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 Mechanoreceptors are sensory cells that transduce mechanical stimuli into electrical signals 
and mediate the perception of sound, touch and acceleration. Ciliated mechanoreceptors 
possess an elaborate microtubule cytoskeleton that facilitates the coupling of external forces 
to the transduction apparatus. In a screen for genes preferentially expressed in  Drosophila  
campaniform mechanoreceptors, we identifi ed DCX-EMAP, a unique member of the EMAP 
family (echinoderm – microtubule-associated proteins) that contains two doublecortin domains. 
DCX-EMAP localizes to the tubular body in campaniform receptors and to the ciliary dilation 
in chordotonal mechanoreceptors in Johnston ’ s organ, the fl y ’ s auditory organ. Adult fl ies 
carrying a piggyBac insertion in the DCX-EMAP gene are uncoordinated and deaf and display 
loss of mechanosensory transduction and amplifi cation. Electron microscopy of mutant sensilla 
reveals loss of electron-dense materials within the microtubule cytoskeleton in the tubular 
body and ciliary dilation. Our results establish a catalogue of candidate genes for  Drosophila  
mechanosensation and show that one candidate, DCX-EMAP, is likely to be required for 
mechanosensory transduction and amplifi cation.       
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 Mechanotransduction is the process by which a mechani-
cal force impinging on a cell produces an intracellular 
signal. ! is signal may function locally within the tissue 

to regulate cellular motility, growth or di" erentiation 1,  or it may 
be transmitted to the central nervous system where it can lead to 
the perception of sound, touch or accelerations 2 . Mechanosensory 
cells o# en contain elaborate cytoskeletal structures that provide a 
mechanical link from the external stimulus to the receptor module. 
A well-studied example of such a cytoskeletal linkage apparatus is 
the hair bundle of hair cells, the receptor cells underlying the senses 
of hearing and balance in the vertebrate inner ear. Shearing of adja-
cent actin-$ lled stereocilia within the bundle tenses extracellular 
links and leads to the opening of transduction channels located 
close to the apical tips of the stereocilia 3 . 

 In addition to actin-based mechanoreceptors such as hair cells, 
vertebrates and invertebrates contain microtubule-based sensory 
cells. Ciliated and non-ciliated sensory neurons in  Caenorhabditis 
elegans  ( C. elegans ) mediate the response to touch 4 . Ciliated  epithelial 
cells in the kidney detect % uid % ow 5 , and ciliated receptor neurons 
in insect bristle receptors, campaniform sensilla and chordotonal 
organs sense forces associated with touch, air % ow, cuticle defor-
mation, gravity and sound 6 . ! e transduction apparatus of auditory 
chordotonal receptor neurons in the  Drosophila  antenna has been 
shown to be functionally equivalent to that of hair cells in that it can 
be described by serially arranged force-gated transduction channels, 
adaptation motors and gating springs 7 . Correlates of auditory trans-
ducer gating and associated ampli$ cation have been identi$ ed 
in the % y ’ s antennal mechanics, but proteins that are required for 
transducer function have not been identi$ ed as yet. 

 In this study, we used DNA microarrays to identify genes that are 
speci$ cally expressed in  Drosophila  campaniform receptors. Our 
reasoning was that such genes may include novel mechanotrans-
duction genes that have not been found in behavioural screens 8,9 . 
We identi$ ed a unique doublecortin-domain-containing echino-
derm – microtubule-associated protein (DCX-EMAP, CG42247) as 
a candidate for a mechanoreceptor-speci$ c protein in % ies. EMAP 
was $ rst identi$ ed in sea urchins ( Strongylocentrotus purpuratus ) 10 . 
All EMAP family members share a common conserved HELP 
domain (HELP; hydrophobic echinoderm – microtubule-associ-
ated-like protein) located at an acidic N-terminus and multiple 
C-terminal WD-40 domains 11 . Some EMAP homologues have a role 
in cell division 12 – 16 , and others are expressed in neurons 17 , including 
the  C. elegans  homologue, which is expressed in muscles and mech-
anosensory cells 18 . In contrast to EMAP homologues from other 
organisms, DCX-EMAP lacks the coiled-coil domain, but possesses 
two doublecortin (DCX) domains at its N-terminus. Doublecortin, 
mutations in the gene of which leads to X-linked lissencephaly in 
humans, is a microtubule-associated protein found in migrating 
neurons 19,20 . Doublecortin is a microtubule-stabilizing protein that 
suppresses catastrophes (the conversion of a growing microtubule 
to a shrinking one), stimulates microtubule nucleation and pro-
motes the formation of 13-proto$ lament microtubules 21,22 . In this 
paper, we show that DCX-EMAP is necessary for auditory trans-
ducer gating and ampli$ cation in  Drosophila  chordotonal receptor 
cells, as well as for the formation of microtubule-associated elec-
tron-dense material within the sensory dendrites of campaniform 
and chordotonal neurons. Our $ ndings identify DCX-EMAP as the 
$ rst invertebrate protein that is essential for auditory transducer 
function, and supports previous suggestions that the tubular body 
of campaniform receptors and the ciliary dilation of chordotonal 
receptors may be sites of mechanosensory transduction 23,24 .  

