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Abstract. In order to extract useful information from EM images, such
as segmentation, it is compulsory to characterize regions structurally,
as well as contextually. For that reason, we propose a multistage deci-
sion mechanism that utilizes underlying differential geometric properties
of objects in a biologically inherited framework. Consequently, we start
with an initial feature selection procedure to select most relevant fea-
tures to characterize distinct regions, such as membrane, cytoplasm and
outliers. Similar to a topographic map, a random-forest classifier is em-
ployed to highlight mountain ridge like structures, e.g. membranes as well
as plateaus, e.g. cytoplasm. In order to extract the underlying geometry
of structures on this topographic map, especially membrane like struc-
tures, principal surface analysis is utilized. This unsupervised technique
returns highly sparse yet accurate low dimensional representation of the
data and especially characterizes membrane like regions. A task specific,
second stage decision mechanism is employed to distinguish contextu-
ally different mitochondria and cell boundary membranes. This second
stage learning/decision mechanism is based on the appearance, the ini-
tial topographic map with its low dimensional reconstruction and expert
supervision on different types of membranes. Initial results on individual
EM slices indicate that the proposed approach can successfully segment
objects with minimal expert supervision and can potentially form a basis
for a larger scale volumetric data interpretation.

1 Introduction

With the recent developments in serial section transmission electron microscopy (ssTEM)
technology, neuroscientists now have the chance to work on very large scale and high
resolution volumes towards understanding the functionality of neuronal structures.
ssTEM imaging is the first step towards obtaining a complete neuron wiring diagram
and provides potential of bringing a huge impact on the understanding of the whole
nerve system by providing sufficiently high (synaptic) resolution in tractable amount
of time.

Currently, there are remarkable progress in detection, segmentation and recon-
struction of neuronal arbors; however, the state-of-the-art methods are not completely
sufficient in practice since the accuracy requirement is extremely high. The whole idea
behind reconstructing the neuronal circuit relies on the accurate detection and seg-
mentation of branchings and mergers of neuronal structures, thus small merge or split
errors would make the results useless [1]. In 2D stack of ssTEM images, in order to
reconstruct neuronal arbors, one requires to identify the boundary (cytoplasmic mem-
brane) that encapsulates adjacent neurons. Identification of boundary from EM images
is not a trivial task due to artifacts related to the chemical fixation process in the tis-
sue preparation and the limitation in the section thickness as a result of anisotropic
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resolution [Albert Cordona, personal communication]. Extracting the correct bound-
ary of interest might need grouping relevant boundary components together which are
scattered on image domain.

In the presence of weak, cluttered or even no local boundary evidence, supervised
learning methods have been increasingly popular as a means of achieving more accurate
boundary detection [2], [3], [4], [5]. In [2], a multi layer convolutional neural network
is utilized to classify pixels as foreground and background. The network presents two
critical properties such that the classification filter for each layer is obtained directly
from the data, and the multiple convolutions throughout the layers of the network pro-
vide an indirect filter effects. In their work the neural network contains huge number of
parameters and therefore is computationally intensive and requires very large training
set.

To reduce computation time and the memory consumption of optimization methods
employed on affinity graphs (in the presence of large scale data as in EM images),
sparsification of the affinity graph has been used as a solution. In these approaches the
nodes of the graph represents super-pixels (small regions) and the affinity is defined
as the relationships between adjacent super-pixels. For instance, in [3], a hierarchical
segmentation procedure based on local statistical learning and topology-preserving
grouping is proposed. In a two step hierarchal scheme, first, image derived features for
each pixel in the pixels neighborhood is computed and then transformed into boundary
map via random forest classifier and an over-segmentation (super pixels) is obtained
via watershed transform on the basis of the classification scores. Next, and finally,
adjacent regions (super pixels) are merged with a second random forest classifier which
is trained on super-pixels with a set of features in order to segment target regions.

