literature. In section 6.2 we build on these works to develop
a streaming-parallel algorithm for interpolation in hybrid particle-mesh

xxi

INTRODUCTION

methods that is applicable to both 2D and 3D and is free of assumptions
about the particle density, the number of particle properties to be interpo-
lated, and the particle indexing scheme. We provide a portable OpenCL
implementation of the algorithm in PPM and benchmark its accuracy and
performance. We show that with such a generic algorithm speedups of up
to 15⇥ over an 8-core multi-thread CPU implementation are possible if the
data are already available on the GPU. The maximum speedup reduces to
about 7⇥ if the data first have to be transferred to the GPU. The bench-
marks also expose several limitations of GPU acceleration, in particular
for low-order and 2D interpolation schemes.

Part III: A domain-specific language for particle methods

Based on the redesigned PPM library introduced in chapter 3, and the ab-
stractions described by Sbalzarini [2010], we develop an embedded domain-
specific language (eDSL) for parallel hybrid particle-mesh methods. This
domain-specific language is embedded in Fortran code and provides types,
operators, iterators, and type templating for particle-mesh methods. The
present parallel particle mesh language (PPML) is implemented using a
flexible macro system that allows the user to define custom operations and
iterators.

We also present a visual programming environment for PPML. This pro-
gramming environment is web-browser-based and uses an application server
for generating and executing PPML clients. It also provides an interface
to monitor running simulations.

We demonstrate the usefulness and scalability of PPML in two example
applications. The first application considers a continuum reaction-diffusion
simulation. The second application is a discrete Lennard-Jones molecular
dynamics simulation. For both clients we perform parallel benchmarks on
up to 1936 cores and report parallel efficiencies >75%. Each client can be
implemented in just a few hours without requiring special knowledge of
parallel programming.

xxii

Part I.

Preliminaries

1

Supported Features

2

CHAPTER 1

A brief introduction to hybrid particle-mesh methods

Simulations using particles are ubiquitous in computational science and
beyond. Particle methods are able to seamlessly treat both discrete and
continuous systems either stochastically or deterministically. In discrete
particle methods, particles frequently correspond to real-world entities,
such as atoms in molecular dynamics simulations or cars in road traffic
simulations. In simulations of continuous systems, particles constitute the
material points (Lagrangian tracer points) of the system, which evolve
according to their pairwise interactions. Examples include the vortex ele-
ments in incompressible fluid mechanics simulations [Koumoutsakos, 2005].
Particle methods are intuitively easy to understand and applicable also in
situations that cannot be described by (differential) equations, e.g., image
segmentation [Cardinale et al., 2012, Bernard et al., 2009].

The dynamics of the simulated system can be described by a set of ordinary
differential equations that determine the evolution of the particle positions

3

CHAPTER 1. A BRIEF INTRODUCTION TO HYBRID
PARTICLE-MESH METHODS

and strengths

dx
p

dt
=

NX

q=1

K(x

p

,x
q

;!
p

,!
q

) p = 1, ..., N (1.1)

d!
p

dt
=

NX

q=1

F(x

p

,x
q

;!
p

,!
q

) p = 1, ..., N. (1.2)

K and F can be either deterministic (e.g., integral representations of a differ-
ential operator, force fields, or generic interaction potentials) or stochastic
(e.g., probability density functions).

Hybrid particle-mesh methods combine the strengths of both particle and
mesh discretizations. This allows each operation to be done in the more
suitable discretization in terms of precision, efficiency, and simplicity. In
order to translate between the two discretizations mesh-to-particle and
particle-to-mesh interpolations are available.

1.1. Continuum particle methods

In continuum particle methods smooth functions are approximated by in-
tegrals that are discretized by a set of particles. A particle p is a discrete
computational element that is located at a position x

p

and carries strengths
!
p

. The particles’ attributes (location and strengths) evolve so as to satisfy
the governing equations of the simulated system in a Lagrangian frame of
reference [Koumoutsakos, 2005]. In pure particle methods, the functions K

and F arise from the integral approximation of differential operators. In
hybrid particle-mesh methods some of the differential operators are eval-
uated on a superimposed regular Cartesian mesh. Particle-to-mesh and
mesh-to-particle interpolations are used to translate between the two rep-
resentations.

4

1.1. CONTINUUM PARTICLE METHODS

1.1.1. Particle function approximation

A smooth function f(x) : ⌦ ⇢ Rd 7! R can be approximated using particles
by first rewriting it in an integral representation using the Dirac �-function,
then mollifying this integral, and finally discretizing the mollified integral
using a quadrature rule.

We use the Dirac �-function to derive an integral representation of the
function f

f(x) =

ˆ
f(y)�(y � x)dy x,y 2 ⌦. (1.3)

The convolution with the �-function can be interpreted as an evaluation at
the precise particle location of y, as done in point particle methods. However,
in order to approximate smooth functions it is necessary to be able to
recover approximations of f at off-particle locations. In order to obtain a
smooth approximation for all y 2 ⌦, we replace the point particles defined
by the Dirac functions with blobs of width ✏ (Fig. 1.1). This is formally done
by regularizing the Dirac �-function with a smooth mollification kernel ⇣

✏

of characteristic width ✏, thus

f
✏

(x) =

ˆ
f(y)⇣

✏

(y � x)dy. (1.4)

The mollification kernel is defined as ⇣
✏

= ✏�d⇣(x
✏

) such that lim
✏!0

⇣
✏

= �.
The characteristic width ✏ defines the spatial resolution of the method.

The order of accuracy O(✏r) of the mollification can be conveniently de-
scribed by the number of moments of the �-function that the mollification
kernel conserves. The kernel is of order r ifˆ

x

k⇣(x)dx
!

=

ˆ
x

k�(x)dx 8k 2 {0, ..., r � 1}. (1.5)

This implies that non-negative, symmetric kernels, such as a Gaussian,
can only produce discretizations of order up to r = 2 since for moments
k � 1 only k = 1 can vanish (for a detailed description see [Cottet and
Koumoutsakos, 2000, Koumoutsakos, 2005]).

Finally, the mollified integral representation of f(x) is discretized over N

5

CHAPTER 1. A BRIEF INTRODUCTION TO HYBRID
PARTICLE-MESH METHODS

Figure 1.1. Three particles xp1, xp2, and xp3 carrying Gaussian mollification
kernels ⇣✏ with strengths !p1, !p2, and !p3.

particles using the rectangular quadrature rule

fh

✏

(x) =

NX

p=1

!h

p

⇣
✏

(x

h

p

� x), (1.6)

where h is the particle distance and x

h

p

and !h

p

are the numerical solutions
of particle positions and strengths obtained from discretizing Eqs. 1.1 and
1.2. Since !h

p

= f(y)dy, it is an extensive quantity and depends on the
quadrature rule employed. Here, we use the rectangular rule yielding !h

p

=

f(xh

p

)V
p

where V
p

is the particle’s volume. The overall accuracy of the
discretization is then

f
✏

(x) = f(x) +O(✏r) +O

✓
h

✏

◆
s

, (1.7)

where s depends on the number of continuous derivatives of the mollification
kernel ⇣ [Cottet and Koumoutsakos, 2000, Koumoutsakos, 2005]. In the

6

1.1. CONTINUUM PARTICLE METHODS

case of a Gaussian kernel s ! 1. From the approximation error in Eq.
1.7 we see that h/✏ must be < 1 for the discretization error to remain
bounded. In other words the particle spacing must be such that particle
kernels always overlap (Fig. 1.1).

1.1.2. Operator approximation

In pure particle methods discretized differential operators are constructed
either by differentiating the smooth particle function approximation as
used in the smoothed particle hydrodynamics (SPH) method [Gingold and
Monaghan, 1977] or by finding integral operators that are equivalent to the
corresponding differential operators. In hybrid particle-mesh methods some,
but not all, differential operators are evaluated on a regular Cartesian mesh
carrying the corresponding intensive quantities of the discretized function.

1.1.2.1. Pure particle methods

As an example of a pure particle method for discretizing a differential
operator, we detail the particle strength exchange (PSE) method, that was
first introduced by Degond and Mas-Gallic [1989a]. PSE can be used to
construct a discretized integral operator from a differential operator. For
example the PSE operator for the Laplacian (r2) can be derived starting
from the Taylor expansion of f around x:

f(y) = f(x)+(y�x) ·rf(x)+ 1

2

X

i,j

(x
i

�y
i

)(x
j

�y
j

)

@2f(x)

@x
i

@x
j

+ · · · . (1.8)

This expression is then convolved with a kernel function ⌘
✏

ˆ
(f(y)� f(x)) ⌘

✏

(y � x)dy =

ˆ
(y � x)rf(x)⌘

✏

(y � x)dy

+

1

2

ˆ X

i,j

(x
i

� y
i

)(x
j

� y
j

)

@2f(x)

@x
i

@x
j

⌘
✏

(x� y)

(1.9)
+ · · ·

7

CHAPTER 1. A BRIEF INTRODUCTION TO HYBRID
PARTICLE-MESH METHODS

that is designed to match the desired differential operator. The moments
of ⌘

✏

must be such that the differential operator is isolated from the Taylor
expansion. In case of the Laplacian we must hence choose a kernel function
that fulfills:

• ⌘
✏

is even, canceling out all odd terms in Eq. 1.9

• ⌘
✏

(x) = ✏�d⌘
�
x

✏

�
and

´
z2
i

⌘(z)dz
!

= 2 8i 2 {1, ..., d}, normalizing
the remaining second derivative in Eq. 1.9

•
´
z

k⌘(z)dz
!

= 0 8k 2 {3, ..., r+1}, canceling out all remaining higher
order terms up to order r + 1

Applying such an ⌘
✏

, and solving for @

2
f(x)

@x

2
i

leads to the desired approxi-
mation of the Laplacian operator

r2

✏

f(x) = ✏�d

ˆ
(f(y)� f(x)) ⌘

✏

(y � x)dy. (1.10)

Finally, the approximated integral operator can be discretized over the par-
ticles using a quadrature rule. The PSE method has recently been extended
by Schrader et al. [2010] with a discretization correction framework (DC
PSE) that allows for high-resolution discretizations with full convergence
rate. DC PSE operators hence provide the required convergence rate for
irregular particle distributions and over the entire spectrum of resolutions.

Evaluating operators on particles requires O(N2

) operations. However, if
the operator have local support, auxiliary data structures such as cell lists
[Hockney and Eastwood, 1988] or Verlet lists [Verlet, 1967] can be used
to reduce the runtime to O(N). We present in chapter 4 an extension of
cell lists that remains efficient also for adaptive-resolution particle methods
where the cutoff radii may range over several orders of magnitude. For long-
range interactions, approximation algorithms such as Barnes-Hut [Barnes
and Hut, 1986] or multipole expansions [Greengard and Rokhlin, 1988] may
be used to reduce the time complexity to O(N logN) or O(N) respectively.
Hybrid particle-mesh methods with FFT or multigrid based mesh solvers
can be used. Such methods offer runtime complexities of O(M logM) and
O(M) (for M mesh nodes) respectively, however, often with lower pre-
factors than pure-particle methods.

8

1.1. CONTINUUM PARTICLE METHODS

1.1.2.2. Hybrid particle-mesh methods

Hybrid particle-mesh methods use regular Cartesian meshes to efficiently
evaluate long-range differential operators. This is for example done in Par-
ticle in Cell (PIC) methods as proposed by Harlow [1964] and in P3M
(particle-particle-particle-mesh) algorithms [Hockney and Eastwood, 1988].
Non-uniform and unstructured meshes are not considered in hybrid particle-
mesh methods, as sub-grid scales are represented on the particles. Therefore,
“translations” between particle and mesh discretizations are needed. This is
usually done using moment preserving particle-mesh interpolations [Hock-
ney and Eastwood, 1988, Monaghan, 1985] provide the required accuracy
and can be implemented efficiently.

1.1.3. Particle-mesh interpolation

Hybrid particle-mesh methods rely on accurate and efficient interpolation
of particle properties or strengths to the nodes of a (block-wise) uniform
Cartesian mesh, and back [Hockney and Eastwood, 1988]. We refer to
the former as “particle-to-mesh interpolation” and the latter as “mesh-
to-particle interpolation”. In particle-to-mesh interpolation, one aims at
exact conservation of the first few moments of the interpolated function.
This ensures conservation of mass, momentum, angular momentum, etc.,
depending on the order of the interpolation scheme. In mesh-to-particle
interpolation, conservation of moments is generally not possible due to the
non-uniform spacing of the target particles. In both cases however, the
interpolation error decreases as a power of the mesh spacing h. This power
is called the order of convergence of the interpolation scheme.

We consider moment-conserving interpolation schemes in two and three
dimensions that are Cartesian products of one-dimensional interpolants.
The weights W of the one-dimensional interpolants are computed indepen-
dently for each dimension i using the mesh distance s between the mesh

9

CHAPTER 1. A BRIEF INTRODUCTION TO HYBRID
PARTICLE-MESH METHODS

(a) (b)

Figure 1.2. Schematic of (a) particle-to-mesh and (b) mesh-to-particle interpo-
lation in 2D using an interpolation function with support ±2h (support region
is shaded in yellow). Blue particles (P(m)) and mesh nodes (M(p)) are within
the support region of the center node/particle and hence assign onto it. Green
particles and nodes lie outside the support and are not considered.

node m and the particle p, s(m, p):

W
i

(m, p) = �(s
i

(m, p)) (1.11)

= �

✓
|x

i

(m)� x
i

(p)|
h
i

◆
, (1.12)

where � is the one-dimensional interpolation function, x
i

(m) is the i-th
component of the position of mesh node m, and x

i

(p) the i-th component
of the position of particle p.

The final interpolation weight in d dimensions is computed as:

W (m, p) =

dY

i=1

W
i

(m, p). (1.13)

Particle-to-mesh interpolation is then formulated as follows:

~!(m) =

X

p2P(m)

W (m, p)~!(p) , (1.14)

10

1.1. CONTINUUM PARTICLE METHODS

where P(m) is the set of particles that contribute to mesh node m, i.e.,
are within the support of the interpolation weights W from the mesh node
m (see Fig. 1.2(a)), and ~! is the value (particle property) that is being
interpolated.

Likewise, mesh-to-particle interpolation is formulated as:

~!(p) =
X

m2M(p)

W (m, p)~!(m) , (1.15)

where M(p) is the set of mesh nodes that contribute to particle p (see
Fig. 1.2(b)).

The choice of interpolation function � determines the order of convergence
and the number of conserved moments. Here, we consider the M 0

4

(intro-
duced by Monaghan as the W

4

function [Monaghan, 1985]) and the linear
interpolation schemes:

�
M

0
4
(s) =

8
<

:

3

2

s3 � 5

2

s2 + 1 , 0  s  1

� 1

2

s3 + 5

2

s2 � 4s+ 2 , 1 < s  2

0 , else.
(1.16)

�linear(s) =

⇢
1� s , 0  s  1

0 , else. (1.17)

The order of convergence is 3 for M 0
4

and 2 for linear interpolation. M 0
4

conserves moments up to and including the second moment, whereas the
linear interpolation scheme conserves moments up to and including the
first moment. Linear interpolation is sometimes also termed “Cloud-in-
Cell” (CIC) interpolation [Hockney and Eastwood, 1988]. An SIMD-efficient
evaluation of the interpolation polynomials can be done using the Horner
scheme [Rossinelli et al., 2011].

11

CHAPTER 2

The Parallel Particle Mesh Library

Applications of particle methods are numerous, covering simulations of con-
tinuous systems using methods such as vortex methods (VM) [Koumout-
sakos, 2005] or smooth particle hydrodynamics (SPH) [Gingold and Mon-
aghan, 1977] and simulations of inherently discrete systems such as molec-
ular dynamics (MD) or gravitational bodies in astrophysical simulations.
Particle-mesh methods additionally employ one or several meshes, allowing
the use of efficient algorithms for long-range interactions. This includes P3M
(particle-particle-particle-mesh) [Hockney and Eastwood, 1988] or Particle
in Cell (PIC) methods [Harlow, 1964]. Despite their intuitive formulation
and versatility, particle-mesh methods give rise to several difficulties in
their efficient parallel implementation. First, the computational domain
including the particles and meshes must be decomposed and assigned to
processors such that the computational load on and communication be-
tween processors is well balanced. Furthermore, the simultaneous presence
of particles and meshes presents a single optimal topology. Second, the

13

CHAPTER 2. THE PARALLEL PARTICLE MESH
LIBRARY

processors must communicate particle and mesh updates with their neigh-
bors through a consistent and efficient protocol. Third, particle movement
and inhomogeneity may invalidate the domain decomposition and require
redecomposing and redistributing particles and/or meshes.

The Parallel Particle Mesh (PPM) library [Sbalzarini et al., 2006a] provides
a physics-independent, transparent, and portable interface for implementing
particle-mesh methods on parallel distributed-memory computers. The li-
brary provides subroutines for adaptive domain decomposition, particle and
mesh to processor mapping, particle and mesh interprocess communication,
particle-mesh interpolation, and cell [Hockney and Eastwood, 1988] and
Verlet [Verlet, 1967] lists. Furthermore, a number of particle-mesh methods
have been implemented using these core routines and are provided as part
of the library. The library is written in Fortran 95 and makes extensive use
of pre-processor macros to provide type overloading for all Fortran numeric
types. Distributed-memory parallelism is achieved by transparently using
the message passing interface (MPI).

A number of other libraries that provide data and operation abstractions for
parallel implementations of numerical methods are available. For example
the programming environment for parallelizing finite element and finite
volume methods ASTRID [Bonomi et al., 1989], or POOMA [Reynders
et al., 1996, Karmesin et al., 1998], a parallel C++ templated library for
particle and mesh methods. Finally, OVERTURE [Brown et al., 1997] is
an environment for the numerical solution of partial differential equations
on adaptively refined meshes.

2.1. Features

The core modules of the PPM library consist of four parts: topologies,
mappings, neighbor lists, and particle-mesh interpolations. PPM client ap-
plications (clients) use three basic data types: particles, meshes, and con-
nections. Particles are defined by a position x

p

and properties !
p

. Meshes
in PPM are always regular, axis-aligned Cartesian meshes. Connections are
used to explicitly model particle relationships such as in chemical bonds
in MD simulations, triangulated surfaces or unstructured meshes. Based

14

2.1. FEATURES

on PPM’s core algorithms and data structures a collection of frequently
used numerical routines is also provided. This includes the evaluation of
particle interactions based on either cell or Verlet lists, as well as mesh-
based Poisson solvers using the Multigrid (MG) or Fast Fourier Transform
(FFT). Furthermore, a number of utility routines for timing, parallel I/O,
and mathematical operations are provided.

2.1.1. Topologies

In PPM a topology is a decomposition of the computational domain into
subdomains and the assignment of these subdomains to processors (Figure
2.1, upper-right). Several decomposition types are provided that can be
chosen depending on the nature of the simulated problem. All domain
decompositions are axis-aligned. Recursive orthogonal bisections are com-
puted using adaptive binary trees. For pencil (or slab) decompositions the
programmer chooses one (or two) axis along which the domain is not sub-
divided. The decomposition algorithm then computes a subdivision along
the remaining axes. Cuboid decompositions are computed using adaptive
quad- (in 3D oct-) trees. The domain decomposition aims to provide suffi-
cient granularity for load-balancing, while retaining a minimum number of
particles per subdomain.

The subdomains of a domain decomposition are assigned to processors
using either a greedy algorithm that assigns contiguous subdomain blocks
to a processor until the target load has been reached, or by building a
subdomain-neighborhood graph and computing a k-way partitioning using
the METIS library [Karypis and Kumar, 1998]. The objective of subdomain
assignment is to balance the computational cost across processors and to
minimize interprocess communication.

Both domain decomposition and subdomain-to-processor assignment are
performed by each processor individually, replicating the topology infor-
mation on all processors. While multiple topologies may exist in a PPM
simulation only one may be active at any time. A topology is called active
when the data (particles and/or meshes) are distributed according to it.

15

CHAPTER 2. THE PARALLEL PARTICLE MESH
LIBRARY

⌦
create

topology

g

l

o

b

a

l

m

a

p

p

i

n

g

ghost (get)

mapping

Figure 2.1. In PPM the computational domain ⌦ (upper-left) is decomposed
and subdomains are assigned to processors (upper-right). Particles and meshes
are then mapped onto this topology using a global mapping (lower-left). Ghost
layers are communicated by ghost mapping (lower-right). In this example
periodic boundary conditions are assumed.

2.1.2. Mappings

All interprocess communication in PPM is abstracted and encapsulated by
three types of mapping operations: global mappings, local mappings, and
ghost mappings. Mappings can be applied to all basic PPM data types: par-
ticles, meshes, and connections. Global mappings are used to map data onto
a topology, thus activating it. In a global mapping (Figure 2.1, lower-left)
each processor first determines which particles, mesh nodes, and connec-
tions currently residing on it should be sent to another processor. Then,
all processors exchange data according to an optimized communication
schedule. Finally, the target topology is marked as active. Local mappings
are provided to transfer particles to neighboring processors when they have
moved outside of a processor’s subdomains. Since meshes do not move,
no local mesh mappings are provided. Ghost mappings (Figure 2.1, lower-
right) are used to populate and update ghost (halo) layers around each
processor’s subdomains. Ghost layers allow PPM clients to maintain a local
view of the simulation’s state. Each processor operates independently of

16

2.1. FEATURES

the others, except at clearly defined synchronization points (the mappings).
The ghost layers provide copies (ghosts) of particles and mesh nodes within
a predefined distance from interprocess boundaries. The ghost-get mapping
updates the ghost values from the data on the neighboring processors, while
the ghost put mapping updates real particles and mesh-nodes from their
ghost-copies on the neighboring processors.

All mappings internally account for the boundary conditions at the edges
of the computational domain. Neumann, Dirichlet, freespace, symmetric,
and periodic boundary conditions are supported.

Since all mapping routines in PPM are implemented using synchronous
MPI communication, a processor can only communicate with one other
processor at a time. It is thus beneficial to first optimize the communication
schedule. This is done using Vizing’s [1964] approximate edge coloring
algorithm. In chapter 5 we present a new vertex coloring algorithm with
an improved runtime, replacing the previous implementation.

2.1.3. Neighbor lists and particle interactions

The PPM library also provides cell (linked) lists [Hockney and Eastwood,
1988] and Verlet lists [Verlet, 1967] for efficiently evaluating local particle
interactions with constant cutoff radius. Direct particle interactions im-
pose a nominal computational cost of O(N2

). Using cell or Verlet lists,
this can be reduced to O(N) on average. PPM’s neighbor list routines sup-
port both symmetric and asymmetric neighbor lists. In symmetric particle
interactions every unique interaction pair is considered only once. PPM
uses special symmetric neighbor lists that use 33% (in 3D 40%) less mem-
ory and communication compared to standard symmetric neighbor lists
[Sbalzarini et al., 2006a]. In adaptive-resolution simulations, the interaction
cutoff radius is a function of space. In this case, adaptive algorithms and
data structures are needed to efficiently build neighbor lists. In chapter 4
we present fast neighbor lists for adaptive-resolution particle simulations
extending PPM.

PPM also offers particle-particle interaction routines that make use of the
different neighbor lists and that have several pre-defined particle interaction

17

CHAPTER 2. THE PARALLEL PARTICLE MESH
LIBRARY

kernels already implemented. New kernels can be added into provided
source code templates. This ensures efficient execution (vectorization) of
the particle interaction loop.

2.1.4. Particle-mesh interpolations

Particle-mesh interpolations provide “translations” between particles and
meshes that allow implementing local interactions on particles while us-
ing meshes for more efficient implementations of long-range interactions.
The PPM library provides highly optimized particle-to-mesh and mesh-
to-particle interpolation routines implementing linear and M 0

4

interpola-
tion schemes (c.f. section 1.1.3). PPM also offers particle remeshing (i.e.,
particle-to-mesh interpolation followed by particle reinitialization on the
mesh) for reinitializing distorted particle distributions. Sections 6.1.2.1
and 6.2 present particle-mesh interpolations on heterogeneous hardware
platforms. In section 6.1.2.1 we implement and compare particle-mesh in-
terpolation using POSIX threads as well as OpenMP in order to improve
the utilization of multicore hardware platforms. Furthermore, we present
in section 6.2 a portable and generic OpenCL implementation of particle-
mesh interpolations that is especially suitable for manycore general-purpose
GPU platforms.

2.1.5. PPM numerics modules

In addition to implementations of the basic abstractions PPM also provides
modules with frequently used numerical solvers. An ODE time integrator
module provides explicit multistage integration schemes that can be used
by PPM client applications. The user has to provide a callback routine
implementing the right-hand side of the governing equation (i.e., the right-
hand sides of Eqs. 1.1 and 1.2). This routine is then called by the ODE
module at each step of the time loop.

Finally, PPM includes two mesh-based Poisson solvers: a FFT-based solver
and a multigrid solver. In section 6.1.2.2 we present a multi-threaded version
of PPM’s multigrid solver using POSIX threads.

18

2.2. PREVIOUS APPLICATIONS OF THE PPM
LIBRARY

2.2. Previous applications of the PPM library

The PPM library has been used in several applications demonstrating both
its usability and parallel efficiency.

Sbalzarini et al. [2006a] presented a particle simulation of diffusion in com-
plex geometries using up to 1 billion particles on 242 processors, attaining
84% parallel efficiency. Furthermore, Sbalzarini et al. [2006a] presented a
remeshed smooth particle hydrodynamics (rSPH) code simulating a three-
dimensional compressible double shear layer. The largest simulation used
268 million particles and was run on 128 processors at 91% efficiency. An
even larger simulation using the PPM library was presented by Chatelain
et al. [2008]. Their Vortex-method client achieved 62% efficiency simulat-
ing a high Reynolds number aircraft wake using 10 billion particles on a
IBM BlueGene/L with 16’384 processors. Walther and Sbalzarini [2009]
describe a simulation of granular flow using the discrete element method
(DEM) on 192 processors and employing 122 million particles at 40% par-
allel efficiency. Other examples of applications using PPM include [Adami
et al., 2012, 2010] presenting generalized wall boundary conditions and a
new surface-tension model for multi-phase SPH, [Milde et al., 2008] sim-
ulating a sprouting angiogenesis model, [Bergdorf et al., 2007] simulating
vortex rings at high Reynolds numbers, [Chatelain et al., 2007] presenting
particle-mesh astrophysics simulations, and [Altenhoff et al., 2007, Bian
et al., 2012] presenting dissipative particle dynamics simulations.

2.3. Summary

The PPM library [Sbalzarini et al., 2006a] is a state-of-the-art hybrid
particle-mesh library implementing abstractions for transparently handling
domain decompositions, interprocess communication, and synchronization
between processors. It provides cell and Verlet lists and efficient particle-
interaction routines. Finally, it offers mesh-based solvers for efficiently com-
puting long-range interactions, and particle-mesh interpolation routines as
needed in hybrid particle-mesh methods. PPM has demonstrated its effi-
ciency in several large-scale simulations [Sbalzarini et al., 2006a, Chatelain

19

CHAPTER 2. THE PARALLEL PARTICLE MESH
LIBRARY

et al., 2008, Walther and Sbalzarini, 2009], while the intermediate granu-
larity of the abstractions simplifies the implementation of parallel hybrid
particle-mesh simulations [Sbalzarini, 2010].

In the following chapters we present our work in redesigning and reim-
plementing PPM’s core routines using object-oriented programming tech-
niques in Fortran 2003 (chapter 3). We then describe new neighbor lists
for adaptive-resolution particle methods (chapter 4). Chapter 5 introduces
a novel vertex-coloring algorithm for communication scheduling. Chapter
6 details the approaches we have taken to allow PPM to make better use
of multi- and many-core hardware platforms. Finally, we introduce and
describe a domain-specific language (DSL) allowing the user to write PPM
clinets in a high-level syntax in terms of the abstractions initially described
by Sbalzarini [2010].

20

Part II.

Extending PPM

21

Supported Features

22

CHAPTER 3

Toward an object-oriented PPM core

1As parallel scientific software is becoming more complex, the need for more
structured software architectures is growing. Many state-of-the-art scien-
tific software libraries implement numerous algorithms targeting different
hardware platforms and memory models. Furthermore, libraries typically
offer a set of abstractions through their application programming interface
(API) that are used and recombined in other libraries. Also, an efficient
implementation of a numerical method (or, in general, an algorithm) of-
ten necessitates a number of auxiliary data structures and routines. These
problems are commonly subsumed under the term software crisis, which
has been in use since the early 1970s. The introduction of abstraction
layers and libraries in parallel and scientific computing has helped alle-
viate some of the difficulties. Middleware libraries such as the message

1This work has been done together with Dr. Sylvain Reboux and Ömer Demirel who
have helped redesigning the software architecture and who have contributed much
of the new core library code.

23

CHAPTER 3. TOWARD AN OBJECT-ORIENTED PPM
CORE

passing interface [MPI Forum 2012], FFTW, POOMA [Reynders et al.,
1996], FFTW, PETSc [Balay et al., 2004], and the Parallel Particle Mesh
library (PPM) [Sbalzarini et al., 2006a] provide abstract interfaces that
can be combined to powerful software frameworks. Rouson et al. [2010a]
point out that one possible approach to meaningfully structure a software
design is to use object-oriented abstract data types. In the past decade,
several scientific softwares have appeared that showcased the successful use
of object-oriented programming and design patterns to tackle increasingly
complex problems. These libraries include Trilinos [Heroux et al., 2005],
POOMA [Reynders et al., 1996], and DUNE [Dedner et al., 2010].

We revisit the design of the PPM library, explicitly accounting for the data
and operation abstractions described by Sbalzarini [2010]. We furthermore
extend the existing particles and mesh data types to also support adaptive-
resolution simulations.

3.1. Overall design

In order to simplify overall design and implementation of the PPM library,
and for practical reasons such as code management and compilation time,
we split the library into two parts: the PPM core library and the PPM
numerics library.

• The PPM core library provides the data types and operations re-
quired to build PPM client applications. In particular, it provides
implementations of particles, meshes, connections, topologies, map-
pings, particle-mesh interpolations, and neighbor lists (c.f. chapter
2). Furthermore, it contains utility routines for memory management,
parallel file I/O, timing, and debugging.

• The PPM numerics library contains all numerical routines originally
provided by PPM [Sbalzarini et al., 2006a]. This includes time inte-
gration schemes, the multigrid and FFT-based Poisson solvers, and
various particle interaction kernels.

The PPM numerics library is partially built on top of the PPM core library
and uses the PPM abstractions.

24

3.2. THE PPM CORE LIBRARY

We supplement both libraries with a unit testing framework based on
funit2. A unit testing framework greatly reduces the complexity of system-
atically testing the library and allows the programmer to test functional
units in isolation. We extend the testing framework to allow parameter-
ized tests. Hence, we are able to specify test cases over entire parameter
ranges, which are systematically checked during testing. The unit testing
framework consists of test modules, each being responsible for one PPM
module. A testing sequence executes all test cases in a module. Each test
module contains an initialization and a finalization routine that are called
at the beginning and end of the testing sequence, respectively, and can
for example be used to initialize the PPM library. Furthermore, a setup
and a teardown routine are specified to be executed before and after each
test case, respectively. Test cases are written in Fortran, but are supple-
mented with assertion statements. These statements are expanded by the
unit testing framework into Fortran conditional expressions that collect
test successes and failures. The framework reports failed test units and
summary statistics (Listing 3.1).

When introducing more complex data structures into numerical and high-
performance computing libraries, it is crucial that the design takes data-
access into account and does not impose a significant performance toll.
This means that function calls and pointer indirections in the body of the
main computation loops must be avoided. We account for this by only
defining abstract data types of proper granularity. Individual particles or
mesh nodes hence have no object representation and are directly stored
in simple arrays. Likewise, cell [Hockney and Eastwood, 1988] and Verlet
[Verlet, 1967] lists are stored as Fortran arrays and allow direct index access.

Even though the new PPM core is not fully backward compatible, most data
types and routines defined in the PPM library’s original implementation
are either still available or can be accessed as a component of one of the
newly defined derived types.

25

CHAPTER 3. TOWARD AN OBJECT-ORIENTED PPM
CORE

1 >$ FUNITFLAGS="��procs =1 ,3" make f t e s t
Makef i l e : 7 3 : Checking f o r d i r e c t o r i e s . . .
Makef i l e : 7 9 : done .

=========================[FUNIT STARTED]==========================

�����������������������[expand t e s t s u i t e s]�����������������������
ppm_module_ode_typedef regenerated !

����������������������������[compile]�����������������������������
11 computing dependencies done !

l o c a t i n g source s done !
wr i t ing make f i l e done !
compi l ing done !

===========[Sta r t ing t e s t s e r i e s f o r 1 ,3 p roce s so r (s)]============

================[STARTING TEST ON 1 PROCESSOR(S)]=================
ppm_module_ode_typedef t e s t s u i t e :

[0] (ppm_init) : ∗∗∗ This i s the PPM l i b r a r y s t a r t i n g on i n f . ethz . ch
21 [0] Passed 1274 o f 1274 po s s i b l e a s s e r t s compris ing 55 o f 55 t e s t s .

============================[SUMMARY]=============================

ppm_module_ode_typedef passed

================[STARTING TEST ON 3 PROCESSOR(S)]=================
ppm_module_ode_typedef t e s t s u i t e :

[0] (ppm_init) : ∗∗∗ This i s the PPM l i b r a r y s t a r t i n g on i n f . ethz . ch
[1] Passed 902 o f 902 po s s i b l e a s s e r t s compris ing 55 o f 55 t e s t s .

31 [2] Passed 906 o f 906 po s s i b l e a s s e r t s compris ing 55 o f 55 t e s t s .
[0] Passed 1254 o f 1254 po s s i b l e a s s e r t s compris ing 55 o f 55 t e s t s .

============================[SUMMARY]=============================

ppm_module_ode_typedef passed

Listing 3.1 Report generated when running the unit testing framework of the
PPM numerics library with one and three MPI processes.

Particles
xp : Real
globalMap()
ghostGetMap()
ghostPutMap()
localMap()

Mesh
nm : Integer
h : Real
o�set : Real
globalMap()
ghostGetMap()

Operator
degree : Integer
coe�s : Real
discretize()

OperatorDiscretization
order : Integer
�ags : Integer
compute()

DiscretizationKind

ParticleProperty
data : Real

MeshDiscretizationData

DiscretizationData

Field
name : String
dim : Integer
isDiscretizedOn()
mapGhostPush()
mapGhostPop()
newOperation()

Figure 3.1. The object-oriented design of PPM core. The main abstract data
types and their concrete subtypes are shown. We show a subset of the data and
methods of implemented in these types.

26

3.2. THE PPM CORE LIBRARY

3.2. The PPM core library

The new PPM core design follows the general idea of Rouson et al. [2010a],
which is to structure the library into abstract data types that offer access
and manipulation routines. We implement the data types using Fortran
2003 derived types. Figure 3.1 summarizes the main types implemented in
the PPM core. As can be seen from the diagram, we have added explicit
implementations (in the form of derived types) of particles and meshes.

In the previous implementation of PPM, particles were represented by their
position array xp and unrelated property arrays. The newly added type
serves as a container for all data and parameters associated with particles.
Furthermore, the particles type contains a bookkeeping data structure
that tracks whether particles have been mapped onto a topology, have
up-to-date ghosts (c.f. chapter 2), and whether their properties have been
mapped. We further extend the particles type by subtypes for variable-size
particles and self-organizing particles [Reboux et al., 2012]. We also create
a generic neighbor list type that encapsulates Verlet lists [Verlet, 1967],
adaptive-resolution neighbor lists (c.f. chapter 4), and cross-set neighbor
lists. Figure 3.2 shows a simplified class diagram of the particles type and
other associated types.

PPM’s former mesh data type was only used internally. The user only
had a handle to the mesh instance. Also, a mesh instance only contained
parameters describing the Cartesian mesh, but no data. The new mesh
type combines Cartesian mesh parameters, such as the grid spacing h, a
staggering offset, and the ghost layer width with the actual mesh data.
Similar to what is done for particles, the mesh type offers generic, type-
bound Fortran 2003 procedures for construction and destruction, data
access, as well as global and ghost mappings. We have further extended
the mesh type with a mesh-patch data structure. Using this new data
type it is possible to define mesh patches of different resolutions on top
of a coarse background mesh. Mesh data are stored in sub-patches, which
are defined as intersections of subdomains (c.f. chapter 2) with patches.
Regardless of the extent and resolution of a mesh, only the patches living
on it are actually allocated. This enables the implementation of parallel

2http://nasarb.rubyforge.org/funit/

27

CHAPTER 3. TOWARD AN OBJECT-ORIENTED PPM
CORE

Particles
xp : Real
globalMap()
ghostGetMap()
ghostPutMap()
localMap()

ParticleProperty
data : Real

OperatorDiscretization
order : Integer
�ags : Integer
compute()

NeigborList
cuto� : Real
skin : Real
vlist : Real

Field
name : String
dim : Integer

isDiscretizedOn()
mapGhostPush()
mapGhostPop()
newOperation()

VariableBlobParticles

SelfOrganizingParticles

selfOrganize()

Connections

Figure 3.2. Class diagram of the PPM particles type and associated types. We
show a subset of the data and methods of implemented in these types.

Field
name : String
dim : Integer

isDiscretizedOn()
mapGhostPush()
mapGhostPop()
newOperation()

Mesh
nm : Integer
h : Real
o�set : Real

globalMap()
ghostGetMap()

OperatorDiscretization
order : Integer
�ags : Integer
compute()

MeshDiscretizationData SubPatch
data : Real

Figure 3.3. The mesh data type and associated types. We show a subset of the
data and methods of implemented in these types.

adaptive-resolution hybrid particle-mesh methods [Rasmussen et al., 2011].

In addition to particles and meshes, we have extended the PPM library
with two entirely new data types: field , and operator . Instances of field
and operator types encapsulate abstract concepts of a model’s governing
equations (i.e., Eqs. 1.1 and 1.2). The field type encapsulates the math-
ematical description of a continuous quantity. Fields can be discretized
onto instances of particles or mesh types, instructing the latter instances
to internally allocate the necessary memory for a new particle property or
mesh data, respectively. The operator type represents differential operators
in the governing equations. An operator instance can be discretized onto

28

3.2. THE PPM CORE LIBRARY

one of the two extended types of DiscretizationKind, particles, or mesh.
OperatorDiscretization subtypes implement numerical schemes that allows
applying the differential operator to a mesh or particles instance.