 Results  
  Screen for candidate mechanostransduction genes   .   We used  DNA 
microarrays  ( A" ymetrix ) to identify genes of which the expression 
is increased in campaniform mechanosensilla of the % y ’ s halteres. 

Halteres are vestigial hindwings that function as gyroscopes 25 . 
! ey are composed of three segments: the large distal segment, the 
capitellum, functions as an inertial mass; and the proximal segments, 
the pedicel and scabellum, contain arrays of campaniform sensilla 
that detect cuticular stresses generated when the % y accelerates and 
the capitellum moves relative to the body ( Supplementary Figure S1 ). 
! e proximal segments contain 186 campaniform sensilla, whereas 
only 18 bristle receptors are housed by the capitellum 26 . Because, 
the capitellum is  ~ 10 times larger in volume than the pedicel and 
scabellum combined, the proximal segments are  ~ 100-fold enriched 
in mechanosensory cells over the capitellum. ! e other cell types are 
primarily epithelial cells. We therefore expected that tissue from the 
proximal segments would be  ~ 100-fold enriched in RNA expressed 
speci$ cally in mechanosensilla (compared with the capitellum), 
but both tissues would have approximately the same expression 
levels of epithelial genes. Because each mechanosensillum contains 
a mechanoreceptor cell and supporting cells, we reasoned that 
messages speci$ cally expressed in mechanoreceptors, including 
possible mechanotransduction genes, would be enriched in the 
proximal-segment tissue. 

 To compare the relative expression of genes in mechanoreceptor-
rich and mechanoreceptor-poor tissues, we extracted RNA  separately 
from the two proximal segments and the one distal  segment of 50 
halteres. RNA was also extracted from the thoracic ganglion to 
serve as a neuronal model tissue. Because the yield was low, RNA 
was ampli$ ed before hybridization with DNA micro arrays contain-
ing multiple 25-mer oligonucleotide probes for  ~ 13,000  di" erent 
  Drosophila  genes. A# er scanning and processing of arrays to remove 
technical variances (see  Supplementary Information ), di" erences 
between tissues were calculated from a linear model $ t. In par-
ticular, a log 2 -ratio  M  PC  comparing the expression levels in the two 
proximal segments (herea# er called  ‘ pedicel ’ ) with the capitellum 
was computed. Similarly, the log 2 -ratio  M  PN  compares gene expres-
sion in the pedicel compared with that in the thoracic ganglion. 
 Supplementary Data  contain the top 625 genes (our  candidate gene 
list) ranked by the probability of a di" erence between pedicel and 
capitellum. ! is corresponds to 4.8 %  of the total genes (625 out of 
13,000). 