There have also been some efforts on bringing high level contextual information into
consideration for accurate boundary delineation. Graph cut segmentation algorithm is
one of the global optimization based solver of the affinity graphs via which, both
local, nonlocal and contextual constraints can be incorporated into optimization. For
example, in [6], the flux of the gradient vector field has been incorporated into graph
cut approach as a solution to prevent gaps in segmentation of thin and elongated
boundaries. However, the gradient flux is reported to introduce a large amount of
false positives when the image gradient is remarkably high at the undesired image
regions in addition to the target segmentation borders. As a more specific work to
ssTEM images, we refer [7] as an instance which uses the flux of gradient vector field
in segmentation of cytoplasmic membranes. In [8], the probability output of a random
forest classifier is used in a regular graph cut energy (cost) function. Choosing correct
weighting parameters which balances the effect of different energy terms is also task
specific.

As stated above, training a classifier based on the prior knowledge of the shape and
the appearance of the membranes is a common approach to highlight cell boundaries.
Such a classifier is ideally expected to highlight only cytoplasmic membrane regions;
however, notice that, other elements in a cell such as vesicles or mitochondria have
their own inner/outer membranes, thus make the recognition task more challenging.
For that reason, in this paper, we propose a framework composed of two stage decision
mechanisms that can identify accurate cytoplasmic membranes (we will call this as the
cell boundary in the rest of the manuscript). In the first stage, we highlight potential
cell boundary candidates, whereas in the second stage such candidates are interpreted
into meaningful elements based on their relative spatial distribution and appearance.

2 Method

In this section, we give the details of our approach and also summarize the overall flow
via diagram shown in Fig. 2. Briefly, our approach is composed of training and testing
sessions. In the training, two classifiers are built. The first classifier is employed on
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Fig. 1. The block diagram of our workflow with its training and test parts.

the pixel domain of the image (see Section 2.1) while the second is on the intrinsic
membrane manifold (see Section 2.3). Having the two classifiers prepared, given a
test image, first a membrane detection (Section 2.1), then the ridge point detection
for low rank representation of the data (Section 2.2), graph construction from low
rank representation and the membrane identification on this graph (Section 2.3) is
applied consecutively. Finally, morphology based post processing is utilized to obtain
the ultimate segmentation.

2.1 Membrane Detection

In order to highlight membrane like structures in EM slices, we used random forest
classifier [8]. We start with a feature selection procedure to select the most relevant
features with respect to the groundtruth on a training set. Initial pool of features is
a mixture of appearance, e.g. edge, min/max intensity and structural, e.g. curvature,
filtering responses evaluated at different scales (in total 243 distinct features). We
estimated the mutual information of a feature [9] with groundtruth and selected the
first 4 features (3 different scales of anisotropic diffusion and Gabor filter response).
The total number of the features are arbitrarily selected based on the visual inspection.

In order to extract accurate boundary from EM images, one needs to distinguish cell
boundary from the rest of the elements. However, note that, any element that resamples
the cell membrane in terms of appearance or structure will also be miss classified.
Moreover, cell membranes are not always smooth and might take arbitrary shapes,
especially around synapses. Consequently, we approach the recognition task as a three
class problem where we highlighted i) cell boundary, ii) cytoplasm, and iii) ambiguity
regions in a training set. Ambiguities are locations where other membrane types such as
mitochondria inner/outer membrane or synapse locations are present. In fact, the major
challenge in boundary decision is to develop efficient and accurate algorithms for large
volumes of data to categorize such ambiguity regions into cell membrane or cytoplasm.
For that reason, we calculate the low rank membrane representation that accurately
governs the underlying biological structure, yet provides sparse representation of the
data.

2.2 Low rank membrane representation

Fig. 2-a shows the result of the random-forest classifier on a sample test image. Each
color depicts the probability of having one class where red, green and blue represent
cell membrane, cytoplasm and ambiguity regions correspondingly. In order to sparsely
reconstruct a low rank representation of the data, we use the membrane probabil-
ity map (red channel) and estimate the intrinsic structure of the membranes. Unlike
previous approaches that partition the probability map into arbitrary regions, e.g.
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(a) (b)

Fig. 2. (a) Result of 1st stage random forest classifier on a test image. (b) A closer
look to the detected point locations on the ridge of the cell membrane probability map.
Note that the probability map is just the red channel of image in (a). Unit vectors in
the tangent space (red) and the vectors (green) that are orthogonal to the tangents are
also rendered.

super-voxels, our sparse reconstruction of the data inherits the differential geometric
properties of the cell tissue.