3.2.1. Using the new API

Listing 3.2 shows a small example of how PPM’s new API is used. In this
example, we first create a field U and name it “Concentration”. This sym-
bolic name is later used for meaningful log messages and VTK output. We
then initialize a particles instance pset. We assume that we have already
created a topology so we can use information about domain size and bound-
ary conditions from the topology object when creating the particles. The
initialization routine defaults to placing globalNp particles on a Cartesian
mesh filling the computational domain, but other initialization strategies
can be chosen or added. The third command instructs PPM to store in
this particles instance a cutoff radius that can later be used to construct
neighbor lists. Then, we perform a global mapping of the particles onto the
topology designated by the topoid handle. After the particles have been
mapped onto this topology, we discretize the field U onto them, internally
allocating and attaching a new particle property array. We can access and
manipulate the data in this array at any time using the field and particles
instances. After mapping the particle ghosts, we finally construct a Verlet
list on the particles.

3.2.2. New PPM core utilities

3We have extended the PPM core library by several useful utility subrou-
tines. Most notably, we created a VTK particle and mesh output routine,
a configuration file and command line processing framework, and particle
sorting according to space-filling Peano-Hilbert curves.

The Visualization Toolkit (VTK) is an open-source software library and file

3We thank Joachim Stadel (University of Zurich) for kindly contributing his C imple-
mentation of Cartesian-to-Hilbert-space mapping functions. The configuration file
parser and parts of the VTK file I/O routines were implemented by Milan Mitrović.

29

CHAPTER 3. TOWARD AN OBJECT-ORIENTED PPM
CORE

type (ppm_t_field) : : U
type (ppm_t_particles_d) : : pset

4 ca l l U%crea t e (1 , in fo ,name="Concentrat ion ")
ca l l pset%i n i t i a l i z e (globalNp , in fo , topoid=topoid)
ca l l pset%se t_cuto f f (3 ._mk ∗ pset%h_avg , i n f o)
ca l l pset%map(in fo , g l oba l =. t rue . , topoid=topoid)
ca l l U%di s c r e t i z e_on (pset , i n f o)

9 ca l l pset%map_ghosts_get (i n f o)
ca l l pset%comp_neighl ist (i n f o)

Listing 3.2 Creating a field, initializing particles, discretizing the field onto the
particles, and performing global and ghost mappings in the new PPM API.
Finally, we compute a Verlet list on the particles. The two top lines show the
required type declarations.

format for 2D and 3D visualization. It is also the basis of the popular 3D
visualization application Paraview. We created a PPM module that allows
writing particle and meshdata into VTK-formatted files. When executed in
parallel, each processor writes its own VTK-part file, since the VTK format
natively supports splitting data across several files. Our implementation
makes use of the name strings set by the user when initializing new fields,
particles, or meshes.

In order to simplify the creation and processing of configuration files for
PPM client applications, and the handling of command-line arguments,
we have created a new control file module. This module offers a simple
interface for programmatically creating configuration files, including param-
eter grouping and type checking. Furthermore, configuration parameters
can be supplied as command-line arguments that are processed at client
initialization. These arguments override configuration file settings.

Lastly, we have added a simple implementation of Peano-Hilbert curve
key-sorting for particle positions. Space filling curves can improve the
cache locality of spatial data due to their locality properties [Gotsman and
Lindenbaum, 1996, Griebel and Zumbusch, 1998, Kowarschik and Weiß,
2003]. Specifically, we have implemented a Fortran wrapper for a fast bit-
manipulation C implementation of Peano-Hilbert curve key-sorting. The
method first iterates once through all particle positions, determining the
particles’ positions in Hilbert space and storing the so-obtained linear

30

3.3. THE PPM NUMERICS LIBRARY

key in a temporary array. Then, the particles are sorted according to the
Hilbert key. The current implementation provides basic functionality and its
correctness has been validated. However, it requires further benchmarking
to quantify the impact of space-filling curves on PPM client efficiency.

3.3. The PPM numerics library

We focused on providing an entirely new, object-oriented, flexible, and
extensible implementation of PPM’s time integration module. Other PPM
numerics modules yet have to be ported and tested in order to make full
use of the new PPM core data types. They are, however, still functional.

An ODE is defined by creating an instance of the ode type and supplying
it with a user-defined callback routine implementing the ODE’s right-hand
side, a list of fields and discretizations to be passed to the right-hand side,
and a list of fields and discretizations to be updated by the ODE integration
scheme. One then calls the ODE’s step procedure at each iteration of a
simulation time loop.

The integrator type is internally used by to the library and is not seen
by the user. Each ODE integration scheme must extend integrator and
implement its create and step procedures. Thanks to the PPML domain
specific language (c.f. chapter 7.3), a new explicit time-integration scheme
can be implemented very easily by adding a new subtype and implementing
two routines.

3.4. Performance benchmarks

Enforcing data hiding and encapsulation allowed simplifying many of the
subroutine interfaces in PPM. The new design of PPM further simplified
and shortened the routine interfaces and reduced the number of globally
stored state variables. In order to test whether the new data structures
and interfaces imply any performance toll, we ported two existing PPM
clients to the newly designed PPM core library. The first PPM client was

31

CHAPTER 3. TOWARD AN OBJECT-ORIENTED PPM
CORE

ported to an intermediate version of PPM [Awile et al., 2010] that used the
above-described modular design, but did not yet introduce the particles
and mesh types as Fortran derived types. This benchmark client solves the
diffusion equation in complex, three-dimension geometries using the method
of particle strength exchange (PSE) [Degond and Mas-Gallic, 1989b]. This
client has previously been tested and used with the original version of PPM
[Sbalzarini et al., 2006b,a]. In order to port it to the new library core, about
50 lines of code needed to be changed in the client. The client based on the
new PPM core produced the exact same numerical results on all digits as
the original client. We measured the wall-clock time per time step and the
parallel efficiency by running the PSE test client on an increasing number
of processors using the original PPM and the new core implementation.
All tests were done on a cluster of quad-core AMD Opteron 8380 CPUs
running Linux and connected through an InfiniBand QDR network. Each
cluster node has four CPUs and 32 GB of RAM, shared between its 16 cores.
The library and the client were compiled with the Intel Fortran compiler
v11.1 using the -O3 optimization flag and linked against OpenMPI 1.4.2.
The results are shown in Figure 3.4. The new architecture does not seem to
have any adverse effects on performance, at least in this application. The
new PPM core shows slightly reduced wall-clock times on all numbers of
cores tested. The parallel efficiency is mostly higher than that of the old
PPM, except on 8 cores where it is 2% lower.

The second PPM benchmark client was backported from the final version
of the redesigned object-oriented PPM core library to the PPM library at
version 1.14. This client performs a molecular dynamics simulation of a
Lennard-Jones gas (c.f. section 8.3) Jones [1924], Verlet [1967]. Backporting
the client required the addition of 60 calls to the PPM core library. Further-
more, functionality such as automatic error handling and command-line
argument handling through the library was lost. We measured the total
wall-clock time and the parallel efficiency by running the Lennard-Jones
test client on an increasing number of processors using the original PPM
and the new object-oriented core implementation. These benchmarks were
executed on the same hardware environment and optimization flags as
the PSE client benchmarks. The results are shown in Figure 3.5. The
object-oriented code is up to 50% slower while at the same time its parallel
efficiency is 5% lower than the code using the original PPM core library.
4The version before PPM’s split into core and numerics libraries

32

3.4. PERFORMANCE BENCHMARKS

1 8 64 512
0

1

2

3

4

5

Number of processor cores

T
im

e
 s

te
p

 [
se

co
n

d
s]

(a)

1 8 64 512
0

0.2

0.4

0.6

0.8

1

Number of processor cores
P

a
ra

lle
l e

ff
ic

ie
n

cy

(b)

1 8 64 512
0

2

4

6

8

Number of processor cores

T
im

e
 s

te
p

 [
se

co
n

d
s]

(c)

1 8 64 512
0

0.2

0.4

0.6

0.8

1

Number of processor cores

P
a

ra
lle

l e
ff

ic
ie

n
cy

(d)

Figure 3.4. Benchmark of a PPM client simulating diffusion in complex shapes.
Average (symbols) and standard deviation (error bars) of the maximum (over
all processor cores) wall-clock time per time step, sampled over 100 steps, and
parallel efficiency for the old (dashed lines) and new (solid lines) PPM core
implementation. (a) and (b) show the results for a fixed-size problem with 2.1
million particles (strong scaling); (c) and (d) for a scaled-size problem starting
with 2.1 million particles on 1 processor and going to 1.1 billion particles on
512 processors (weak scaling). All tests were done in a cubic domain using equi-
sized and perfectly load-balanced subdomains in order to test the performance
of the PPM implementation rather than that of the implemented decomposition
algorithms.

33

CHAPTER 3. TOWARD AN OBJECT-ORIENTED PPM
CORE

(a) (b)

Figure 3.5. Wall-clock time (a) and parallel efficiency (b) of a molecular dynam-
ics simulation benchmark client using the latest object-oriented PPM core library
(solid line) and the backported code using the original PPM library (dashed line)
on a scaled-size problem with 1 million particles per core (weak scaling). All
tests were done in a cubic domain using equi-sized and perfectly load-balanced
subdomains in order to test the performance of the PPM implementation rather
than that of the implemented decomposition algorithms.

Hence, the simplified interfaces and gained functionality of the new PPM
core library come at a non-negligible performance cost. We attribute the
decreased parallel efficiency to memory congestion when using all cores
of the cluster nodes (c.f. section 8.2) rather than communication, since
both versions of the PPM library internally use the same particle mapping
routines. In chapter 8 we present further test cases and benchmarks using
the latest version of PPM and the domain-specific language PPML.

3.5. Summary and Conclusions

As hardware complexity increases, the requirements in terms of flexibility,
maintainability, and usability of scientific and numerical software also in-
crease. It hence becomes increasingly important to design software in a mod-
ular and extensible fashion. One possible approach is using object-oriented
programming paradigms [Rouson et al., 2010a, Decyk et al., 1998]. We have
presented a redesign and partial rewrite of the PPM library [Sbalzarini
et al., 2006a]. We have divided the library into two parts, one offering

34

3.5. SUMMARY AND CONCLUSIONS

object-oriented implementations of the abstractions for hybrid particle-
mesh methods [Sbalzarini, 2010], the other containing PPM’s numerical
solvers. The main types provided by the PPM core are particles, mesh, field,
operator, and operator discretization. These types encapsulate the data
used in hybrid-particle mesh simulations and allow accessing, manipulating,
and mapping these data. Furthermore, we have implemented a number of
new utility modules that provide parallel VTK file output, configuration
file handling, and Peano-Hilbert curve key-sorting. Finally, we have supple-
mented the PPM core and numerics libraries with a unit testing framework.
This allows systematically testing new implementations and prevents code
regression.

The new design of PPM represents an incremental step in the development
of the library. The presented benchmarks suggest that the new design has
some negative effects on the performance of a PPM client. More work is
thus required in the PPM core library to achieve better performance as
well as an even simpler and cleaner design, for example by using more
formal design patterns [Rouson et al., 2010b]. Improved implementations
of the Fortran 2003 standard in mainstream compilers, and the adoption
of Fortran 2008, will enable further improvements in the implementation
of PPM.

35

CHAPTER 4

Fast neighbor lists for adaptive-resolution particle
simulations

1The efficient evaluation of pairwise particle–particle interactions is a key
component of any particle-based simulation. Formally, a set of N interacting
particles defines an N -body problem with a nominal computational cost
of O(N2

). In many practical applications, however, the particle–particle
interactions have a finite range or are truncated with a certain cutoff radius.
This reduces the computational cost to O(N) if each particle can find its
interaction partners (“neighbors”) in O(1) operations.

For constant cutoff radii, two classic data structures are available to provide
fast neighbor lists with O(1) access per particle: cell (linked) lists [Hockney
and Eastwood, 1988] and Verlet lists [Verlet, 1967]. A cell (linked) list
1This work has been done together with Ferit Büyükkeçeci and Dr. Sylvain Reboux. FB

has helped designing parts of the algorithm and provided the Fortran implementation
in the PPM library. SB helped designing the performance benchmarks.

37

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

divides the domain into equisized cubic cells with edge lengths equal to the
interaction cutoff radius. Each cell then stores a (linked) list of the indices of
all particles inside it. When computing particle–particle interactions, each
particle can find its neighbors in O(1) time by searching only over the cell
it is in and the immediately adjacent cells. Being in one of the neighboring
cells is a necessary condition for any particle to be an interaction partner,
but the condition is not sufficient. Cell lists hence are conservative and more
interaction partners are considered than actually required (up to 3

4/4⇡ ⇡ 6

times more for a uniform particle distribution in 3D). This overhead can be
avoided at the expense of higher memory consumption when using Verlet
lists [Verlet, 1967], where each particle stores an explicit list of the indices
of all its interaction partners. Verlet lists rely on intermediate cell lists
for their efficient construction and they commonly include a safety margin
(called “skin”) in order to avoid their reconstruction every time any particle
has moved. This implies a tradeoff between the number of interactions
that are computed in excess and the frequency of rebuilding the Verlet
lists. For certain systems, optimal skin thicknesses can be found [Chialvo
and Debenedetti, 1990, 1991, Sutmann and Stegailov, 2006]. Due to the
importance and widespread use of cell and Verlet lists, much work has been
done to compare and improve their performance [Allen and Tildesley, 1987,
Mattson and Rice, 1999, Heinz and Hünenberger, 2004, Yao et al., 2004,
Welling and Germano, 2011, in’t Veld et al., 2008].

One of the key advantages of particle methods is their inherent adaptiv-
ity. In discrete systems, particles are only needed where the corresponding
objects are present. In continuous systems, the particles naturally follow
the flow map, again restricting computation to where it is required. The
adaptive dynamics of particles, however, can lead to the formation of dense
particle clusters. In the worst case, a cluster that is smaller than the particle–
particle interaction cutoff may contain all the particles. The computational
cost of particle methods then deteriorates to O(N2

). This can be avoided
by locally adapting the interaction cutoff to the density of particles, lead-
ing to adaptive-resolution particle methods. Adaptive-resolution methods
are required for the efficient simulation of multiscale systems. Hou [1990]
and Cottet et al. [2000] provide two examples of adaptive-resolution parti-
cle methods for fluid dynamics; the adaptive-resolution smoothed particle
hydrodynamics (SPH) method [Shapiro et al., 1996] provides an example
from cosmology. In adaptive-resolution simulations, the interaction cutoff is

38

4.1. ADAPTIVE-RESOLUTION CELL LISTS

defined by a unique-valued map ~x 2 Rd 7! r
c

(~x) 2 R+. This is in contrast
to multi-resolution simulations where there can be multiple cutoff radii
(resolution scales) at any given location. Adaptive-resolution simulations
are related to range-assignment problems as studied in theoretical computer
science, computational geometry, and communication networks [Clementi
et al., 2001], where each particle can have a different cutoff radius. If the
interaction cutoff is a function of space and hence varies across particles,
uniform-resolution cell lists become inefficient and other fast neighbor lists
are required.

A number of algorithms and data structures have been proposed to ad-
dress this or similar problems. K-d trees [Bentley, 1975] are K-dimensional
space-partitioning data structures with a wide range of applications in
computational geometry and numerical simulations. They allow efficient
k-nearest neighbor searches, but do not support search within a given
interaction radius. R-trees [Guttman, 1984, Arge et al., 2004] relax this
constraint by allowing neighborhood searches over bounding boxes. They
are prominently used in geographic databases. in’t Veld et al. [2008] have
proposed multi-resolution cell lists for colloidal mixtures in explicit-solvent
molecular dynamics simulations. Their approach assumes a finite number
of discrete resolution levels, for each of which a separate uniform-resolution
cell list is built.

4.1. Adaptive-resolution cell lists

We generalize cell lists to situations where the cutoff radius of the particle–
particle interactions is a potentially continuous function of space. Each
particle interacts with all other particles within a spherical neighborhood
around it. The radius of this neighborhood depends on the location of the
center particle. This is most generally modeled by attributing to each parti-
cle p its own interaction cutoff radius r

c,p

. We consider the situation where
N particles p = 1, . . . , N are distributed in a cuboidal domain. Boundary
conditions and parallelism are handled by decomposing the computational
domain into subdomains and extending each subdomain with a halo layer as
illustrated in Fig. 4.1. In a parallel domain-decomposition setting, N hence
is the number of particles on the local processor. Since the interaction cutoff

39

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

Computational domain Domain D

Figure 4.1. The computational domain is decomposed into cuboidal subdomains
with halo layers (light blue). The halo layers contain ghost particles (blue circles)
that are copies of real particles (black dots) from the adjacent subdomains.
Independently applying the present algorithm to each extended subdomain
(including the halo layers) D allows transparent implementation of boundary
conditions and (distributed-memory) parallelism.

locally changes, the halo layers on different sides of a subdomain may have
different widths. Populating the halo layers with ghost particles that are
copies of real particles from the adjacent subdomains, and treating bound-
ary conditions by imposing specific values on the ghost particles, is assumed
to be done prior to adaptive-resolution (AR) cell list construction. This is
typically the case in parallelization frameworks such as the PPM library
or PETSc [Balay et al., 2010]. In order to evaluate the particle–particle
interactions in any subdomain, only particles within that subdomain and
its halo layer need to be considered. We thus build a separate AR cell list
for each extended (including the halo layers) subdomain, hereafter referred
to as “domain” D (dashed box in Fig. 4.1).

Each particle is defined by its position ~x
p

2 Rd (for d = 2 or 3) and its
interaction cutoff radius r

c,p

= r
c

(~x
p

) 2 R+. The cutoff radii of neighboring
particles may differ by several orders of magnitude and they can take values
in a continuum. Two particles are considered neighbors (and hence interact)
if

||~x
p

� ~x
q

||  min(r
c,p

, r
c,q

) , (4.1)

that is, if both are within the interaction radius of the respective other.

40

4.1. ADAPTIVE-RESOLUTION CELL LISTS

Following the nomenclature of Hernquist and Katz [1989], this neighbor-
hood condition defines a gather -type sampling of a particle’s neighborhood.
For scatter interactions, the right-hand side in Eq. (4.1) would be replaced
with max(r

c,p

, r
c,q

), and for collision detection with r
c,p

+ r
c,q

[De Michele,
2011]. However, we do not consider these two alternative cases since they
may require different data structures than the ones presented here.

In AR cell lists, regions containing particles with small cutoff radii (“small
particles”) are subdivided into small cells, while regions containing particles
with large cutoff radii (“large particles”) are subdivided into large cells.
These cells are defined as the leafs of an adaptive tree (quad-tree in 2D,
oct-tree in 3D). Starting from the entire domain D as the root box of the
tree, a tree node is subdivided if it contains particles with a cutoff radius
smaller than half the edge length of the cell associated with this node
(see Fig. 4.2, left panel). The association of particles to cells is computed
using an in-place Quicksort-like algorithm. The tree nodes are numbered
consecutively per level. Numbers corresponding to empty nodes are skipped
(see Fig. 4.2, right panel). This level-order indexing of the cell-tree nodes
assigns to each tree cell c a unique index J(c) from which it is possible
to compute the indices of its neighbor, parent, and child cells in O(1)

operations. The resulting cell tree is not stored explicitly, but computed
on demand from the particle positions and their levels in the tree.

4.1.1. Constructing AR cell lists

Standard cell lists organize the particles spatially by sorting them into
the cells of a uniform Cartesian mesh. In AR cell lists we additionally
organize the particles with respect to their cutoff radii using an adaptive
tree data structure. A particle’s cutoff radius directly relates to the tree
level to which the particle is assigned. The construction of AR cell lists is
summarized in Algorithm 4.1. This algorithm has two phases:

Phase I: The particles are sorted in order of descending cutoff radii. As
this simply amounts to sorting with respect to a scalar property, any efficient
sorting algorithm can be used. After the particles have been sorted we
determine the tree level each particle belongs to. This starts by computing

41

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

Domain D

1

2

3

4

5

10

11

12

13

14

15

16

17

18

19

20

21

level k

0

1

2

3

1

2 3

10 11 12 13

4

14 15

58 59 60 61

16 17

5

18

70 71 72 73

19 20 21

Figure 4.2. Left: sketch of an AR cell list with large (green), medium (blue),
and small (red) particles. The domain D is adaptively subdivided (black lines).
Right: The corresponding cell tree with cells ck on levels k and level-order
indices J(ck), corresponding to the numbers given in the gray circles in the left
panel.

the level k of the first particle such that

D
m

/2k > r
c,1

� D
m

/2k+1 , k = 0, . . . ,maxlevel� 1 . (4.2)

D
m

is the minimum edge length of the domain2. Subsequently, we linearly
iterate through all particle radii r

c,p

, p = 2, . . . , N and increment k by one
whenever r

c,p

< D
m

/2k+1.

Phase II: After all particles have been assigned to their respective cell-
tree levels we also sort them with respect to their spatial location. This
is done using a recursive divide-and-conquer algorithm (Algorithm 4.2)
analogous to Quicksort [Hoare, 1962]. In each recursion of the algorithm
we are given a set of particles located in the bounding box of a certain tree
cell. We first determine the center of the tree cell, ~m. We then use ~m to
partition the set of particles in that cell along each dimension into 4 (in 2D)

2In practice we first render the domain cubic by extending it in all directions to its
maximum edge length. This avoids constraining the tree depth by the domain’s
aspect ratio.

42

4.1. ADAPTIVE-RESOLUTION CELL LISTS

or 8 (in 3D) subsets. This is done by successively using the ith component,
i = 1, . . . , d, of ~m as the respective pivot and � as the comparison operator.
The same partitioning procedure is then recursively applied to each of the
resulting subsets in their respective sub-cells. The recursion stops after k
iterations for all particles living on tree level k. The partitioning recursion
is separately done for each non-empty tree level, always starting from the
entire domain D. This causes the particles on each level to sift down to
their respective leafs, starting from the root of the tree.

After Phase II, the particle array is partitioned both by tree levels and by
particle positions. Furthermore, the position sorting procedure returns all
pairs of indices of the first and last particle in each cell. This information
is stored in a lookup table such that the particles belonging to a certain
cell can be found in O(1) operations.

4.1.2. Operations on AR cell lists

Once the AR cell lists are built, various operations on them are required
in order to efficiently compute particle–particle interactions or construct
Verlet lists. These operations are:

Op1: Finding a cell

The cell c
k

in which a position ~x and cutoff radius r
c

is located can be
determined by first computing the level in the cell tree as

k = dlog
2

(D
m

/r
c

)e

and then traversing the tree from its root to level k. During traversal we
check for each tree node in which of its quadrants (in 2D) or octants (in
3D) ~x is located and descend into the respective child node to locate c

k

.

43

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

Algorithm 4.1 Constructing AR cell lists in d dimensions.
INPUT: particles p = 1, . . . , N with positions ~x

p

and interaction cut-
off radii r

c,p

; cuboidal domain D with edge lengths (D
1

, . . . , D
d

); D
m

=

min

i=1,...,d

(D
i

)

OUTPUT: cells lookup table containing the cell indices and indices of
the first and last particles in each cell.

1. sort particles in descending order by r
c,p

2. maxlevel = dlog
2

(D
m

/min

p

(r
c,p

))e

3. assign particles to cell-tree levels:
A particle with cutoff radius r

c,p

is assigned to level k, where D
m

/2k >
r
c,p

� D
m

/2k+1, k = 0, . . . ,maxlevel� 1

4. for k = 0, . . . ,maxlevel� 1

a) partition particles p
k

in level k using Algorithm 2.
Start the recursion of Algorithm 2 with arguments p = p

k

, c = D,
curr_level= 1, and target_level= k.

b) insert the indices of the first and last particle in each leaf of
the partitioning into cells. Empty leafs are not added; the cell
indices in cells are hence not contiguous.

44

4.1. ADAPTIVE-RESOLUTION CELL LISTS

Algorithm 4.2 Sorting the particles by their position.
INPUT: particles p with positions ~x

p

; cell c in which these particles live;
the level to be partitioned in this recursion curr_level; the level on which
the particles p live target_level.
OUTPUT: the sorted particle array and the indices of the first and last
particle in that array belonging to the cell c.

1. compute the center ~m = (m
1

, . . . ,m
d

) of the cell c and the bounds
of the equisized subcells c

1

, . . . , c
2

d

2. set initial partition to contain all particles, P
1

= {p}, and initial set
of partitions S = {P

1

}

3. for i = 1, . . . , d

a) for j = 1, . . . , 2i�1

i. partition P
j

along m
i

into P<mi
j

= {p : x
p,i

< m
i

} and
P�mi
j

= {p : x
p,i

� m
i

}

ii. replace P
j

in S with P<mi
j

, P�mi
j

The resulting partitioning divides the particles into 2

d disjoint sets
{p : ~x

p

2 c
i

}, i = 1, . . . , 2d

4. if curr_level == target_level

a) return

5. else

a) for i = 1, . . . , 2d

i. Algorithm2({p : ~x
p

2 c
i

}, c
i

,curr_level+1,target_level)

45

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

Op2: Finding all particles in a cell

Given a cell index, we can look up the index of the first and last particle
inside that cell in the cells table. Since not all cell indices exist, this can
be done in O(1) time by implementing cells as a hash table with the cell
index as its key and the pair of particle indices as its value.

Op3: Finding the child cells of a cell

The indices of the children of a cell c are given by J(c) · 2d + l, l = �2d +
2, . . . , 1.

Op4: Finding the parent cell

The index of the parent cell of a cell c is b(J(c) + 2

d � 2)/2dc.

Op5: Finding neighboring cells

The neighbor cells of a cell c are found by adding/subtracting the cell-edge
length to/from the center ~m of cell c and using these locations ~x and the
cutoff radius r

c

of the tree level of cell c as arguments to Op1. If a neighbor
cell does not exist in the cells data structure, this means that there are
no particles in its region on this level and below, or that the requested cell
lies outside the domain.

4.1.3. Using AR cell lists

Using the AR cell list data structures and the above-defined five operations,
every particle can efficiently find all other particles within its neighborhood.
This is done by retrieving for each particle all particles in the same cell, in
all neighboring cells, and in all descendent cells of the cell tree.

This can also be used to efficiently construct Verlet lists [Verlet, 1967] in

46

4.1. ADAPTIVE-RESOLUTION CELL LISTS

adaptive-resolution particle simulations. A Verlet list is a data structure
that explicitly stores the interaction partners of each particle, allowing each
particle to directly access its neighbors. This further reduces the overhead
compared to directly using AR cell lists for computing the particle–particle
interactions, provided the Verlet lists do not need to be reconstructed at
each time step of a simulation. In order to ensure this, the cutoff radius of
each particle is enlarged by a safety margin, called “skin”. The Verlet lists
then only need to be reconstructed once any particle has moved further
than this skin thickness.

Evaluating particle–particle interactions or constructing Verlet list based
on AR cell lists starts from the particles living on the highest (coarsest)
non-empty level of the cell tree and then proceeds level by level. It is
therefore convenient to iterate through the particle array in the order given
by the sorting produced by Algorithms 4.1 and 4.2.

We refer to interactions as symmetric when an interaction between par-
ticle p and q implies the same (possibly with negative sign) interaction
between q and p. This symmetry can be exploited when evaluating particle
interactions in order to avoid redundant calculations.

For each particle p we use Op1 to determine the cell c
k

in which it lives
and then retrieve the 3

d � 1 neighboring cells using Op5. When building
Verlet lists or evaluating symmetric interactions, we only need to find one
partner in every interaction pair. This is illustrated in Fig. 4.3. We use
Op2 to loop over particles q in c

k

. For symmetric interactions or when
building Verlet lists, this loop only considers particles in c

k

with an index
>p. Subsequently, we loop over all particles q in the neighboring cells. For
symmetric interactions and when building Verlet lists, it is sufficient to
consider only those neighbors of c

k

with an index >J(c
k

). For each pair
(p, q) we check whether the particles fulfill Eq. (4.1). Depending on whether
the particle interactions are symmetric or not, only q is added to the Verlet
list of p, or the two interaction partners are mutually added to each other’s
lists.

We then recursively use Op3 and Op5 to visit all descendent cells of c
k

and
their respective neighbors. We consider only those descendent cells c�

k

of
c
k

on all finer levels � = k + 1, . . . ,maxlevel that contain the position ~x
p

.
Since the cell tree is not stored explicitly, but computed on demand, we first

47

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

0

p

k
k+1

k+2

tree level

...

Figure 4.3. Finding interaction partners of a particle in an AR cell list (one
iteration of Algorithm 4.3). The back plane (tree level 0) shows all particles
without the cell-tree decomposition. In order to compute a symmetric interaction
(or construct the Verlet list) of particle p (black cross) on level k we first iterate
through all particles (green circles) in half of the neighboring cells N (ck) on the
same tree level (shaded cells on level k). Then, the finer tree levels are searched
for interaction partners in the descendent cells c�k and their neighbors N (c�k)
(shaded cells on levels k+1 and k+2) on all finer levels � = k+1, . . . ,maxlevel.
On these finer levels, all neighboring cells must be visited in order to include
all interaction pairs across different levels of resolution (blue triangles on level
k + 1 and red dots on level k + 2). Transparent cells are not considered when
computing this interaction.

48

4.1. ADAPTIVE-RESOLUTION CELL LISTS

determine the positions and edge lengths of c�
k

and its neighboring cells
N (c�

k

). Note that because we are iterating from large to small particles, we
have to visit all 3d�1 neighbors of c�

k

in order to find all neighboring particles
of p on higher levels of resolution, irrespective of whether the interactions
are symmetric or not. We then retrieve all particles q in c�

k

[N (c�
k

) and check
whether they fulfill Eq. (4.1) with particle p. Those that fulfill Eq. (4.1) are
added to the Verlet list of p (and vice versa for asymmetric interactions),
or their interactions with p are computed.

The complete procedure for computing particle–particle interactions or
building Verlet lists based on AR cell lists is summarized in Algorithm 4.3.
Note that even though Op4 is not used here, it would be necessary if one
were to compute asymmetric particle–particle interactions directly based
on AR cell lists, i.e., without building Verlet lists. We do, however, not
consider this case.

Special treatment of halo layers for symmetric particle interactions

In a domain-decomposition setting, the present AR cell list algorithm op-
erates independently on each subdomain of the computational domain (see
Figs. 4.1 and 4.4). We rely on prior domain decomposition and population
of the halo layers by the software in which the algorithm is embedded.
This can also directly account for periodic boundary conditions, as also
illustrated in Fig. 4.4. A parallel implementation of Algorithms 4.1 to 4.3
is hence not required. If the particle interactions are symmetric, halo layers
are only needed on half of the (sub-)domain faces, halving the communi-
cation volume. This is illustrated in Fig. 4.4b. Since the interaction cutoff
locally changes, the halo layers on different sides of a (sub-)domain may
have different widths. Symmetric particle interaction schemes also change
the properties (values) of ghost particles. These ghost contributions then
have to be sent back to the corresponding real particle and properly ac-
counted for (for example using the ghost_put mapping of the PPM library
[Sbalzarini et al., 2006a]). Symmetric interactions can additionally result
in two ghost particles interacting. These ghost–ghost interactions are ef-
ficiently found using bitwise operations as follows: Each ghost particle is
assigned a d-bit string where the kth bit is 1 if the particle is in the halo
layer in dimension k and 0 otherwise. If a bitwise AND operation on the bit

49

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

strings of two ghost particles results in 0, these ghosts interact.

4.2. Results

We implemented Algorithms 4.1 through 4.3 in Fortran 90 as part of
the PPM library and performed several computer experiments to bench-
mark their computational efficiency and evaluate the performance gain over
uniform-resolution cell lists as a function of the spectrum of scales spanned
by the cutoff radii and of the total number of particles in the domain. In
all benchmarks, we verified that the AR cell lists found the correct set of
interactions. The reference implementations of uniform-resolution cell and
Verlet lists were taken from the PPM library and are also implemented in
Fortran 90. All benchmark codes were compiled using the Intel Fortran
compiler version 12.0 with the -O3 optimization flag. The benchmarks were
run on a 2.8GHz Intel Xeon E5462 CPU.

4.2.1. Benchmarks

We measure the computational time for building and using AR cell lists
over different particle distributions. In all distributions we place a fixed
number of 10 ⇥ 10 particles on a uniform Cartesian mesh with spacing
h
b

= 0.1 and set their interaction radii r
c,b

= 3h
b

/2. For each distribution
we then choose a resolution span � = max

p

(r
c,p

)/min

p

(r
c,p

) and a number
of small particles N . These additional small particles are given interaction
radii r

c,s

= r
c,b

/� and are placed on a uniform Cartesian mesh with spacing
h
s

= 2r
c,s

/3 adjacent to the coarse mesh. Figure 4.5 shows an example
of a resulting adaptive-resolution particle distribution. Similar particle
distributions may arise in simulations of shock waves in compressible fluids.
For the present benchmarks, the interaction radii are chosen such that each
particle always has exactly 8 interaction partners, which allows comparing
timing results across resolution spans.

We first measure the runtime scaling for constructing AR cell list and
conventional cell list for increasing numbers of particles and constant �.
We repeat this experiment for � = [1, 10, 100, 1000] to cover a wide range of

50

4.2. RESULTS

Domain D̃Domain D

(a) asymmetric interactions

Domain D̃Domain D

(b) symmetric interactions

Figure 4.4. Halo layers for symmetric and asymmetric neighbor lists and treat-
ment of periodic boundary conditions. The computational domain is decomposed
into two (sub-)domains D and ˜D (cf. Fig. 4.1). On each (sub-)domain and its
respective halo layers, a separate AR cell tree (black lines) is built. Blue crosses
indicate particles in domain D that are ghosts in the halo layer of domain ˜D
(blue circles). The red crosses highlight two particles from domain ˜D that are
ghosts on domain D (red circles). For each color, two example-particles are
shown: one for periodic boundary conditions, the other for internal (sub-)domain
boundaries.

51

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

Algorithm 4.3 Computing particle–particle interactions or building Verlet
lists based on AR cell lists.
INPUT: particles p = 1, . . . , N with positions ~x

p

and cutoff radii r
c,p

.
OUTPUT: result of the particle–particle interaction or Verlet list storing
for each particle the indices of all particles within its neighborhood.

for each particle p

1. determine the cell c
k

containing p (~x
p

, r
c,p

) using (Op1).

2. if computing symmetric particle–particle interactions or constructing
Verlet lists then

a) retrieve those neighbors of c
k

with index > J(c
k

), N (c
k

), using
(Op5).

b) for each particle q > p 2 c
k

and each particle q 2 N (c
k

) (Op2)

i. if ||~x
p

� ~x
q

||  min(r
c,p

, r
c,q

) then add q to the Verlet
list of p (and vice versa when later computing asymmetric
interactions based on these Verlet lists), or compute the
interaction between particles p and q.

3. else

a) retrieve all neighbors of c
k

, N (c
k

), using (Op5).
b) for each particle q 2 (c

k

[N (c
k

)) (Op2)

i. if ||~x
p

�~x
q

||  min(r
c,p

, r
c,q

) then compute the interaction
between particles p and q.

4. for � = k + 1, . . . ,maxlevel

a) use (Op3) to determine the cell c�
k

that is the (k��)th descendant
of c

k

and contains the location ~x
p

.
b) retrieve all neighbors of c�

k

, N (c�
k

), using (Op5)
c) for each particle q 2 (c�

k

[N (c�
k

)) (Op2)

i. if ||~x
p

� ~x
q

||  min(r
c,p

, r
c,q

) then add q to Verlet list of p
(and vice versa when later computing asymmetric interac-
tions based on these Verlet lists), or compute the interaction
between particles p and q.

52

4.2. RESULTS

Figure 4.5. An example particle distribution used for the present benchmarks.
In this figure N = 2000 and � = 10. The “large” black particles have a
cutoff radius of 0.15, while the “small” red particles have a cutoff radius of
0.015 (� = 0.15/0.015 = 10). For comparison, the interaction ranges of two
neighboring particles at the resolution interface are shown as shaded circles of
the respective color.

53

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

resolution spans. The results are shown in Fig. 4.6. Constructing AR cell
lists is about one order of magnitude slower than constructing conventional
cell lists. A quick analysis of Algorithm 4.1 shows that Step 1 can be
accomplished in O(N logN) time. Step 2 can directly be computed in
O(1). Step 3 is essentially a linear iteration through the N particles and
therefore has a runtime of O(N). Step 4 linearly depends on the number
of cell tree levels, which in turn depends on �. If the number of interaction
partners of each particle is bounded by a constant, the overall runtime of
the algorithm is O(maxlevel ⇥ N logN). This is a higher computational
complexity than the O(N) runtime for building conventional cell lists.

Figure 4.6 also shows the total runtimes to construct conventional and AR
cell lists and build Verlet lists based on them for � = [1, 10, 100, 1000]. For
� = 1000 and 10

6 particles (Fig. 4.6d), building the cell lists and the Verlet
lists for all particles is almost three orders of magnitude faster when using
AR cell lists instead of conventional ones. Figures 4.6b and c further show
that the runtime for constructing Verlet lists based on conventional cell
lists is first O(N2

) and then decreases to O(N) beyond a “saturation point”.
This can be understood as follows: Since the cells of conventional cell lists
are as large as the largest cutoff radius in the domain, the runtime of the
particle–particle interactions using conventional cell lists in the present
test case is about 100 + N2/N

cells

for 100 particles with large r
c,b

and
N particles with small r

c,s

. For small N the total number of cells in the
cell list, N

cells

, is constant and the quadratic term dominates, leading to
a quadratic runtime as more and more small particles are added into the
constant number of cells covering the domain. For large-enough N , after the
rightmost column of cells has been completely filled with small particles,
N

cells

increases proportionally with N , rendering the runtime linear beyond
this saturation point. This can be seen in Figs. 4.6b and c as a reduction in
the slope of the particle–particle interaction runtime curve. As � increases,
the saturation point shifts to larger N .

The runtimes of AR and conventional cell lists depend on the spectrum of
scales � present in the particle distribution. For � = 1 conventional cell lists
are more efficient (see Fig. 4.6a). For increasing �, the additional overhead
for constructing the AR cell lists is gradually amortized by their higher effi-
ciency when computing particle–particle interactions. We therefore repeat
the benchmarks for different values of � between 1 and 10

4 and measure the

54

4.2. RESULTS

(a) � = 1 (b) � = 10

(c) � = 100 (d) � = 1000

Figure 4.6. Runtime for increasing numbers of particles N and resolution spans
� = [1, 10, 100, 1000] (a–d). Each plot shows the total runtime for constructing
(crosses) conventional (dashed lines) and AR (solid lines) cell lists in 2D and for
constructing the cell lists plus constructing Verlet lists based on them (dots).
The theoretical slopes of an O(N) and an O(N2

) algorithm are indicated by
the dotted lines.