 To determine whether our DNA microarray experiments identi-
$ ed genes overexpressed speci$ cally in mechanosensory cells, we 
carried out several additional tests. First, we performed quantita-
tive real-time PCR (qRT – PCR) on 12 candidate genes, comparing 
pedicel and capitellum tissue. ! ere was a highly statistically sig-
ni$ cant correlation between the log 2  of the ratio of qRT – PCR  values 
and  M  values ( t     =    4.7,  P     <    0.0003,  Supplementary Figure S2 and 
 Supplementary Table S1 ). Second, because campaniform receptors 
are ciliated sensory cells, we expected to $ nd cilia-speci$ c 
genes. In accordance with this expectation, our candidate list 
includes 36 % agellar and basal body proteome genes de$ ned by 
Li  et al.  27  out of the 231 % agellar and basal body genes represented 
in our array. ! e list thus contains 16 %  of the % agellar and basal 
body genes, which is signi$ cantly more ( P     <    10     −    9 ) than the 5 %  
 coverage of total genes. We also found 16 of the 26 ciliary compart-
ment genes de$ ned by Avidor-Reiss  et al.  28  as required for ciliated 
receptor outer-segment formation or function ( Supplementary 
Data ). Again, these genes are signi$ cantly overrepresented in our 
list ( P     <    10     −    14 ). ! ird, we found  TRPN1  (also known as  nompC ), the 
only candidate mechanotransduction gene to date 29 , being upreg-
ulated. Finally, data mining using FlyMine and the BDGB  in situ  
database 30,31  con$ rmed that the majority of genes in the candidate 
gene list are expressed in sensory cells ( Table 1 ). ! e BDGP  in situ  
database contains images of patterns of gene expression during 
embryogenesis for  Drosophila  genes represented in non-redundant 
sets of  Drosophila  ESTs. All expression patterns are annotated using 
controlled vocabulary (ImaGO terms).  Table 1  shows terms enriched 
in our candidate gene list and the corresponding  P -value. ! e terms 
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displayed in  Table 1  demonstrate that genes with an expression in 
sensory structures are clearly enriched in our candidate gene list. In 
fact, we can conclude that genes expressed in sensory cells form the 
majority of genes in the candidate gene list ( Supplementary Data ). 

 As possible candidates for the transduction channel, we identi-
$ ed two members of the transient receptor potential (TRP) fam-
ily,  TRPN1  ( M  PC     =    2.2;  M  PN     =    1.4) 29  and  wtrw  (CG31284), recently 
described to be involved in hygrosensation ( M  PC     =    4.2,  M  PN     =    3.5) 32 . 
Given the correlation between microarray intensity levels and 
RNA levels measured by qRT – PCR, and the signi$ cant over-
representation of cilial, basal-body and genes known to be expressed 
in  mechanoreceptors, it seems likely that our candidate gene list 
contains novel genes involved in mechanosensory transduction.   

  DCX-EMAP is a candidate mechanotransduction gene   .   One of 
our candidate genes is DCX-EMAP ( Fig. 1 ), which is mentioned in 
the Introduction section. DCX-EMAP is more than sixfold enriched 
in the haltere pedicel compared with the capitellum ( M  PC     =    2.6) 
and neuronal control tissue ( M  PN     =    2.7). ! is enrichment, which is 
highly signi$ cant ( B  PC     =    5.3,  B  PN     =    6.2; corresponding to probabili-
ties of 99.5 and 99.8 % ), was con$ rmed by qRT – PCR ( Supplemen-
tary Information ).  In situ  hybridization (BDGP database) shows 
that, in  Drosophila  embryos, DCX-EMAP is speci$ cally expressed 
in mechanoreceptor cells 31 . DCX-EMAP displays an unusual 
domain  architecture compared with other members of the EMAP 
family: it lacks the coiled-coil domain and has two DCX domains 
( Fig. 1b,c ). To test for its ability to bind microtubules, DCX-EMAP 
was expressed in U2OS cells. DCX-EMAP co-localizes with micro-
tubules ( Fig. 1d-f ); moreover, it bundles microtubules in these cells. 
! us, the candidate gene list includes one candidate that encodes a 
microtubule-associated protein. 

 We decided to follow-up on the possible role of DCX-EMAP in 
mechanotransduction because: (1) microtubules are a prominent 
cytoskeletal feature of ciliated mechanoreceptors, and (2) we, along 
with others, have shown that, in zebra$ sh, drEMAP is expressed 
in neuromasts along the lateral line organ ( Supplementary 
Figure S3 ) 33,34 , suggesting that EMAP may be an evolutionarily 
conserved mechanotransduction gene.   