In order to obtain a sparse representation of the data, we utilized nonparametric
principal curve projections [10, 11]. Intuitively, our goal is to find samples on the ridge
of the probability map that is sufficiently sparse to efficiently analyze the data, yet
dense enough to estimate the embedded underlying structure, i.e. curve. In fact, cell
membranes are 2D surfaces embedded in 3D volume, however, we restrict ourself to
the estimation of curves in 2D slices due to the high anisotropy in the data. For that
purpose, we used the first and second derivatives of a ridge regression function jointly
in order to find the ridge locations where gradient becomes orthogonal to the maximal
curvature direction1. Fig. 2-b shows the overlay of the detected point locations on the
ridge of the cell membrane probability map.

2.3 Membrane Identification

A crucial recognition step in membrane recognition is to analyze the data in the context
and to classify ambiguities in the data into correct elements (cell membrane/cytoplasm).
Pairwise similarities with the neighboring elements, appearance, and shape are neces-
sary features to decide if an ambiguous location in the data is cell boundary or not.
In order to identify different types of membranes and uncertainty regions, we classify
the projected membrane points into three: isolated (L1), transition (L2) and inner
samples (L3) based on their cross-section probability profiles. This grouping is done
via second stage random forest classifier which is trained on the probability profile
along the normal direction of the tangent space of each projection point. Fig. 3 shows
common uncertainty regions ( dense blue regions) where the recognition task is not
trivial. Fig. 3-a displays the 3 channel probability map obtained from the first stage
random forest classifier. Orthogonal profiles of the probability values across isolated,
transition and inner (cell, mitochondria outer and inner membranes with their associ-
ated numbers respectively) are overlaid on the probability map on the left. Similarly,
membranes in the transition and inner regions of the synapse location are depicted on
the right. In general, membranes have distinct profiles based on the spatial location in
the cell. An isolated sample lies between cytoplasmic region, whereas samples in the

1 Maximal curvature direction is defined as the eigenvector of the local Hessian matrix
that has the largest absolute eigenvalue. For details see [10].
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Fig. 3. Illustration of feature vectors for the three classes (mitochondria - synapsis
borders, cell membrane and mitochondria - synapsis inside) of projection points.

mitochondria or synapse are encapsulated by blue channel. Lastly, transitional regions
are boundary between these two.

Motivated by the aforementioned observations, we formulate the membrane iden-
tification problem as a competitive label propagation, operating over a graph network
which is well matched with our sparse representation.

Let V be the set of projection points L := L1

⋃
L2

⋃
L3 and E be the pairwise

edges between them with constructed sparse graph G = 〈V, E〉. Edges between sam-
ples are determined by constrained Delaunay triangulation, where any edges that passes
through high probability cytoplasmic regions are deleted from the graph. In the pro-
posed competitive label propagation process, two classes: isolated (teal) and inner (yel-
low) propagate in the network and compete each other to occupy the transition (brown)
class nodes. Starting from an initial state Lt=0 =

⋃
Lt=0

i , i = 1 . . . 3 and Φ(t = 0) the
iterative competition model grows a dynamic front to span all unlabeled nodes (j ∈ L3)
in the graph to cover the whole data. The decision of an unclaimed label at iteration
t is defined as the following optimization:

L̃t
3(j) ⇐= arg max

k

{
|(Nk,t(j))|

}
, k ∈ 1, 2

subject to Nk,t(j) ∈ L1 ∪ L2

j ∩Nk,t(j) 6= ∅
Θ(Nk,t(j)) < Φ(t) (1)

where optimization is formulated as majority voting in the graph. Here, |(Nk,t(j))|
is the cardinality of the neighborhood of j having class label k at iteration t. First
and second constraints indicate the propagating front of the competitive voting and
the third constraint indicates the current state decision level Φ(t) at iteration t. In
our competitive voting model, state decision level is a monotonically non-decreasing
function and is a measure of anisotropy in the nodes. More clearly, as the front grows
and occupies, unlabeled nodes that are intrinsically similar to the labeled instances
are ideally favored. Estimated low rank representation of the data is utilized to align
the tangent space of an unlabeled instance with a labelled one, hence highlight the
local anisotropy in the graph. In order to align samples, dissimilarity/divergence of
samples from the underlying structure is calculated as the total angle, Θ() between
the aligned tangential spaces. The total angle is calculated as the sum of the interior
angles between the tangential vectors and the edge between nodes. At a given decision
level Φ(t), front continues to grow as long as there exits samples in the feasible set of
the above optimization. After a single pass through all samples in L3, Φ(t) level is
relaxed with an arbitrarily selected percentage until iterative search process described
above is finished.
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(a) (b)