55

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

(a) (b)

Figure 4.7. Total runtime for increasing resolution spans 1  �  10 000 and
constant N = 10

6. (a) Runtime for constructing conventional (dashed line) and
AR (solid line) cell lists in 2D. (b) Total runtime for constructing conventional
(dashed line) and AR (solid line) cell list and constructing Verlet list based on
them.

total runtime. The measured runtimes are shown in Fig. 4.7. As expected,
the cost of constructing conventional cell lists is independent of � and about
one order of magnitude lower than for the AR variant (Fig. 4.7a). When
using AR cell lists to build Verlet lists, however, the computational cost
is virtually independent of �, whereas for conventional cell lists it rapidly
grows with � (Fig. 4.7b). This is expected as the particles cluster more
and more and the average number of particles per cell grows (quadratically
in 2D and cubically in 3D) for conventional cell lists, whereas it remains
constant in AR cell lists. The runtime for building the Verlet lists using
conventional cell lists reaches a plateau at � ⇡ 200. This can be explained
by the specific arrangement of particles used in the present benchmark. At
� > 200 the particles with small cutoff radii are so tightly arranged that
they all fit into the minimum number of cells required to cover the interface
between the large and small particles.

We determine the break-even value of � where the overall runtime for
constructing AR cell lists and using them to construct Verlet lists drops
below that for constructing conventional cell lists and building Verlet lists
based on them. For � = 1, constructing Verlet lists form conventional
cell lists is about 25% faster than constructing them from AR cell lists.

56

4.2. RESULTS

Already for � = 3.65, however, the overall runtime for AR cell lists is equal
to that for conventional cell lists. For resolution spans of about � = 10,
AR cell lists are about one order of magnitude faster than conventional
ones. This indicates that the use of AR cell lists is advantageous in most
adaptive-resolution particle simulations, even for modest resolution spans.

4.2.2. Example application

As an example application where AR neighbor lists may be advantageous
we consider diffusion on a curved surface simulated using an adaptive-
resolution variant of a smooth particle method [Bergdorf et al., 2010]. The
surface is represented implicitly as a level set [Sethian, 1999] that is dis-
cretized using particles as collocation points [Hieber and Koumoutsakos,
2005]. Diffusion amounts to interactions between neighboring particles as
defined by DC-PSE operators [Schrader et al., 2010].

We consider a surface of revolution generated by three arcs of circles, re-
sembling a small bud pinching off from a larger sphere (see Fig. 4.8). This
models the geometry of a dividing yeast cell. The radii of the bud and of
the sphere are fixed to 1 and 3, respectively. The radius of curvature at
the neck, r

P

, is varied parametrically in order to tune the resolution span
present in the problem.

In order to properly resolve the geometry, the density of particles needs to be
larger (and their interaction radii smaller) in regions where the surface has a
large curvature. We hence place the particles such that the distance between
neighboring particles is proportional to the local radius of curvature of the
surface. The cutoff radii hence span a continuous spectrum of scales and
the geometry is well resolved everywhere, as shown in Fig. 4.8. Particles are
only placed in a narrow band around the surface and the rest of the volume
remains empty [Bergdorf et al., 2010]. Varying the neck curvature r

P

leads
to different ratios between the largest and the smallest curvature of the
surface, and hence to different resolution spans �. The mean resolution
h
0

on the larger sphere is fixed in each run, so that decreasing r
P

(i.e.,
increasing �) leads to an increase in the total number of particles N .

We measure the computational cost of constructing and using cell lists

57

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

in the present AR method and compare it with the cost of conventional
cell lists for mean resolutions h

0

= [0.1, 0.2, 0.45] and � varying between 3

and 2000. Figure 4.9a shows the total runtime for constructing the Verlet
lists using either AR cell lists or conventional cell lists. For the coarsest
resolution, the break-even point is around � = 60. This reduces to � = 4

for h
0

= 0.2 and to � < 2 for the finest resolution considered. Figure 4.9b
shows the runtime per particle for constructing the cell and Verlet lists,
demonstrating that AR cell lists provide neighbor access with a runtime
that is insensitive to the resolution span � and to the total number of
particles N as realized by the different resolutions. This is in contrast to
conventional cell lists whose runtime significantly increases with � and with
increasing N (decreasing h

0

).

4.3. Conclusions

We have presented data structures and algorithms for efficiently finding
the interaction partners of each particle in a particle-based simulation
with short-range interactions whose cutoff radii vary between particles.
This enables efficient computation of limited-range particle–particle inter-
actions in adaptive-resolution simulations with a potentially continuous
spectrum of cutoff radii. Constructing adaptive-resolution (AR) neighbor
lists is computationally more expensive than constructing conventional
uniform-resolution neighbor lists. This additional overhead, however, is
quickly amortized by the gain in performance when using the AR cell
lists to evaluate particle–particle interactions or to construct Verlet lists
for adaptive-resolution particle distributions. Already at modest ratios be-
tween the cutoff radii of the largest and smallest particles in a simulation,
AR cell lists are faster overall. The actual break-even point, however, de-
pends on the specific particle distribution. The larger the spectrum of
scales that are present in a simulation, the bigger the computational saving
becomes. For realistic adaptive-resolution simulations, the present AR cell
lists can be several orders of magnitude faster than conventional cell lists.

We have implemented both AR cell lists and Verlet lists based on AR cell
lists in the PPM library in order to make them available for adaptive-
resolution simulations on parallel distributed-memory computers. In PPM,

58

4.3. CONCLUSIONS

Figure 4.8. Particle distribution used in the present example of an adaptive-
resolution simulation of diffusion on a surface. The surface is axially symmetric
and only its lower half is shown. The surface is represented as a level set
discretized on the particles and restricted to a narrow band. Both the width of
the narrow band and the cutoff radii of the particles, represented by the color
code, depend on the local surface curvature. The high curvature at the neck
between the two sphere shells requires a locally increased resolution.

59

CHAPTER 4. FAST NEIGHBOR LISTS FOR
ADAPTIVE-RESOLUTION PARTICLE SIMULATIONS

(a) (b)

Figure 4.9. Runtime for constructing the cell lists and using them to construct
Verlet lists for the test case shown in Fig. 4.8. For both conventional (dashed
lines) and AR (solid lines) cell lists we vary the resolution span � and the mean
resolution h

0

on the larger sphere, hence varying the total number of particles N .
Crosses, dots, and triangles correspond to h

0

= 0.1, 0.2, and 0.45, respectively.
Note that N increases with �. The two panels show: (a) the total runtime and
(b) the runtime per particle.

the presented algorithms are applied locally per subdomain (i.e., per pro-
cessor) of a domain decomposition. They thus have no impact on the
communication overhead of a parallel simulation, assuming that the halo
layers are populated beforehand.

60

CHAPTER 5

A new edge-coloring-based communication scheduler

1Parallel simulations of tightly coupled problems often entail a significant
overhead due to interprocess communication. This is particularly true
when the problem is decomposed and distributed across the processors of
a distributed-memory computer, and when using synchronous communica-
tion. In this case, a process may only communicate with one other process
at a time. Hence, even local communication, where processes only exchange
data with their neighbors, must be decomposed into rounds. These rounds
are sequentially executed until all processor pairs have completed their com-
munication. The problem of communication scheduling with a minimum
number of rounds can be abstracted as the graph-theoretical problem of
graph coloring.

The graph (or vertex) coloring problem consists in coloring the vertices V

1This work has been done together with Ferit Büyükkeçeci, who provided the Fortran
implementation in the PPM library.

61

CHAPTER 5. A NEW EDGE-COLORING-BASED
COMMUNICATION SCHEDULER

of a undirected graph G = (V,E), such that no two vertices connected by
an edge e 2 E have the same color. The minimum number of colors needed
to color G is called the chromatic number �(G). A coloring using k � �(G)

colors is referred to as a k-coloring of G. Analogously, the edge coloring
of a graph colors all edges of the graph such that no two edges sharing a
vertex carry the same color. The minimum number of colors needed for
a proper edge coloring is called the chromatic index �0

(G). Since an edge
coloring of G is equivalent to a vertex coloring of the line graph L(G) of
G, it follows that �0

(G) = �(L(G)).

Graph coloring problems have first been studied in the 19th century. In
the 1970s, optimal graph coloring was identified as one of 21 NP-complete
problems [Karp, 1972]. However, many heuristic algorithms have since
then been found to determine a k-coloring of G [Brélaz, 1979, Turner, 1988,
Kosowski and Manuszewski, 2004]. In the case of edge coloring, it is clear
that the chromatic index must be at least as large as the graph’s maximum
degree �(G) (i.e., the maximum number of edges connected to any vertex).
Furthermore, Vizing’s theorem states that �0

(G) for any graph is either
�(G) or �(G) + 1 [Vizing, 1964].

The generic problem of scheduling a set of jobs E using shared resources
V , where only one job at a time can access the resource, can be abstracted
as the edge coloring problem. The chromatic index of this graph is the
minimum number of rounds in which all jobs can be completed. A common
application of graph coloring in computing is register allocation [Chaitin,
1982]. In order to reduce the number of memory accesses in computer
programs, compilers must find an optimal schedule for assigning processor
registers to variables.

Coffman et al. [1985] proposed to also abstract the problem of communica-
tion scheduling as an edge coloring problem. They found both a sequential
and a distributed polynomial-time approximation algorithm. The general
communication scheduling problem is abstracted as follows: The processes
or computer nodes are represented by the vertices of a graph ˜G. If two
processes have to communicate, their vertices are connected by an edge.
Following our assumption that a process can only communicate with one
other process at a time, we see that two edges connected to the same vertex
must be of different color. Alternatively, vertex coloring algorithms can be

62

5.1. A HEAPIFIED IMPLEMENTATION OF DSATUR
FOR COMMUNICATION SCHEDULING

applied to the line graph L(˜G) of the communication graph ˜G, which is
what we do here.

5.1. A heapified implementation of DSATUR
for communication scheduling

The DSATUR algorithm was proposed by Brélaz [1979] as a heuristic
algorithm for finding vertex colorings of a graph. The algorithm introduces
the saturation degree of a vertex, sat(·), as the number of distinct colors
to which it is adjacent. The algorithm proceeds as follows until all vertices
are colored:

Select an uncolored vertex with maximum saturation degree.
Ties are broken by choosing the vertex with maximum degree
(number of adjacent vertices, deg(·)). Color this vertex with the
next available color.

The asymptotic runtime of this algorithm is O(n2

) [Brélaz, 1979]. Here, n
denotes the cardinality of the vertex set V of G, while m is the cardinality
of the edge set E of G. Turner [1988] showed that by using a heap data
structure it is possible to further reduce the runtime of DSATUR to O((n+
m) log n). We generalize this implementation using a list of heaps (Fig. 5.1).
The list is indexed by the saturation degree while the heaps use

heap(v
i

) < heap(v
j

) () deg(v
i

) > deg(v
j

)

as their ordering relationship; heap(v
i

) is the position of v
i

in the heap.
Using this data structure allows us to partition the binary heap used by
Turner [1988] in order to allow easy traversal of the vertex set by both
saturation and adjacency degree.

The heapified DSATUR algorithm (Algorithm 5.1) starts by adding all ver-
tices of G into the sat(·) = 0 heap (heap

0

) and initializing their saturation
degrees to 0. While there are still uncolored vertices, the algorithm pops
the head from the heap with highest saturation and colors it with the next
available color. For all adjacent vertices, it then checks whether their satu-

63

CHAPTER 5. A NEW EDGE-COLORING-BASED
COMMUNICATION SCHEDULER

· · ·

s
a
t
u
r
a
t
i
o
n

sat(·) = 0

sat(·) = 1

sat(·) = 2

sat(·) = · · ·

Figure 5.1. A list of heaps for fast access to vertices with maximum degree and
given saturation degree.

ration has increased and updates their position in the list of heaps. Since
all heap operations remain unaltered, the heaps can directly be accessed by
index, and the overall structure of the algorithm is the same as in [Turner,
1988]. We hence argue that the overall runtime of our algorithm remains
O((n + m) log n). This holds under the assumption that the number of
neighbors per vertex is bounded by a constant much smaller than n.

5.1.1. Using heapified DSATUR in PPM

We implemented the heapified DSATUR algorithm as a Fortran 95 module
in the Parallel Particle Mesh (PPM) library [Sbalzarini et al., 2006a]. The
PPM library’s local and ghost mapping operations entail local communi-
cation between all MPI processes and their neighbors. The neighborhood
relationship emerges from PPM’s domain decomposition. The computa-
tional domain of a parallel particle-mesh simulation is decomposed into
subdomains that are then assigned to MPI processes. Hence, two processes
holding two neighboring subdomains are neighbors. Figure 5.2 shows how
a communication graph is constructed from such a domain decomposition.

Since local and ghost mappings are implemented using synchronous message
passing, each processor can only communicate with one neighbor at a time.
We therefore determine the communication schedule using vertex coloring
of the line graph G = L(˜G) of the communication graph ˜G. The schedule
is stored and reused. It is only necessary to recompute the schedule after

64

5.1. A HEAPIFIED IMPLEMENTATION OF DSATUR
FOR COMMUNICATION SCHEDULING

Algorithm 5.1 DSATUR algorithm using s list of heaps. heapify, pop,
delete, and insert are the standard binary heap operations.
INPUT: A graph G = (V,E)

OUTPUT: A vertex coloring of G.

1. heap
0

 heapify(V)

2. 8v 2 V : sat(v) = 0

3. W V

4. while W 6= ;

a) i argmax

i

(heap
i

6= ;)
b) v pop(heap

i

)

c) color v with the least available color in its neighborhood
d) foreach w 2 neigh(v)

i. if 8u 2 neigh(w) \ v : color(v) 6= color(u)

A. delete(heap
sat(w)

, w)

B. sat(w) sat(w) + 1

C. insert(heap
sat(w)

, w)

e) W W \ v

65

CHAPTER 5. A NEW EDGE-COLORING-BASED
COMMUNICATION SCHEDULER

⌦
create

toplogy

global

mapping

Figure 5.2. First, we create a topology for the computational domain ⌦ (left
panel) by decomposing it into subdomains and assigning them to processors
(center panel). Then, we map the data onto this topology. The subdomain
neighborhood defines a processor neighborhood (right panel). This neighborhood
is abstracted as a graph ˜G = (V,E), where V is the set of processors and
E = {(vi, vj) if vi, vj have neighboring subdomains}. An edge-coloring of ˜G is
computed by applying the vertex coloring algorithm DSATUR (Algorithm 5.1)
to the line-graph G = L(˜G). Free space boundary conditions are assumed.

a global mapping has been performed.

5.2. Benchmarks

We compare the performance of the heapified DSATUR line graph vertex-
coloring (i.e., edge-coloring) Fortran 95 code (dsatur) with the previous
edge-coloring routine in PPM, which is based on the Stony Brook Algorithm
Repository C++ implementation (vizing) of the edge-coloring algorithm
that follows from the constructive proof [Misra and Gries, 1992] of Vizing’s
theorem [Vizing, 1964]. All benchmarks are performed on an Intel Core
i5 CPU and compiled using the -O3 flag. For all benchmarks we measure
for dsatur the total time of first computing the line graph L(˜G) and then
computing the vertex coloring on G = L(˜G).

In order to study the performance of our edge-coloring code we generate
a number of graphs with different properties and measure the time and
number of colors used by both dsatur and vizing. For all tested graphs the
number of colors used by dsatur is equal or one less than vizing. Figure 5.3
compares the two implementations for random graphs of increasing numbers

66

5.2. BENCHMARKS

(a) (b)

Figure 5.3. Runtime of Vizing’s edge coloring (blue crosses) and heapified
DSATUR (red circles) for random graphs of increasing numbers of vertices, each
of which having a degree of 10 (a) or 25 (b). Heapified DSATUR performs better
in both cases and scales better than Vizing’s algorithm. The asymptotic runtimes
of Vizing’s algorithm (O(nm): blue) and heapified DSATUR (O((n+m) logm)

red) are shown as dotted lines. Heapified DSATUR is applied to G = L(˜G)

while Vizing is directly applied to ˜G.

of vertices n = |V |. The adjacency degree of the vertices is fixed to 10 (Fig.
5.3a) or 25 (Fig. 5.3b). The dsatur implementation has an overall better
time performance than vizing. Moreover, dsatur also exhibits a slower
runtime increase which is due to the algorithm’s asymptotic complexity.
Vizing’s algorithm has an asymptotic runtime of O(nm) [Kosowski and
Manuszewski, 2004], whereas our algorithm has an asymptotic runtime of
O((n+m) logm)

2.

Examining the runtimes of dsatur and vizing with respect to the density of
the graph (Figure 5.4), we notice that both dsatur’s and vizing’s runtimes
show a steeper increase than in Figure 5.3. This is due to the fact that the
number of neighbors per vertex is no longer in O(1). This however, is of no
concern for communication scheduling in local and ghost mappings since
the neighborhood of any processor remains local.

We thus also generate 2 and 3 dimensional grids as benchmark cases for

2Since we are applying the heapified DSATUR algorithm on the line graph of the
communication graph, the runtime here differs from the one given in section §5.1.

67

CHAPTER 5. A NEW EDGE-COLORING-BASED
COMMUNICATION SCHEDULER

(a) (b)

Figure 5.4. Runtimes of dsatur and vizing for graphs of increasing |V | and
deg(v) = |V |/2 8v 2 V (a), and graphs with |V | = 1000 and increasing
|E| = (|V |deg(v))/2 (b). Both vizing and dsatur’s runtimes rapidly increase
with increasing density of the graph.

dsatur. This simulates Cartesian PPM domain decompositions and thus
provides an application benchmark. We again compare the runtime perfor-
mances of dsatur and vizing. The number of vertices (processes) ranges
from 4 (8 in 3D) to 4096, and we consider an 8 (26 in 3D) neighborhood
around each vertex (process). Figure 5.5 a and b show the results. In both
cases dsatur has an improved runtime over vizing. For the largest test
cases (4096 vertices), dsatur is more than 100 times faster than vizing and
completes the edge coloring in less than 0.1s. We have also tested dsatur’s
runtime for two larger 2D and 3D Cartesian grids that could not be colored
by vizing within one hour. The results are summarized in Table 5.1.

Comparing all test cases dsatur always generated a coloring with at most
the same number of colors as vizing. This means that the dsatur edge
colorings are for our test cases at most �0

(

˜G) + 1.

5.3. Summary and Conclusion

We have implemented a new graph vertex coloring based communication
scheduler for synchronous message passing in parallel high-performance

68

5.3. SUMMARY AND CONCLUSION

(a) (b)

Figure 5.5. dsatur (red) and vizing (blue) runtime performance benchmarks on
a cartesian mesh in 2D with 8-neighborhood (a) and 3D with 26-neighborhood
(b). Asymptotic runtimes for Vizing’s algorithm (O(nm): blue) and heapified
DSATUR (on line-graphs, O((n+m) logm) red) are shown in dotted lines.

vertices time
262144 (2D, 8-neighborhood) 1.825s
110592 (3D, 26-neighborhood) 10.878s

Table 5.1. Runtimes of the dsatur implementation of the heapified DSATUR
algorithm on line-graphs. No benchmarks could be obtained for vizing within
an hour.

69

CHAPTER 5. A NEW EDGE-COLORING-BASED
COMMUNICATION SCHEDULER

applications. Our method is based on Brelaz’s [1979] heuristic vertex col-
oring algorithm. Extending Turner’s [1988] idea of using a binary heap for
fast vertex lookup, we proposed building a heap-list data structure that
stores one heap per saturation degree and allows direct access to vertices of
maximum saturation (and adjacency) degree. Using this data structure, we
expect an overall asymptotic runtime of O((n+m) log n) [Turner, 1988]. In
the context of communication scheduling, this algorithm is applied to the
line graph of the communication graph. We implemented this algorithm
as a Fortran 95 module in the Parallel Particle Mesh (PPM) library and
benchmarked it on a number of different graphs. We generated random
graphs of different sizes and with different adjacency degrees, and we com-
pared the runtime performance of the new Fortran routine with a C++
implementation of Vizing’s algorithm [Misra and Gries, 1992]. Furthermore,
we compared the performance of the two implementations on 2D and 3D
Cartesian grids modeling realistic PPM communication graphs. Our im-
plementation outperformed the previous communication scheduler in the
PPM library in all tested benchmarks. However, we noticed that our imple-
mentation is unsuitable for dense graphs with high adjacency degrees. We
ascribe the increased runtime for such graphs to the fact that the neighbors
of a vertex cannot be accessed in O(1) time anymore. Nevertheless, the
presented new communication scheduler is able to compute colorings for
3D Cartesian grids with more than 10

5 nodes in ca. 10 seconds.

70

CHAPTER 6

PPM on multi- and manycore platforms

In 2005 the semiconductor industry made a technological move that has
significantly influenced computer science. It had become clear that tradi-
tional chip designs were not able to meet the ever-increasing demand for
performance. In the previous two decades the miniaturization of transis-
tors and the increase in processor clock speed were the two main drivers
of progress in the hardware industry. Consequently, software was able to
benefit from an increased performance when executed on newer hardware.
However, physical limitations such as the heat dissipation and power con-
sumption of chips, as well as design limitations such as an increasing gap
between CPU and memory speeds, led chip manufacturers to rethink the
chip design [Asanovic et al., 2009, Geer, 2005].

Instead of further increasing the clock frequency, chips now comprise mul-
tiple cores. Newer designs have become more power efficient, cooler and
more performant. Since 2005, the number of cores has increased from two

71

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

to four, six, and recently 8 (figure 6.1).

0.1$

1$

10$

100$

1000$

10000$

100000$

1000000$

1.00E+00$

1.00E+01$

1.00E+02$

1.00E+03$

1.00E+04$

1.00E+05$

1.00E+06$

1.00E+07$

1.00E+08$

1.00E+09$

1.00E+10$

1970$ 1975$ 1980$ 1985$ 1990$ 1995$ 2000$ 2005$ 2010$ 2015$

cl
oc
k%
sp
ee
d%
(M

Hz
)%

tr
an

si
st
or
%c
ou

nt
%

year%

transistors$

clock(MHz)

Figure 6.1. Transistor numbers have been steadily increasing, following Moore’s
law, while clock speed has leveled off since 2005. At the same time, new proces-
sors have emerged with two or more cores (indicated by the size of the bubbles)
(source of raw data: Wikipedia, Intel).

These changes have in turn presented new challenges to algorithms and
software engineering. In order to optimally exploit the new processors, algo-
rithms and software have to be designed with parallelism in mind [Asanovic
et al., 2009]. Most of the difficulties in programming parallel systems stem
from the fact that resources have to be shared between several concurrent
execution threads. Some of the pioneering work in concurrent programming
is decades old. For instance, mutual exclusions (mutex) [Dijkstra, 1965] en-
sure that two processes (or threads) can access the same shared memory
location without interfering with each other. Transactional memory allows
a pair of load and store instructions to be executed atomically. Transac-
tional memory has been implemented both in hardware [Herlihy and Moss,
1993] and software [Shavit and Touitou, 1997], and it is used in IBM’s latest
Blue Gene\Q supercomputer design.

72

In order to further ease building and updating parallel software, frameworks
and libraries providing the tools for shared-memory parallel programming
have become crucial to the computer industry and the scientific community.

Scientific computing has particularly benefited on several levels from the
advent of multicore processors. On the one hand, multicore processors
(and even more so manycore processors) turn the personal computers and
workstations of engineers and scientists into powerful parallel computing
machines. This makes it desirable that programming such machines be
accessible to non-experts, such that the users of such workstations can opti-
mally exploit their computing resources [Marowka, 2007, Brodtkorb et al.,
2010, Perez et al., 2008]. On the other hand, multicore chips have enabled
the construction of petascale supercomputers, while the next-generation
manycore CPUs will be at the heart of upcoming exascale supercomputers.
These systems are heterogeneous in nature, featuring not only multicore
CPUs, but recently also GPGPUs, APUs, and even FPGAs [Tsoi and Luk,
2010].

GPUs in particular have been increasingly employed in applications out-
side computer graphics. Originating from early prototypes by Olano and
Lastra [1998] graphical processing units have become increasingly flexible
in allowing access to their functional units via vertex and shader programs.
Today, featuring hundreds of parallel streaming processors, GPUs have
become popular platforms for SIMD-parallel algorithm implementations.
First implementations of a linear algebra algorithm have appeared as early
as 2001 [Larsen and McAllister, 2001]. In the following years, more generic
numerical algorithms have been ported to GPUs [Krüger and Westermann,
2005, Bolz et al., 2005], making use of the continuously improving hardware
and its interfaces. In 2007 Nvidia released the first version of its CUDA
SDK, a high-level language and API for using Nvidia’s GPU platforms as
general purpose parallel computing engines[NVIDIA, 2012]. OpenCL, an
open standard for computing on CPUs, GPUs, APUs, and FPGAs, was re-
leased in 2008. Both competing platforms have fostered the implementation
of many algorithms on GPUs.

Especially for tightly coupled problems it has become increasingly im-
portant to optimize implementation for multicore and manycore archi-
tectures. This has for example been discussed by Dubey et al. [2010],

73

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

Speck et al. [2011], Madduri et al. [2009]. Furthermore, Madduri et al.
[2011] provide an extensive discussion of the opportunities and challenges
of multi- and manny-core architectures for Particle-In-Cell (PIC) meth-
ods. They concluded that manycores and GPUs may both offer consid-
erable speedups. However, the benefit and cost of employing GPUs and
accelerators must be carefully assessed for the particular problem at hand.
One important challenge of large heterogeneous platforms, which has also
been pointed out by Rabenseifner et al. [2009], is load balancing. Dynamic
load balancing may be expensive and incur a communication overhead
in purely distributed-memory parallel implementations. By using hybrid
shared-/distributed-memory programming, however, it is possible to alle-
viate this problem by saving some of the communication overhead and
providing dynamic work item scheduling constructs. One such example is
OpenMP’s schedule=dynamic clause.

A number of peta-scale simulations performed on heterogeneous multi- and
manycore systems have recently demonstrated the opportunities and chal-
lenges of these systems.[Hejazialhosseini et al., 2012] presented an object-
oriented software for simulating compressible two-phase flows on 47,000
CPU cores achieving 30% of the nominal peak performance. Winkel et al.
[2012] extended the PEPC library, a MPI Barnes-Hut tree code, using
pthreads to scale up to almost 300,000 cores. Using 4,000 GPUs and 16,000
CPU cores Shimokawabe et al. [2011] achieved a 1 PFlop/s simulation
of metal alloy solidification. Finally, Bernaschi et al. [2011] performed a
biofluidics simulation at nearly 1 PFlop/s of blood flow through the human
coronary arteries at the resolution of single red blood cells.

74

6.1. A PTHREADS WRAPPER FOR FORTRAN 2003

6.1. A pthreads wrapper for Fortran 2003

A common approach to writing scalable software for heterogeneous hard-
ware platforms is to combine a distributed-memory parallelization library,
such as MPI, with a threading library, like POSIX threads (pthreads) or
OpenMP. MPI is then used to parallelize the application on the level of
networked hosts, while the thread library is used to parallelize within each
MPI process. The processor cores can thus be used to execute multiple
threads in parallel. This strategy has been successfully used for example by
Winkel et al. [2012]. It has several advantages over executing one MPI pro-
cess per core. First, running several threads per process instead of running
several processes results in a smaller overall memory footprint. This is not
only due to the overhead incurred by process management, but also due to
increased memory requirements for data replications, such as halo layers for
decomposed domains [Rabenseifner et al., 2009, Winkel et al., 2012]. The
problem is further aggravated since the size and bandwidth of main memory
are not scaling with the number of cores [Dubey et al., 2010]. Second, using
shared memory parallelism allows for improved dynamic memory access
on NUMA architectures. Finally, using hybrid threads-MPI programming
models allows the programmer to delegate tasks such as internode com-
munication [Winkel et al., 2012, Song et al., 2009], job management, and
job monitoring to be executed within one thread and depending on the
workload, to be dedicated to one core. This is harder to achieve in a pure
SPMD programming model.

Pthreads is a POSIX standard for threads that is implemented in many
POSIX-compliant operating systems, ranging from BSD derivatives and
Linux to MacOS X and Solaris. Microsoft Windows offers an implementa-
tion too, albeit not natively. The original standard was published in 1995,
but a number of threads implementations predate POSIX threads [Stein
and Shah Sunsoft, 1992, Powell et al., 1991]. In fact, the POSIX threads
standard was created in an effort to consolidate the number of existing li-
braries into one common interface allowing programmers to write threaded
applications that are portable across many operating systems.

Pthreads provides an API for the C programming language, offering func-
tions to manage threads, mutexes, condition variables, and thread-specific
data, and allowing for synchronization between threads using locks and

75

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

barriers. This API has been ported (i.e., wrapped) to several other pro-
gramming languages giving a wide audience access to the threading pro-
gramming model. Unfortunately, however, support for pthreads has been
lacking in Fortran. Fortran has a long-standing history being used in many
scientific computing and high performance computing applications. he For-
tran 2003 standard includes many desirable extensions and also supports
object-oriented programming. Over the last 5 decades a large number of
libraries and applications has been created for Fortran and is today actively
maintained and used. BLAS, Netlib, Lapack, FFTW, PETSc, PEPC, and
NAG Fortran Library are examples of widely used libraries written in For-
tran or providing a native Fortran interface. To date, two non-proprietary,
albeit partial implementations of Fortran pthreads wrappers exist [Han-
son et al., 2002, Nagle, 2005]. Furthermore, IBM provides a proprietary
pthreads Fortran interface for its AIX platform. It is possible to bind from
Fortran directly to C routines, but this is often difficult and sometimes
impractical and hence not easily accessible to most Fortran programmers.

6.1.1. Features and limitations

The present implementation provides routines and derived types covering
almost all POSIX threads [POSIX, 2004] capabilities, including optional
specifications implemented in Linux and Linux-specific extensions. The
provided Fortran interfaces cover:

• Thread creation, joining, cancellation and basic manage-
ment providing basic threading functionality, such as creating and
initializing new threads, calling of initialization routines, determining
thread IDs, and comparing threads.

• Mutexes, or mutual exclusions, provide multiple threads with ex-
clusive access to shared resources. Forthreads exposes all functions
provided by pthreads mutex handling.

• Conditional variables are used in conjunction with mutexes, al-
lowing threads to atomically check the state of a condition.

• Barriers are synchronization points at which participating threads
must wait until all their peers have called the wait function.

76

6.1. A PTHREADS WRAPPER FOR FORTRAN 2003

• Spin locks provide a busy-wait type of locking for threads. A thread
trying to acquire a spin-lock that is already locked by a peer checks
in a loop for the availability of the lock and returns as soon as its peer
has returned. Spin locks are more expensive in terms of resources
than conventional locks based on the process or kernel scheduler, but
offer a superior reaction time.

• Readers-writer locks, also known as shared exclusive locks, allow
multiple threads acting as readers to acquire the lock at the same
time in order to read a shared resource, while only one thread acting
as a writer is allowed to acquire the lock for the shared resource.
Forthreads offers wrappers for all RW lock pthread functions.

• Thread attribute objects are provided by pthreads to allow read-
ing and modifying miscellaneous options, such as scheduling policy,
stack size or scheduling priorities.

Our current implementation expands upon the one by Hanson et al. [2002]
in particular by providing wrappers for barriers, spin locks, and readers-
writer locks. These constructs are useful additions to mutexes and condi-
tional variables and offer the programmer a set of flexible tools for thread
synchronization.

The only pthreads API functions that could not be wrapped in the present
Fortran implementation are:

• pthread_cleanup_push and pthread_cleanup_pop: These functions
allow the programmer to register callback functions into a calling
thread’s cancellation cleanup stack that will be popped and executed
in order whenever the thread exits, is cancelled, or calls
pthread_cleanup_pop itself. These functions cannot be wrapped, as
push and pop must be called in pairs in the same scope. Hence, the
POSIX standard foresees their implementation to be done using C
macros [POSIX, 2004].

• Pthread thread-specific data management routines (pthread_key_*
and pthread_getspecific / pthread_setspecific): These routines
heavily rely on the C programming language’s void pointers. Unfortu-
nately such pointers are not available in Fortran. Therefore, it seems

77

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

POSIX threads

Forthreads C interface
Forthreads wrapper DS

Forthreads Fortran API

Figure 6.2. The forthreads library consists of two parts. First, the pthreads
functions and opaque types are wrapped with C code that exposes Fortran-
friendly data types and function interfaces. Then, a set of Fortran routines
provides the user with a seamless Fortran-native interface calling internally the
forthreads C functions and passing all necessary pointers and data.

difficult to provide portable and safe wrappers to these functions.

Finally, in contrast to pthreads, the current implementation only allows
INTEGER pointers to be passed to the thread-start routine. This is for the
same reason as the above-mentioned limitations on thread-specific data
management routines.

The POSIX threads standard states that all pthread-specific types are
opaque and that their specification should be treated as unknown to the
user. Because of this limitation we chose to implement forthreads in two
layers (figure 6.2). C language functions and data structures are first used
to manage and store all pthreads objects and expose only indexes, primitive
type variables, and types defined in forthreads itself. A set of Fortran 2003
derived types and routines wrapping the forthreads C routines define the
actual forthreads API. The routines make heavy use of Fortran ISO C
bindings introduced in Fortran 2003. They allow seamless interaction with
the library without any knowledge of C/Fortran interoperability.

To illustrate our approach we provide in listings 6.1 and 6.2 the code
required to wrap the pthread_mutex_lock function. This function locks
the mutex with the given ID. If it is already locked by another thread, then
the calling thread blocks until it can acquire the lock on the mutex. Listing

78

6.1. A PTHREADS WRAPPER FOR FORTRAN 2003

typedef struct array_tag {
void ∗∗data ;
int s i z e ;
int a f t e r ;

5 pthread_mutex_t mutex ;
} array_t ;

array_t ∗mutexes ;

10 void thread_mutex_lock (int ∗mutex_id , int ∗ i n f o) {
∗ i n f o = FT_OK;
i f (! i s _ i n i t i a l i z e d) {

∗ i n f o = FT_EINIT ;
return ;

15 }
i f (! i s_va l i d (mutexes ,∗ mutex_id)) {

∗ i n f o = FT_EINVALID;
return ;

}
20 ∗ i n f o = pthread_mutex_lock ((pthread_mutex_t ∗)

(mutexes�>data [∗ mutex_id])) ;

}

Listing 6.1 The forthreads C wrapper code for pthread_mutex_lock

6.1 shows the forthreads C interface and the required data structures to
wrap pthreads’ opaque pthread_mutex_t identifiers. The user passes the
previously obtained mutex identifier (mutex_id) to the function. Forthreads
in turn passes to pthread_mutex_lock the pthread_mutex_t object that
had previously been stored in the mutexes array. Listing 6.2 shows the ISO
C binding interface to Fortran 2003, and the implementation of the Fortran
wrapping routine. It is not strictly necessary to use these Fortran routines
as interface, but they free the user of dealing with the intricacies of dealing
with Fortran-C interfaces.

79

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

! ����� c i f a c e . h �����
2

interface
subroutine thread_mutex_lock (mutex_id , i n f o) bind (c)
use iso_c_binding

7 integer (c_int) , intent (in) : : mutex_id
integer (c_int) , intent (out) : : i n f o

end subroutine thread_mutex_lock
end interface

12

! ����� f o r t h r ead . f03 �����

subroutine forthread_mutex_lock (mutex_id , i n f o)
implicit none

17

include ’ c i f a c e . h ’

integer , intent (in) : : mutex_id
integer , intent (out) : : i n f o

22

ca l l thread_mutex_lock (mutex_id , i n f o)

end subroutine forthread_mutex_lock

Listing 6.2 The forthreads Fortran 2003 wrappers built on top of the C interface
shown in listing6.1.

80

6.1. A PTHREADS WRAPPER FOR FORTRAN 2003

6.1.2. Using forthreads in hybrid MPI/pthread programs

Different design patterns exist for combining distributed- and shared-memory
parallelism.

The SIMD pattern uses multiple threads to distribute a large number of
identical (and preferably independent) work items. Each thread executes
the same subprogram on different data. This pattern is most prominently
used in OpenMP, which employs preprocessor directives placed around
sections of the code to be executed in parallel. The compiler then generates
additional instructions to spawn and execute the threads. The same can
also be achieved using pthreads (and hence forthreads). MPI is then used
to parallelize the computation across multiple memory address spaces.

The task parallelism pattern assigns different tasks to different threads,
executing possibly different code. A thread could for example be tasked
with performing inter-process communication or message passing (e.g., us-
ing MPI) while other threads can run the program’s main computations.
Task-parallel threads can also be used to compute real-time in-situ visual-
izations, or to allow user interaction of a running program. Pthreads and
forthreads offer the full flexibility required for task-parallel applications
through their various interfaces for thread management and synchroniza-
tion. Also OpenMP has in its recent versions gained support for task-level
parallelism through task constructs, which continue to be improved.

In the thread pool pattern, finally a number of worker threads are typically
created that receive work tasks through a queue. A master thread manages
the creation and destruction of worker threads based on the workload and
interprocess communication. Such systems are particularly useful when
the workload of each (MPI) process may vary during the computation.
OpenMP internally uses the thread pool pattern, but gives the programmer
only limited freedom in adjusting the mode of operation through optional
clauses to its preprocessor directives.

We demonstrate the use of forthreads by adding three threading extensions
to the PPM library: multi-threaded particle-mesh interpolation, a multigrid
Poisson solver with computation-communication overlap using a dedicated
communication thread, and interactive computing with PPM using a run-
time socket server running in a separate thread. These extensions allow

81

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

PPM to make better use of multi-core architectures, offering opportunities
for improved scalability and usability.

6.1.2.1. Particle-mesh interpolation using forthreads

The current parallelization model of PPM foresees that one MPI process
holds several subdomains of the decomposed computational domain. This
can conveniently be taken advantage of to execute independent operations
on the different subdomains in parallel using threads. The particle-mesh
interpolation routines have hence been modified to execute on a single sub-
domain. The main interpolation routine spawns one thread per subdomain
and executes the interpolations on the different subdomains in parallel (al-
gorithm 6.1). The arguments to the interpolation routines must be passed
in heap memory, instead of the call stack, because of forthreads’ restriction
to allow only one INTEGER pointer to be passed as an argument to the
thread start routine. Since all subroutine arguments are identical for the
different subdomains, and they are only read by the interpolation routine,
it is sufficient to store only one set of arguments. The subdomain ID is
passed as the sole argument to the thread. The threads are created and
afterwards immediately joined, which amounts to a barrier at the end of the
interpolation, ensuring all subdomains have been completely interpolated
before the simulation proceeds.

We compare our forthreads approach with an OpenMP implementation.
OpenMP offers a simple and efficient solution to this specific problem since
we employed SIMD-type parallelization (listing 6.3). Both approaches are
comparable in terms of the required code modifications. However, OpenMP
allows for a more condensed syntax. More importantly, both implementa-
tions perform similarly well, as shown in figure 6.3. Furthermore, we com-
pare the two shared-memory based approaches with a distributed-memory
MPI implementation of particle-mesh interpolation. The MPI implementa-
tion is faster for linear and, to a lesser extent, M 0

4 interpolation. We ascribe
the superior runtime to the fact that the operating system is able to opti-
mize memory allocation to the MPI processes’ processor-core assignment.
The reduced memory-access times are particularly have a greater effect for
operations with low computational intensity, such as linear interpolation.
For multithreaded applications currently the thread-core assignment is not

82

6.1. A PTHREADS WRAPPER FOR FORTRAN 2003

Algorithm 6.1 Multi-threaded PPM particle-mesh interpolation routine.