  DCX-EMAP defects cause uncoordination and deafness   .   To deter-
mine whether defects in DCX-EMAP have an e" ect on  Drosophila  
behaviour, we examined a piggyBac 35,36  insertion line ( Fig. 1a ). ! e 
piggyBac insertion f02655 (Bloomington stock number 18573) is 
inserted into the intron between exons 4 and 5 of DCX-EMAP ( Fig. 1a ). 
Flies that are homozygous for this insertion, or that are transhetero-
zygous for the insertion and for either of two small chromosomal 
deletions (Df(3L)BSC441, Df(3L)ED217), that is, they have an 
insertion in one copy of the chromosome and a deletion of the 
DCX-EMAP gene region in the other copy, showed a mild degree 
of uncoordination, including unstable walk, spread wing position, 
extensive grooming, the inability to initiate stable % ight and slug-
gishness. We characterized % ight initiation using an assay devel-
oped by Benzer: 37  homozygous as well as transheterozygous % ies 
performed signi$ cantly worse than wild-type controls ( Fig. 2a,b ). 
Flies homozygous and transheterozygous for the piggyBac insertion 
are indistinguishable in their phenotype. ! erefore, we conclude 
that the piggyBac insertion is a functional null. Heterozygous % ies 
showed a slight decrease in % ight initiation performance compared 
with wild-type % ies. We do not believe that this is due to a dominant-
negative e" ect of the piggyBac insertion because piggyBac excision 
% ies also showed a similar small decrease in % ight-initiation per-
formance ( Fig. 2b ). Rather, we attribute the slight impairment seen 
in heterozygous and excision % ies to the susceptibility of this com-
plex behaviour to slight di" erences in genetic backgrounds. 

 Flies homozygous for insertion f02655 are severely hearing 
impaired. ! e mechanically evoked compound action potentials 
(CAP) recorded from the ears of wild-type % ies and excision con-
trols are absent in mutants ( Fig. 2c , middle traces). Two lines of evi-
dence suggest that this hearing impairment is due to a defect in the 
gating of transduction channels. First, the large peak in the evoked 
displacement of the antenna that arises from compliance associ-
ated with the gating of mechanotransducer channels in Johnston ’ s 
organ 38  is greatly diminished in the mutant ( Fig. 2c , upper traces). 
Second, the large spontaneous twitches of the arista of control % ies, 
which are thought to re% ect the active mechanical ampli$ cation 
arising from the feedback between mechanotransducer channels 
and molecular motors 7 , are strongly reduced in magnitude ( Fig. 2d ) 

    Table 1      |    Enrichment of gene expression terms in the candidate gene list ( Supplementary Data ). 

    Terms     P -value    Number of hits  

   Sensory system head  1.21E-27  58 
   Dorsal / lateral sensory complexes  3.16E-14  36 
   Ventral nerve cord  2.87E-10  94 
   Ventral sensory complex primordium  1.20E-08  32 
   Embryonic brain  6.15E-08  87 
   Embryonic antennal sense organ  6.13E-04  14 
   Sensory nervous system primordium  0.0000010  19 
   Labral sensory complex  0.0000160  7 
   Embryonic maxillary sensory complex  0.0000172  10 
   Dorsal / lateral sensory complexes primordium  0.0000182  9 
   Embryonic labial sensory complex  0.0000368  10 
   Embryonic central nervous system  0.0001130  32 
   Labial sensory complex primordium  0.0001573  6 
   Ventral sensory complex-specifi c anlage  0.0001746  8 
   Embryonic central brain glia  0.0002126  11 
   Ventral midline  0.0002335  20 
   Lateral cord glia  0.0003152  12 
   Sensory nervous system-specifi c anlage  0.0021827  5 
   Need new term (larval eye primordium)  0.0030180  3 
   Embryonic foregut sensory structure  0.0044952  5 
   Embryonic Bolwig’s organ  0.0086228  6 
   Antennal primordium1  0.0087452  5 
   Maxillary sensory complex primordium  0.0093698  5 

     The  P -value is calculated using the Hypergeometric distribution and Benjamini-Hochberg  correction for multiple testing.   
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in the receivers of DCX-EMAP mutant % ies. ! us, the ears of DCX-
EMAP mutants have impaired mechanical and electrical responses. 