(c) (d)

Fig. 4. (a) A classification result via second-stage random forest classifier based on
the features shown in Fig. 3. (b) Projection points with their label colormap. Points
classified as membrane are shown in blue and non-membrane in yellow. Red points are
discarded since they have no valid connection to other points on the constrained map.
(c) Projection points rendered with their initial affinity colormap. (d) Projection points
rendered with their updated affinities after affinity propagation and False Positive
removal.

Affinity Propagation and False Positive Removal Ideally, the competitive
label propagation method is expected to return two distinct clusters (cell boundary and
non-cell boundary) that span the whole graph. However, due to the complexity and
difficulties of the data as mentioned before, there might exist false positively (non-cell
boundary) labelled nodes although they belong to the cell boundary (see Fig. 4-b).

Having the two groups of nodes, the nodes that are actually parts of the cell bound-
ary has to be distinguished from the non-cell boundary label. For this purpose, affinity
values are assigned for each labeled points (see Fig. 4-c) based on the result of the first
stage random forest classifier which highlights regions that are likely to be membrane.
From this point, we target identifying non-cell boundary by employing a region growing
type of algorithm which is run on the connectivity graph of the nodes that was built
previously as defined in Section 2.3. Before running the region growing, the affinity
values for the nodes that are classified as non-cell boundary have to be updated since
the affinities on mitochondria boundaries are very similar to cell boundaries. Thus, the
affinities are updated such that total affinity level difference between the true positives
and false positives are increased. In the update scheme, new affinities are computed
based on a descriptor that is function of both high level shape information e.g. cur-
vature and solidity, of the underlying regions of the false positive labeled points. In
Fig. 4-c and d, the merit of this update scheme can be observed clearly.



7

(a) (b)

Fig. 5. (a) Initial set of nodes that are chosen above a very large affinity threshold.
Note that points are rendered with affinity colormap. (b) Final cell boundary points
obtained after region growing on the connectivity graph.

Fig. 6. Final segmentation results for an example section from the test set.

Region growing starts from an initial set of nodes (see Fig 5-a) which are selected as
the nodes having affinity greater than a very large threshold. Final cell boundary points
are obtained as shown in Fig. 5-b. Given the final cell boundary points, segmentation
of encapsulated neurons with morphological post processing steps is straightforward
and out of the scope of this paper.

3 Results

As part of the ”ISBI’12 Segmentation of neuronal structures in EM stacks” challenge,
the method was evaluated on 30 sections from 2d stack of ssTEM images of Drosophila
first instar larva ventral nerve cord (VNC). The microcube measures 2 x 2 x 1.5 microns
approximately, with a resolution of 4x4x50 nm/pixel (see [12] for the details of the
data set). We trained our classifiers on arbitrarily chosen 20 sections out of 30 training
images. Our results were compared to the groundtruth using the evaluation program
provided by the organizers. In order to evaluate the performance, Minimum Splits
and Mergers Warping error, Rand error and the Pixel error were used (see [13] for
the details of evaluation metrics). The performance of our method was reported as:
%16.2303,%0.1613 and %10.939 rates for Rand error, Warping error and Pixel error,
respectively for all images in the test set. In Fig. 6, an example segmentation result on
a section from the test set is shown.
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4 Conclusion

In this paper, we have underlined many challenging facts about the reconstruction of
neuron structures from ssTEM images and proposed a two stage decision mechanism
for segmentation of ssTEM images by using both low level (differential geometric) and
high level contextual properties of biological elements. We defined a membrane iden-
tification problem which can be solved over a sparse connectivity graph. We proposed
an iterative competition based label propagation method for the membrane identifica-
tion. Demonstrated results on 30 sections of the test data of ISBI’12 EM Segmentation
Challenge look promising for future research directions. Future work includes extending
current 2D label propogation into 3D with global optimization extensions.
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