1. Allocate derived type object for routine arguments

2. Allocate a threads array containing the IDs of created threads

3. Copy pointers to particle positions and properties, meshes, and pa-
rameters to routine argument object

4. For each subdomain

a) Create a new thread passing the interpolation subroutine as
start routine and the subdomain ID as routine argument

b) store the thread ID in the threads array

5. For each subdomain

a) Retrieve the associated thread ID and join the thread

taken into account for memory allocation. All timings were performed on
an AMD Opteron 8380 using 8 threads on 8 cores and a problem size of
512 ⇥ 512 ⇥ 512 with 1 particle per mesh cell. All benchmark code was
compiled using GCC 4.6.2 and the -O3 flag.

6.1.2.2. Multigrid Poisson solver with computation-communication
overlap

We demonstrate forthreads’ use as a Fortran library for shared-memory
task parallelism by porting PPM’s multigrid Poisson solver for heteroge-
neous platforms. Multigrid (MG) methods use a hierarchy of successively
coarsened meshes in order to efficiently invert a matrix, resulting, e.g., from
spatial discretization of a partial differential equation. The numerics part
of the PPM library includes a MG solver for finite-difference discretizations
of the Poisson equation. The solution is found by iteratively applying a
linear system solver, such as the Gauss-Seidel method or Successive Over-
Relaxation, restricting the error of the solution onto a coarser mesh, possibly
applying more solver iterations, and finally interpolating back onto the orig-

83

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP& FIRSTPRIVATE(lda , dxxi , dxyi , d x z i) &
!$OMP& SHARED(topo , s tore_info , l i s t_sub , xp , up,&
!$OMP& min_sub ,max_sub , f i e l d_up)

DO i sub = 1 , nsubs
! perform i n t e r p o l a t i o n f o r subdomain i sub

END DO
!$OMP END PARALLEL DO

Listing 6.3 Listing showing the code required to shared-memory parallelize the
particle-mesh subroutine in PPM using OpenMP.

0

750

1500

2250

3000

linear M’4

tim
e

(m
s)

OpenMP forthreads MPI

Figure 6.3. Timings for particle-mesh linear and M 0
4 interpolation using

OpenMP (blue), forthreads (orange) and MPI (red). All timings were performed
on an AMD Opteron 8380 using 8 threads on 8 cores. The used problem size
is 512⇥ 512⇥ 512 with 1 particle per mesh cell.

84

6.1. A PTHREADS WRAPPER FOR FORTRAN 2003

inal mesh. The MG method has its roots in the 1960s, but was popularized
byBrandt [1977]. Today, MG solvers are widespread computational tools
in science and engineering.

To make use of multicore platforms, we extend the current MG implemen-
tation in PPM by encapsulating the calls to PPM mesh-ghost mapping
routines in a separate, concurrent thread. This enables overlapping com-
putation and communication. Algorithm 6.2 describes the forthreads MG
implementation. Apart from thread creation in the MG initialization rou-
tine, we only need to adapt the iterative solver (in this case a Gauss-Seidel
method) and add a new routine encapsulating the calls to the PPM commu-
nication abstractions in a concurrent thread. The communication thread is
executed in an infinite loop, waiting at the comm_start barrier. Then, the
main computation thread enters the Gauss-Seidel routine and reaches the
comm_start barrier, the communication thread becomes active. It updates
the mesh ghost layers using communication from neighboring processes
(using the PPM mapping abstraction). At the same time, the next solver
iteration is performed on the bulk mesh, i.e., away from the boundaries that
are currently being communicated. Both threads have to subsequently syn-
chronize at the comm_stop barrier before the computation thread continues
updating the mesh boundaries, based on the new ghost values.

Even though our implementation successfully overlaps MPI communica-
tion with computation, its runtime is higher than that of the MPI-only
implementation. We believe the reason for this is two-fold: First, the newly
added iteration index calculations that are necessary to filter boundary
mesh points from the main bulk iterations incur a large overhead. The red-
black Gauss-Seidel iterations on mesh bulks require initializing the mesh
indices according to a number of state variables, which prevented them
from being vectorized by the compiler. Pre-computing these mesh indices
could potentially alleviate the problem and improve the efficiency of the
multi-threaded solver routine. Second, PPM’s ghost mapping communica-
tion schedule requires multiple communication rounds in order to prevent
network conflicts and deadlocks. A 3D Cartesian topology on 8 processors,
for example, requires 8 communication rounds. On 64 processors, 27 com-
munication rounds are required. Consequently the volume-to-surface ratio
of the sub-domains should be increased in order to mask the increased
ghost mapping time with a matching amount of bulk-mesh computation

85

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

A
lgorith

m
6.2

P
P

M
num

erics
m

ultigrid
red-black

G
auss-Seidel

routine
w

ith
forthreads.

T
he

arrow
s

visualize
the

controlflow
and

thread
states

(green/blue:run,red:w
ait).T

he
com

m
unication

thread
(right)

is
executed

in
an

infinite
loop.T

he
com

putation
thread

(left)
perform

s
a

given
num

ber
ofiterations;w

e
show

here
one

iteration.
G

auss-Seidel iteration
thread

PPM
 m

esh ghost m
apping

thread

1. w
hile(true)
(a) C

A
LL forthread_barrier_w

ait(com
m

_start)

(b) C
A

LL ppm
_m

ap_ghost_get(m
esh)

(c) C
A

LL forthread_barrier_w
ait(com

m
_stop)

1. for color=
(red,black)

(a) Im
pose boundary conditions

(b) U
pdate com

m
unication structure

(c) C
A

LL forthread_barrier_w
ait(com

m
_start)

(d) perform
 G

auss-Seidel sw
eep for color

 on m
esh bulk

(e) C
A

LL forthread_barrier_w
ait(com

m
_stop)

(f) perform
 G

auss-Seidel sw
eep for color

 on m
esh boundaries

86

6.1. A PTHREADS WRAPPER FOR FORTRAN 2003

time.

6.1.2.3. Interactive computing with the PPM library and forthreads

Many modern applications use task parallelism and threads to allow for
quick, responsive interaction with the user. We use forthreads together with
a POSIX internet sockets Fortran wrapper to provide a prototypic server
instance allowing remote clients to connect and to control a running PPM
simulation. In particular, this server is capable of handling an arbitrary
number of concurrent client connections. Such server extensions allow PPM
to be not only directly controlled by the user, but also to communicate
with other applications, such as visualization tools, cluster management,
databases, or web browsers.

In order to extend PPM with an internet server thread, we first build a
simple wrapper for the POSIX internet socket API for Fortran (fsocket),
abstracting some of the intricacies of the sockets API. This wrapper is by
no means a complete wrapper implementation, as it is specifically geared
toward providing the necessary functionality for building TCP internet
servers. It provides the following functions:

• fsocket_init() must be called before any other fsocket routine. It
creates and initializes an internal data structure for mainting the
open connections and file descriptors

• fsocket_server_create() is a shortcut for the socket() and bind()
functions. It creates a socket address structure and requests a file
descriptor.

• fsocket_listen() wraps the listen() function indicating that the
caller is ready to accept incoming connections.

• fsocket_accept() creates a new client address object, then calls the
accept() function, which returns as soon as an incoming connection
is to be established. Once the connection is established, the client
address and file descriptor are stored in the internal data structure
and a unique ID is returned to the caller.

87

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

• fsocket_read() and fsocket_write() are simple wrappers for the
read() and write() functions. They allow reading and writing char-
acter buffers from/to the socket.

• fsocket_close_conn() and fsocket_close_server() wrap the
close() function either passing the client connection file descriptor
or the server file descriptor.

In order to extend this library into a more general-purpose Fortran sockets
interface, one should at least separate the socket() and bind() functions,
provide generic interfaces for building socket address structures, and extend
the fsocket_read() and fsocket_write() routines with a type argument
allowing arbitrary Fortran primitive types, similar to MPI’s communication
routines.

We extend the PPM core library by adding a simple Fortran module provid-
ing a single user-facing subroutine. This routine is responsible for spawning
a new thread (using the forthreads library) that creates an internet server
socket and enters the main server listen loop. Whenever a new client con-
nection is established, this loop advances by one iteration and creates an
additional thread for handling the new client connection. This mechanism
ensures that the running PPM application remains responsive to all con-
necting clients while at the same time continuing its normal operation. The
mode of operation of this PPM server is summarized in (figure 6.4).

Since the PPM server is executed per process, it can be made available in
every MPI process of a parallel PPM instance, allowing the end-user to ad-
dress and manipulate specific MPI processes of a running PPM simulation.
An example is shown in (6.5), connection to a PPM process running on
the local host and asking what the dimensionality of the currently solved
problem is.

6.1.3. Summary and Conclusion

We have developed a comprehensive binding of the POSIX threads API
to Fortran 2003 that gives the programmer access to almost all thread
management functions and all thread synchronization constructs. Using
this library the programmer is only exposed to native Fortran interfaces.

88

6.1. A PTHREADS WRAPPER FOR FORTRAN 2003

main PPM thread

CALL ppm_server_start() server thread

do while (fsocket_accept(cid).ne.-1)
 call forthread_create(connect,cid)
end do

connect threads

Figure 6.4. PPM server. The arrows visualize the thread control flow; dashed
lines are thread spawns. The PPM server creates a thread for the server listen
loop and for each newly established connection.

$ t e l n e t 1 2 7 . 0 . 0 . 1 1337
Trying 1 2 7 . 0 . 0 . 1 . . .
Connected to l o c a l h o s t .
Escape charac t e r i s ’ ^] ’ .
PPM command s e rv e r 0 .1 � Welcome
> he l l o
Hi there !
> dim
ppm_dim i s : 2
> exit
bye
Connection c l o s ed by f o r e i g n host .

Figure 6.5. Log of example PPM command server session.

89

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

Forthreads extends previous implementations, most notably by Hanson
et al. [2002], Nagle [2005]. We showed the versatility of forthreads in three
examples using different design patterns. All examples extended the PPM
library using forthreads in order to provide new functionality and multicore
support. First, we have extended the existing particle-mesh interpolation
routines to spawn one thread per subdomain to be executed on separate
processor cores. The benchmarks showed that our implementation yields
a comparable performance to OpenMP, while offering additional control
over the threads. This comes, however, at the cost of a slight increase in
code complexity. Second, we have redesigned and ported the existing im-
plementation of the multigrid Poisson solver of the PPM library to use
threads. The thread-enabled multigrid solver maintains a separate com-
munication thread, allowing overlapping computation with communication.
The current implementation, however, has significant shortcomings over the
original implementation in terms of time efficiency. We do, however, suspect
that this is not due to the use of forthreads, but is caused by the loss of
code vectorization due to the index algebra needed to separate bulk mesh
nodes from boundary nodes. Third, we have implemented a Fortran wrap-
per for the POSIX internet socket API and a new PPM module providing
a control server for PPM simulations capable of handling several simulta-
neous client connections. Mixed shared and distributed-memory parallel
programming has in several instances shown significant improvements over
pure distributed-memory parallelizations [Winkel et al., 2012, Song et al.,
2009, Madduri et al., 2009]. The forthreads library is intended to offer a
simple yet powerful alternative to existing parallelization frameworks for
shared-memory parallelism in Fortran 2003. Forthreads is complete in the
sense that it provides native Fortran 2003 interfaces to all POSIX threads
routines where this is possible. Forthreads also maintains the opacity of
the internal pthreads types and data structures, as required by the POSIX
standard. Together with the fsocket wrapper for the POSIX internet socket
API, we believe that forthreads will be a useful tool for developing numerical
software for multicore platforms.

90

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

6.2. An OpenCL implementation of
particle-to-mesh and mesh-to-particle
interpolation in 2D and 3D

1Due to their regular computational structure and fine granularity, particle-
to-mesh and mesh-to-particle interpolations admit SIMD (Single Instruc-
tion Multiple Data [Hockney and Jesshope, 1981]) parallelism on streaming
multiprocessors, such as GPUs. Different approaches to particle-mesh inter-
polation on GPUs were discussed and compared by Stantchev et al. [2008]
in the context of a 2D plasma physics PIC code using CUDA. A very effi-
cient implementation of 2D particle-to-mesh interpolation on a GPU was
presented by Rossinelli and Koumoutsakos [2008]. Using OpenGL, they
reported real-time incompressible fluid mechanics simulations using vor-
tex methods [Koumoutsakos, 1997, Cottet and Koumoutsakos, 2000] at 25
frames per second on a 1024⇥1024 mesh, representing a 26-fold speedup
over the highly optimized reference CPU code. The same authors later
extended their work to simulate flows in bounded, complex geometries in
2D [Rossinelli et al., 2010] and reported a 100-fold speedup of OpenGL over
CUDA when using the OpenGL point-sprite primitives and blending tech-
niques. A GPU implementation of 2D mesh-to-particle interpolation has
also been provided by Rossinelli et al. [2011] in both OpenCL and CUDA.
For double-precision arithmetics, they reported 2 to 3-fold speedups of the
GPU implementation over a 16-threaded CPU implementation and a 20
to 45-fold speedup over a single-thread CPU implementation. Madduri et
al. presented another 2D implementation of particle-mesh interpolation in
a particle-in-cell (PIC) code [Madduri et al., 2011]. Their implementation
uses CUDA, particle binning, grid replication, and texture memory, but
barely provides any speedup over an optimized multi-threaded CPU Im-
plementation, demonstrating the limits of GPU-accelerated interpolation.
Recently, Conti et al. presented a complete OpenCL implementation of
a 2D finite-time Lyapunov exponent computation with an up to 30-fold
speedup over their single-thread CPU reference code; They also compared
the performance of a GPU and an APU [Conti et al., 2012].

1This work has been done together with Ferit Buyukkececi, who has been involved in
design, implementation and benchmarking of the code.

91

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

While purpose-made GPU implementations can offer impressive speedups,
they typically suffer from low programmer productivity and poor perfor-
mance portability. Libraries and generic algorithms are hence a recent
trend in the field [Hönig et al., 2010, Du et al., 2012], even though they
normally entail a performance toll when compared with specialized solu-
tions. Here we follow this trend and build on the above-mentioned prior
works in GPU-accelerated particle-mesh interpolation in order to present
a portable OpenCL [Du et al., 2012, Khronos, 2009] implementation of a
generic algorithm for particle-to-mesh and mesh-to-particle interpolation
in both 2D and 3D. Our algorithm is generic in the following ways, without
implying superior performance in all cases: (1) It is free of assumptions
about the (typical or maximal) number of particles per mesh cell. (2) It
does not expect the input data to be stored or sorted in any particular way.
(3) It works with arbitrary numbers of particle properties and vector-valued
fields. (4) It works in 2D and 3D, single precision and double precision.
(5) It works with arbitrary mesh sizes that do not have to be powers of
two. Moreover, the OpenCL implementation is portable across hardware
platforms (multi-core CPUs and GPUs from different vendors). Parallelism
is achieved by first reordering the particle data according to access patterns
of threads in workgroups. Moreover, particle and mesh values are stored
such as to distribute particles in the same mesh cell among different buffer
frames. Together with a mesh-padding technique, this avoids race condi-
tions and provides coalesced global memory access in strides. The mesh is
additionally decomposed into blocks to achieve data locality for high cache
hit rates. Our approach avoids atomic operations, which have been reported
to harm performance on the GPU [Madduri et al., 2011]. We show that a
common parallelization strategy can be used for both particle-to-mesh and
mesh-to-particle interpolation, albeit not matching the performances of the
respective specialized implementations by Rossinelli et al. [2010, 2011]. Our
approach, however, naturally extends to 3D and we present and benchmark
a fully 3D implementation of particle-to-mesh and mesh-to-particle inter-
polation on the GPU. The implementation is integrated and available in
the PPM library for parallel hybrid particle-mesh simulations.

92

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

6.2.1. GPU Programming with OpenCL

The Open Computing Language (OpenCL) is a programming framework
for heterogeneous multi-core computing devices, including GPUs, APUs,
and CPUs [Khronos, 2009]. It provides a higher level of hardware abstrac-
tion than OpenGL, while still providing enough hardware control to allow
for efficient implementations. OpenCL does not expose low-level graphics
primitives, but instead provides data structures and operations suitable
for general-purpose programs. OpenCL can be used on a wide variety of
operating systems and hardware platforms, also extending beyond GPUs.
OpenCL achieves portability through a hierarchy of abstraction layers: the
platform model, the execution model, the programming model, and the
memory model. The execution model describes the computing platform as
a host and a collection of devices. In our case, the host is the CPU and the
devices are the streaming multiprocessors of the GPU. The host executes
the host program, which creates a context for the devices and manages the
execution of kernels on the devices. When a kernel is launched by the host
program, the OpenCL devices execute many instances of this kernel, called
work items. Each work item performs a set of instructions specified by the
kernel at one point in index space, thus processing different data items in
parallel. Work items that execute on the same set of processing elements,
the compute unit, form a workgroup. The work items of a workgroup share
resources, such as the on-chip memory of the compute unit.

Like most parallel computing environments, OpenCL provides synchroniza-
tion support in the form of barriers. There are two types of barriers: the
command-queue barrier and the workgroup barrier. Here, we only use work-
group barriers in order to synchronize the work items within a workgroup.
A workgroup barrier dictates that no work item must leave the barrier
before all work items have entered it. Synchronization of work items be-
longing to different workgroups is not possible using workgroup barriers.
This global synchronization of work items can be achieved by atomic op-
erations or semaphores, or by orchestration of the workgroups from the
host code. Such global synchronization, however, usually leads to significant
performance losses.

GPUs are many-core architectures consisting of collections of identical
Streaming Multi-Processors (SMP) that execute many instances of the

93

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

same kernel in a SIMD control structure. They are massively parallel, but
with limited resources per core [Kirk and Hwu, 2010]. Mapping the OpenCL
execution model onto a GPU, each work item is executed in a separate
thread, and all threads hosting work items from the same workgroup execute
on the same SMP. Therefore, work items must perform simple tasks on
small amounts of data in order to provide sufficient granularity. Threads are
executed in warps (called wave fronts for ATI GPUs), which are collections
of threads that are executed simultaneously. Control flow divergence among
threads within a warp results in serialization [NVIDIA, 2010] and has to be
avoided. Hence, work items should be homogeneous, i.e., perform the same
tasks. Homogeneous, fine-grained work items enable the GPU to apply
fast context switching. GPUs with hardware support for context switching
change between threads in a single clock cycle in order to hide data-access
latency of a thread by computation of another. One of the most important
performance determinants on GPUs is the memory access pattern of the
threads within a warp. A memory transaction to or from the global device
memory is a multi-word burst transaction. Offsets and non-unit stride
access of a warp result in additional transactions and degrade the memory
bandwidth. Thus, work items and the data they access must be aligned
and coalesced.

6.2.2. Method

In order for an algorithm to perform well on a GPU, it has to meet a
number of requirements. First, it should rely on fine-grained kernels that
can be parallelized over a large number of small work items. Second, it
has to avoid race conditions that would require synchronization. Third, it
has to avoid conditional statements that lead to control flow divergence.
Fourth, the algorithm and the data structures must guarantee coalesced and
aligned global memory access and use local memory for frequent read/write
operations within the same memory region.

In the following, we outline the design of a generic streaming-parallel
particle-to-mesh/mesh-to-particle interpolation algorithm in 2D and 3D as
guided by these design principles. Particles are assigned to work items that
loop over mesh nodes within the support of the interpolation function. In
particle-to-mesh interpolation, work items scatter the particles’ contribu-

94

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

tions onto the mesh nodes, whereas in mesh-to-particle interpolation they
gather contributions from the mesh nodes. As work items iterate over mesh
nodes, the interpolation weights are only recomputed along dimensions that
do change. Different parallelization strategies are discussed in the following
subsection.

6.2.2.1. Strategies for interpolation on the GPU

Stantchev et al. [2008] distinguish two strategies for particle-mesh interpo-
lation on the GPU: the particle-push and particle-pull strategies. In the
particle-push strategy, particles are assigned to work items that scatter the
particle contributions onto the mesh nodes. In the particle-pull strategy,
mesh nodes are assigned to work items that gather particle contributions.
Both strategies have advantages and disadvantages: Particle-push allows
the work item to dynamically compute a fixed-length M(p) (set of mesh
nodes contributing to a particle p, c.f. Fig. 1.2 and Eq. 1.15) from the
particle coordinates. Moreover, the work item can reuse some interpolation
weights that were already computed earlier when traversing mesh nodes
along the same dimension. However, the particle-push strategy causes mem-
ory collisions as concurrent work items may attempt to write to the same
mesh node simultaneously. This is avoided in the particle-pull strategy,
where each mesh node can be updated by only one work item. The disad-
vantage of the particle-pull strategy is that it is costly to compute P(m)

(the set of particles contributing to a mesh node m, c.f. Fig. 1.2 and Eq.
1.14) unless the particles are arranged in a regular spatial pattern (e.g., on a
grid). Furthermore, the interpolation weights always have to be recomputed
for each particle.

Similar trade-offs also exist in mesh-to-particle interpolation. This can be
seen by analogously defining mesh-push and mesh-pull strategies: In the
mesh-push strategy, each work item scatters the contributions of mesh
nodes onto the particles within the support of the interpolation weights. A
clear disadvantage of this strategy is the high cost of computing P(m) if
particles are not organized in a regular spatial pattern. More importantly, a
particle p might simultaneously be updated by concurrent work items from
m and em if p resides both in P(m) and P(em). In the mesh-pull strategy, all
work items are launched over particles and visit the mesh nodes in M(p),

95

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

particle- mesh-
pull push pull push

No memory collisions
p

⇥
p

⇥
Fast computation of P(m) and M(p) ⇥

p p
⇥

Re-using interpolation weights ⇥
p p

⇥

Table 6.1. Qualitative comparison of parallelization strategies for particle-to-
mesh (columns 2 and 3) and mesh-to-particle (columns 4 and 5) interpolation.

which is easily computed thanks to the regular geometry of the mesh. Each
work item then accumulates the contributions of the mesh nodes in M(p)
to !(p), which is free of memory collisions.

The advantages and disadvantages of these four parallelization strategies
are qualitatively summarized in Table 6.1. From this, we conclude that the
particle-push and mesh-pull strategies are preferable for particle-to-mesh
and mesh-to-particle interpolation, respectively. A common feature of both
strategies is that work items are defined over particles. This allows using
the same algorithm for both interpolations by storing the particle positions
and properties in the private memories of the work items, reserving the
shared memory for the mesh data. Since mesh node positions do not need
to be stored, this is an additional advantage given the limited size of the
shared memory. In the following, we present data structures and algorithms
for generic particle-push/mesh-pull interpolation on the GPU in 2D and
3D.

6.2.2.2. Data structures

The main goal in designing the data structures is to guarantee coalesced
and aligned global memory access and data locality. At the same time, race
conditions and atomic operations are to be avoided.

Particle data. The particle positions and strengths are stored in two linear
buffers, named particle_pos and particle_str, respectively. Particles in
the same mesh cell are distributed across different frames of these buffers,
which we call domain copies (Fig. 6.6). We then decompose each domain

96

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

Figure 6.6. Particle data are stored in buffer segments, blocks, and domain
copies according to their dimension, mesh cell index, and number of fellow
particles within the mesh cell. Particles within the same mesh cell are stored in
different domain copies as highlighted by color. Each domain copy is subdivided
into blocks (red dashed lines) that are stored consecutively in the buffer. Within
each block, particles are numbered in the order shown by the dashed arrows.
Data along different space dimensions are stored in separate main segments of
the buffer.

copy into blocks (red lines in Figure 6.6) and store the particle data of each
block consecutively with an ordering as indicated by the dashed arrows
in Figure 6.6. Taking this decomposition approach one step further, we
also store the particle data along different dimensions in separate segments
of the buffer, called main segments. This renders our strategy dimension-
oblivious and guarantees memory access in unit stride.

The buffers are constructed as follows: We first count the number of particles
in each mesh cell and store it in an np_cell buffer. Counting is done
by atomically incrementing the elements of np_cell using the atom_inc
instruction of OpenCL, which ensures sequential access to np_cell. This is
the only time we use atomic operations in the whole workflow, and it enables
us to directly assign indices to the particles according to the new ordering.
Using these indices, we calculate and store the index of the mesh cell within

97

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

= + +

Domain Domain copy 1 Domain copy 2 Domain copy 3

Thursday, August 2, 12

Figure 6.7. Illustration of the use of domain copies and dummy particles in
order to avoid conditional statements and guarantee coalesced memory access.
See main text for details.

which each particle resides in the cell list p_cell. Then, the np_cell buffer
is reduced in parallel to find the maximum number of particles in any
mesh cell, p

max

. The required size of the particle data buffers is then given
by p

max

⇥ d ⇥ n
cell

, where d is the number of dimensions and n
cell

is the
total number of mesh cells in the domain. The buffers then contain d main
segments, each holding the particle data along one dimension. Each main
segment further contains p

max

domain copies (Fig. 6.7), which are in turn
decomposed into blocks. Each mesh cell corresponds to one memory location
in the buffer; empty mesh cells are represented as “dummy particles” of
zero strength, as shown in Figure 6.7. This guarantees coalesced memory
access in unit strides since the particles within each block are consecutively
numbered. In this scheme, inhomogeneities in the particle distribution lead
to memory and compute overhead. In our experience, however, this overhead
is amortized by the performance gain from the resulting regular, coalesced
memory access pattern. Moreover, adaptive meshes and remeshing are used
in practical simulations to limit particle inhomogeneity [Bergdorf et al.,
2005].

Mesh data. Mesh data are stored in a linear buffer mesh_prop, which is
again decomposed into main segments by dimension and mesh cell blocks, as
described above. In order to avoid the memory collisions that are possible
in a particle-push strategy, and in order not to introduce sequential parts
into the algorithm, we replicate mesh nodes that are closer to any block
boundary than the support radius of the interpolation function. This is

98

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

blocks extended blocks

Figure 6.8. Mesh nodes close to the boundary of a block are replicated in order
to avoid concurrent writes and race conditions. Left: the dashed squares indicate
the areas within which mesh nodes are influenced by particles in the block of
the same color. Right: extended blocks are defined by replicating mesh nodes
in overlapping influence regions. The red dashed arrow shows the storage order
of the mesh nodes inside the green extended block.

illustrated in 2D in Figure 6.8. A block including its ghost layer of replicated
nodes is called an extended block. Mesh nodes are traversed in the same
order as mesh cells, as shown by the red arrow in the green block in Figure
6.8. After a completed particle-to-mesh interpolation, the contributions on
replicated mesh nodes are aggregated by stitching the mesh back together
in a post-processing step.

The total numbers of mesh cells in the computational domain without and
with ghost layers are termed cell_size_int and cell_size_ext, respec-
tively. The total problem size is given by cell_size_ext. This size can be
arbitrary, as it depends on the domain decomposition done by the PPM
library. OpenCL, however, requires that the domain size be an integer mul-
tiple of the extended block size. We hence pad the domain as illustrated
in Figure 6.9.

6.2.2.3. Mapping of the data structures into OpenCL

The above-defined data structures are mapped onto the OpenCL execution
model by assigning one mesh cell per work item. The data of all p

max

99

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

cell_size_int

ce
ll_
si
ze
_i
nt

x

y

cell_size_extx

ce
ll_
si
ze
_e
xt
y

Computational domain Ghost layer Cell padding

ce
ll_
si
ze
_e
xt
_p
ad
de
d y

cell_size_ext_paddedx

Figure 6.9. Sizes of the computational domain (cell_size_int), includ-
ing ghost layers (cell_size_ext), and after padding with extra cells
(cell_size_ext_padded) for consecutive memory access. Extended blocks are
shown by black lines.

particles (some of them potentially dummy particles) inside that mesh cell
are stored in the private memory of the work item; the mesh data are kept
in shared memory. A workgroup is then defined as the collection of all work
items having mesh cells that belong to the same block. The data structure
and storage order introduced in Figure 6.6 then guarantee that work items
always access the global memory in a coalesced fashion. The mesh padding
shown in Figure 6.8 avoids race conditions across workgroups and dispenses
with the need for inter-workgroup synchronization and atomic operations.

The block size is chosen according to the GPU hardware. It depends on the
number of shared memory banks and SMPs the GPU has, and it represents
a memory trade-off. On the one hand, the blocks should be small enough
for the data to fit into the shared memory of each workgroup. On the other
hand, they should not be too small in order to limit the memory overhead
stemming from the ghost layers around the extended blocks (Fig. 6.8). To
avoid shared memory bank conflicts, the blocks should moreover contain
at least as many cells along the x-direction (i.e., the leading dimension of
the loop) as the GPU has shared memory banks. The specific settings for

100

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

the hardware used here are described in section 6.2.4.

6.2.2.4. Interpolation algorithms for the GPU

In particle-mesh interpolation, each workgroup is assigned a block of mesh
cells with one work item per cell. Every work item then loops over the p

max

particles (i.e., the domain copies) in its cell and scatters their strength onto
the mesh nodes within the support radius of the interpolation function, i.e.,
within the extended block. The redundant computation of dummy particles
turns out to be more efficient than conditional statements on the GPU.
Mesh-to-particle interpolation uses an analogous parallelization strategy,
where dummy particles are purged from the particle_str buffer before
reading the data back from the device.

Particle-to-mesh interpolation. In particle-to-mesh interpolation, each
work item loops over the particles in one mesh cell and scatters their
strengths onto the mesh nodes around in a nested loop over dimensions.
Since domain copies and main segments are stored in different frames
of the buffer, memory conflicts are avoided. The number of inner-loop
iterations required is given by the size of the support of the interpolation
weights W , supp(W), i.e., the number of mesh nodes where W 6= 0. In each
iteration, all work items within a workgroup assign particle contributions
onto mesh nodes in the same direction. A workgroup barrier is then used
to synchronize all work items before assigning into the next direction. This
synchronization ensures that no concurrent writes onto the same mesh
node occur. Figure 6.10 illustrates this “synchronous swimming” of work
items for the example of a linear interpolation function (support: 4 mesh
nodes). This is repeated p

max

times until all particles have been assigned.
The general kernel is given in Algorithm 6.3, the complete workflow for
particle-to-mesh interpolation in Algorithm 6.4.

Mesh-to-particle interpolation Mesh-to-particle interpolation follows an
analogous parallelization strategy with workgroups being assigned mesh
cell blocks, and work items particles within single mesh cells. The work
items then gather in parallel the contributions from the mesh nodes within

101

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

Algorithm 6.3 Particle-to-mesh interpolation kernel

1. w work item ID

2. � indices of mesh cells assigned to w

3. for i from 1 to p
max

a) p index of the ith particle in �

b) x coordinates of p
c) for  2 supp(W)

i. µ �+  (shift of mesh node in target)
ii. M index of the mesh node pointed to by µ

iii. for each particle property !
i

A. !
i

(M) !
i

(M) +W (µ,x)!
i

(p)

iv. workgroup barrier

1 2 3 4

Figure 6.10. Particle-to-mesh interpolation example in 2D with a linear inter-
polation function (support size 4). In each of the 4 iterations, the work items
in the same workgroup (block) update the mesh nodes in the same direction
in order to avoid concurrent writes. Dummy particles (dashed circles) avoid
conditional statements. The 4 stages are repeated p

max

times until all particles
have been assigned.

102

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

Algorithm 6.4 Overall particle-to-mesh interpolation workflow

1. Copy particle positions and strengths from host to device

2. Initialize np_cell

3. Determine cell indices of particles and store them in the cell list
p_cell

4. Reduce np_cell to compute p
max

5. Store particle coordinates in particle_pos

6. Store particle strengths in particle_str

7. Allocate and initialize extended mesh with replicated mesh nodes

8. Launch particle-mesh interpolation kernel

9. Stitch duplicated mesh nodes

10. Read back mesh nodes from device

103

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

Algorithm 6.5 Mesh-to-particle interpolation kernel

1. w work item ID

2. � indices of mesh cells assigned to w

3. for i from 1 to p
max

a) p index of the ith particle in �

b) x coordinates of p
c) for  2 supp(W)

i. µ �+  (shift of mesh node in target)
ii. M index of the mesh node pointed to by µ

iii. for each particle property !
i

A. !
i

(p) !
i

(p) +W (µ,x) · !
i

(M)

the support of the interpolation weights W . Unlike in particle-mesh in-
terpolation, however, we do not need to synchronize the work items since
particle strengths are stored in the private memory of the respective work
item, and mesh nodes have been replicated as outlined in Sec. 6.2.2.2. Algo-
rithm 6.5 shows the mesh-to-particle interpolation kernel. In each iteration,
the particles receive contributions from mesh nodes in the same direction.
This is illustrated in Figure 6.11 for the example of a linear interpolation
function with 4 mesh nodes in its support. It is repeated p

max

times until all
particles have been considered. The complete workflow of mesh-to-particle
interpolation is given in Algorithm 6.6.

6.2.3. Integration in the PPM Library

Using the present OpenCL implementation of particle-to-mesh and mesh-
to-particle interpolation, we extend the PPM library to multiple levels of
parallelism. On the coarsest level, sub-domains are assigned to MPI pro-
cesses that operate in separate memory address spaces. On the finest level,
the light-weight GPU threads parallelize over the individual mesh cells

104

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

1 2 3 4

Figure 6.11. Mesh-to-particle interpolation example in 2D with a linear inter-
polation function (support size 4). In each of the 4 iterations, the work items
in the same workgroup (block) accumulate on their particles the contributions
from the mesh nodes in the same direction. Dummy particles (dashed circles)
avoid conditional statements. The 4 stages are repeated p

max

times until all
particles have been considered.

Algorithm 6.6 Overall mesh-to-particle interpolation workflow

1. Copy particle positions and mesh node values from host to device

2. Initialize np_cell

3. Determine cell indices of particles and store them in the cell list
p_cell

4. Reduce np_cell to compute p
max

5. Store particle coordinates in particle_pos

6. Construct extended mesh with replicated mesh nodes (for memory
stride and coalesced access)

7. Launch mesh-to-particle interpolation kernel

8. Collect strengths of real (non-dummy) particles

9. Read back particle strengths from device

105

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

within a sub-domain. Due to the presence of ghost particles, all informa-
tion is locally available and no additional MPI communication is incurred
by using the present OpenCL implementation. This extends the present
implementation to multi-GPU settings.

Since PPM is a general-purpose library, the particle data cannot be assumed
to be sorted or arranged in any specific way when entering the interpolation
routines. Also, PPM’s internally used object-oriented data structures do
not directly map onto the OpenCL memory model. This requires a number
of “wrapper” routines, as illustrated in Figs. 6.12 and 6.13 in yellow, and
several pre- and post-processing kernels (blue boxes other than the actual
interpolation kernels in Figs. 6.12 and 6.13).

Particle-to-mesh interpolation (Fig. 6.12) starts by re-numbering the par-
ticles such that consecutively indexed particles are located in the same
sub-domain. This is necessary because a process can be assigned multiple
sub-domains. The re-numbering allows applying the GPU kernels locally
per sub-domain on contiguous chunks of memory. The second step consists
of allocating and populating the particle and mesh data buffers as described
in Sec. 6.2.2.2. For each sub-domain in an MPI process, the OpenCL kernels
are then run (potentially in parallel if multiple sub-domains and multiple
GPUs are available on a compute node). This entails first copying the
buffer data from the host memory to the device memory. Once on the
GPU, the particles are sorted into mesh cells as described in Sec. 6.2.2.2.
Then, Algorithm 6.3 is used before the replicated mesh nodes are stitched
back together and the results copied back to the host memory. Finally, the
results are copied from the flat buffers into the PPM mesh objects.

Mesh-to-particle interpolation (Fig. 6.13) proceeds analogously. The main
difference is that the duplicated mesh nodes don’t need to be stitched to-
gether after interpolation. Instead, the dummy particles need to be removed
from the GPU buffer before the results are transferred back to the host
memory.

106

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

Create xp and field
buffers

Copy buffers
to GPU

Rearrange particles
by subdomain

For each
subdomain... Create cell lists

Update PPM mesh
data structures

Read back mesh
node properties

Stitch duplicated
mesh nodes

Sort particles into
cells

Run particle-to-mesh
interpolation

Algorithm 1

Algorithm 2

GPU

Data transfer

CPU

Figure 6.12. Workflow scheme for GPU-accelerated particle-to-mesh interpola-
tion in the PPM library.

Create xp and field
buffers

Copy buffers
to GPU

Rearrange particles
by subdomain

For each
subdomain... Create cell lists

Run mesh-to-particle
interpolation

Update PPM particle
data structures

Read back particle
properties

Collect particles

Sort particles into
cells

GPU

Data transfer

CPU

Algorithm 3

Algorithm 4

Figure 6.13. Workflow scheme for GPU-accelerated mesh-to-particle interpola-
tion in the PPM library.

107

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

6.2.4. Benchmarks

We benchmark the accuracy and runtime of the presented algorithms in
2D and 3D using both single and double-precision floating-point numbers.
For the benchmarks we initialize one particle on each mesh node in the
unit square and perturb the particle positions by uniform random numbers
in [�2h, 2h]. This leads to a quasi-random particle distribution with 0 to
16 particles per mesh cell. For particle-to-mesh interpolation we sample
the function f(x) = exp(�kx � 1/2k2

2

/15) at the particle positions and
interpolate the resulting particle strengths to the mesh nodes. The error
is defined at each mesh node as the difference between the interpolation
result and the exact value of g at the location of that mesh node. For mesh-
to-particle interpolation the same function is sampled at the mesh nodes
and the error after interpolation is analogously defined on the particles.

We benchmark the OpenCL implementation on a NVIDIA Tesla C2050
GPU consisting of 448 CUDA cores organized into 14 SMPs with 1030
GFLOP/s single-precision and 515 GFLOP/s double-precision peak per-
formance and 3GB GDDR5 memory with ECC disabled for the bench-
marks. The peak memory bandwidth of this GPGPU card is 144GB/s.
For comparison, and to demonstrate the portability of the OpenCL imple-
mentation, we also benchmark it on an ATI “Cayman” Radeon HD 6970
GPU featuring 1536 stream processors with 2.7 TFLOP/s single-precision
and 683GFLOP/s double-precision peak performance and 1GB GDDR5
memory with a peak bandwidth of 176GB/s. As a baseline we use both
the optimized sequential Fortran 90 implementation available in the PPM
library, as well as an OpenMP-parallelized version of the same PPM rou-
tines. All CPU code is compiled with the GCC Fortran compiler version
4.6.2 using the -O3 optimization flag. Both CPU versions (sequential and
multi-threaded) are run on an 8-core AMD FX 8150 at 4.2 GHz with 16 GB
DDR3 SDRAM.

In order to minimize bank conflicts in the GPU’s shared memory, and
hence maximize the effective bandwidth, the block sizes (cf. Sec. 6.2.2.2)
are set according to the number of shared memory banks and the maximum
number of work items per compute unit. Both GPU devices tested have
32 shared memory banks. We hence always use 32 mesh cells along the
x-direction.