 To achieve a better understanding of the observed phenotypes, 
we conducted a more detailed analysis of the mechanics of stimu-
lated and unstimulated receivers, as well as the corresponding nerve 
responses of DCX-EMAP mutants, and wild-type and piggyBac 
excision controls. ! e receivers of DCX-EMAP mutants display a 
reduced total % uctuation power and a shi#  in their best frequen-
cies to higher values, as found in dead % ies ( Fig. 3a ) 39 . ! e energy 
gain for ampli$ cation, calculated from the spectral data, is absent in 
DCX-EMAP mutants, but is restored to wild-type levels in piggyBac 
excision controls ( Fig. 3b ). To directly test for nonlinear feedback 
ampli$ cation, we exposed the sound receivers (aristae) of mutant 
and control % ies to tones of di" erent intensities. In response to pure 
tones of di" erent intensities, receivers of wild-type and excision 
control % ies display a characteristic nonlinear compression, which 
makes the receiver more sensitive when the sound is faint ( Fig. 3c ) 40 . 
In f02655 mutants, this nonlinear e" ect was lost. Sensitivity gains 

calculated from these displacement responses showed a sevenfold 
gain in sensitivity due to nonlinear ampli$ cation for control % ies 
( Fig. 3c , bottom). In contrast, the receivers of f02655 mutants con-
stantly displayed low sensitivity over the entire range of stimulus 
intensities, with a mean sensitivity gain of  ~ 1, con$ rming that 
ampli$ cation is entirely lost ( Fig. 3c , bottom). 

 To test for the mechanical signatures of transducer gating, we 
exposed the receivers of mutant and control % ies to a series of force 
steps while measuring their displacement responses. When de% ected 
by a force step (lower traces in  Fig. 2c ), control receivers display an 
initial displacement peak (upper traces in  Fig. 2c ) that nonlinearly 
scales with the external force ( Fig. 3d ). ! is nonlinear gating compli-
ance, which arises from the gating of auditory  transduction channels 
and conforms to the gating spring model of hair cell transduction 
(green lines in  Fig. 3d ), was lost in f02655 EMAP mutants ( Fig. 3d ). 
In controls, mechanically evoked CAP responses ( Fig. 3d , right 
panel) followed the transducer open probability that can be deduced 
from the receiver ’ s nonlinear gating compliance with a symmetric 
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      Figure 1    |         DCX-EMAP, a doublecortin-domain-containing member of the echinoderm – microtubule-associated protein family. ( a ) The exon – intron 
structure of CG42247 showing the piggyBac (f02655) insertion into the intron between exons 4 and 5. ( b ) The domain structure of the DCX-EMAP 
protein. Two (one for the truncated form) N-terminal doublecortin domains (DCX) are followed by a HELP domain. The C terminus of the 819 aa protein 
consists of 10 WD40 domains, shown in grey. ( c ) The EMAP family tree ( S. purpuratus, C. elegans, D. melanogaster, D. rerio ) and the fi ve mammalian (mouse 
EML 1-5) EMAP homologues are shown (similarity matrix, blosum; parameters: neighbour joining; tie breaking, systematic). ( d – f ) U2OS cells expressing 
 α -tubulin-mCherry ( d ) transfected with DCX-EMAP-EGFP ( e ), and overlay ( f ) showing co-localization between microtubules and DCX-EMAP and large 
microtubule bundles not observed in non-transfected cells (scale bar, 20    µ m).  
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         Figure 2    |         Mutations in DCX-EMAP are associated with uncoordination and deafness in fl ies. ( a ) Flight initiation assay 37 . ( b ) Results from the fl ight 
initiation assay displayed as box plots. The box marks the 25th and 75th percentile and the median (middle line). The whiskers mark the 10th and 
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(pBac / pBac), 46 pBac / TM3), 34 (excision), 84 (minos / minos), 118 (wild type). ( c ) Force step (lower trace)-evoked CAP responses (middle traces) are 
absent in the antennal nerves of f02655 DCX-EMAP mutants (blue), whereas robust CAP responses can be recorded from wild-type (grey) and f02655 
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overshoot that associates with the opening of transduction channels. ( d ) Unstimulated fl uctuations of the antennal receivers of f02655 DCX-EMAP 
mutants and controls. Colour code as in ( c ).  