108

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

The NVIDIA Tesla C2050 GPU can process up to 1024 work items in
a workgroup, but can launch 1536 threads per compute unit. We hence
choose 512 work items per workgroup, in order to launch three workgroups
with 100% thread utilization. Thus, the block size is set to 32⇥ 16 in 2D
and 32⇥ 4⇥ 4 in 3D. The maximum workgroup size for the ATI “Cayman”
Radeon HD 6970 GPU is 256 and we can launch 1536 threads per compute
unit. Since 256 is a divisor of 1536, 100% occupancy is always guaranteed.
Setting the number of work items in the x-direction to 32, we use block
sizes of 32⇥ 8 in 2D and 32⇥ 4⇥ 2 in 3D.

For the timings, we measure the runtime of GPU-based interpolation, con-
sisting of all GPU (blue) stages of the workflows shown in Figs. 6.12 and
figure 6.13. Additionally, we measure the time to copy the data to and
from the device memory (red). The sum of these times is compared with
the runtime of the sequential and multi-threaded PPM implementations
running on the CPU, where sorting of particles and re-ordering of data is
not necessary. The speedup is defined as the ratio between the CPU wall-
clock time and the GPU wall-clock time. For each interpolation kernel and
GPU platform, we also measure the sustained performance in GFLOP/s,
only counting floating-point multiply and add operations, and use this to
evaluate the efficiency of the implementations, defined as the fraction of
the theoretical peak performance of the respective GPU that is actually
sustained by the interpolation kernel. We only provide GFLOP/s rates
for the actual interpolation kernels (i.e., Algorithms 6.3 and 6.5), but not
for the other modules run on the GPU (i.e., the pre- and post-processing
kernels). The reason is that the latter perform virtually no floating-point
multiply or add operations.

6.2.4.1. Accuracy

We benchmark the accuracy and correctness of the OpenCL implemen-
tations using both the M 0

4

and the linear interpolation functions on the
above-described test case on the NVIDIA Tesla C2050 GPGPU. Figure 6.14
shows the convergence plots for 2D (blue) and 3D (red). When using single
precision, the implementations do not converge below machine precision
of 10�6 (Fig. 6.14a and b). The convergence plots also show the expected
third-order convergence when using the M 0

4

scheme and second-order con-

109

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

vergence for the linear interpolation scheme, in both the `2 and the `1

norms of the error. In all cases, the errors on the CPU (gray squares) and
on the GPU (crosses) are identical, demonstrating the correctness of the
GPU implementations.

6.2.4.2. Runtime

We compare the runtimes of the OpenCL implementations on the NVIDIA
and ATI GPUs with the baselines provided by the sequential and multi-
threaded OpenMP codes in the PPM library run on the 8-core AMD
CPU. For the OpenCL implementations we also take into account the
time needed to sort the particles into the data structures as outlined in
Sec. 6.2.2.2, and to transfer the data to and from the device memory.
Running both implementations for various problem sizes (i.e., numbers of
particles and mesh nodes), we check how the implementations scale with
problem size and how the speedups evolve. All OpenMP benchmarks are
performed using 8 threads distributed over the 8 cores of the benchmark
CPU. The speedups (OpenCL GPU vs. multi-threaded CPU) and sustained
performances (interpolation kernels only) are measured in all cases. The
values obtained for the NVIDIA Tesla are summarized in Table 6.2, those
for the ATI Cayman in Table 6.3.

Figure 6.15 shows the wall-clock times for particle-to-mesh interpolation
on all four benchmark platforms. Bars for single-precision arithmetics point
downward, for double-precision arithmetics upward. The numbers above
the bars give the speedups with respect to the single-thread CPU implemen-
tation when taking communication overhead into account. The speedup of
the GPU over the CPU grows with increasing problem size. The speedups
when using single-precision arithmetics are about twice larger that when
using double-precision arithmetics. This is due to the fact that the GPUs
used in our benchmarks require several clock cycles per double-precision
instruction. On the CPU, however, single and double precision operations
require approximately the same amount of time. The speedup increases
with dimensionality of the space and with order (FLOP/byte) of the in-
terpolation scheme, which can be ascribed to the increasing number of
operations per particle. While the speedup of the GPU over the sequential
CPU code, excluding transfer times, reaches up to 23, the speedups over

110

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

(a) P!M (b) M!P

(single precision)

(c) P!M (d) M!P

(double precision)

Figure 6.14. Convergence plots for M 0
4

and linear interpolation in single precision
(a/b) and double precision (c/d). We plot the `2 (dashed lines) and `1 (dotted
lines) norms of the relative interpolation errors for both the GPU (crosses) and
CPU (gray squares) implementations in 2D (blue) and 3D (red). The solid black
lines indicate the slopes of orders 2 and 3, respectively.

111

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

speedup
type � dim. prec. #part. w/o comm w comm GFLOP/s

P
!

M

linear
2D

32 bit 4096k 3.0 0.6 124.2 (12.1%)
64 bit 4096k 1.8 0.3

3D
32 bit 2048k 2.3 0.6 112.6 (10.9%)
64 bit 2048k 1.8 0.4

M 0
4

2D
32 bit 4096k 4.3 1.7 180.8 (17.6%)
64 bit 4096k 2.9 0.6

3D
32 bit 2048k 4.8 1.7 432.6 (42.0%)
64 bit 2048k 3.1 1.0

M
!

P

linear
2D

32 bit 4096k 1.8 0.4 64.3 (6.2%)
64 bit 4096k 1.8 0.3

3D
32 bit 2048k 1.9 0.6 199.9 (19.4%)
64 bit 2048k 1.5 0.4

M 0
4

2D
32 bit 4096k 4.8 1.3 273.1 (26.5%)
64 bit 4096k 3.6 0.8

3D
32 bit 2048k 13.0 5.1 648.1 (62.9%)
64 bit 2048k 8.5 2.8

Table 6.2. Summary of the overall speedups (with and without the time required
for data transfer to the device memory) measured for the OpenCL implementa-
tion on the NVIDIA Tesla C2050 over the OpenMP reference implementation in
the PPM library on the 8-core AMD FX 8150 CPU. The last column reports the
sustained GFLOP/s rate for the interpolation kernels alone, i.e. Algorithms 6.3
and 6.5, and in parentheses the efficiency as the fraction of the theoretical peak
performance (1030 GFLOP/s) sustained. Only the efficiency results for single
precision are shown. For the double-precision kernels the GFLOP/s rates are
half of those for the single-precision kernels, but the efficiencies remain the same
(double-precision peak performance is 515 GFLOP/s). We only show the largest
problems tested. Notice that speedups mentioned in the main text may be for
other problem sizes.

112

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

speedup
type � dim. prec. #part. w/o comm w comm GFLOP/s

P
!

M

linear
2D

32 bit 4096k 0.7 0.3 95.9 (3.5%)
64 bit 4096k 0.5 0.2

3D
32 bit 2048k 0.5 0.3 83.8 (3.1%)
64 bit 2048k 0.5 0.2

M 0
4

2D
32 bit 4096k 1.7 0.8 154.1 (5.7%)
64 bit 4096k 1.3 0.5

3D
32 bit 2048k 2.1 1.1 184.2 (6.8%)
64 bit 2048k 1.5 0.8

M
!

P

linear
2D

32 bit 4096k 0.4 0.2 57.0 (2.1%)
64 bit 4096k 0.4 0.2

3D
32 bit 2048k 0.4 0.2 242.8 (9.0%)
64 bit 2048k 0.4 0.2

M 0
4

2D
32 bit 4096k 2.0 0.8 414.5 (15.3%)
64 bit 4096k 1.6 0.7

3D
32 bit 2048k 5.7 2.8 889.0 (32.9%)
64 bit 2048k 3.9 1.8

Table 6.3. Summary of the overall speedups (with and without the time required
for data transfer to the device memory) measured for the OpenCL implemen-
tation on the ATI Cayman Radeon HD 6970 over the OpenMP reference
implementation in the PPM library on the 8-core AMD FX 8150 CPU. We only
show the largest problems tested. Notice that speedups mentioned in the main
text may be for other problem sizes.

113

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

the OpenMP-parallel CPU code show mixed results. The largest speedup
over the parallel CPU code is observed when using M 0

4

interpolation in
3D with single-precision arithmetics and 256k particles. In this case, the
NVIDIA Tesla C2050 solves the problem up to 7 times faster than the CPU
employing all 8 cores. This speedup reduces to 3-fold when also accounting
for the data-transfer time. The OpenCL code on the ATI Cayman only
outperformed the parallel CPU code when using M 0

4

interpolation. In all
other cases, the 8-thread CPU code was faster. In the worst case (linear
interpolation, 2D, double precision), both GPUs perform significantly worse
than the 8-core CPU. This suggests that the most efficient implementation
should be chosen based on the order of the interpolation scheme (support
size and compute intensity), problem dimensionality, and problem size. The
efficiency on the NVIDIA Tesla ranges from 10% for linear interpolation
(equal for both 2D and 3D, 2D data not shown) to 42% for M 0

4

interpolation
in 3D. As expected, computationally more intense kernels (3D and M 0

4

) lead
to higher efficiencies. Comparing the sustained performance on the GPU
to the sustained performance on the CPU reveals the overhead imparted
by building the auxiliary data structures and sorting the particles.

Figure 6.17 shows the results for mesh-to-particle interpolation. On the
GPU, mesh-to-particle interpolation is faster than particle-to-mesh interpo-
lation, since the former does not use any synchronization barriers and also
has a higher compute intensity (FLOP/byte). This is also reflected in the
generally higher efficiencies in this case. As in the particle-to-mesh case, the
speedups become smaller with decreasing dimensionality, decreasing prob-
lem size, increasing numerical precision, and decreasing order of accuracy
of the interpolation scheme. The largest observed speedup over the parallel
CPU code is 15-fold (7-fold when accounting for data-transfer time) when
using M 0

4

interpolation in 3D with single precision on the NVIDIA Tesla.
On the same device, the speedups with respect to the sequential CPU code
are 57-fold and 22-fold without and with data-transfer time, respectively.
A breakdown of the computational time by kernels for this case is shown in
Figure 6.16(a). The actual interpolation (Algorithm 6.5) only amounts to
14% of the the total time; the rest is consumed by pre- and post-processing
kernels and by data transfer. The case that delivered the smallest speedup
is shown in Fiugre 6.16(b). There, the actual interpolation kernel only ac-
counts for 8% of the computer time, and 80% of the time are used for data
transfer.

114

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

(a) 3D M 0
4 interpolation (b) 3D linear interpolation

(c) 2D M 0
4 interpolation (d) 2D linear interpolation

Figure 6.15. Timings for particle-to-mesh interpolation. We compare the wall-
clock times of the OpenCL implementation run on the NVIDIA Tesla GPU
(light-blue bars) and on the ATI Cayman GPU (dark-blue bars) with those of
the Fortran90-OpenMP implementation running on an 8-core AMD FX 8150
CPU at 4.2 GHz (8-thread: green bars, sequential: gray bars). The times needed
to transfer the data to and from the GPU device memory are added in red.
Bars pointing downwards refer to single-precision runs, bars pointing upwards
to double-precision runs. The speedups with respect to the sequential CPU
implementation are given above/below the bars. Speedups 1/x < 1 are given
as �x in red. Notice the different time axes for the two parts of each plot. The
CPU implementation does not make use of the processor’s vector units and
therefor has similar runtimes for single-precision and double-precision runs. A
2D CPU implementation for linear particle-to-mesh interpolation is not available
in the PPM library.

115

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

10%

31%

21%

1%

14%

5%

16%
1%

Initialize DS Create np_cell DS
Duplicate mesh M2P interpolate
Collect particles Read back particle strengths
Write part. positions to device buffer Write mesh to device buffer

(a) 3D mesh-to-particle M 0
4, single prec.

34%

17%

29%

2%
8%

2%
8%1%

Initialize DS Create np_cell DS
Place particle properties P2M interpolate
Sew padded mesh Read back mesh
Write part. positions to device buffer Write part. strengths to device buffer

(b) 2D, particle-to-mesh linear, double prec.

Figure 6.16. Breakdown of the computational time on the NVIDIA Tesla C2050
GPU by kernel. We show the case (a) that delivered the largest speedup, i.e.,
3D mesh-to-particle interpolation using the M 0

4

scheme in single precision and
(b) the case that delivered the smallest speedup, i.e., 2D particle-to-mesh inter-
polation using the linear scheme in double precision.

The ATI Cayman only marginally outperforms the 8-core CPU when using
M 0

4

interpolation. Its best case,M 0
4

interpolation in 3D with single precision,
shows a 6-fold speedup (4-fold when account for data-transfer time). In the
worst case (linear interpolation, 2D, double precision) both GPUs perform
significantly worse than the 8-core CPU (the NVIDIA Tesla is 3.2 times
slower than the 8-thread CPU, the ATI Cayman 5.8 times). The efficiency
again grows for more compute-intense kernels and reaches 63% for M 0

4

interpolation in 3D on the NVIDIA Tesla. The fact that the speedup in
the same case is not very large can again be attributed to the overhead of
building the auxiliary data structures and reducing the results. The linear
kernels are memory-limited, and in 3D 70% of the theoretical peak memory
bandwidth are sustainably utilized.

6.2.5. Conclusions and Discussion

We have presented a portable OpenCL implementation of generic algo-
rithms for SIMD-parallel particle-to-mesh and mesh-to-particle interpola-

116

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

(a) 3D M 0
4 interpolation (b) 3D linear interpolation

(c) 2D M 0
4 interpolation (d) 2D linear interpolation

Figure 6.17. Timings for mesh-to-particle interpolation. We compare the wall-
clock times of the OpenCL implementation run on the NVIDIA Tesla GPU
(light-blue bars) and on the ATI Cayman GPU (dark-blue bars) with those of
the Fortran90-OpenMP implementation running on an 8-core AMD FX 8150
CPU at 4.2 GHz (8-thread: green bars, sequential: gray bars). The times needed
to transfer the data to and from the GPU device memory are added in red.
Bars pointing downwards refer to single-precision runs, bars pointing upwards
to double-precision runs. The speedups with respect to the sequential CPU
implementation are given above/below the bars. Speedups 1/x < 1 are given
as �x in red. Notice the different time axes for the two parts of each plot. The
CPU implementation does not make use of the processor’s vector units and
therefor has similar runtimes for single-precision and double-precision runs.

117

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

tion on GPUs. The same parallelization strategy has been used for both
mesh-to-particle and particle-to-mesh interpolation, and it also readily gen-
eralized to 3D. Our algorithm is generic with respect to the mesh size,
the input representation, the number of particles per mesh cell, and the
number of particle properties that are to be interpolated. Large inhomo-
geneities in the particle density, however, lead to load imbalance and lower
performance. In these cases, Adaptive Mesh Refinement (AMR) strategies
are available to restore a more uniform particle distribution across mesh
cells [Bergdorf et al., 2005]. AMR codes have been parallelized on GPUs
with about 10-fold speedup [Schive et al., 2010].

The present parallelization strategy uses threads (work items) over mesh
cells and a particle-push, mesh-pull paradigm [Stantchev et al., 2008]. Par-
ticle data are reordered according to the memory access patterns of the
work items in a workgroup. Additionally distributing multiple particles in a
mesh cell across domain copies, and decomposing domain copies into blocks,
leads to efficient use of the global memory bandwidth. Particle reordering
also allows us to benefit from local memory and high cache hit rates. We
avoid race conditions in particle-mesh interpolation by workgroup barriers
and by replicating mesh nodes in ghost layers between neighboring blocks
(workgroups).

We benchmarked both the accuracy and the computational cost of the pre-
sented OpenCL implementation on two GPU platforms against the existing,
highly optimized single-thread CPU implementation in the PPM library
and a shared-memory-parallel OpenMP version thereof. The benchmarks
have shown that speedups of up to 22-fold (57-fold when not accounting
for data transfer) over the sequential CPU code are possible with a generic
OpenCL algorithm running on a GPU. This, however, depends on using an
interpolation kernel with a high computation-to-memory ratio and rapidly
diminishes when using double-precision arithmetics (due to the emulated
double-precision support on the GPUs used). Also, the speedups observed
for the present general-purpose implementation are below those reported
for specialized codes in 2D [Rossinelli et al., 2010, 2011]. This is mainly due
to the time needed in the present implementation to sort the particle data
into GPU-suited data structures. Without these pre- and post-processing
kernels, i.e., if the calling program would already store the particle and
mesh data in a GPU-friendly ordering, higher overall speedups could be re-

118

6.2. AN OPENCL IMPLEMENTATION OF
PARTICLE-TO-MESH AND MESH-TO-PARTICLE

INTERPOLATION IN 2D AND 3D

alized, as can be extrapolated from the pie charts in Figure 6.16. Rossinelli
et al. reported a 35-fold speedup of their OpenCL implementation over
their single-thread CPU implementation of mesh-to-particle interpolation
using the M 0

4

function in 2D with double precision [Rossinelli et al., 2011].
For the same case, the present OpenCL implementation shows a 19-fold
speedup over the single-thread CPU implementation of the PPM library.
Rossinelli et al.’s OpenGL implementation of 2D particle-mesh interpola-
tion displayed a 26-fold speedup [Rossinelli and Koumoutsakos, 2008]. In
single precision, Rossinelli et al.’s mesh-to-particle interpolation showed a
145-fold speedup [Rossinelli et al., 2011], which is significantly larger than
the 24-fold speedup of the present implementation in the same case.

From our efficiency measurements we also see that more compute-intense
kernels with a larger number of floating-point operations per load-store
operation allow higher efficiencies (up to 63% for M 0

4

interpolation in 3D).
Hence, 3D interpolation kernels use the hardware more efficiently than 2D
ones, and M 0

4

kernels have a higher efficiency than linear ones. The linear
kernels were memory-limited in all cases.

Our results also confirm previous reports that linear interpolation schemes
achieve smaller speedups on a GPU than higher-order schemes [Madduri
et al., 2011, Rossinelli et al., 2011]. We believe that this is due to the lower
FLOP/byte ratio of the linear kernels. The present results also show that on
the hardware used, double-precision computations take about twice longer
than single-precision ones. When using higher-order interpolation schemes,
such as M 0

4

, this could be an issue since the interpolation error quickly drops
below the single-precision machine epsilon. However, if solution accuracies
around 10

�5 to 10

�6 are sufficient, single-precision arithmetic provides
better speedups, especially for higher-order interpolation schemes with more
compute-intense kernels. With the advent of APUs and better double-
precision support on GPUs, however, this could be a temporary limitation.

Compared with the multi-threaded OpenMP reference implementation run-
ning on an 8-core CPU, the OpenCL code was in most cases slower (always
slower when using linear interpolation). This is in agreement with previous
reports [Madduri et al., 2011, Rossinelli et al., 2011]. For particle-to-mesh
interpolation, the OpenMP implementation does not incur any thread syn-
chronization and hence does not require atomic operations. This leads to

119

CHAPTER 6. PPM ON MULTI- AND MANYCORE
PLATFORMS

an almost perfect scaling of the OpenMP-Fortran90 code with the number
of CPU cores. When taking data transfer times into account, significant
speedups over the 8-core CPU could only be achieved for 3D mesh-to-
particle interpolation using the M 0

4

scheme in single precision.

Despite the modest speedups of the GPU implementation, outsourcing in-
terpolation to the GPU may free CPU resources to meanwhile perform
other tasks. Furthermore, GPUs may provide interesting options for real-
time in-situ visualization of running simulations [Mei et al., 2007, Fraedrich
et al., 2010, Goswami et al., 2010]. A bit more speed could probably be
gained on the NVIDIA GPU when using CUDA instead of OpenCL [Du
et al., 2012, Rossinelli et al., 2011], albeit at the expense of reduced porta-
bility. Aiming at a generic, portable code that could be integrated into the
general-purpose PPM library, we chose not to do so.

OpenCL is a portable parallel computing language, and OpenCL code can
also run on multi-core CPUs. For the present implementation, however,
running the OpenCL code on the 8-core AMD CPU was slower than using
the OpenMP code on the same CPU. We hence chose the OpenMP code
as the baseline for the benchmarks presented here.

The presented particle-to-mesh and mesh-to-particle interpolations extend
the PPM library with OpenMP parallelism and transparent GPU support
on distributed-memory parallel computers. The presented algorithms are
applied locally per sub-domain (i.e., per processor) of a domain decomposi-
tion. They thus have no influence on the network communication overhead
of a distributed parallel simulation, assuming that the ghost layers are pop-
ulated beforehand. If several nodes of a compute cluster are equipped with
GPUs, this enables distributed-memory multi-GPU interpolation, offering
a simple hybrid MPI-OpenCL platform for large particle-mesh simulations.

120

Part III.

A domain-specific

language for particle

methods

121

Abstract ion

122

CHAPTER 7

The Parallel Particle Mesh Language

1The abundant proliferation of computing power has helped establishing
computer simulations as an integral part of research and engineering. In
recent years, computational tools have become important instruments in
virtually all sciences. At the same time, hardware platforms in general and
parallel high-performance computers in particular have become increas-
ingly sophisticated, featuring multiple levels of parallelism and memory.
Optimal use of such hardware requires in-depth knowledge of the different
technologies.

Many approaches have been taken since the early days of computing to
render hardware platforms more accessible to a wider audience. Often,
the strategy is to provide an intermediate layer of abstraction. The most
common approach for introducing abstraction layers is to provide a software

1This work has been done in collaboration with Milan Mitrović, who helped design
and implement the software.

123

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

library. An alternative approach, however, is to provide a domain-specific
language (DSL).

Particle methods have a broad spectrum of applications. In discrete models
particles can be used to represent the individual actors of a system (e.g.,
atoms, cars, or cells). Continuous systems can be discretized using particles
that represent Lagrangian tracer points and evolve through their pairwise
interactions.

We present a domain-specific language that allows the programmer to
effectively write hybrid particle-mesh-based simulations. This language is
derived from the parallel particle-mesh abstractions described in Sbalzarini
[2010] and uses the PPM library’s abstract data types introduced in chapter
3.

7.1. Domain-Specific Languages

Domain-specific languages offer unique opportunities for hiding the in-
creased domain and hardware complexity while offering the programmer
(or user) a simple and expressive interface. Although DSLs have only be-
come popular in recent years, and are now found in many applications,
they have a long-standing history. For example, BNF [Backus, 1959], a
formalism for describing the syntax of programming languages, document
formats, communication protocols, and much more, can be considered one
of the oldest and most widely used DSLs. DSLs differ from general-purpose
languages in several aspects:

• Domain-specific languages are typically smaller than general-purpose
languages and do not offer the full capabilities of languages like For-
tran, C++, or Java. One way around this possible limitation is to
embed DSL code into its target language. Such languages are gen-
erally referred to as embedded DSLs (eDSL or sometimes DSEL).
An example of an eDSL is OpenMP. OpenMP implementations use
compiler directives in the source code to generate the necessary in-
structions and function calls to produce a thread-parallel version of
the source code.

124

7.1. DOMAIN-SPECIFIC LANGUAGES

• Domain-specific notations and formulations are usually not found in
general-purpose languages, but they can be part of the requirements
for a DSL, since its purpose serves a particular domain. Computer
algebra systems, such as SAGE [Stein and Joyner, 2005], often provide
the user with a DSL including mathematical symbols and notations.
With this in mind, a DSL does not necessarily have to be implemented
as a language, but its functionality may also be provided through an
application library.

• Domain-specific data structures and algorithms can directly be ex-
pressed in a DSL through its API (application programming inter-
face), keywords, or notations.

• A DSL provides additional knowledge that can be used for code
analysis, verification, semantic checks, and optimizations that would
be harder or impossible to achieve using an application library, such
as PPM [Mernik et al., 2005, Andova et al., 2011, DeVito et al., 2011].

An important aspect of any abstraction is the granularity at which it
is are defined. On the one hand, the message passing interface (MPI),
OpenMP, OpenCL, and Linda [Carriero and Gelernter, 1989] are examples
of fine-grained abstractions. Even though they provide an abstract and
portable interface to parallel systems through their API (MPI) or a DSL
(OpenMP), they still give the programmer full control over the parallel
execution of an application. On the other hand, libraries such as FFTW,
PETSc [Balay et al., 2004], and PARTI [Moon and Saltz, 1994] offer coarse-
grained abstractions to numerical methods, internally handling most or all
implementation details (including parallelism) of these methods. DOLFIN
(FEniCS) [Logg, 2007, Logg et al., 2010, Logg and Wells, 2010] offers a
high-level abstraction layer for solving PDEs using the Finite Element
Method (FEM). In particular, it offers a DSL implemented as a Python
API for directly expressing the governing equations of a model and solving
them using FEM. It follows a multi-layered approach in which the executed
Python code dynamically generates C++ relying on a lower-level library
for the numerical solvers. PELLPACK [Houstis et al., 1998] is a problem-
solving environment [Houstis et al., 1997] for mesh-based PDE solvers. It
is another example of a software stack offering several layers of abstraction
from numerical solver routines up to a graphical user interface for specifying

125

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

the problem and analyzing the solution. Uintah [de St. Germain et al., 2000]
is a massivly-parallel problem-solving environment that offers a high-level
visual programming interface for PDE solvers. Uintah’s design is in part
facilitated by the common component architecture (CCA) [McInnes et al.,
2006].

Another recent example of abstraction languages for parallel high perfor-
mance computing applications is provided by DeVito et al. [2011]. Liszt
is a DSL based on the Scala programming language that allows building
portable mesh-based PDE solvers. The language provides high level types
and statements that are parsed and compiled into C++ or CUDA code,
employing pthreads for shared-memory parallelism and MPI for distributed
memory parallelism.

Here we present a domain-specific language for hybrid particle-mesh meth-
ods. This simplifies the development of PPM clients by introducing domain-
specific data types and operations for particle-mesh methods, along with
language elements that provide a concise notation for specifying PPM
clients.

The present approach is similar to Liszt or FEniCS in that it offers a high-
level domain-specific language that is compiled to standard Fortran code
linking against the PPM library.

7.2. PPM abstractions

The PPM core library is a middleware providing a number of abstractions
that allow the programmer to write parallel hybrid particle-mesh simula-
tions without the burden of dealing with the specifics of heterogeneous
parallel architectures, and without losing generality with respect to the
models that can be simulated using particle-mesh methods. Specifically,
the PPM library provides the following abstractions, which can be divided
into three groups:

1. Data abstractions provide the programmer with the basic building
blocks of hybrid particle-mesh simulations. This allows one to reason
in terms of particles, meshes, and connections, rather than arrays and

126

7.2. PPM ABSTRACTIONS

(a) particles (b) mesh (c) connections (d) topology

Figure 7.1. PPM provides four types of data abstractions: particles (a), meshes
(b), connections (c), and toplogies (d). Hybrid particle-mesh simulations can be
expressed in terms of particles and meshes. Connections allow particle-particle
associations, representing for example covalent bonds in molecular dynamics,
contact lists in discrete element methods, or graph edges in social networks.

pointers.

• Particles and mesh are abstractions that represent the corre-
sponding discretization elements as defined in chapter 1. Parti-
cles are defined by their positions and properties, while a mesh
is defined by its resolution, offset and a set of patch origins and
extents. Mesh patches allow for local mesh refinements as used
in adaptive mesh refinement (AMR) methods. One simulation
may contain several sets of particles and meshes that interact
with each other (Fig. 7.1 (a) and (b)).

• Connections (Fig. 7.1 (c)) are particle-particle associations that
can be used to model e.g., unstructured grids, graphs, or chemical
bonds between atoms represented by particles.

• A topology is defined by a domain decomposition and a subdomain-
to-processor assignment (Figs. 7.1 (d) and 7.2, upper-right panel).
During a simulation, one or several topologies can be created
(or destroyed), and each particle set, mesh, and connection set
is mapped to at most one topology at a time. The choice of
decomposition largely depends on the compute operations to be
executed on the data abstractions and the distribution of the par-
ticles, mesh patches and connections. For example, fast Fourier
transforms are most efficiently executed on slab decompositions
(c.f. section 2.1.1) due to the structure of this computation.

2. Communication abstractions provide transparent inter-process

127

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

communication for the data abstractions. They make explicit the
incurred communication overhead, while hiding the intricacies of pro-
gramming a parallel application. Making the communication over-
head explicit to the programmer, helps assessing the expected parallel
scalability.

• In order to associate a particle set or mesh with a topology, a
global mapping (Fig. 7.2, lower-left panel) operation has to be
executed. This abstraction encapsulates the necessary commu-
nication to move the particles, mesh patches, and connections
to their target processor as defined by the respective topology.

• When particle positions are updated, moving them no more than
the immediate neighborhood of the current processor they are
assigned to, local mappings can be used to migrate the particle
data to their new target processor. This mapping abstraction
incurs a smaller overhead than global mappings, since it can be
implemented using only local or shared-memory communication.

• In order to locally evaluate interactions between particles or
mesh nodes, PPM allocates ghost (halo) layers around proces-
sor boundaries. These ghost layers are populated with ghosts
(copies) of the particles/mesh nodes from the neighboring pro-
cessors. Ghost mappings (Fig. 7.2, lower-right panel) populate
these ghost layers and allow the user to send back contributions
from the ghosts to their real counterparts.

3. Compute abstractions are abstractions encapsulate computations
performed on the data abstractions. For particle-particle interactions
they internally use cell lists [Hockney and Eastwood, 1988], Verlet
lists [Verlet, 1967], or adaptive-resolution neighbor lists (c.f. chapter
4) to efficiently find interaction partners. The PPM numerics library
provides a number of high-level abstractions encapsulating frequently
used numerical solvers, including multigrid and FFT-based Poisson
solvers.

All abstractions have been implemented as Fortran 2003 derived types
and subroutines, as described in chapters 2 and 3. They are accessible
through the library’s API and offer the programmer an abstraction layer

128

7.2. PPM ABSTRACTIONS

computational domain

⌦
create

toplogy

g

l

o

b

a

l

m

a

p

p

i

n

g

ghost (get)

mapping

Figure 7.2. Using the topology abstraction, the computational domain ⌦ is
decomposed and the sub-domains assigned to processors (upper panels). The
global mapping abstraction distributes particles, meshes, and connections across
the processors (represented by the graph) as specified by to the topology (lower-
left panel). The ghost get mapping abstraction creates ghost layers around
subdomains according to the topology and the boundary conditions (in the
example shown here, periodic boundary conditions).

129

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

of intermediate granularity.

7.3. PPML syntax and features

Owing to the names and calling conventions used, every library’s API can
be interpreted as a DSL, albeit without the expressiveness of a language
[Mernik et al., 2005]. PPML is an eDSL that is embedded into Fortran code
and supplements it with types and operations needed to compactly express
parallel hybrid particle-mesh simulations. PPML’s abstraction types are
directly derived from the PPM abstractions described by Sbalzarini [2010].
Besides particles, meshes, and connections, PPML also provides following
types:

• A field is an abstract type that represents a continuous physical quan-
tity that may be scalar or vector-valued (e.g., temperature, velocity,
...). Fields can be discretized onto particles or meshes.

• Operators are abstract objects that represent mathematical operators
that can be applied to fields. The rationale behind equipping PPML
with operators and fields is to allow the user to express the governing
equations of the model to be simulated directly within PPML. These
types can also be used to provide the user with contextual feedback
during execution, and with annotated outputs

• Neighbor lists can either be traditional cell or Verlet lists, or adaptive-
resolution neighbor lists. Furthermore, they can be built as cross-
set neighbor lists, allowing the programmer to associate two sets of
particles through a neighborhood relationship.

• Operator discretizations are defined by an operator and a particle or
mesh discretization. They amount to implementations of numerical
methods for the respective abstract operator.

• The ODE type encapsulates the functionality needed for solving
ordinary differential equations using time integration.

130

7.4. IMPLEMENTATION

In addition to types and operators, PPML also supports foreach control
flow structures (Table 7.1) for intuitive access to discretization elements.
foreach loops are highly customizable iterator templates. PPML provides
foreach loops for particles, particle neighbors, and meshes, but new itera-
tors can easily be added using PPML macros (c.f. 7.4.3). The loops allow
iterating through the discretization elements and accessing their properties
and positions. Furthermore, the loops provide special clauses for accessing
only parts of a mesh (i.e., its bulk or its halo layers) or only a subset of par-
ticles (i.e., only real particles or only ghost particles). This is particularly
useful when writing operator stencils. Naturally, foreach loops can also
be nested and composed inside macros, providing great flexibility. Finally,
PPML extends Fortran’s array index operator () with an array index offset
operator []. This operator simplifies writing finite-difference stencils on
meshes.

PPML also extends Fortran by simple type templating. Modules, subrou-
tines, functions, and interfaces can be templated. Multiple type parameters
can be specified and their combinations chosen.

Extending Fortran 2003 with PPM-specific language elements has the ad-
vantage that many of the basic syntactic and semantic features of a pro-
gramming language are already provided by Fortran itself and can be reused
at no additional cost. It also allows us to focus on developing the tools
required for processing PPML’s extensions to Fortran, while relying on the
wealth of compilers and development tools that already exist.

7.4. Implementation

In order to define and process PPML code, we build a flexible source-
to-source compiler framework allowing us to embed arbitrary code into
Fortran 2003 source code. The framework is composed of three parts. The
parser, the macro collection, and the generator. The parser reads PPM-
L/Fortran code and generates an intermediate representation generally
known as abstract syntax tree (AST). The parser largely ignores Fortran,
but is aware of scope declarations, such as modules, subroutines, functions,
and derived types. It also keeps track of the scope hierarchy and various

131

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

Control flow structure

foreach p in p a r t i c l e s (pset) with f i e l d s (f) ! [op t i ons]

! i t e r a t o r body

f_p = ! . . .

end foreach

Particle position and property data can directly be accessed using the
foreach particle iterator. Individual particle positions and properties
are accessed using a LATEX-like _ subscript notation.

foreach n in equi_mesh (M) with s c a_ f i e l d s (f , d f) &

& i nd i c e s (i , j) &

& stenc i l_width (1 , 1)

for real

df_n = (f_n [�1 ,] + f_n [+1 ,] + &

& f_n [, �1] + f_n [,+1] � 4 .0_mk∗f_n)/h2

for north

! . . .

end foreach

Mesh iterators allow the programmer to loop through all nodes of a
mesh, irrespective of its geometry. The basic foreach control-flow
structure can be extended with user-defined options and clauses.
Array index offsets can be used as a notational shortcut when writing
mesh operator stencils.

Table 7.1. Examples of PPML control-flow structures.

132

7.4. IMPLEMENTATION

Parser

Tree parser

Macro processor
PPML

compiler

Fortran generation
classes

Macro
collection

PPML
client

Fortran PPM
client

PPM abstractions

MPI

OpenCL

forthreads

BLAS

FFTW

Fortran
compiler

Figure 7.3. The PPML framework. Line arrows represent “used by” relationships,
hollow arrows show the processing order. The PPML compiler is supported by
the parser and the tree parser, which in turn uses the PPML macro collection
and the Fortran generation classes to expand PPML operations to Fortran
source code.

elements declared within the current scope. Using this data structure it is
possible to provide simple implicit type declarations for PPML variables.
The macro collection consists of a set of macros that contain template
PPML operations and iterator code. The generator performs the actual
source-to-source compilation. Whenever a PPML operation or language
element is encountered, the pre-processor looks up the appropriate macro
and injects the resulting Fortran code into the target code. The basic op-
eration and component structure of the PPML framework is shown in Fig.
7.3. The PPML framework is implemented using the Ruby programming
language, which provides a number of libraries and tools for parsing, code
generation, and command-line handling. Furthermore, Ruby provides the
eRuby templating framework, a useful tool for the macro collection compo-
nent of PPML. eRuby is Ruby’s built-in templating language that allows
regular text files to be augmented with Ruby code that can be evaluated
by the Ruby interpreter and replaced by its result (similar to how PPML
code is evaluated to Fortran code).

133

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

7.4.1. Parsing

We build the PPML parser using the ANTLR parser generator. This parser
and lexer generator allows us to define PPML’s syntax and grammar us-
ing an extended BNF-like language (c.f. Appendix A). ANTLR uses this
grammar to produce the necessary Ruby code for lexing a source file, pars-
ing it, and generating an intermediate abstract syntax tree data structure.
The PPML grammar consists of a number of terminal symbols, lexer rules,
and higher-level parser rules. The lexer symbols and rules accept all valid
tokens in Fortran and PPML. Since PPML is an embedded language, it
is not necessary to create a complete parser for Fortran 2003. Instead, it
is sufficient to recognize those aspects of Fortran that are used as part of
PPML code, or where an ambiguity between PPML and Fortran would
otherwise arise. Hence, large parts of the input source code are inserted
verbatim into the final, generated code.

7.4.2. Code generation

A second ANTLR tree grammar is used to validate and traverse the gener-
ated abstract syntax trees from the preceding parsing step. The tree parser
traverses the AST during the code generation stage, generating Fortran
code at each tree node. The grammar leaves Fortran code unmodified and
emits it without further processing. The syntax trees of PPML expressions,
however, are traversed using the tree grammar. Each grammar rule declares
an output template that takes the parsed source code as an argument and
returns Fortran code. Whenever a PPML operation or control-flow struc-
ture is encountered, its name is looked up in the macro collection, the
arguments and options are passed to the macro, and the macro output is
inserted into in the generated code. Macro code may recursively call the
PPML parser and generator, as it may itself contain PPML statements.

7.4.3. PPML Macro collection

PPML macros are eRuby Fortran templates that are evaluated at code-
generation time. eRuby is a templating system that allows embedding Ruby

134

7.4. IMPLEMENTATION

1 macro create_mesh (topology , o f f s e t)
% scope . var ({ r e s u l t . to_sym => "type (ppm_mesh) , po in t e r : :#{ r e s u l t }" } ,
% :ppm_mesh)

a l l o c a t e(<%= r e s u l t %>,s t a t=i n f o)
6 o r_ fa i l_a l l o c ("Could not a l l o c a t e <%= r e s u l t %>")

ca l l <%= r e s u l t %>%crea t e(<%= topology %>,<%= o f f s e t %>, i n f o)

end macro

Listing 7.1 A PPML macro implementing a mesh creation operation. This
macro declares a variable of type ppm_mesh in the current scope. The name of
the variable is determined by the PPML parser from the left-hand side of the
assignment within which this macro is invoked. The success of the allocation
is checked using the or_fail_alloc macro. Finally, the type-bound procedure
create is called on the newly allocated ppm_mesh instance.

code into text documents that are expanded to clear text at execution-time.
The macro is first processed by Ruby in the scope of the current parser
instance, interpreting eRuby macro elements. It is then parsed using a child
PPML parser instance and macro calls within the macro are processed
recursively. This allows flexible composition of macros. Listing 7.1 shows
an example PPML macro. The scope variable is provided in all macros
and allows the programmer to access information about the Fortran code
currently being processed. During the parsing and generation phases the
scope (and its enclosing scopes) are tracked to allow the user to manipulate
the scope by adding local variables, use declarations, includes and procedure
interfaces in Fortran. The result variable refers to the left-hand side
variable of the statement currently being evaluated in the Fortran code.