© 2010 Macmillan Publishers Limited.  All rights reserved. 



NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1007 ARTICLE   

NATURE COMMUNICATIONS | 1:11 | DOI: 10.1038/ncomms1007 | www.nature.com/naturecommunications 5

version of the gating spring model (green line in  Fig. 3d , right 
panel). In accordance with the loss of this gating compliance, CAP 
responses in f02655 mutants were also lost (blue circles in  Fig. 3d ). 
Hence, DCX-EMAP mutants lack both auditory transducer gating 
and mechanical feedback ampli$ cation and, accordingly, fail to gen-
erate mechanically evoked electrical signals in the antennal nerve.   

  Ultrastructural analysis of sensory dendrites   .   To examine the 
structural integrity of sensory cells in DCX-EMAP mutants, we used 
high-pressure freezing to visualize the sensory dendrites in wild-
type and mutant mechanoreceptors by electron microscopy. Wild-
type tubular bodies in campaniform receptors are  characterized by 
a dense array of parallel microtubules; in the distal part of the tubu-
lar body, this structure % attens and becomes fan shaped ( Fig. 4a ) 6 . 
Here, microtubules are connected by an electron-dense mate-
rial ( Fig. 4b – e ). In f02655 homozygous % ies, this electron-dense 
 material was missing, and the parallel organization of microtubules 
in the distal tubular body was severely disturbed ( Fig. 4f – i ). Despite 
the ultrastructural alterations in the mutant, the general shape of 
the distal tubular body remained the same as in wild-type % ies, and 
no other anatomical defects were observed. 

 ! e sensory dendrites of the chordotonal receptors of John-
ston ’ s organ are characterized by a long cilium that contains a sin-
gle bulge-like modi$ cation in its middle called the ciliary dilation 
( Fig. 5a ) 41 . Here, the doublet microtubules of the 9    +    0 cilium bend 
around electron-dense material that displays a distinct hexagonal 
pattern ( Fig. 5b,c ). ! is electron-dense material was entirely miss-
ing in DCX-EMAP f02655 mutants ( Fig. 5d,e ). Notwithstanding 
this loss, the dilation was of normal shape and size: microtubules 
still bend within the dilation and seemed to be associated with the 
membrane (arrowhead,  Fig. 5e ). 

 ! e electron-dense materials in the tubular body and in the 
ciliary dilation both span the area between microtubules. In thin 

sections, the materials display regular, hexagonally spaced holes 
of diameter 50   nm and centre-to-centre spacing of  ~ 70 to 100   nm. 
! ese holes are almost spherical in the tubular body (arrow in 
 Fig. 4d ) but cylindrical in the ciliary dilation (arrows in  Fig. 5b,c ). 
When DCX-EMAP is disrupted, these electron-dense materials, but 
apparently no other subciliary structures, are lost.   