Most language features of PPML are implemented as macros. This includes
the foreach iterators. We provide three generic types of macros: function
macros, include macros, and foreach macros. Function macros are the
basic building blocks for all PPML operations they are evaluated inside
procedure or program scopes and allow modifying the current scope by
adding new variables and use clauses. Include macros allow verbatim code
inclusion, similar to CPP #include statements, and can be used almost
everywhere in the user code. Lastly, foreach macros are used to specify
iterators. They admit multiple named-argument and loop-body clauses.

135

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

Besides PPM abstractions and iterator macros, we provide a number of
convenience macros for frequently used tasks. These macros range from
error handling and reporting to command-line argument and configuration
file handling.

PPML’s flexible infrastructure and the use of macros encourage the pro-
grammer to extend the language capabilities wherever required. An existing
macro can be overwritten by a user defined version in order to adapt its
semantics to the programmer’s needs. Furthermore, new macros can easily
be defined and are imported into the macro collection whenever the PPML
generator is executed.

7.5. The PPM client generator

PPML provides two language features in addition to the ones described in
section 7.3: client and rhs. Both keywords are scope declarations similar to
Fortran’s program or subroutine scopes. The client scope is similar to the
Fortran program scope, but indicates to the PPML generator that this scope
encloses a PPM client. In this case, the code generator additionally produces
two Fortran modules that provide initialization and utility functions, global
access to parameters, and a container for user-defined procedures. The rhs
scope is used in conjunction with PPML’s ode type. This scope is essentially
a Fortran function, but provides a convenient shorthand for programmers to
specify the right-hand side of the equations to be solved. Using PPML’s ode
type and rhs scopes much of the code required to access to discretizations
of fields that are used on the right-hand side is auto-generated in a way
that is transparent to the programmer.

Using PPM and PPML as the center pieces, we build an environment for
hybrid particle-mesh simulations that covers a large part of the develop-
ment cycle. This environment is used via command-line utilities that offer
the programmer a number of tools for the initialization, construction, and
testing of PPM simulation:

• newproject: This tool generates a PPM project directory and a code
scaffold allowing the programmer to work within a well-defined envi-
ronment.

136

7.5. THE PPM CLIENT GENERATOR

• build: In order to generate the final simulation binary all the PPML
source files are collected, parsed, and Fortran code is generated. All
output files are placed in a project sub-folder together with an auto-
generated Makefile. Finally, the make utility is invoked to compile
the generated sources to the target binary.

• pp: to pre-process a single PPML file into compilable Fortran sources,
the pp tool is used. This tool is also used for pre-processing the PPM
library’s code itself.

• bench: Benchmarking the efficiency and scalability of a parallel sim-
ulation is frequently required during the development of a parallel
application. Therefore, we provide a simple benchmarking framework
for PPM simulations. Together with timing routines used inside the
simulation code, this tool allows the programmer to submit a number
of cluster jobs, measuring the execution time, and determining the
parallel efficiency.

7.5.1. A minimal PPML example

In order to illustrate PPML and the client generator, we present two mini-
mal examples simulating diffusion in the domain (0, 1)⇥ (0, 1). Diffusion
of a scalar quantity U(x, t) is described by

@U

@t
= �U. (7.1)

Listing 7.2 shows the PPML code using a Cartesian mesh discretization
and second-order central finite-difference stencils to discretize the Laplace
operator. Lines 1-10 are variable and parameter declarations. Note that
PPML objects do not need to (but can) be explicitly declared. Lines 11-20
initialize PPM, create a field, a topology, creating a mesh and discretize
the field onto the mesh. Lines 21-27 specify the initial condition. In this
example this is done by discretizing a Gaussian onto the mesh using the
mesh-foreach loop. Line 29 creates an ode object, passing to it the right-
hand-side callback function, the fields and discretizations used inside the
right-hand-side function, the fields to be updated by the time integrator,
and the integration scheme to be used. In lines 31-36 we implement the

137

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

main time loop of the simulation. Time start, end, and step size can be hard-
coded, but are usually provided at runtime. Line 39 finalizes the client by
calling the macro for PPM finalization. Lines 41-54 show a simple rhs code
implementing the right-hand side of equation 7.1 using a mesh-foreach
loop over all real (i.e., non-ghost) mesh nodes.

In listing 7.3 we solve the same governing equation with the same initial
and boundary conditions, but using a particle discretization instead of a
mesh discretization (c.f. chapter 1). In lines 32/33 we use a discretization-
corrected particle strength exchange (DC-PSE) operator [Schrader et al.,
2010] as a particle approximation to the Laplacian (c.f. section 1.1.2). The
main differences with the mesh-based implementation are in the setup,
where we create a particle set instead of a mesh (line 13), and in the
implementation of the right-hand side. Since PPM already provides routines
for defining and applying DC-PSE operators, we only need to call these
routines. Of course, similar implementations for mesh-based operators could
also be added to PPM and provided to the programmer using the PPML
operator type. For comparison, we show the full auto-generated Fortran
2003 source code for this PPML client in Appendix B.

7.6. A visual programming interface for PPM

2In order to further reduce the knowledge barrier for writing parallel hybrid
particle-mesh simulations, we build on top of the PPML language and
the PPM library a web-based visual development environment. Various
visual programming environments exist and are used in applications ranging
from engineering to computer science education. MathWorks’ Simulink,
e.g., offers a block-diagram-based graphical environment for simulating
multidomain dynamic systems. It has recently been extended to run on
parallel platforms [Canedo et al., 2010]. Another recent example of a visual
programming language is Blockly. Blockly is a simple open-source web-
based editor allowing the programmer to visually combine small program
elements to larger programs. It is mainly intended for educational use, but
could also be used as an editor component in other visual development
2This work has been done together with Joël Bohnes, who helped designing the software

and led the implementation of the client side.

138

7.6. A VISUAL PROGRAMMING INTERFACE FOR
PPM

cl ient mini
integer , dimension (4) : : bcdef = ppm_param_bcdef_periodic
integer : : i s t a g e = 1
! mesh parameters
real (mk) , dimension (2) , parameter : : o f f s e t = (/0 . 0_mk, 0 .0_mk/)
integer , dimension (2) : : g l = (/1 ,1/)
real (mk) , dimension (2) , parameter : : h = (/0 .01_mk, 0 .01_mk/)
real (mk) , dimension (2) : : sigma = (/0 . 1_mk, 0 . 1_mk/)
real (mk) , parameter : : p i = acos (�1.0_mk)

10 global_var (step ,<#integer#>,0)

ppm_init ()

U = c r e a t e_ f i e l d (1 , "U")
topo = create_topology (bcdef)
mesh = create_mesh (topo , o f f s e t , h=h , ghost_s ize=g l)
add_patch (mesh ,[<#0.0_mk#>,<#0.0_mk#>,<#1.0_mk#>,<#1.0_mk#>])

d i s c r e t i z e (U, mesh)
20

foreach n in equi_mesh (mesh) with s c a_ f i e l d s (U) i n d i c e s (i , j) &
& stenc i l_width (1 , 1)

for real
U_n = 1.0_mk/(2 . 0_mk∗ pi ∗ sigma (1)∗ sigma (2)) ∗ &
& exp (�0.5_mk∗ ((((i �1)∗h(1)�0.5_mk)∗∗2/ sigma (1)∗∗2) + &
& (((j �1)∗h(2)�0.5_mk)∗∗2/ sigma (2)∗∗2)))

end foreach

o , ns tages = create_ode ([U] , mini_rhs , [U=>mesh] , e u l e r f)
30 s tep = step + 1

t = timeloop ()
do i s t a g e =1, ns tages

map_ghost_get (mesh)
ode_step (o , t , time_step , i s t a g e)

end do
end t imeloop

ppm_final ize ()
end cl ient

40
rhs mini_rhs (U=>mesh)

real (mk) : : h2
g e t_ f i e l d s (dU)

h2 = product (mesh%h)
! c a l cu l a t e l ap lace ian
foreach n in equi_mesh (mesh) with s c a_ f i e l d s (U,dU) i nd i c e s (i , j) &
& stenc i l_width (1 , 1)

for real
50 dU_n = (U_n[�1 ,] + U_n[+1 ,] + &

& U_n[, �1] + U_n[,+1] � 4 .0_mk∗U_n)/h2
end foreach
s tep = step + 1

end rhs

Listing 7.2 PPML specification of a PPM client to simulate diffusion on a
Cartesian mesh.

139

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

cl ient mini
integer , dimension (6) : : bcdef = ppm_param_bcdef_periodic
real (ppm_kind_double) , dimension (: , :) , pointer : : d i s p l a c e
integer : : i s t a g e = 1
real (mk) , dimension (2) : : sigma = (/0 . 1_mk, 0 . 1_mk/)

6 real (mk) , parameter : : p i = acos (�1.0_mk)
global_var (st , integer , 0)

ppm_init ()

U = c r e a t e_ f i e l d (1 , "U")
topo = create_topology (bcdef)
c = c r e a t e_pa r t i c l e s (topo)
al locate (d i s p l a c e (ppm_dim, c%Npart))
ca l l random_number (d i s p l a c e)

16 d i s p l a c e = (d i s p l a c e � 0 .5_mk) ∗ c%h_avg ∗ 0 .15_mk
ca l l c%move(d i sp l a ce , i n f o)
ca l l c%apply_bc (i n f o)
deallocate (d i s p l a c e)
global_mapping (c , topo)

d i s c r e t i z e (U, c)
foreach p in p a r t i c l e s (c) with po s i t i o n s (x) s c a_ f i e l d s (U)

U_p = 1.0_mk/(2 . 0_mk∗ pi ∗ sigma (1)∗ sigma (2)) ∗ &
& exp (�0.5_mk∗ (((x_p(1)�0.5_mk)∗∗2/ sigma (1)∗∗2) + &

26 & ((x_p(2)�0.5_mk)∗∗2/ sigma (2)∗∗2)))
end foreach

map_ghost_get (c)

n = c r e a t e_ne i gh l i s t (c , c u t o f f=<#2.5_mk ∗ c%h_avg#>)
Lap = define_op (2 , [2 , 0 , 0 , 2] , [1 . 0_mk, 1 .0_mk] , " Laplac ian ")
L = d i s c r e t i z e_op (Lap , c , ppm_param_op_dcpse , [order=>2,c=>1.0_mk])

o , ns tages = create_ode ([U] , mini_rhs , [U=>c] , e u l e r f)
36 t = timeloop ()

do i s t a g e =1, ns tages
map_ghost_get (c , psp=true)
ode_step (o , t , time_step , i s t a g e)

end do
s t = s t + 1
i f (ppm_rank . eq . 0) print ∗ , s t

end t imeloop

ppm_final ize ()
46 end cl ient

rhs mini_rhs (U=>part s)
g e t_ f i e l d s (dU)
dU = apply_op (L , U)

end rhs

Listing 7.3 PPML specification of a PPM client to simulate diffusion using
particles and the DC-PSE method [Schrader et al., 2010].

140

7.6. A VISUAL PROGRAMMING INTERFACE FOR
PPM

environments or expert systems.

We present a web-based visual programming environment for PPML, which
we call webCG. WebCG uses a client-server architecture, where the client is
implemented in the web browser using various web technologies, while the
server is implemented using the Ruby Sinatra web application framework.
The server uses the PPM client generator to build and execute PPM clients
and returns the results to the web front-end.

WebCG enables the user to model a PPML client in a web browser using a
block-diagram representation. The blocks represent different PPML objects
and operations. It is possible to extend the block diagram with arbitrary
Fortran code-snippet blocks. The user draws connections between blocks
according to the desired data flow. Before submission to the server, PPML
code is generated by traversing the block diagram’s graph data structure.
This PPML code is then submitted to the server and processed by the
PPM client generator. Upon successful completion of the build process,
the user can execute the resulting PPM client on the server. The run can
be monitored in real time and results are returned to the web interface.
Appendix C shows an example webCG client simulating the diffusion model
presented in section 7.5.1 using the DC-PSE method.

7.6.1. Architecture

7.6.1.1. Client-side architecture

The client is implemented using Javascript/ECMAScript 5, making use
of a number of web technologies, such as SVG for rendering the visual
programming elements, HTML/CSS for stylizing the user interface, DOM
for manipulating the underlying data model, and AJAX for asynchronous
communication with the application server.

User interface All user-interface elements except the block-diagram ed-
itor are implemented using the Yahoo User Interface (YUI) toolkit. The
user interface consists of a project selection view, a property editor, a block
selection, and a number of pop-up views for building, running, and monitor-

141

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

Figure 7.4. The main webCG interface. On the left, the block list and property
editor view are seen. On the top, the main menu bar and the project title are
placed. The interface is dominated by the SVG block-diagram editor.

ing simulations (Figs. 7.4 and 7.5). The block-diagram editor is rendered
using SVG. SVG has so far predominantly been used for visualizations, and
not for interactive user interfaces, only few libraries exist for manipulating
SVG. We therefore extend YUI’s DOM manipulation framework to also
handle the SVG object model. This allows us to capture and process user
interactions with the diagram editor. Furthermore, we implement a cus-
tom SVG widget-rendering engine for updating the diagram’s block and
wiring widgets. The wires connecting the blocks are rendered by a simple
auto-routing routine so that they don’t cross other widgets.

Data model The client maintains a graph data structure that is updated
according to the manipulations performed on the block diagram. Each
PPML type instance or operation is represented by a graph vertex that
carries attributes. Attributes are set by the user through the user interface
and parameterize the code generation of the associated vertex. The vertices
are connected by directed edges that represent the data-flow wires. An edge
e(v

i

, v
j

) establishes a “happens before” relationship between vertices v
i

and
v
j

. In order to generate PPML code, this graph is traversed in topological
order. Whenever the order of two vettices cannot be resolved, the position

142

7.6. A VISUAL PROGRAMMING INTERFACE FOR
PPM

(a) (b)

Figure 7.5. WebCG views showing the build process of a PPML client (a) and
the status of running PPM simulation jobs (b).

of the corresponding diagram blocks along the vertical axis of the canvas
is used.

Server communication The web client communicates with the server via
a stateless and asynchronous HTTP protocol offered through the server
API. This allows the web client to remain responsive when waiting for the
server to complete an operation. The data returned from the server are
checked for errors, and invalid server responses are reported to the user.

7.6.1.2. Server-side architecture

The server is implemented in Ruby using the Sinatra web-application frame-
work. PPML clients and PPM jobs are stored and handled using the server
file system based storage. No additional overhead for setting up and main-
taining a database is hence required. The server’s HTTP API covers all
expected operations from project listing, loading, and deleting, to building
and executing PPM clients. Each PPM client is executed in a separate
thread in order to ensure that the server remains responsive. Even though
the current implementation directly executes PPM clients, it can be ex-
tended to use a cluster job scheduler.

143

CHAPTER 7. THE PARALLEL PARTICLE MESH
LANGUAGE

7.7. Summary and Conclusions

PPML is a domain-specific language (DSL) for parallel hybrid particle-
mesh methods: it is based on the Parallel Particle Mesh (PPM) library
abstractions introduced by Sbalzarini [2010]. The language formalizes these
abstractions and offers iterators for particles and meshes, a templating
mechanism for Fortran, and program scopes for PPM clients. Based on
the language specification we have created an implementation including a
parser, code generator, and PPM client toolkit. PPML types, operations,
and iterators are implemented using macros that can be modified and
extended by the programmer. We have showcased PPML in two minimal
client applications simulating diffusion on both a mesh and a particle
discretization. Finally, we have presented a web-based visual programming
environment for PPML that allows the user to quickly prototype hybrid
particle-mesh simulations using a block-diagram interface. The environment
is powered by a simple application server that can build and execute the
generated PPML clients. Taken together, the presented DSL, source-to-
source compiler, and prototyping environment offer the user an end-to-end
solution for building parallel hybrid particle-mesh codes using the PPM
library.

Thanks to the intermediate granularity of the PPM abstractions, PPML
is able to offer a simple, yet expressive notation for particle-mesh methods
that is compiled to portable distributed-memory code. Extending the PPM
library to heterogeneous hardware platforms, as described in chapter 6,
further improves the portability of PPML.

The PPML webCG visual programming environment builds onto the de-
scribed DSL and provides a user-friendly interface for prototyping particle-
mesh simulations without compromising the ability to run large-scale par-
allel jobs.

The presented software stack represents one possible approach to narrowing
the knowledge gap [Sbalzarini, 2010]. In addition, PPML and webCG also
provide opportunities for narrowing the reliability and performance gaps.

144

CHAPTER 8

PPML benchmark clients

1We showcase the PPML language and benchmark the new implementa-
tion of the PPM library using two example PPML clients. The first client
is a simple but complete reaction-diffusion simulation of the Gray-Scott
model [Gray and Scott, 1984]. The code is inherently parallel and can be
executed on shared- and distributed-memory machines without any modifi-
cations. The second client implements a molecular dynamics simulation of a
Lennard-Jones gas [Jones, 1924]. We highlight the use of PPML’s foreach
iterators and PPM’s mapping abstractions. We benchmark both clients
on 256 four-way AMD Opteron 8380 nodes and measure the runtime, and
parallel efficiencies.

1Thanks to Olivier Byrde and the Brutus cluster team for technical assistance and
helpful discussions.

145

CHAPTER 8. PPML BENCHMARK CLIENTS

8.1. The benchmark system

All benchmarks are performed on the ETH Brutus cluster. Brutus is a
heterogeneous cluster with compute nodes of several CPU generations and
architectures, some also equipped with GPGPUs. For the sake of simplicity
and reproducibility, we restrict the benchmarks to one type of node. All
nodes used have four AMD Opteron 8380 quad-core processors and 32 GB
of main memory. The Opteron 8380 processor has a 4.0 GB/s 16-bit point-
to-point link connecting each core with two others. Each core is directly
connected to the main memory via two memory channels. The nodes are
connected with an InfiniBand 4X QDR network and have access to a fast
cluster file system. For the present benchmarks we have compiled the PPM
library and the benchmark clients using the Intel Fortran compiler 13.0.0
with the -O3 flag. We used OpenMPI 1.6.2, which has native support for
InfiniBand interconnects. We were able to reserve 256 nodes (4096 cores)
for exclusive access. This minimizes external effects on timing and parallel
scaling. For all benchmarks we use OpenMPI’s -bysocket -bind-to-core
core affinity settings. These settings instruct MPI to bind processes to
successive sockets and to individual cores. We used the numactl utility
allowing us to control the memory allocation. By instructing numactl to
allocate all process memory locally to the process core, we optimally utilize
the processor architecture’s per-core memory channels.

8.2. Simulating a continuous
reaction-diffusion model using PPML

Continuous deterministic reaction-diffusion systems model the time and
space evolution of the concentration fields of several species reacting with
each other and diffusing. Nonlinear reaction-diffusion systems can give
rise to Turing patterns [Turing, 1952] that spontaneously emerge from a
homogeneous concentration distribution. In the macroscopic continuum
limit reaction-diffusion systems can be described by a system of coupled
partial differential equations. Each equation describes the evolution of the
concentration field of one species. It’s right-hand side contains a term
describing the diffusion process and one or several terms describing the

146

8.2. SIMULATING A CONTINUOUS
REACTION-DIFFUSION MODEL USING PPML

(a) (b)

Figure 8.1. A PPML Gray-Scott reaction-diffusion particle simulation using the
discretization-corrected PSE method [Schrader et al., 2010] with 10

5 particles.
(a) Initial condition (b) concentration field of V after 4 · 104 time steps.

reactions the species undergoes.

We implement a PPML program simulating the Gray-Scott reaction-diffusion
model. The Gray-Scott model produces Turing patterns in the concentra-
tion fields of the reactants U and V . The model is described by the two
coupled partial differential equations

@U

@t
= D

U

r2U � UV 2

+ f(1� U) (8.1)

@V

@t
= D

V

r2V + UV 2 � (f + k)V,

where D
U

and D
V

are the diffusion constants of species U and V , and f
and k are reaction rates. We simulate reactions between the two species
U and V using an ordinary differential equation, and the diffusion of U
and V using discretization-corrected particle strength exchange (DC-PSE)
operators [Schrader et al., 2010]. An implementation of DC-PSE is provided
by the PPM operator framework (c.f. chapter 3).

147

CHAPTER 8. PPML BENCHMARK CLIENTS

Listing 8.1 shows the complete PPML implementation of the DC-PSE Gray-
Scott reaction-diffusion simulation. Lines 1-10 are variable declarations
and parameter setup. The add_arg operation provides a concise interface
for command-line and configuration-file parameters. We declare runtime
configuration parameters for the diffusion constants and reaction rates.
The ppm_init operation initializes the PPM library and auxiliary libraries
such as MPI. Most PPML operations may take a number of optional
parameters for further customization. The programmer can, for example,
pass an optional debug level argument to ppm_init in order to control
log output. Lines 14 and 15 declare the two scalar concentration fields
U and V . Lines 17-25 create the PPM topology and the particles. Since
PPML is an eDSL, we can use standard Fortran code to implement the
particles’ off-grid displacement. The particles are then mapped onto the
topology using a global mapping, and the fields are discretized onto the
particles in lines 26-31. Lines 33-42 specify the initial condition of the
system. Here we use a foreach loop to access the particle properties of
U and V . We then create Verlet lists [Verlet, 1967] for the particles, and
define and discretize the Laplace operator (lines 44-47). Before entering
the main time loop of the simulation, the ODE module is initialized. This
is done with one call, passing the fields to be used in the right-hand side
of the governing equations, the particle discretization, the right-hand side
function, and the time integration scheme. PPM only supports explicit
time integration schemes but the ODE module is designed to be easily
extensible with new schemes. Lines 50-60 implement the main time loop,
including time stepping and ghost mapping. The PPML print operation
offers a simple interface to the PPM VTK module. This call causes the
simulation to output VTK files of the current fields. The right hand side
of the governing equations is implemented in the rhs scope (lines 62-70).
We first apply the diffusion operator to U and V and then iterate over
the particles to update the concentrations according to the reactions. The
complete client is implemented in merely 70 lines of code. This includes all
necessary functionality for a parallel implementation with control file and
command-line argument handling, as well as VTK output. This is made
possible by PPML’s abstract types and operations, iterators, and the client
generator framework.

Fig. 8.1 shows the concentration field of V at time zero and after 4·104 time
steps of size �t = 0.05 for k = 0.051, f = 0.015, D

U

= 2 ·10�5, D
V

= 10

�5,

148

8.2. SIMULATING A CONTINUOUS
REACTION-DIFFUSION MODEL USING PPML

c l ient graysco t t
integer , dimension (6) : : bcdef = ppm_param_bcdef_periodic
integer , dimension (2) : : seed
real (ppm_kind_double) , dimension (: , :) , pointer : : d i s p l a c e
real (ppm_kind_double) : : no i s e = 0 .0_mk
integer : : i s t a g e = 1
add_arg (k_rate , " r e a l (mk) " , 1 . 0_mk, 0 . 0_mk, ’ k_rate ’ , ’ Reaction � ra t e ’)
add_arg (F , " r e a l (mk) " , 1 . 0_mk, 0 . 0_mk, ’F_param ’ , ’ Reaction �param�F ’)

9 add_arg (D_u, " r e a l " , 1 . 0 , 0 . 0 , ’Du_param ’ , ’ D i f f u s i on � const �U’)
add_arg (D_v, " r e a l " , 1 . 0 , 0 . 0 , ’Dv_param ’ , ’ D i f f u s i on � const �V’)

ppm_init ()

U = c r e a t e_ f i e l d (1 , "U")
V = c r e a t e_ f i e l d (1 , "V")

topo = create_topology (bcdef)

19 c = c r e a t e_pa r t i c l e s (topo)
al locate (d i s p l a c e (ppm_dim, c%Npart))
ca l l random_number (d i s p l a c e)
d i s p l a c e = (d i s p l a c e � 0 .5_mk) ∗ c%h_avg ∗ 0 .15_mk
ca l l c%move(d i sp lace , i n f o)
ca l l c%apply_bc (i n f o)
ca l l c%se t_cuto f f (4 ._mk ∗ c%h_avg , i n f o)

global_mapping (c , topo)

29 d i s c r e t i z e (U, c)
d i s c r e t i z e (V, c)
map_ghost_get (c)

foreach p in p a r t i c l e s (c) with po s i t i o n s (x) s c a_ f i e l d s (U,V)
U_p = 1.0_mk
V_p = 0.0_mk
i f (((x_p(1) � 0 .5_mk)∗∗2 + (x_p(2) � 0 .5_mk)∗∗2) . l t . 0 . 01) then

ca l l random_number (no i s e)
U_p = 0.5_mk + 0.01_mk∗ no i s e

39 ca l l random_number (no i s e)
V_p = 0.25_mk + 0.01_mk∗ no i s e

end i f

end foreach

c r e a t e_ne i gh l i s t (c)

Lap = define_op (2 , [2 , 0 , 0 , 2] , [1 . 0_mk, 1 .0_mk] , " Laplac ian ")
L = di s c r e t i z e_op (Lap , c , ppm_param_op_dcpse , [order=>2,c=>1.0_mk])

49 o , nstages = create_ode ([U,V] , grayscott_rhs , [U=>c ,V] , rk4)
t = timeloop ()

do i s t a g e =1, nstages
map_ghost_get (c , psp=true)
ode_step (o , t , time_step , i s t a g e)

end do

print ([U=>c , V=>c] , 100)
end t imeloop

ppm_final ize ()
59 end cl ient

rhs grayscott_rhs (U=>parts ,V)
g e t_ f i e l d s (dU,dV)

dU = apply_op (L , U)
dV = apply_op (L , V)
foreach p in p a r t i c l e s (part s) with s c a_ f i e l d s (U,V,dU,dV)

dU_p = D_u∗dU_p � U_p∗(V_p∗∗2) + F∗ (1 . 0_mk�U_p)
dV_p = D_v∗dV_p + U_p∗(V_p∗∗2) � (F+k_rate)∗V_p

69 end foreach

end rhs

Listing 8.1 A complete PPML client simulating the Gray-Scott reaction-diffusion
system in 2D.

149

CHAPTER 8. PPML BENCHMARK CLIENTS

#procs 4 cores per node 16 cores per node
DC-PSE map ghost get iteration DC-PSE map ghost get iteration

1 0.207s 0.001s 0.229s 0.207s 0.001s 0.228s
4 0.217s 0.054s 0.240s 0.217s 0.054s 0.241s
16 0.218s 0.041s 0.434s 0.365s 0.065s 0.251s

Table 8.1. Detailed timings of the PPML reaction-diffusion client for 1, 4, and 16
processes. When using all 16 cores in a node the operator evaluation (DC-PSE)
slows down by over 70%.

and 10

5 particles. As expected for this set of parameters, Turing patterns
appear in the concentration of V. The simulation was run on 16 quad-core
AMD Opteron 8380 processors, using one core per processor, and took 10
minutes to complete.

We benchmark the PPML reaction-diffusion client on the Brutus cluster on
up to 1936 processors. All timings are measured per iteration and averaged
over 100 iterations. Since no global communication or barrier is included
in the time loop, we report the average processor time. For a weak scaling
(i.e., fixed problem size per processor) the parallel efficiency is defined as
E

p

= T
1

/T
p

, where T
1

is the time to execute the sequential problem and
T
p

is the time to execute a p-times larger problem on p processors. Fig. 8.2
shows the parallel efficiency of a weak scaling when using all cores on each
node. When increasing the number of processes from 4 to 16 the efficiency
drops by more than 40%. Table 8.1 shows the detailed timings for the time
loop. The measurements show calculating the discretized Laplace operator
is more than 70% slower when using all 16 cores of one node instead of
only four cores per node. Since the DC-PSE operator does not incur any
communication, we conclude that this drop in efficiency is likely due to a
bottleneck in memory access. Therefore, we also test the client’s parallel
efficiency using at most four processes per node (allocating one core per
processor). The results are summarized in Figure 8.3. In this case, the
parallel efficiency only drops at 1024 processors.

Figure 8.4 shows the parallel efficiencies of fastest (blue) and slowest (red)
processor. Despite the regular distribution of the particles and the regular
structure of the PPM topology, we notice a significant load-imbalance. We
suspect that this imbalance might stem from the computer hardware, but

150

8.2. SIMULATING A CONTINUOUS
REACTION-DIFFUSION MODEL USING PPML

(a) (b)

Figure 8.2. Parallel efficiency of a weak scaling of the PPML reaction-diffusion
client. The largest cores of processors used was 1936. All cores per node are used.
This leads to a performance drop at 16 cores (a). (b) The parallel efficiency
when starting from 16 processes.

(a) (b)

Figure 8.3. Parallel efficiency of a weak scaling of the PPML reaction-diffusion
client on up to 1024 processes. In order to avoid memory congestion, we use
only 1 core per processor. (a) Parallel efficiency with respect to the sequential
run. (b) Parallel efficiency relative to the largest run using only one node.

151

CHAPTER 8. PPML BENCHMARK CLIENTS

(a) (b)

Figure 8.4. Parallel efficiency of a weak scaling of the PPML reaction-diffusion
client using 16 cores per node (a) and four processors per node (b). In addition
to the average efficiency, we show the efficiencies of the fastest processor in
blue, and of the slowest processor in red.

further investigation may be needed.

8.3. Simulating molecular dynamics using
PPML

We show the use of PPML to simulate a discrete particle system modeling
the dynamics of atoms in a gas. The interactions between neutral atoms
are approximated by the Lennard-Jones potential

V
LJ

(r) = 4✏

⇣�
r

⌘
12

�
⇣�
r

⌘
6

�
, (8.2)

where r is the distance between the two atoms, ✏ the potential well depth,
and � is the distance at which the potential is zero (Fig. 8.5). We truncate
the Lennard-Jones potential at r

c

= 2.5� for computational efficiency, since
not all atom pairs need to be considered anymore. The truncated Lennard-

152

8.3. SIMULATING MOLECULAR DYNAMICS USING
PPML

Figure 8.5. The Lennard-Jones potential function. ✏ characterizes the depth of
the potential well, while � is the distance at which the potential is zero. The
potential well’s minimum can be found at 2

1/6�.

Jones potential is formulated as:

V
LJtrunc(r) =

(
V
LJ

(r)� V
LJ

(r
c

) , r  r
c

0 , r > r
c

.
(8.3)

We use Verlet lists with a cutoff radius equal to the potential’s truncation
radius r

c

. As the atoms are moving, the Verlet list need to be recomputed.
We hence add a 10% thickness “safety-margin” (skin) to the cutoff radius
when computing the Verlet list. The Verlet list then only need to be recom-
puted once any particle has moved more than half the skin thickness.

We use PPML to write a 3D parallel Lennard-Jones simulation. The code
computes the forces, potential and kinetic energies, and motion of all atoms
(particles). Time integration is done using the velocity Verlet algorithm
[Verlet, 1967, Swope et al., 1982]. Listing 8.2 shows the main loop of the
simulation computing the forces based on the updated particle positions.
Once any particle has moved by more than half the skin thickness, the
particles are remapped using a local mapping, and the Verlet list are rebuilt.
This is done in lines 11-27. Lines 29-31 show nested foreach loops. In this
case, the outer loop iterates over all particles, while the inner loop iterates

153

CHAPTER 8. PPML BENCHMARK CLIENTS

Figure 8.6. Total (blue) and potential (red) energy of 1 million particles over
14,000 time steps in a PPML Lennard-Jones simulation.

over all interaction partners of each particle.

We validate the implementation by simulating a Lennard-Jones gas with 1
million particles. The particle positions are initialized on a Cartesian mesh
with h ⇡ 1.5�. We simulate 14,000 time steps allowing the gas to equilibrate,
and monitor the total, kinetic, and potential energies (E

tot

, E
kin

, E
pot

) of
the system. Figure 8.6 shows the results. As expected, the total energy is
conserved, while the potential energy decreases as the particles equilibrate.
The potential energy stabilizes at the equilibrium of the system.

We benchmark the PPML Lennard-Jones client on the cluster described
in section 8.1. Figure 8.7 shows the results of a weak scaling with 1 million
particles per processor. All timings are measured per iteration and averaged
over 100 iterations. We show the average time per process, but the minimum
and maximum times per process were identical, indicating perfect load
balance. For this benchmark, we allocate 8 MPI processes per node, using
only two cores of each processor. Using all cores per node leads to loss of
performance when scaling within one node, similar to what we observed
for the reaction-diffusion client. We attribute this to memory bottlenecks
in the force-calculation loop. The benchmarks shows that the PPML client
runs on 1728 processor cores (with 1.728 · 109 particles) at 77.5% parallel

154

8.3. SIMULATING MOLECULAR DYNAMICS USING
PPML

t = timeloop (t s t a r t =0.0_mk, d e l t a t=dt , tend=stop_time)
maxdisp = 0 .0_mk
al lmaxdisp = 0 .0_mk
foreach p in p a r t i c l e s (par t s) with po s i t i o n s (x , wr i tex=true) &
& sca_props (E) vec_props (F , a , v , dx)

a_p (:) = F_p(:) /m
x_p (:) = x_p (:) + v_p (:) ∗ dt + 0 .5_mk∗a_p (:) ∗ dt ∗∗2
F_p(:) = 0 .0_mk
E_p = 0.0_mk

10 dx_p (:) = dx_p (:) + v_p (:) ∗ dt + 0 .5_mk∗a_p (:) ∗ dt ∗∗2
d i sp = dx_p(1)∗∗2 + dx_p(2)∗∗2 + dx_p(3)∗∗2
i f (d i sp . gt . maxdisp) maxdisp = disp

end foreach

pmax(madisp , a l lmaxdisp)

i f (4 . 0_mk∗ a l lmaxdisp . ge . sk in ∗∗2) then
ca l l par t s%apply_bc (i n f o)
partial_mapping (par t s)

20 foreach p in p a r t i c l e s (par t s) with vec_props (dx)
dx_p (:) = 0 .0_mk

end foreach
map_ghost_get (par t s)
comp_neighl ist (par t s)

else
map_ghost_get (parts , psp=true)

end i f

foreach p in p a r t i c l e s (par t s) with po s i t i o n s (x) ghost s (t rue) &
30 & sca_props (E) vec_props (F)

foreach q in ne ighbors (p , n l i s t) with po s i t i o n s (x)
r_pq (:) = x_p (:) � x_q (:)
r_s_pq2 = r_pq (1)∗∗2 + r_pq (2)∗∗2 + r_pq (3)∗∗2
i f (r_s_pq2 . l e . c u t o f f ∗∗2) then

scaldF = (24 . 0_mk∗ eps)∗ (2 . 0_mk∗(sigma12/r_s_pq2∗∗7) &
& � (sigma6/r_s_pq2 ∗∗4))
F_p(:) = F_p(:) + r_pq (:) ∗ scaldF
E_p = E_p + 4.0_mk∗ eps ∗ ((sigma12/r_s_pq2∗∗6) &
& � (sigma6/r_s_pq2 ∗∗3)) � E_prc

40 endif
end foreach

end foreach
foreach p in p a r t i c l e s (par t s) with po s i t i o n s (x) vec_props (F , a , v)

v_p (:) = v_p (:) + 0 .5_mk∗(a_p (:) + (F_p(:) /m))∗ dt
end foreach
t = t + dt

end t imeloop

Listing 8.2 The main time loop of a PPML Lennard-Jones simulation client.

155

CHAPTER 8. PPML BENCHMARK CLIENTS

(a) (b)

Figure 8.7. Speedup and parallel efficiency of the PPM Lennard-Jones bench-
mark client. The parallel efficiency remains at 77.5% on 1728 processes.

efficiency.

8.4. Conclusion

We have demonstrated the efficiency of the PPML language and the re-
designed PPM library in two client applications. Both applications were
written in PPML and used most of the introduced language features (c.f.
section 7.3), as well as the client generator framework. Furthermore, we
used PPM’s new object-oriented interface as introduced in chapter 3. A
DC-PSE reaction-diffusion client was written in 70 lines and a Lennard-
Jones molecular dynamics client in 140 lines. Both clients natively support
shared- and distributed-memory parallelism. Our benchmarks have shown
parallel efficiencies of 70% to 80% for both clients if not all cores per node
are used (memory bottlenecks). This shows that it is possible to rapidly
implement fully featured parallel simulation codes that scale up to 1000
cores and beyond. PPML allows users with little experience in parallel com-
puting to quickly develop particle-mesh simulations for parallel hardware
platforms.

156

Part IV.

Conclusions

157

Progeny

158

CHAPTER 9

Conclusions and future work

We have developed a domain-specific language for parallel hybrid particle-
mesh methods using the PPM library [Sbalzarini et al., 2006a, Sbalzarini,
2010]. We redesigned PPM to be object-oriented, and extended the li-
brary with algorithms and data structures for adaptive-resolution particle
methods on heterogeneous platforms. We provided support for multi- and
manycore platforms through a new Fortran/POSIX threads library and
OpenCL particle-to-mesh and mesh-to-particle interpolation routines. We
tested and benchmarked the new version of PPM and the domain-specific
language PPML in two example applications. Below, we summarize our
main conclusions, highlight current limitations, and point to possible future
improvements.

Toward an object-oriented PPM core. We presented an object-oriented
redesign of the PPM library. We split the library into a core and a nu-

159

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

merics part. The core library provides abstract data types for topologies,
particles, meshes, fields, and operators, while the numerics library provides
implementations for numerical methods using the abstract data types from
the core library. We have benchmarked an intermediate, modular and the
final, object-oriented version of the redesigned library. We found that while
modularizing the PPM library comes at no significant performance toll our
object-oriented design does have a negative impact on the runtime and the
parallel scaling of the particular client applications tested. The present im-
plementation supports the described types, but the mesh type misses some
high-level convenience functions for mapping and requires more systematic
testing. Further analysis and tuning of the present PPM core implementa-
tion is needed to improve its performance to the level of previous versions.
Furthermore, most solvers in PPM numerics do not yet use the new PPM
core data structures and should be updated.

Fast neighbor lists for adaptive-resolution particle simulations. We de-
scribed data structures and algorithms for efficiently finding interaction
partners of particles with varying cutoff radii. Adaptive-resolution (AR)
neighbor lists enable efficient computation of particle–particle interactions
in adaptive-resolution simulations with a possibly continuous spectrum of
cutoff radii. We benchmarked the construction and use of AR neighbor lists
and compared them with cell lists and Verlet lists. The gained adaptivity
comes at the cost of increased asymptotic runtime compared with conven-
tional cell lists. If the number of interaction partners of each particle is
bounded by a constant, the overall runtime of the algorithm for N particles
is O(maxlevel ⇥N logN), instead of O(N) for cell lists. The overhead in
construction, however, is quickly amortized by the more efficient evaluation
of particle–particle interactions or construction of Verlet lists. For realistic
adaptive-resolution simulations, the presented AR neighbor list data struc-
tures can be several orders of magnitude faster than conventional cell lists.
The AR neighbor lists are built per subdomain and do hence not create
additional communication overhead in a parallel simulation, assuming that
the ghost layers have been populated before.