  DCX-EMAP localization in sensory dendrites   .   We determined 
the subcellular localization of DCX-EMAP within sensory neurons. 
We cloned the full-length DCX-EMAP gene and a shorter splice 
variant lacking the $ rst exon, and therefore the $ rst DCX domain, 
and used them to make upstream activating sequence (UAS) 
constructs with a C-terminal EYFP or dsRED tag. When driven with 
a pan-neural Gal4 driver, % uorescently tagged DCX-EMAP local-
ized exclusively to subcompartments within the sensory dendrites 
of mechanoreceptor cells ( Fig. 6 ). ! is localization was identical for 
the full-length and truncated variant of DCX-EMAP, both of which 
labelled speci$ c dendritic structures in campaniform and chordo-
tonal receptor cells. In campaniform receptors ( Fig. 6a – d ), DCX-
EMAP localized to the tubular body (arrowhead in  Fig. 6c ). In the 
chordotonal receptors of Johnston ’ s organ ( Fig. 6e – h ), DCX-EMAP 
localized to the ciliary dilation (arrowhead in  Fig. 6g ). To con$ rm 
this $ nding by a second independent experiment, we coexpressed 
DCX-EMAP-dsRed with GFP-centrosomin (CNN-GFP), which is 
a centrosome / basal-body marker. As displayed in  Fig. 6m – p , DCX-
EMAP and CNN-GFP do not co-localize. DCX-EMAP can be 
found distal to the basal body / rootlet structures marked by GFP-
CNN. We therefore conclude that DCX-EMAP localizes to the 
ciliary dilation. At the light microscopy level, % uorescently tagged 
DCX-EMAP thus localizes to speci$ c ciliary subcompartments: the 
tubular body in campaniform receptors and the ciliary dilation in 
chordotonal neurons. ! is correlates with the sites of ultrastruc-
tural defects in DCX-EMAP mutants.    
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            Figure 3    |         Transduction and amplifi cation are impaired in DCX-EMAP mutants. ( a ) Power spectra of unstimulated receiver vibrations in the DCX-
EMAP mutant (blue traces in all panels), wild-type (grey traces) and f02655 excision controls (green). ( b ) Energy gain provided by active amplifi cation 
deduced from the power spectra in ( a ) 49 . The range of wild-type values (one standard deviation around the mean) is marked in grey. Error bars display 
one standard deviation. ( c ) Response to pure-tone stimuli. Upper panel: Displacement response of the antennal receiver versus stimulus particle velocity. 
Lower panel: Mechanical sensitivity of the receiver plotted against particle velocity. Wild-type: grey, f02655 mutant: blue circles, f02655 excision control: 
green circles. ( d ) Response to force steps. Upper left panel: Displacement response of the receiver as a function of the stimulus force. Lower panel: 
The corresponding slope stiffness drops for small force amplitudes in wild type (grey) and excision controls, whereas it is constant for DCX-EMAP f02655 
mutants (blue). The displacement-force relations of excision and control fl ies and the corresponding slope stiffnesses are well described by fi ts of 
a symmetric gating-spring model 38 . Right panel: CAP responses and predicted excess open probability versus receiver displacement. For wild type (grey) 
and excision controls (green), the mechanically evoked CAP response closely follows the excess open probability predicted from displacement data using 
a symmetric gating-spring model (solid lines for p O ( X  peak ), dashed lines for p O (- X  peak ) 7 ).  
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 Discussion 
 Using DNA microarray analysis, we have determined a list of 
  Drosophila  genes in which the expression was higher in mech-
anoreceptor-rich tissue than in mechanoreceptor-poor tissue. 

Comparative qRT – PCR of RNA from the two tissues provides a 
partial validation of this list. Moreover, direct validation is provided 
by the overrepresentation of genes expressed in mechanoreceptors 
and genes associated with basal bodies and ciliated receptors 27,28 . 
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     Figure 4    |         The ultrastructure of the tubular body in f02655 campaniform receptors in the  Drosophila  haltere is altered. ( a ) Schematic drawing of the 
campaniform receptor. The tubular body of the receptor is marked and illustrated separately (right panel). ( b ,  c ) Electron micrographs of the sensory 
dendrite in wild-type campaniform receptors in the haltere. The distal part of the tubular body shows characteristic electron-dense material. 
( d ,  e ) Electron-dense material in the distal tubular body at higher magnifi cation. ( f ,  g ) Electron micrographs of f02655 campaniform receptors. 
The electron-dense material in the distal tubular body is missing. Microtubules in the proximal tubular part seem disorganized. ( h ,  i ) Distal tubular 
bodies of f02655 campaniform receptors at higher magnifi cation. Scale bars represent 0.5    µ m ( f ) and 250   nm ( i ).  
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      Figure 5    |         Mutant f02655 sensory neurons of Johnston ’ s organ display an altered ultrastructure. ( a ) Schematic representation of Johnston ’ s organ in 
sensory neurons of  Drosophila  antenna. The region with the ciliary dilation is marked and illustrated separately (right part). ( b ,  c ) Electron micrographs of 
ciliary dilations (arrowheads) in wild-type chordotonal neurons with electron-dense material in the ciliary dilation (arrows point towards regular holes and 
channels in the electron-dense material). ( d ,  e ) Chordotonal neuron of f02655 fl ies with  ‘ empty ’  ciliary dilations. Note how the microtubules are still bent 
as in wild-type dilations. Scale bars represent 1    µ m ( d ) and 250   nm ( e ), arrowheads point towards ciliary dilation.  
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Using this list, we identi$ ed one new candidate gene (DCX-EMAP) 
as the $ rst  Drosophila  gene that is likely to be required for both 
auditory transduction and ampli$ cation, narrowing down the role 
of EMAP family members in the process of mechanosensation 18  
and  illustrating that the list contains novel molecules for mechano-
transducer function. 