Since memory access typically is the bottleneck, we believe that the runtime
of AR cell lists could be improved by using a locality-preserving ordering
of the particles, such as Hilbert-Peano ordering.

160

A new edge-coloring-based communication scheduler. We implemented
a new communication scheduler for synchronous message passing in high-
performance computing. Our algorithm is based on the DSATUR vertex-
coloring algorithm [Brélaz, 1979], but operates on the line graph of the
communication graph and uses a list of heaps for fast access to candidate
vertices. We hence expect an asymptotic runtime of O((n+m) log n). We
benchmarked the present implementation on a number of different graphs
and compared it with the previous communication scheduler in PPM, which
was based on Vizing’s algorithm [Vizing, 1964, Misra and Gries, 1992].
We compared the two implementations on random graphs of increasing
sizes and vertex degrees and on 2D and 3D Cartesian grids. The new
implementation outperformed the previous one in all test cases. However,
we noticed that the present algorithm (as well as Vizing’s algorithm) is
unsuitable for graphs with high adjacency degrees, since it assumes that
all neighbors of a vertex can be traversed in O(1) time.

The presented results are encouraging, but more tests on realistic and larger
graphs from PPM domain decompositions are needed to further study
the present implementation. In the context of communication-scheduling
for high-performance computing, a distributed graph coloring algorithm
such as the one presented by Boman et al. [2005] may also be a desirable
alternative.

A pthreads wrapper for Fortran 2003. We presented a comprehensive
Fortran 2003 wrapper (forthreads) for the POSIX threads library. The
forthreads library provides interfaces to almost all thread management
functions and synchronization constructs. It extends previous implementa-
tions [Hanson et al., 2002]. We demonstrated the versatility of forthreads in
three examples, all implemented in the PPM library. First, we accelerated
the existing particle-mesh interpolation routines in PPM using forthreads
and OpenMP, and compared these two implementations in terms of code
complexity and parallel efficiency. The forthreads version had a perfor-
mance comparable to that of the OpenMP version. However, the gained
flexibility of POSIX threads comes at the cost of a slight increase in code
complexity. Second, we ported the existing multigrid Poisson solver of PPM
to make use of a dedicated communication thread in order to overlap com-
munication and computation. We benchmarked the new implementation

161

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

and compared it with the original non-overlapped version of this solver.
The threaded implementation shows a decreased time efficiency over the
pure MPI implementation. This, however, is likely not due to the use of
forthreads, but the result of more complex index calculations that prevent
the main loops from vectorizing. Third, we implemented a Fortran wrapper
for the POSIX sockets library and used the sockets and pthreads wrappers
in PPM to build a control server for real-time monitoring of PPM client
applications over the internet.

The present implementation does not support pthreads functions that are
implemented as C language macros or that heavily rely on C’s void pointers.
Future Fortran/C binding extensions might enable complete wrapping of
the POSIX threads interface. One non-standard extension of the library
that could be particularly useful in the context of heterogeneous distributed-
and shared-memory parallelism is thread pinning. It instructs the operating
system scheduler to allocate a thread onto a particular core of a processor
and prevents it from migrating to other cores, reducing the associated
overhead. A more extensive study of heterogeneous distributed- and shared-
memory parallel implementations should assess what improvements can be
gained in particular for particle-mesh methods.

An OpenCL implementation of particle-to-mesh and mesh-to-particle
interpolation in 2D and 3D. We designed and implemented GPU-suited
algorithms and data structures for particle-to-mesh and mesh-to-particle
interpolation in 2D and 3D. Our implementation is portable, allowing
execution on any multi- or manycore platform supporting OpenCL. It is
also generic with respect to the mesh size, the input representation, the
number of particles per mesh cell, and the number of particle properties
that are to be interpolated. We benchmarked both accuracy and runtime
of the presented implementation and compare it with a sequential shared-
memory-parallel OpenMP version. The benchmarks show speedups of up to
22-fold over the sequential CPU code. When comparing with the OpenMP
multi-threaded implementation executed on an 8-core CPU, the OpenCL
code was in most cases slower but could yield speedups of up to 7-fold in
the best case.

Despite the moderate speedups on the GPU, we believe that outsourcing

162

particle-to-mesh and mesh-to-particle interpolation may have the advantage
that CPU resources are freed up to perform other tasks. In order to support
this, our current implementation could be extended to allow GPU-CPU
overlapping. As GPUs are becoming commonplace in supercomputers (Oak
Ridge National Laboratory’s Titan supercomputer features one GPU per
compute node), we believe that the PPM library should make stronger
use of GPUs. Due to their regular compute-structure, mesh operations are
especially suited for SIMD computing. Therefore, it may be desirable to
provide GPU implementations of mesh operations that could directly be
applied to mesh data already residing on the GPU, reducing the data-
transfer overhead.

A domain-specific language for particle methods. We have presented
PPML, an embedded domain-specific language (eDSL) for parallel hybrid
particle-mesh methods. We first reviewed existing DSLs for numerical and
parallel applications and described the PPM abstractions introduced by
Sbalzarini [2010]. Based on the PPM abstractions, we outlined the types
and operations of PPML. Furthermore, we introduced particle and mesh
iterators, and PPML-specific program scopes. We demonstrated PPML in
two minimal applications simulating diffusion using both a mesh and a
particle discretization.

The presented approach is analogous to Liszt [DeVito et al., 2011], a DSL
for distributed-memory mesh-based PDE solvers, and DOLFIN [Logg and
Wells, 2010], an abstraction layer and Python DSL for finite-element meth-
ods. Both Liszt and DOLFIN use code analysis and optimization techniques
on the intermediate representation of the DSL code. Although this is cur-
rently not done in PPML, both code checking and optimization are in
principle possible on the AST representation. Future work will also explore
the possibility of using automatic model checkers for parallel programs, such
as [Siegel et al., 2006], to provide the user with feedback on correctness
already at an early stage of code development.

A current limitation of the PPML code generator is that it cannot inject
code in arbitrary locations of the processed program scope. This currently
prevents auto-generating initialization statements in PPM clients. Initial-
ization statements, such as ppm_init, should be placed after the last variable

163

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

declaration, but before any user-defined code. To enable this feature, the
PPML parser must be extended with rules for recognizing variable declara-
tions. The more Fortran code is recognized by the parser, the more flexible
the code generator will become in its output.

The current macro collection covers most aspects of implementing a PPML
application. In the future, this collection should become larger, handling
more special cases and providing more utilities. Thanks to the flexible
design of PPML, macros can be added to the collection whenever needed.

Based on PPML, we developed a web-based visual programming environ-
ment enabling simple prototyping of PPML programs without sacrificing
the ability to run large-scale simulations. The current implementation sup-
ports only basic PPML and Fortran features and provides only a limited
set of blocks to the user. Future work will provide a generic mechanism for
recognizing new PPML macros and representing them in the web-interface.
Also, as cloud-based high-performance computing services are becoming
more abundant (e.g., Amazon EC2, Google Compute Engine), an inte-
gration with automated deployment platforms such as Neptune [Bunch
et al., 2011] could help make the present framework more accessible to the
scientific community.

PPML benchmark clients. We demonstrated the usability of PPML and
the scalability of the redesigned PPM library in two example simulations
on up to 1936 cores. The PPML reaction-diffusion client consists of 70 lines
of code and had a parallel efficiency of 75% on 1024 cores with wall-clock
times of less than half a second per time step. The Lennard-Jones molecular
dynamics simulation consists of 140 lines of code and had a parallel efficiency
of 77.5% on 1728 cores. PPML significantly reduces code development times
for mid-sized parallel simulations, such as the ones presented. This should,
however, be further investigated using more complex clients containing
both particles and meshes.

Lastly, larger benchmarks using the multi- and manycore extensions of
PPM should be conducted in order to determine how the present framework
performs in real-world applications.

164

APPENDIX A

The PPML ANTLR grammar

Listing A.1 We provide an abbreviated version of the PPML ANTLR grammer.
The grammar syntax is derived from an Extended Backus-Naur Form, but is
specialized to the ANTLR parser generator. We show here only the parser
rules, without the production rules and the embedded Ruby language code. The
complete PPML ANTLR grammar can be found in the lib/grammar/CG.g file
in the PPML client generator software package.

grammar CG ;

3 opt ions {
language = Ruby ;
output = AST;
}

tokens {
PROCEDURE;
TYPE;
SCOPE;
SCOPE_START;

13 SCOPE_END;
INNER_STUFF;

165

APPENDIX A. THE PPML ANTLR GRAMMAR

TYPE_BODY;
USE;
IMPORT;
GENERIC;
IMPLICIT ;
CONTAINS;
FMACRO;
IMACRO;

23 FOREACH;
MODIFIERS;
BODY;
FLINE ;
TEXT;
ARGS;
RETARGS;
NAMEDARGS;
FDARG;
RHS_SCOPE;

33 RHS_START;
RHS_INNER;
TIMELOOP;
TEMPLATE;
VLIST ;
VPAIR;
BIND;
}

43 prog
: (naked_code)=>naked_code
| scope_statement∗
;

// Scope de t e c t i on � top l e v e l statements

scope_statement
: t=template ?

open=scope_start
53 i=inne r_s tu f f

c l o s e=scope_end
| rhs_statement
;

template
: TEMPLATE_T s=STAR_T?
LT_T

v+=template_var (COMMA_T v+=template_var)∗
GT_T

63 n=NOINTERFACE_T? (SUFFIXES_T f=va lu e_ l i s t)? NEWLINE_T
;

template_var
: n=ID_T COLON_T
LEFT_SQUARE_T

t+=template_type (COMMA_T t+=template_type)∗
RIGHT_SQUARE_T

166

;

73 template_type
: (ID_T|TYPE_T) (LEFT_PAREN_T (ID_T|NUMBER_T) RIGHT_PAREN_T)?
;

scope_start
:

(kind=PROGRAM_T name=ID_T NEWLINE_T
| kind=CLIENT_T name=ID_T NEWLINE_T
| kind=MODULE_T name=ID_T NEWLINE_T
|ABSTRACT_T? kind=INTERFACE_T name=ID_T? NEWLINE_T

83 |RECURSIVE_T? kind=SUBROUTINE_T name=ID_T a r g l i s t ? bind ? NEWLINE_T
| (ID_T (LEFT_PAREN_T (ID_T | NUMBER_T)

RIGHT_PAREN_T)?)?
kind=FUNCTION_T name=ID_T a r g l i s t ?

(RESULT_T LEFT_PAREN_T ID_T RIGHT_PAREN_T)? bind ? NEWLINE_T
)
;

scope_end
:

93 ({@context . l a s t==:program}?=>
(ENDPROGRAM_T | END_T PROGRAM_T) ID_T? NEWLINE_T

| {@context . l a s t==: c l i e n t }?=>
(ENDPROGRAM_T | END_T CLIENT_T) ID_T? NEWLINE_T

| {@context . l a s t==:module}?=>
(ENDMODULE_T | END_T MODULE_T) ID_T? NEWLINE_T

| {@context . l a s t==: i n t e r f a c e }?=>
(ENDINTERFACE_T | END_T INTERFACE_T) ID_T? NEWLINE_T

| {@context . l a s t==:subrout ine}?=>
(ENDSUBROUTINE_T | END_T SUBROUTINE_T) ID_T? NEWLINE_T

103 | {@context . l a s t==: func t i on}?=>
(ENDFUNCTION_T | END_T FUNCTION_T) ID_T? NEWLINE_T

)
;

rhs_statement
: s=rhs_start

i=rhs_inner_stuf f
e=rhs_end

;
113

rhs_start
: RHS_T name=ID_T args=rh s_a rg l i s t NEWLINE_T
;

rhs_end
: (END_T RHS_T | ENDRHS_T) NEWLINE_T
;

rhs_inner_stuf f
123 : pre+=l i n e ∗

GET_FIELDS_T re t=rh s_a rg l i s t NEWLINE_T
post+=l i n e ∗

;

167

APPENDIX A. THE PPML ANTLR GRAMMAR

r h s_a rg l i s t
: LEFT_PAREN_T

(args+=fd_arg
(COMMA_T args+=fd_arg)∗

)?
133 RIGHT_PAREN_T

;

// f i e l d and d i s c r e t i z a t i o n
fd_arg : f i e l d=ID_T (ARROW_T d i s c=ID_T)?

;

type_statement
: open=type_start

i=type_body
143 c l o s e=type_end

;

naked_code : l i n e ∗ ;

// Scope de tec i on � s t a r t and end l i n e s

type_start : kind=TYPE_T
((COMMA_T EXTENDS_T LEFT_PAREN_T ID_T RIGHT_PAREN_T)

153 | (COMMA_T ABSTRACT_T))∗
(DOUBLE_COLON_T)? name=ID_T NEWLINE_T

{ @context << : type }
;

type_end : (ENDTYPE_T | END_T TYPE_T) ID_T? NEWLINE_T
{ @context . pop }

;

// Scope de t e c t i on � body

163 i nne r_s tu f f
: (use+=use_statement)∗

(imp+=import_statement)∗
(imp l i c i t=impl ic i t_none)?
({ @input . peek (2) != PROGRAM_T}? body+=l i n e)∗
(con=conta ins

(sub+=scope_statement
| sub+=imacro
)+)?

;
173

type_body
: ({ @input . peek (2) != TYPE_T}? body+=l i n e)∗

(con=conta ins
((procedure_statement)=> sub+=procedure_statement
| sub+=gener ic_statement
| { @input . peek (2) != TYPE_T}? body+=l i n e)+)?
// | sub+=imacro)+)?

;

168

183
impl ic i t_none

: IMPLICIT_T NONE_T NEWLINE_T
;

conta in s
: CONTAINS_T NEWLINE_T
;

use_statement
: USE_T al lowed ∗ NEWLINE_T
;

193
import_statement

: IMPORT_T al lowed ∗ NEWLINE_T
;

procedure_statement
: PROCEDURE_T al lowed ∗ NEWLINE_T
;

gener ic_statement
203 : GENERIC_T al lowed ∗ NEWLINE_T

;

l i n e
: { fmacro_cal l?}?=> fcmacro
| { imacro_cal l?}?=> imacro
| scope_statement
| (type_statement)=>type_statement
| f o r each

213 | t imeloop
| f l i n e
;

f o r each
: FOREACH_T i t=ID_T IN_T name=ID_T a=a r g l i s t ?

(WITH_T (mod i f i e r s+=ID_T a r g l i s t s+=a r g l i s t ?)∗)?
NEWLINE_T

((loop_body)=>bodies+=loop_body
| (bod ie s+=qual i f i ed_body)∗

223)
e=foreach_end

;

foreach_end : (ENDFOREACH_T | END_T FOREACH_T) NEWLINE_T
;

loop_body
: ({ @input . peek (2) != FOREACH_T and @input . peek (2) != TIMELOOP_T}?

233 body+=l i n e)∗
;

qua l i f i ed_body
: FOR_T name=ID_T NEWLINE_T

({ @input . peek (2) != FOREACH_T}?

169

APPENDIX A. THE PPML ANTLR GRAMMAR

body+=l i n e)∗
;

243 t imeloop
: t=ID_T EQUALS_T TIMELOOP_T tp=a r g l i s t NEWLINE_T

body=loop_body
e=timeloop_end

;

timeloop_end : (ENDTIMELOOP_T | END_T TIMELOOP_T) NEWLINE_T
;

fcmacro
253 : r e s u l t s=return_args name=ID_T args=a r g l i s t NEWLINE_T

;

return_args
: (r e s u l t s+=ID_T (COMMA_T r e s u l t s+=ID_T)∗ EQUALS_T)?
;

imacro
: MINCLUDE_T (name=ID_T) args=a r g l i s t NEWLINE_T
;

263
bind

: BIND_T LEFT_PAREN_T al lowed ∗ RIGHT_PAREN_T
;

a r g l i s t
: LEFT_PAREN_T

((args+=value | args+=va lu e_ l i s t | names+=ID_T EQUALS_T
(va lues+=value | va lues+=va lu e_ l i s t))

(COMMA_T (args+=value | args+=va lu e_ l i s t | names+=ID_T EQUALS_T
273 (va lues+=value | va lues+=va lu e_ l i s t))) ∗) ?

RIGHT_PAREN_T
;

// Catcha l l

f l i n e
: (a l lowed ∗

| MODULE_T PROCEDURE_T ID_T
| PROCEDURE_T al lowed ∗

283) NEWLINE_T
;

al lowed
: ID_T
| ANY_CHAR_T | DOT_T | STAR_T
| NUMBER_T | STRING_T
| LEFT_PAREN_T | RIGHT_PAREN_T | ARROW_T
| LEFT_SQUARE_T | RIGHT_SQUARE_T
| COMMA_T | EQUALS_T | DOUBLE_COLON_T | COLON_T | AMPERSAND_T

293 | boolean | l o g i c a l | comparison
| END_T | IN_T | TYPE_T | ABSTRACT_T

170

;

v a l u e_ l i s t
: LEFT_SQUARE_T (va l s+=value | va l s+=value_pair)
(COMMA_T (va l s+=value | va l s+=value_pair))∗ RIGHT_SQUARE_T
;

value_pair : v1=ID_T ARROW_T v2=value �> ^(VPAIR $v1 $v2) ;
303

value : ID_T | NUMBER_T | STRING_T | CODE_T;

///
// Lexer Rules
///

// PPM Keywords

313 FOREACH_T : ’FOREACH’ | ’ f o r each ’ ;
ENDFOREACH_T : ’ENDFOREACH’ | ’ endforeach ’ ;
FOR_T : ’FOR’ | ’ f o r ’ ;
IN_T : ’ IN ’ | ’ in ’ ;
RHS_T : ’RHS ’ | ’ rhs ’ ;
ENDRHS_T : ’ENDRHS’ | ’ endrhs ’ ;
GET_FIELDS_T : ’GET_FIELDS ’ | ’ g e t_ f i e l d s ’ ;
TIMELOOP_T : ’TIMELOOP’ | ’ t imeloop ’ ;
ENDTIMELOOP_T : ’ENDTIMELOOP’ | ’ endtimeloop ’ ;
WITH_T : ’WITH’ | ’ with ’ ;

323 TEMPLATE_T : ’TEMPLATE’ | ’ template ’ ;
CLIENT_T : ’CLIENT ’ | ’ c l i e n t ’ ;
ENDCLIENT_T : ’ENDCLIENT ’ | ’ e ndc l i e n t ’ ;
NOINTERFACE_T : ’NOINTERFACE’ | ’ n o i n t e r f a c e ’ ;
SUFFIXES_T : ’SUFFIXES ’ | ’ s u f f i x e s ’ ;

// Fortran Keywords

PROGRAM_T : ’PROGRAM’ | ’ program ’ ;
ENDPROGRAM_T : ’ENDPROGRAM’ | ’ endprogram ’ ;

333 MODULE_T : ’MODULE’ | ’module ’ ;
ENDMODULE_T : ’ENDMODULE’ | ’ endmodule ’ ;
INTERFACE_T : ’INTERFACE ’ | ’ i n t e r f a c e ’ ;
ENDINTERFACE_T : ’ENDINTERFACE’ | ’ e nd i n t e r f a c e ’ ;
SUBROUTINE_T : ’SUBROUTINE ’ | ’ subrout ine ’ ;
ENDSUBROUTINE_T : ’ENDSUBROUTINE’ | ’ endsubrout ine ’ ;
FUNCTION_T : ’FUNCTION’ | ’ f unc t i on ’ ;
ENDFUNCTION_T : ’ENDFUNCTION’ | ’ endfunct ion ’ ;
END_T : ’END’ | ’ end ’ ;
USE_T : ’USE ’ | ’ use ’ ;

343 IMPLICIT_T : ’ IMPLICIT ’ | ’ imp l i c i t ’ ;
NONE_T : ’NONE’ | ’ none ’ ;
CONTAINS_T : ’CONTAINS ’ | ’ conta in s ’ ;
PROCEDURE_T : ’PROCEDURE’ | ’ procedure ’ ;
RECURSIVE_T : ’RECURSIVE ’ | ’ r e c u r s i v e ’ ;
RESULT_T : ’RESULT ’ | ’ r e s u l t ’ ;
TYPE_T : ’TYPE’ | ’ type ’ ;
ENDTYPE_T : ’ENDTYPE’ | ’ endtype ’ ;

171

APPENDIX A. THE PPML ANTLR GRAMMAR

EXTENDS_T : ’EXTENDS’ | ’ extends ’ ;
MINCLUDE_T : ’MINCLUDE’ | ’ minclude ’ ;

353 ABSTRACT_T : ’ABSTRACT’ | ’ ab s t r a c t ’ ;
GENERIC_T : ’GENERIC ’ | ’ g en e r i c ’ ;
IMPORT_T : ’IMPORT’ | ’ import ’ ;
BIND_T : ’BIND ’ | ’ bind ’ ;
// DEFAULT_T : ’DEFAULT’ | ’ d e f au l t ’ ;

DOT_T
: ’ . ’

((TRUE_T)=> TRUE_T {$type=TRUE_T}
| (FALSE_T)=> FALSE_T {$type=FALSE_T}

363 | (AND_T)=> AND_T {$type=AND_T}
| (OR_T)=> OR_T {$type=OR_T}
| (NOT_T)=> NOT_T {$type=NOT_T}
| (EQV_T)=> EQV_T {$type=EQV_T}
| (NEQV_T)=> NEQV_T {$type=NEQV_T}
| (GT)=> GT {$type=GT_T}
| (LT)=> LT {$type=LT_T}
| (GE)=> GE {$type=GE_T}
| (LE)=> LE {$type=LE_T}
| (EQ)=> EQ {$type=EQ_T}

373 | (NE)=> NE {$type=NE_T}
)?

;

// True/ Fal se

boolean : TRUE_T | FALSE_T ;

fragment
TRUE_T : ’TRUE. ’ | ’ t rue . ’ ;

383 fragment
FALSE_T : ’FALSE. ’ | ’ f a l s e . ’ ;

// Log i ca l

l o g i c a l : AND_T | OR_T | NOT_T | EQV_T | NEQV_T ;

fragment
AND_T : ’AND. ’ | ’ and . ’ ;
fragment

393 OR_T : ’OR. ’ | ’ or . ’ ;
fragment
NOT_T : ’NOT. ’ | ’ not . ’ ;
fragment
EQV_T : ’EQV. ’ | ’ eqv . ’ ;
fragment
NEQV_T : ’NEQV. ’ | ’ neqv . ’ ;

// Comparison
403

comparison : GT_T | LT_T | GE_T | LE_T | EQ_T | NE_T ;

fragment

172

GT : ’GT. ’ | ’ gt . ’ ;
GT_T : ’> ’ ;
fragment
LT : ’LT. ’ | ’ l t . ’ ;
LT_T : ’< ’ ;
fragment

413 GE : ’GE. ’ | ’ ge . ’ ;
GE_T : ’>=’ ;
fragment
LE : ’LE. ’ | ’ l e . ’ ;
LE_T : ’<=’ ;
fragment
EQ : ’EQ. ’ | ’ eq . ’ ;
EQ_T : ’==’ ;
fragment
NE : ’NE. ’ | ’ ne . ’ ;

423 NE_T : ’/= ’ ;

// I d e n t i f i e r s

ID_T : (ALPHA | ’_’) (ALNUM | ’_’ | ’%’)∗ ;

// Constants

CODE_T
: START_CODE .∗ STOP_CODE

433 ;

fragment
START_CODE : ’<#’ ;

fragment
STOP_CODE : ’#>’ ;

STRING_T
443 : ’ " ’ (’ \\" ’ |~ ’ " ’)∗ ’ " ’

| ’ \ ’ ’ (’ \\\ ’ ’ |~ ’ \ ’ ’)∗ ’ \ ’ ’
;

NUMBER_T
: (’� ’)? DIGIT+

((DECIMAL)=> DECIMAL ((KIND)=> KIND)?)?
;

fragment
453 DECIMAL : ’ . ’ DIGIT+ ;

fragment
KIND : ’_’ (ID_T | DIGIT+) ;

EQUALS_T : ’=’ ;
LEFT_PAREN_T : ’ (’ ;
RIGHT_PAREN_T : ’) ’ ;
LEFT_SQUARE_T : ’ [’ ;

173

APPENDIX A. THE PPML ANTLR GRAMMAR

463 RIGHT_SQUARE_T : ’] ’ ;
AMPERSAND_T : ’&’ ;
DOUBLE_COLON_T : ’ : : ’ ;
COLON_T : ’ : ’ ;
COMMA_T : ’ , ’ ;
ARROW_T : ’=>’ ;
STAR_T : ’ ∗ ’ ;

// Fragments

473 fragment
COMMENT : ’ ! ’ ~(’ \n ’ | ’ \ r ’)∗ ;
fragment
WS : (’ � ’ | ’ \ r ’ | ’ \ t ’ | ’ \u000C ’)∗ ;

fragment
ALNUM : (ALPHA | DIGIT) ;
fragment
ALPHA : ’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ ;
fragment

483 DIGIT : ’ 0 ’ . . ’ 9 ’ ;

ANY_CHAR_T : ~(’ \ r ’ | ’ \n ’ | ’ � ’ | ’ \ t ’) ;

174

APPENDIX B

A minimal PPM client

The following listing shows the auto-generated main program and modules
of the DC-PSE diffusion client (listing 7.3) from section 7.5.1.
program mini

use ppm_autogenerated_global
use ppm_autogenerated_rhs

5 implicit none
include ’ mpif . h ’
character (len=4) : : c a l l e r = ’ mini ’
integer : : i n f o
integer : : comm
integer : : rank
integer : : nproc
c l a s s (ppm_t_field_) , pointer : : U
real (mk) , dimension (:) , pointer : : genjb3_cost => nu l l ()
type (ppm_t_particles_d) , pointer : : c

15 integer : : genmjb_info
INTEGER : : gen794_info
integer : : gen794_p
real (mk) , dimension (: , :) , pointer : : gen794_x => nu l l ()
real (mk) , dimension (:) , pointer : : gen794_U_wp => nu l l ()

175

APPENDIX B. A MINIMAL PPM CLIENT

c l a s s (ppm_t_part_prop_d_) , pointer : : genpag_temp_prop => nu l l ()
c l a s s (ppm_t_neighlist_d_) , pointer : : n
type (ppm_t_options_op) : : gen8l3_opopts
integer , parameter : : e u l e r f = ppm_param_ode_scheme_eulerf
integer , parameter : : tvdrk2 = ppm_param_ode_scheme_tvdrk2

25 integer , parameter : : midrk2 = ppm_param_ode_scheme_midrk2
integer , parameter : : rk4 = ppm_param_ode_scheme_rk4
integer , parameter : : s t s = ppm_param_ode_scheme_sts
type (ppm_t_ode) : : o
integer : : n s tages
c l a s s (ppm_v_main_abstr) , pointer : : genn9p_vars
procedure (ppm_p_rhsfunc_d) , pointer : : genn9p_rhs_ptr
c l a s s (ppm_v_var_discr_pair) , pointer : : genn9p_rhs_vars
c l a s s (ppm_t_var_discr_pair) , pointer : : genn9p_pair
c l a s s (ppm_t_field_discr_pair) , pointer : : genn9p_fpair

35 c l a s s (ppm_t_main_abstr) , pointer : : genn9p_el
c l a s s (ppm_t_part_prop_d_) , pointer : : genhhl_temp_prop => nu l l ()
real (mk) : : t
integer : : genip6_info
integer , dimension (6) : : bcdef = ppm_param_bcdef_periodic
real (ppm_kind_double) , dimension (: , :) , pointer : : d i s p l a c e
integer : : i s t a g e = 1
real (mk) , dimension (2) : : sigma = (/0 . 1_mk, 0 . 1_mk/)
real (mk) , parameter : : p i = acos (�1.0_mk)

45
ca l l MPI_Init (i n f o)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

"MPI_Init� f a i l e d . " ,&
c a l l e r , 10 , i n f o)

GOTO 9999
END IF

55 comm = MPI_COMM_WORLD

ca l l MPI_Comm_Size(comm, nproc , i n f o)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

"MPI_Comm_Size� f a i l e d . " ,&
c a l l e r , 10 , i n f o)

GOTO 9999
END IF

65
ca l l MPI_Comm_Rank(comm, rank , i n f o)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

"MPI_Comm_Rank� f a i l e d . " ,&
c a l l e r , 10 , i n f o)

GOTO 9999
END IF

75 ca l l def ine_args

176

ca l l parse_args (i n f o)
i f (i n f o . eq . e x i t_g r a c e f u l l y) then

goto 9999
else

IF (i n f o .NE. 0) THEN
i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

"Parse� args � f a i l e d . " ,&
c a l l e r , 10 , i n f o)

85 GOTO 9999
END IF

end i f

ca l l ppm_init (2 , ppm_kind_double , &
�14, comm,&
0 , i n f o)

IF (i n f o .NE. 0) THEN
i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

95 "ppm_init� f a i l e d . " ,&
c a l l e r , 10 , i n f o)

GOTO 9999
END IF

allocate (ppm_t_field : : U, stat=in f o)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
CALL ppm_error (ppm_err_alloc , &

105 " A l l o ca t i ng � the �U� f i e l d " ,&
c a l l e r , 12 , i n f o)

GOTO 9999
END IF

ca l l U%crea t e (1 , in fo , name="U")
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

"Create � f i e l d � f a i l e d ! " ,&
115 c a l l e r , 12 , i n f o)

GOTO 9999
END IF

ca l l ppm_mktopo(topo , domain_decomposition , processor_ass ignment ,&
& min_phys , max_phys , bcdef , ghost_size ,&
& genjb3_cost , i n f o)

al locate (c , stat=in f o)
IF (i n f o .NE. 0) THEN

125 i n f o = ppm_error_error
CALL ppm_error (ppm_err_alloc , &

"Could�not� a l l o c a t e �c" ,&
c a l l e r , 16 , i n f o)

GOTO 9999
END IF
ca l l c%i n i t i a l i z e (Npart , in fo , topo id=topo , &

177

APPENDIX B. A MINIMAL PPM CLIENT

& d i s t r i b=ppm_param_part_init_cartesian)
al locate (d i s p l a c e (ppm_dim, c%Npart))
ca l l random_number (d i s p l a c e)

135 d i s p l a c e = (d i s p l a c e � 0 .5_mk) ∗ c%h_avg ∗ 0 .15_mk
ca l l c%move(d i sp l a ce , i n f o)
ca l l c%apply_bc (i n f o)
ca l l c%map(in fo , g l oba l =. t rue . , topo id=topo)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

"Global �mapping� f a i l e d . " ,&
c a l l e r , 22 , i n f o)

GOTO 9999
145 END IF

ca l l U%di s c r e t i z e_on (c , genmjb_info)
ca l l c%get_xp (gen794_x , gen794_info)
IF (gen794_info .NE. 0) THEN

gen794_info = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

" ge t t i ng � po s i t i o n s �c" ,&
c a l l e r , 26 , gen794_info)

GOTO 9999
155 END IF

ca l l c%get (U, gen794_U_wp , gen794_info)
IF (gen794_info .NE. 0) THEN

gen794_info = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

" ge t t i ng � f i e l d �U� f o r �c" ,&
c a l l e r , 26 , gen794_info)

GOTO 9999
END IF
do gen794_p=1,c%Npart

165 gen794_U_wp(gen794_p) = 1 .0_mk/(2 . 0_mk∗ pi ∗ sigma (1)∗ sigma (2))∗
&

& exp (�0.5_mk∗ (((gen794_x (1 , gen794_p)�0.5_mk)∗∗2/ sigma (1)∗∗2)+ &
& ((gen794_x (2 , gen794_p)�0.5_mk)∗∗2/ sigma (2)∗∗2)))

end do

ca l l c%map_ghosts (i n f o)

ca l l c%comp_neighl ist (in fo , c u t o f f =2.5_mk ∗ c%h_avg)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
175 CALL ppm_error (ppm_err_sub_failed , &

"Could�not�compute� n e i g h l i s t " ,&
c a l l e r , 33 , i n f o)

GOTO 9999
END IF
n => c%ge t_ne i gh l i s t ()
al locate (Lap)
ca l l Lap%cr ea t e (2 , (/1 . 0_mk, 1 . 0_mk/) , (/2 , 0 , 0 , 2/) , in fo , name=’ "Laplac ian " ’)
ca l l gen8l3_opopts%c r ea t e (ppm_param_op_dcpse , in fo , order =2, c=1.0_mk)
IF (i n f o .NE. 0) THEN

185 i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

178

" f a i l e d � to � i n i t i a l i z e � opt ion � ob j e c t � f o r � operator " ,&
c a l l e r , 35 , i n f o)

GOTO 9999
END IF
ca l l Lap%di s c r e t i z e_on (c , L , gen8l3_opopts , i n f o)

al locate (genn9p_vars , stat=in f o)
IF (i n f o .NE. 0) THEN

195 i n f o = ppm_error_error
CALL ppm_error (ppm_err_alloc , &

" A l l o ca t i ng �genn9p_vars� vecto r " ,&
c a l l e r , 37 , i n f o)

GOTO 9999
END IF
allocate (genn9p_rhs_vars , stat=in f o)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
CALL ppm_error (ppm_err_alloc , &

205 " A l l o ca t i ng �genn9p_rhs_vars� vecto r " ,&
c a l l e r , 37 , i n f o)

GOTO 9999
END IF

genn9p_el => U
ca l l genn9p_vars%push (genn9p_el , i n f o)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
215 CALL ppm_error (ppm_err_sub_failed , &

"Pushing� element � f a i l e d " ,&
c a l l e r , 37 , i n f o)

GOTO 9999
END IF

allocate (genn9p_pair , stat=in f o)
genn9p_pair%var => U
genn9p_pair%d i s c r => c
ca l l genn9p_rhs_vars%push (genn9p_pair , i n f o)

225 IF (i n f o .NE. 0) THEN
i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

"Pushing�genn9p_pair� f a i l e d " ,&
c a l l e r , 37 , i n f o)

GOTO 9999
END IF

genn9p_rhs_ptr => mini_rhs

235 ca l l o%cr ea t e (eu l e r f , genn9p_vars , genn9p_rhs_ptr , genn9p_rhs_vars , i n f o)

ns tages = o%in t e g r a t o r%scheme_nstages

t = start_time
do while (t . l e . stop_time)

do i s t a g e =1, ns tages
c%f l a g s (ppm_part_partial) = . t rue . ! hack

179

APPENDIX B. A MINIMAL PPM CLIENT

c%f l a g s (ppm_part_areinside) = . t rue .
c%f l a g s (ppm_part_ghosts) = . t rue .

245 genhhl_temp_prop => c%props%begin ()
do while (a s s o c i a t ed (genhhl_temp_prop))

genhhl_temp_prop%f l a g s (ppm_ppt_partial) = . t rue .
genhhl_temp_prop => c%props%next ()

enddo
ca l l c%map_ghost_push_positions (i n f o)
ca l l c%map_ghosts (i n f o)
ca l l c%map_ghost_pop_positions (i n f o)

ca l l o%step (t , time_step , i s t age , i n f o)
255

end do
s t = s t + 1
i f (ppm_rank . eq . 0) print ∗ , s t

end do

ca l l ppm_final ize (genip6_info)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
265 CALL ppm_error (ppm_err_sub_failed , &

"ppm_final ize � f a i l e d . " ,&
c a l l e r , 48 , i n f o)

GOTO 9999
END IF

ca l l MPI_Finalize (genip6_info)
IF (i n f o .NE. 0) THEN

i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

275 "MPI_Finalize� f a i l e d . " ,&
c a l l e r , 48 , i n f o)

GOTO 9999
END IF

9999 continue
end program

module ppm_autogenerated_global
use ppm_module_core
use ppm_module_user_numerics

285 implicit none
integer , parameter : : mk = ppm_kind_double
integer : : s t = 0
real (mk) : : D_u
integer : : topo = 0
real (mk) , dimension (:) , pointer : : min_phys
real (mk) , dimension (:) , pointer : : max_phys
integer : : domain_decomposition
integer : : processor_ass ignment
real (mk) : : ghost_s ize

295 integer : : Npart
type (ppm_t_operator) , pointer : : Lap => nu l l ()
c l a s s (ppm_t_operator_discr) , pointer : : L => nu l l ()
integer : : ODEscheme

180

real (mk) : : start_time
real (mk) : : time_step
real (mk) : : stop_time
contains
subroutine def ine_args

implicit none
305 ca l l arg (D_u, ’D_u ’ , &

default = 1.0_mk, &
min = 0.0_mk, &
ctrl_name = ’Du_param ’ , &
long_f lag = ’Du_param ’ , &
help = ’ D i f f u s i on � constant � o f �U’)

ca l l arg_group (’Domain�Parameters ’)
al locate (min_phys (2))
ca l l arg (min_phys , ’min_phys ’ , &

default = (/0 . 0_mk, 0 .0_mk/) , &
315 ctrl_name = ’min_phys ’ , &

long_f lag = ’min_phys ’ , &
help = ’ lower �domain�boundary ’)

al locate (max_phys (2))
ca l l arg (max_phys , ’max_phys ’ , &

default = (/1 . 0_mk, 1 .0_mk/) , &
ctrl_name = ’max_phys ’ , &
long_f lag = ’max_phys ’ , &
help = ’ upper�domain�boundary ’)

ca l l arg (domain_decomposition , ’ domain_decomposition ’ , &
325 default = ppm_param_decomp_cuboid , &

min = 1 , &
max = 13 , &
ctrl_name = ’ domain_decomposition ’ , &
help = ’Domain�decomposit ion , �one� o f : \ n ’&

& // ’ ∗�1��� t r e e \n ’&
& // ’ ∗�2���pruned� c e l l \n ’&
& // ’ ∗�3��� b i s e c t i o n \n ’&
& // ’ ∗�4���x� pen c i l \n ’&
& // ’ ∗�5���y� pen c i l \n ’&

335 & // ’ ∗�6���z� pen c i l \n ’&
& // ’ ∗�7��� cuboid \n ’&
& // ’ ∗�8��� user � de f ined \n ’&
& // ’ ∗�10���xy� s l ab \n ’&
& // ’ ∗�11���xz� s l ab \n ’&
& // ’ ∗�12���yz� s l ab \n ’&
& // ’ ∗�13��� c a r t e s i a n ’)
ca l l arg (processor_assignment , ’ processor_ass ignment ’ , &

default = ppm_param_assign_internal , &
min = 1 , &

345 max = 6 , &
ctrl_name = ’ processor_ass ignment ’ , &
help = ’ Proces sor �assignment , �one� o f : \ n ’&

& // ’ ∗�1��� i n t e r n a l \ nmetis : \ n ’&
& // ’ ∗�2���nodal � cut \n ’&
& // ’ ∗�3���nodal �comm\n ’&
& // ’ ∗�4���dual � cut \n ’&
& // ’ ∗�5���dual �comm\n ’&
& // ’ ∗�6��� user � de f ined ’)
ca l l arg (ghost_size , ’ ghost_s ize ’ , &

181

APPENDIX B. A MINIMAL PPM CLIENT

355 default = 0.021_mk, &
min = 0 .0_mk, &
ctrl_name = ’ ghost_s ize ’ , &
long_f lag = ’ ghost_s ize ’ , &
help = ’ Ghost� l a y e r �width ’)

ca l l arg (Npart , ’ Npart ’ , &
default = 10000 , &
ctrl_name = ’ Npart ’ , &
long_f lag = ’ npart ’ , &
help = ’ Global �number� o f � p a r t i c l e s ’)

365 ca l l arg_group (’ODE�Parameters ’)
ca l l arg (ODEscheme , ’ODEscheme ’ , &

default = ppm_param_ode_scheme_eulerf , &
ctrl_name = ’ODEscheme ’ , &
help = ’ODE� i n t e g r a t o r ’)

ca l l arg_group (’Time�Parameters ’)
ca l l arg (start_time , ’ start_time ’ , &

default = 0.0_mk, &
min = 0 .0_mk, &
ctrl_name = ’ start_time ’ , &

375 help = ’ Star t � time ’)
ca l l arg (time_step , ’ time_step ’ , &

default = 0.1_mk, &
min = 0 .0_mk, &
ctrl_name = ’ time_step ’ , &
help = ’Time� s tep ’)

ca l l arg (stop_time , ’ stop_time ’ , &
default = 1.0_mk, &
min = 0 .0_mk, &
ctrl_name = ’ stop_time ’ , &

385 help = ’End� time ’)
end subroutine def ine_args

end module ppm_autogenerated_global

module ppm_autogenerated_rhs
implicit none
contains
function mini_rhs (vars_discr , time , changes)

use ppm_autogenerated_global
395 implicit none

real (ppm_kind_double) : : mini_rhs
c l a s s (ppm_v_var_discr_pair) , pointer : : vars_discr
real (ppm_kind_double) : : time
c l a s s (ppm_v_main_abstr) , pointer : : changes
c l a s s (ppm_t_main_abstr) , pointer : : change => nu l l ()
c l a s s (ppm_t_var_discr_pair) , pointer : : vd_pair => nu l l ()
c l a s s (ppm_t_discr_info_) , pointer : : d i => nu l l ()
character (len=21) : : c a l l e r=’ ppm_autogenerated_rhs ’
c l a s s (ppm_t_field_) , pointer : : U

405 c l a s s (ppm_t_particles_d) , pointer : : par t s
c l a s s (ppm_t_field_) , pointer : : dU
integer : : i n f o

mini_rhs = 0
vd_pair => vars_discr%at (1)

182

select type (vdpairvar => vd_pair%var)
c l a s s i s (ppm_t_field_)

U => vdpairvar
end select

415 select type (vdpa i r d i s c r => vd_pair%d i s c r)
c l a s s i s (ppm_t_particles_d)

par t s => vdpa i r d i s c r
end select
change => changes%at (1)
select type (change)
c l a s s i s (ppm_t_field_)

dU => change
end select
ca l l L%compute (U, dU, i n f o)

425 IF (i n f o .NE. 0) THEN
i n f o = ppm_error_error
CALL ppm_error (ppm_err_sub_failed , &

"Operator� computation� f a i l e d " ,&
c a l l e r , 53 , i n f o)

GOTO 9999
END IF

9999 continue
end function mini_rhs

435 end module ppm_autogenerated_rhs

183

APPENDIX C

A webCG PPML showcase

We show the graphical webCG version of the minimal diffusion client pre-
sented in section 7.5.1. The diagram is divided into four parts with wires
crossing figure boundaries labeled A to F.

185

APPENDIX C. A WEBCG PPML SHOWCASE

Figure C.1. The initialization part of the program. A topology and a particle
set is created. The particles are mapped onto the topology and the the field f
is created. The diagram also shows Fortran code blocks providing code that is
not expressed in PPML.

186

Figure C.2. The field is discretized onto the particles and a ghost-get mapping
is performed. Then, we compute the Verlet list on the particle set and create the
DC-PSE operators of order 2. The ODE object is created, taking the right-hand
side and the field f as arguments.

187

APPENDIX C. A WEBCG PPML SHOWCASE

Figure C.3. Inside the right-hand side function we apply the DC-PSE discretized
Laplacian operators to the particle set.

188

Figure C.4. A nested loop iterates through time steps and ODE integrator
stages, calling the ODE step operation at each stage.

189

Bibliography

S. Adami, X. Y. Hu, and N. A. Adams. A new surface-tension formulation
for multi-phase SPH using a reproducing divergence approximation. J.
Comput. Phys., 229(13):5011 – 5021, 2010.

S. Adami, X. Y. Hu, and N. A. Adams. A generalized wall boundary
condition for smoothed particle hydrodynamics. J. Comput. Phys., 231
(21):7057 – 7075, 2012.

M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon
Press, Oxford, 1987.

A. M. Altenhoff, J. H. Walther, and P. Koumoutsakos. A stochastic bound-
ary forcing for dissipative particle dynamics. J. Comput. Phys., 225(1):
1125 – 1136, July 2007.

S. Andova, M. van den Brand, and L. Engelen. Prototyping the semantics
of a DSL using ASF+SDF: Link to formal verification of DSL models. In
Proc. 2nd Intl. Workshop on Algebraic Methods in Model-based Software
Engineering, Zurich, Switzerland, 30th June 2011, volume 56, pages 65–79.
Open Publishing Association, 2011.

191

BIBLIOGRAPHY

L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The priority R-tree: A
practically efficient and worst-case optimal R-tree. In Proc. SIGMOD,
Intl. Conf. Management of Data, pages 347–358, Paris, France, 2004.
ACM.

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick.
A view of the parallel computing landscape. Commun. ACM, 52(10):
56–67, October 2009.

O. Awile, Ö. Demirel, and I. F. Sbalzarini. Toward an object-oriented core
of the PPM library. In Proc. ICNAAM, pages 1313–1316. AIP, 2010.

J. W. Backus. The syntax and semantics of the proposed international
algebraic language of the zurich acm-gamm conference. Proc. Int. Conf.
Inf. Process., 1959.

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users
manual. Technical Report ANL-95/11 – Revision 2.1.5, Argonne National
Laboratory, 2004.

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users
manual. Technical Report ANL-95/11 - Revision 3.1, Argonne National
Laboratory, 2010.

J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm.
Nature, 324:446–449, 1986.

J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18:509–517, 1975.

M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. Multilevel adaptive
particle methods for convection-diffusion equations. Multiscale Model.
Simul., 4(1):328–357, 2005.

M. Bergdorf, P. Koumoutsakos, and A. Leonard. Direct numerical simula-
tions of vortex rings at Re˜ �= 7500. J. Fluid. Mech., 581:495, 2007.

192

BIBLIOGRAPHY

M. Bergdorf, I. F. Sbalzarini, and P. Koumoutsakos. A Lagrangian particle
method for reaction-diffusion systems on deforming surfaces. J. Math.
Biol., 61:649–663, 2010.

O. Bernard, D. Friboulet, P. Thevenaz, and M. Unser. Variational b-spline
level-set: A linear filtering approach for fast deformable model evolution.
IEEE Trans. Image Process., 18(6):1179 –1191, june 2009.

M. Bernaschi, M. Bisson, T. Endo, S. Matsuoka, M. Fatica, and S. Mel-
chionna. Petaflop biofluidics simulations on a two million-core system.
In Proc. 2011 Intl. Conf. for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 4:1–4:12. ACM, 2011.

X. Bian, S. Litvinov, R. Qian, M. Ellero, and N. A. Adams. Multiscale
modeling of particle in suspension with smoothed dissipative particle
dynamics. Phys. Fluids, 24(1):012002, 2012.

J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. In ACM SIGGRAPH
2005 Courses, SIGGRAPH ’05. ACM, 2005.

E.G. Boman, D. Bozdag, U. Catalyurek, A. H. Gebremedhin, and F. Manne.
A scalable parallel graph coloring algorithm for distributed memory
computers. In Proc. Euro-Par 2005 Parallel Processing, pages 241–251.
Springer, 2005.

E. Bonomi, M. Flück, P. George, R. Gruber, R. Herbin, A. Perronnet, S. Mer-
azzi, J. Rappaz, T. Richner, V. Schmid, P. Stehlin, C. Tran, M. Vidrascu,
W. Voirol, and J. Vos. Astrid: Structured finite element and finite volume
programs adapted to parallel vectorcomputers. Comput. Phys. Rep., 11:
81–116, 1989.

A Brandt. Multi-level adaptive solutions to boundary-value problems.
Math. Comput., 31(138):333–390, 1977.

D Brélaz. New methods to color the vertices of a graph. Commun. ACM,
22(4):251–256, April 1979.

A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.
Storaasli. State-of-the-art in heterogeneous computing. Sci. Program.,
18(1):1–33, 01 2010.

193

BIBLIOGRAPHY

D. Brown, G. Chesshire, W. Henshaw, and D. Quinlan. OVERTURE:
An object-oriented software system for solving partial differential equa-
tions in serial and parallel environments. In Proc. of the SIAM Parallel
Conference. SIAM, 1997.

Chris Bunch, Navraj Chohan, Chandra Krintz, and Khawaja Shams. Nep-
tune: a domain specific language for deploying hpc software on cloud
platforms. In Proc. 2nd Intl. Workshop on Scientific cloud computing,
ScienceCloud ’11, pages 59–68. ACM, 2011.

A. Canedo, T. Yoshizawa, and H. Komatsu. Automatic parallelization
of simulink applications. In Proc. of the 8th annual IEEE/ACM Int.
symposium on Code generation and optimization, CGO ’10, pages 151–
159. ACM, 2010.

J. Cardinale, G. Paul, and I. F. Sbalzarini. Discrete region competition for
unknown numbers of connected regions. IEEE Trans. Image Process.,
21(8):3531–3545, 2012.

N. Carriero and D. Gelernter. Linda in context. Communications of the
ACM, 32(4):444–458, 1989.

G. J. Chaitin. Register allocation & spilling via graph coloring. SIGPLAN
Not., 17(6):98–101, June 1982.

H. Chao, Z. Gengbin, and V. K. Laxmikant. Supporting adaptivity in
MPI for dynamic parallel applications. Technical Report 07-08, Parallel
Programming Laboratory, Department of Computer Science, University
of Illinois at Urbana-Champaign, 2007.

Simon R. Chapple and Lyndon J. Clarke. The parallel utilities library. In
Proc. IEEE Scalable Parallel Libraries Conference, pages 21–30. IEEE,
1994.

P. Charles, C. Grothoff, V. Saraswat, C.r Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. SIGPLAN Not. Not., 40(10):519–538,
October 2005.

P. Chatelain, G.-H. Cottet, and P. Koumoutsakos. Particle mesh hydro-
dynamics for astrophysics simulations. Int. J. Mod. Phys. C., 18(04):
610–618, 2007.

194

BIBLIOGRAPHY

P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni, and
P. Koumoutsakos. Billion vortex particle direct numerical simulations
of aircraft wakes. Comput. Method. Appl. Mech. Engrg., 197:1296–1304,
2008.

A. A. Chialvo and P. G. Debenedetti. On the use of the Verlet neighbor
list in molecuar dynamics. Comput. Phys. Commun., 60:215–224, 1990.

A. A. Chialvo and P. G. Debenedetti. On the performance of an automated
Verlet neighbor list algorithm for large systems on a vector processor.
Comput. Phys. Commun., pages 15–18, 1991.

A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the com-
plexity of computing minimum energy consumption broadcast subgraphs.
Proc. Symp. Theoretical Aspects of Computer Science, pages 121–131,
2001.

E. Coffman, Jr., M. Garey, D. Johnson, and A. LaPaugh. Scheduling file
transfers. SIAM J. Comput., 14(3):744–780, 1985.

C. Conti, D. Rossinelli, and P. Koumoutsakos. GPU and APU computations
of finite time Lyapunov exponent fields. J. Comput. Phys., 231:2229–
2244, 2012.

G.-H. Cottet and P. Koumoutsakos. Vortex Methods – Theory and Practice.
Cambridge University Press, 2000.

G.-H. Cottet, P. Koumoutsakos, and M. L. Ould Salihi. Vortex methods
with spatially varying cores. J. Comput. Phys., 162(1):164 – 185, 2000.

C. De Michele. Optimizing event-driven simulations. Comput. Phys. Com-
mun., 182(9):1846 – 1850, 2011.

Davison J. de St. Germain, John McCorquodale, Steven G. Parker, and
Christopher R. Johnson. Uintah: A massively parallel problem solving
environment. In Proc. HPDC’00: Ninth IEEE Intl. Symp. on High
Performance and Distributed Computing. IEEE, 2000.

V.K. Decyk, C.D. Norton, and B.K. Szymanski. How to support inheritance
and run-time polymorphism in fortran 90. Comp. Phys. Commun., 115
(1):9 – 17, 1998.

195

BIBLIOGRAPHY

A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A Generic Interface
for Parallel and Adaptive Scientific Computing: Abstraction Principles
and the DUNE-FEM Module. Computing, 90(3–4):165–196, 2010.

P. Degond and S. Mas-Gallic. The weighted particle method for convection-
diffusion equations. Part 2: The anisotropic case. Math. Comput., 53
(188):509–525, 1989a.

P. Degond and S. Mas-Gallic. The weighted particle method for convection-
diffusion equations. Part 1: The case of an isotropic viscosity. Math.
Comput., 53(188):485–507, 1989b.

Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,
E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: a domain specific language for building portable
mesh-based pde solvers. In Proc. 2011 Intl. Conf. for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 9:1–9:12.
ACM, 2011.

E. W. Dijkstra. Solution of a problem in concurrent programming control.
Commun. ACM, 8(9):569–569, September 1965.

P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra.
From CUDA to OpenCL: Towards a performance-portable solution
for multi-platform GPU programmingopencl: Towards a performance-
portable solution for multi-platform gpu programming. Parallel Comput.,
38(8):391 – 407, 2012.

A. Dubey, C. Daley, and K. Weide. Challenges of computing with flash on
largest hpc platforms. AIP Conf. Proc., 1281(1):1773–1776, 2010.

R. Fraedrich, S. Auer, and R. Westermann. Efficient high-quality volume
rendering of SPH data. IEEE Trans. Vis. Comput. Graphics, 16(6):
1533–1540, 2010.

D. Geer. Chip makers turn to multicore processors. Computer, 38(5):11 –
13, May 2005.

R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics
- theory and application to non-spherical stars. Mon. Not. R. Astron.
Soc., 181:375–378, 1977.

196

BIBLIOGRAPHY

P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola. Interactive SPH
simulation and rendering on the GPU. In Proc. ACM SIGGRAPH/Eu-
rographics Symp. on Computer Animation, pages 55–64, 2010.

C. Gotsman and M. Lindenbaum. On the metric properties of discrete
space-filling curves. Image Processing, IEEE Transactions on, 5(5):794
–797, may 1996.

P. Gray and S. K. Scott. Autocatalytic reactions in the isothermal, contin-
uous stirred tank reactor. oscillations and instabilities in the system A
+ 2B ! 3B; B ! C. Chem. Eng. Sci., 39(6):1087–1097, 1984.

L. Greengard and V. Rokhlin. The rapid evaluation of potential fields in
three dimensions. Lect. Notes Math., 1360:121–141, 1988.

M. Griebel and G. Zumbusch. Hash-storage techniques for adaptive multi-
level solvers and their domain decomposition parallelization. Contemp.
Math., 218:271–278, 1998.

A Guttman. R-trees: A dynamic index structure for spatial searching. In
Proc. SIGMOD, Intl. Conf. Management of Data, pages 47–57. ACM,
1984.

R. J. Hanson, C. P. Breshears, and H. A. Gabb. Algorithm 821: A fortran
interface to posix threads. ACM Trans. Math. Softw.s. Math. Softw., 28
(3):354–371, September 2002.

F. H. Harlow. Particle-in-cell computing method for fluid dynamics. Meth-
ods Comput. Phys., 3:319–343, 1964.

T. N. Heinz and P. H. Hünenberger. A fast pairlist-construction algorithm
for molecular simulations under periodic boundary conditions. J. Comput.
Chem. Chem., 25(12):1474–1486, 2004.

B. Hejazialhosseini, D. Rossinelli, C. Conti, and P. Koumoutsakos. High
throughput software for direct numerical simulations of compressible two-
phase flows. In Proc. 2012 Intl. Conf. on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages 16:1–16:12. IEEE Com-
puter Society Press, 2012.

197

BIBLIOGRAPHY

M. Herlihy and J. E. B. Moss. Transactional memory: architectural support
for lock-free data structures. SIGARCH Comput. Archit. News, 21(2):
289–300, May 1993.

L. Hernquist and N. Katz. TREESPH – a unification of SPH with the
hierarchical tree method. Astrophys. J. Suppl. Ser., 70:419–446, June
1989.

Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoek-
stra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R.
Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K.
Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and
Kendall S. Stanley. An overview of the Trilinos project. ACM Trans.
Math. Softw., 31(3):397–423, 2005.

S. E. Hieber and P. Koumoutsakos. A Lagrangian particle level set method.
J. Comput. Phys., 210:342–367, 2005.

C. A. R. Hoare. Quicksort. Comput. J., 5(1):10–16, 1962.

R. W. Hockney and J. W. Eastwood. Computer Simulation using Particles.
Institute of Physics Publishing, 1988.

R. W. Hockney and C. R. Jesshope. Parallel Computers. Hilger, Bristol,
1981.

W. Hönig, F. Schmitt, R. Widera, H. Burau, G. Juckeland, MS Müller, and
M. Bussmann. A generic approach for developing highly scalable particle-
mesh codes for GPUs. Technical report, Forschungszentrum Dresden-
Rossendorf & Technical University of Dresden, Dresden, Germany, 2010.

T. Y. Hou. Convergence of a variable blob vortex method for the Euler
and Navier-Stokes equations. SIAM J. Num. Analysis, 27(6):1387–1404,
1990.

E. N. Houstis, E. Gallopoulos, R. Bramley, and J. Rice. Problem-solving
environments for computational science. IEEE Comput. Sci. Eng., 4(3):
18 –21, July-Sept. 1997.

E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin, P. Papachiou,
K.-Y. Wang, and M. Gaitatzes. Pellpack: a problem-solving environment

198

BIBLIOGRAPHY

for pde-based applications on multicomputer platforms. ACM Trans.
Math. Softw., 24(1):30–73, March 1998.

P. J. in’t Veld, S. J. Plimpton, and G. S. Grest. Accurate and efficient
methods for modeling colloidal mixtures in an explicit solvent using
molecular dynamics. Comput. Phys. Commun., 179(5):320 – 329, 2008.

J. E. Jones. On the determination of molecular fields. ii. from the equation
of state of a gas. Proc. Roy. Soc. Lond. Series A, 106(738):463–477,
1924.

S. R. Karmesin, J. Crotinger, J. C. Cummings, S. Haney, W. J. Humphrey,
J. V. W. Reynders, S. Smith, and T. Williams. Array design and ex-
pression evaluation in POOMA II. In Proc. of the 2nd Intl. Symp.
on Computing in Object-Oriented Parallel Environments, volume 1505,
pages 231–238. Springer, 1998.

R.M. Karp. Reducibility among combinatorial problems. Complex. of
Comput. Comput., pages 85–103, 1972.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. 20(1):359–392, 1998.

Khronos. The OpenCL Specification, version 1.0. Khronos OpenCL Work-
ing Group, June 2009.

D. B. Kirk and W. M. W. Hwu. Programming massively parallel processors:
A Hands-on approach. Morgan Kaufmann, 2010.

A. Kosowski and K. Manuszewski. Graph Colorings, volume 352, chapter
Classical coloring of graphs, pages 1–19. American Mathematical Society,
2004.

P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex. J.
Comput. Phys., 138:821–857, 1997.

P. Koumoutsakos. Multiscale flow simulations using particles. Annu. Rev.
Fluid Mech., 37:457–487, 2005.

M. Kowarschik and C. Weiß. An overview of cache optimization techniques
and cache-aware numerical algorithms. In Algorithms for Memory Hier-
archies, volume 2625, pages 213–232. Springer, 2003.

199

BIBLIOGRAPHY

J. Krüger and R. Westermann. Linear algebra operators for GPU imple-
mentation of numerical algorithms. In ACM SIGGRAPH 2005 Courses,
SIGGRAPH ’05. ACM, 2005.

E. S. Larsen and D. McAllister. Fast matrix multiplies using graphics
hardware. In Proc. 2001 ACM/IEEE Conf. on Supercomputing, Super-
computing ’01, pages 55–55. ACM, 2001.

V. K. Laxmikant and Z. Gengbin. Charm++ and AMPI: Adaptive Run-
time Strategies via Migratable Objects. In Advanced Computational
Infrastructures for Parallel and Distributed Applications, pages 265–282.
Wiley-Interscience, 2009.

A. Logg. Automating the finite element method. Arch. Comput. Method.
E., 14:93–138, 2007.

A. Logg and G. N. Wells. Dolfin: Automated finite element computing.
ACM Trans. Math. Softw., 37(2), 2010.

A. Logg, H. P. Langtangen, and X. Cai. Past and future perspectives on
scientific software. In Aslak Tveito, Are Magnus Bruaset, and Olav Lysne,
editors, Simula Research Laboratory, pages 321–362. Springer Berlin Hei-
delberg, 2010.

K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf, E. Strohmaier,
and K. Yelicky. Memory-efficient optimization of gyrokinetic particle-
to-grid interpolation for multicore processors. In Proc. Conf. on High
Performance Computing Networking, Storage and Analysis, SC ’09, pages
48:1–48:12. ACM, 2009.

K. Madduri, E.-J. Im, K. Z. Ibrahim, S. Williams, S. Ethier, and L. Oliker.
Gyrokinetic particle-in-cell optimization on emerging multi- and many-
core platforms. Parallel Comput., 37(9):501–520, 2011.

A. Marowka. Parallel computing on any desktop. Commun. ACM, 50(9):
74–78, September 2007.

W. Mattson and B. M. Rice. Near-neighbor calculations using a modified
cell-linked list method. Comput. Phys. Commun., 119(2-3):135 – 148,
1999.

200

BIBLIOGRAPHY

L. McInnes, B. Allan, R. Armstrong, S. Benson, D. Bernholdt, T. Dahlgren,
L. Diachin, M. Krishnan, J. Kohl, J. Larson, S. Lefantzi, J. Nieplocha,
B. Norris, S. Parker, J. Ray, and S. Zhou. Parallel pde-based simulations
using the common component architecture. In Numerical Solution of
Partial Differential Equations on Parallel Computers, volume 51, pages
327–381. Springer, 2006.

X. Mei, P. Decaudin, and B. G. Hu. Fast hydraulic erosion simulation and
visualization on GPU. In Computer Graphics and Applications, 2007.
PG’07. 15th Pacific Conference on, pages 47–56. IEEE, 2007.

M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, December 2005.

Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, Version 3.0. High-Performance Computing Center Stuttgart,
September 2012.

J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The
Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig,
J. Orwant, S. Pinker, M. A. Nowak, and E. L. Aiden. Quantitative
analysis of culture using millions of digitized books. Science, 331(6014):
176–182, 2011.

F. Milde, M. Bergdorf, and P. Koumoutsakos. A hybrid model for three-
dimensional simulations of sprouting angiogenesis. Biophys. J., 95(7):
3146–3160, Oct 2008.

J. Misra and D. Gries. A constructive proof of Vizing’s theorem. Inform.
Process. Lett., 41(3):131 – 133, 1992.

J. J. Monaghan. Extrapolating B splines for interpolation. J. Comput.
Phys., 60(2):253–262, 1985.

B. Moon and J. Saltz. Adaptive runtime support for direct simulation
Monte Carlo methods on distributed memory architectures. In Proc.
IEEE Scalable High-Performance Computing Conference, pages 176–183.
IEEE, 1994.

C. L. Mueller, B. Baumgartner, G. Ofenbeck, B. Schrader, and I. F.
Sbalzarini. pCMALib: a parallel fortran 90 library for the evolution

201

BIBLIOGRAPHY

strategy with covariance matrix adaptation. In Proc. 11th Conf. Ge-
netic and evolutionary computation, GECCO ’09, pages 1411–1418. ACM,
2009.

D Nagle. Fortran interface to pthreads, 2005. URL http://users.erols.
com/dnagle/f2���.html.

NVIDIA. OpenCL Best Practices Guide. NVIDIA, May 2010.

NVIDIA. NVIDIA CUDA C Programming Guide. NVIDIA, April 2012.

M. Olano and A. Lastra. A shading language on graphics hardware: the pix-
elflow shading system. In Proc. 25th annual Conf. on Computer graphics
and interactive techniques, SIGGRAPH ’98, pages 159–168. ACM, 1998.

J.M. Perez, R.M. Badia, and J. Labarta. A dependency-aware task-based
programming environment for multi-core architectures. In Proc. 2008
IEEE Intl. Conf. on Cluster Computing, pages 142 –151, October 2008.

POSIX. IEEE standard for information technology - portable operating
system interface (POSIX). base definitions. IEEE Std 1003.1, 2004
Edition. The Open Group Technical Standard Base Specifications, Issue
6. Includes IEEE Std 1003.1-2001, IEEE Std 1003.1-2001/Cor 1-2002
and IEEE Std 1003.1-2001/Cor 2-2004. Base, 2004.

M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks.
Sunos multi-thread architecture. In Proc. Winter 1991 USENIX Conf.,
pages 65–80, 1991.

R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes. In Proc. 2009 17th
Euromicro Intl. Conf. on Parallel, Distributed and Network-based Pro-
cessing, pages 427 –436, feb. 2009.

J. T. Rasmussen, G.-H. Cottet, and J. H. Walther. A multiresolution
remeshed Vortex-In-Cell algorithm using patches. J. Comput. Phys.,
230:6742–6755, 2011.

Sylvain Reboux, Birte Schrader, and Ivo F. Sbalzarini. A self-organizing
Lagrangian particle method for adaptive-resolution advection–diffusion
simulations. J. Comput. Phys., 231:3623–3646, 2012.

202

http://users.erols.com/dnagle/f2000.html
http://users.erols.com/dnagle/f2000.html

BIBLIOGRAPHY

J.V.W. Reynders, J.C. Cummings, M. Tholburn, P.J. Hinker, S.R. Atlas,
S. Banerjee, M. Srikant, W.F. Humphrey, S.R. Karmesin, and K. Keahey.
POOMA: a framework for scientific simulation on parallel architectures.
In Proc. First Intl. Workshop on High-Level Programming Models and
Supportive Environments, pages 41–49. IEEE Comput. Soc. Press, 1996.

D. Rossinelli and P. Koumoutsakos. Vortex methods for incompressible
flow simulations on the GPU. Visual Comput., 24(7):699–708, 2008.

D. Rossinelli, M. Bergdorf, G. H. Cottet, and P. Koumoutsakos. GPU
accelerated simulations of bluff body flows using vortex particle methods.
J. Comput. Phys., 229(9):3316–3333, 2010.

D. Rossinelli, C. Conti, and P. Koumoutsakos. Mesh–particle interpolations
on graphics processing units and multicore central processing units. Phil.
Trans. Roy. Soc. A, 369(1944):2164, 2011.

D. W. I. Rouson, H. Adalsteinsson, and J. Xia. Design patterns for multi-
physics modeling in fortran 2003 and C++. Trans. Math. Softw, 37(1):
3:1–3:30, January 2010a.

D. W. I. Rouson, J. Xia, and X. Xiaofeng. Object construction and de-
struction design patterns in fortran 2003. Procedia Computer Science, 1
(1):1495 – 1504, 2010b.

I. F. Sbalzarini. Abstractions and middleware for petascale computing and
beyond. Intl. J. Distr. Systems & Technol., 1(2):40–56, 2010.

I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis,
and P. Koumoutsakos. PPM – a highly efficient parallel particle-mesh
library for the simulation of continuum systems. J. Comput. Phys., 215
(2):566–588, 2006a.

Ivo F. Sbalzarini, Arnold Hayer, Ari Helenius, and Petros Koumoutsakos.
Simulations of (an)isotropic diffusion on curved biological surfaces. Bio-
phys. J., 90(3):878–885, 2006b.

H.Y. Schive, Y.C. Tsai, and T. Chiueh. GAMER: A graphic processing unit
accelerated adaptive-mesh-refinement code for astrophysics. Astrophys.
J. Suppl. Ser., 186:457, 2010.

203

BIBLIOGRAPHY

B. Schrader, S. Reboux, and I. F. Sbalzarini. Discretization correction of
general integral PSE operators in particle methods. J. Comput. Phys.,
229:4159–4182, 2010.

J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge
University Press, Cambridge, UK, 1999.

P. R. Shapiro, H. Martel, J. V. Villumsen, and J. M. Owen. Adap-
tive smoothed particle hydrodynamics, with application to cosmology:
Methodology. Astrophys. J. Suppl. Ser., 103:269, 1996.

N. Shavit and D. Touitou. Software transactional memory. Distrib. Com-
put., 10:99–116, 1997.

T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka, N. Maruyama,
A. Nukada, and S. Matsuoka. Peta-scale phase-field simulation for den-
dritic solidification on the tsubame 2.0 supercomputer. In Proc. 2011
Intl. Conf. for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 3:1–3:11, New York, NY, USA, 2011. ACM.

S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke. Using model
checking with symbolic execution to verify parallel numerical programs.
In Proc. 2006 Intl. Symp. on Software testing and analysis, ISSTA ’06,
pages 157–168, New York, NY, USA, 2006. ACM.

F. Song, A. YarKhan, and J. Dongarra. Dynamic task scheduling for
linear algebra algorithms on distributed-memory multicore systems. In
Proc. Conf. on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 19:1–19:11, New York, NY, USA, 2009. ACM.

R. Speck, L. Arnold, and P. Gibbon. Towards a petascale tree code: Scaling
and efficiency of the PEPC library. J. Comput. Sci., 2(2):138 – 143, 2011.

G. Stantchev, W. Dorland, and N. Gumerov. Fast parallel particle-to-grid
interpolation for plasma PIC simulations on the GPU. J. Par. Distrib.
Comput., 68(10):1339–1349, 2008.

D. Stein and D. Shah Sunsoft. Implementing lightweight threads. In Proc.
1992 USENIX Summer Conf., pages 1–9, 1992.

W. Stein and D. Joyner. Sage: system for algebra and geometry experi-
mentation. SIGSAM Bull., 39(2):61–64, June 2005.

204

BIBLIOGRAPHY

G. Sutmann and V. Stegailov. Optimization of neighbor list techniques in
liquid matter simulations. J. Mol. Liq., 125:197–203, 2006.

W. C. Swope, H. C. Andersen, P. H. Berens, and K. B. Wilson. A computer
simulation method for the calculation of equilibrium constants for the
formation of physical clusters of molecules: Application to small water
clusters. J. Comput. Phys., 76(1):637–649, 1982.

K. H. Tsoi and W. Luk. Axel: a heterogeneous cluster with fpgas and gpus.
In Proc. 18th annual ACM/SIGDA Intl. Symp. on Field programmable
gate arrays, FPGA ’10, pages 115–124. ACM, 2010.

A. M. Turing. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc.
London, B237:37–72, 1952.

J. S. Turner. Almost all k-colorable graphs are easy to color. J. Algorithms,
9(1):63 – 82, 1988.

UPC. UPC language specifications, v1.2. Technical report lbnl-59208,
Lawrence Berkeley National Lab, 2005.

L. Verlet. Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules. Phys. Rev., 159(1):98–103, 1967.

V.G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret.
Analiz, 3(7):25–30, 1964.

J. H. Walther and I. F. Sbalzarini. Large-scale parallel discrete element
simulations of granular flow. Eng. Computations, 26(6):688–697, 2009.

U. Welling and G. Germano. Efficiency of linked cell algorithms. Comput.
Phys. Commun., 182:611–615, 2011.

M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, and Gibbon P. A
massively parallel, multi-disciplinary barnes–hut tree code for extreme-
scale n-body simulations. Comp. Phys. Commun., 183(4):880 – 889,
2012.

Z. Yao, J.-S. Wang, G.-R. Liu, and M. Cheng. Improved neighbor list
algorithm in molecular simulations using cell decomposition and data
sorting method. Comput. Phys. Commun., 161(1-2):27 – 35, 2004.

205

Index

A
abstraction, 126

compute, 128
ghost mapping, 128
global mapping, 128
local mapping, 128
topology, 127

adaptive-resolution
cell list, 39
methods, 38

approximation
function, 5
operator, 7

B
benchmark, 31, 52, 66, 83, 107

C
cell list, 17, 130
communication, 61

D
domain-specific language, 124

embedded, 124
DSATUR, 63

E
edge coloring, 62

F
field

PPM type, 28
PPML type, 130

foreach, 153

G
GPU, 91
graph coloring, 61

I
interpolation, 18

M 0
4

, 11
OpenCL, 91
using pthreads, 82

L
Laplacian, 139

207

INDEX

Lennard-Jones, 152

M
mapping, 16

ghost, 16, 128
global, 16, 128
local, 16, 128

mesh
abstraction, 126
Cartesian, 9
particle-mesh methods, 9
PPM type, 28

middleware, 126

N
neighbor list, 17, 130

O
OpenCL, 92
OpenMP, 75
operator

PPM type, 28
PPML type, 130

P
particle methods, 3

adaptive-resolution, 38
hybrid particle-mesh, 9
particles, 4

particle strength exchange, 7, 31
discretization-corrected, 139, 147

particles
abstraction, 126
particle methods, 4
PPM type, 27

POSIX, 87
socket, 87
threads, 75

PPM, 23

core, 27
numerics, 31

PPML, 130
client generator, 136
code generation, 134
implementation, 131
macros, 134
parsing, 133
WebCG, 139

pthreads, 75

R
reaction-diffusion, 146

S
SIMD

OpenCL, 91
threads, 81

subdomain, 15

T
threads, 75
topology, 15, 127

U
unit testing, 25

V
Verlet list, 17, 130, 153
vertex coloring, 61
visualization, 30, 148

W
web browser, 139
WebCG, 139

208

Publications

Refereed publications during PhD studies:

• Omar Awile, Ivo F. Sbalzarini, A pthreads wrapper for Fortran
2003, ACM Transactions on Mathematical Software, (submitted)

• Ferit Büyükkeçeci,Omar Awile, Ivo F. Sbalzarini, A portable OpenCL
implementation of generic particle-mesh and mesh-particle interpola-
tion in 2D and 3D, Parallel Computing, Available online 13 December
2012

• Omar Awile, Ferit Büyükkeçeci, Sylvain Reboux, Ivo F. Sbalzarini,
Fast neighbor lists for adaptive-resolution particle simulations, Com-
puter Physics Communications, 183(5), 2012, 1073-1081

• Omar Awile, Ömer Demirel, Ivo F. Sbalzarini, Toward an object-
oriented core of the PPM library, Proc. ICNAAM, International Con-
ference, 1313-1316, 2010

• Omar Awile, Anita Krisko, Ivo F. Sbalzarini, Bojan Zagrovic, In-
trinsically Disordered Regions May Lower the Hydration Free Energy
in Proteins: A Case Study of Nudix Hydrolase in the Bacterium
Deinococcus radiodurans, PLoS Computational Biology 6(7), 2010

Earlier refereed publications:

• Omar Awile, Laurent Balmelli, Fumihiko Kitayama, Masayuki Nu-
mao, Method and apparatus for using design specifications and mea-
surements on manufactured products in conceptual design models,
JP820060617 (patent)

209

Curriculum Vitae

Name: Omar Awile
Born: December 4th, 1981
Citizen of: Switzerland

May 2001 Matura Typus C – natural sciences and
math

2001 - 2007 Diploma and Master studies in Computer
Science at ETH Zurich, Switzerland, with
major in computational science and minor
in astrophysics

January 2008 M.Sc. ETH in Computer Science
2008 - 2012 PhD studies under the supervision of Prof.

Dr. Ivo F. Sbalzarini at the MOSAIC
Group, Institute of Theoretical Computer
Science, ETH Zurich

211

	Abstract
	Introduction
	Preliminaries
	A brief introduction to hybrid particle-mesh methods
	Continuum particle methods
	Particle function approximation
	Operator approximation
	Pure particle methods
	Hybrid particle-mesh methods

	Particle-mesh interpolation

	The Parallel Particle Mesh Library
	Features
	Topologies
	Mappings
	Neighbor lists and particle interactions
	Particle-mesh interpolations
	PPM numerics modules

	Previous applications of the PPM library
	Summary

	Extending PPM
	Toward an object-oriented PPM core
	Overall design
	The PPM core library
	Using the new API
	New PPM core utilities

	The PPM numerics library
	Performance benchmarks
	Summary and Conclusions

	Fast neighbor lists for adaptive-resolution particle simulations
	Adaptive-resolution cell lists
	Constructing AR cell lists
	Operations on AR cell lists
	Using AR cell lists

	Results
	Benchmarks
	Example application

	Conclusions

	A new edge-coloring-based communication scheduler
	A heapified implementation of DSATUR for communication scheduling
	Using heapified DSATUR in PPM

	Benchmarks
	Summary and Conclusion

	PPM on multi- and manycore platforms
	A pthreads wrapper for Fortran 2003
	Features and limitations
	Using forthreads in hybrid MPI/pthread programs
	Particle-mesh interpolation using forthreads
	Multigrid Poisson solver with computation-communication overlap
	Interactive computing with the PPM library and forthreads

	Summary and Conclusion

	An OpenCL implementation of particle-to-mesh and mesh-to-particle interpolation in 2D and 3D
	GPU Programming with OpenCL
	Method
	Strategies for interpolation on the GPU
	Data structures
	Mapping of the data structures into OpenCL
	Interpolation algorithms for the GPU

	Integration in the PPM Library
	Benchmarks
	Accuracy
	Runtime

	Conclusions and Discussion

	A domain-specific language for particle methods
	The Parallel Particle Mesh Language
	Domain-Specific Languages
	PPM abstractions
	PPML syntax and features
	Implementation
	Parsing
	Code generation
	PPML Macro collection

	The PPM client generator
	A minimal PPML example

	A visual programming interface for PPM
	Architecture
	Client-side architecture
	Server-side architecture

	Summary and Conclusions

	PPML benchmark clients
	The benchmark system
	Simulating a continuous reaction-diffusion model using PPML
	Simulating molecular dynamics using PPML
	Conclusion

	Conclusions
	Conclusions and future work

	Appendix The PPML ANTLR grammar
	Appendix A minimal PPM client
	Appendix A webCG PPML showcase
	Bibliography
	Index
	Publications
	Curriculum Vitae