 Among the candidate genes, we have shown that the micro tubule-
associated protein DCX-EMAP likely has a key role in   Drosophila  

microtubule-based mechanosensation. Mechano sensation is 
impaired in f02655 homozygous mutants as shown by a loss of 
coordination and the absence of CAPs in the auditory organ. 
Mechanical measurements demonstrate that both mechanotrans-
ducer gating and ampli$ cation are abolished in DCX-EMAP 
mutants. By establishing a genetic link between mechanosensory 
transduction and ampli$ cation, our study corroborates theoretical 
studies that suggest that, at the molecular level, both processes are 
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       Figure 6    |         DCX-EMAP localization in campaniform receptors. ( a ) UAS-dsRED localization in a wing-vein campaniform receptor. ( b ) UAS-EMAP-GFP localizes 
to the tubular body and is not detectable in other cellular compartments. ( c ) Merge of panels  a  and  b . Arrowhead points toward the tubular body. ( d ) Schematic 
of the campaniform receptor. ( e ) GFP-tubulin showing sensory cilia. ( f ) EMAP-dsRed localizes to ciliary dilations. ( g ) Merge of panels  e  and  f  (sensory cilia are 
marked by arrows). ( h ) Schematic of DCX-EMAP localization in chordotonal receptors. ( i ) Rhodamine-phalloidin staining the actin rods within scolopale cells. 
( j ) UAS-IAV-GFP expressed in chordotonal neurons using DJ648-Gal4. ( k ) Merge showing that IAV-GFP localizes to the proximal part of the cilia. ( l ) Schematic of 
IAV localization. ( m ) UAS-DCX-EMAP-dsRed expressed in chordotonal neurons of Johnston ’ s organ ( n ) UAS-CNN-GFP. ( o ) Merge of panels m and n showing 
the localization of DCX-EMAP-dsRed distal to CNN-GFP. ( p ) Schematic of DCX-EMAP-dsRed and CNN-GFP localization. All scale bars are 5    µ m.  
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mechanistically linked 7 . ! is provides evidence that in  Drosophila , 
not just mechanosensory transduction but also ampli$ cation is 
mediated by the transducer-channel complex. 

 According to our analysis, the function of this transduction com-
plex requires DCX-EMAP. One possibility is that DCX-EMAP is 
involved in intra% agellar transport (IFT), and that the % ight and 
hearing phenotypes are due to the failure of transduction compo-
nents to be correctly localized within the modi$ ed cilia. We think 
this is unlikely, on the basis of three arguments. First, DCX and 
EMAP are microtubule-associated proteins that are not known as 
IFT components. Second, in DCX-EMAP mutant % ies, the com-
plete cilium including dilation is present in Johnston ’ s organ and the 
overall morphology of the tubular body is normal. If DCX-EMAP 
was an essential component of the IFT machinery, we would expect 
distal ciliary structures to be severely disrupted 42 . ! ird, we found 
that the inactive ion channel, which is mislocalized in IFT mutants 42 , 
is correctly localized in the proximal cilium of the DCX-EMAP 
mutant background ( Fig. 6i – l ). ! us, rather than being involved in 
the transport of the complex, we argue that DCX-EMAP could (1) 
be a part of the complex, (2) be required for proper localization of 
the complex, (3) participate in the coupling of mechanical forces to 
this complex, or (4) provide mechanical support for the complex. 

 DCX-EMAP localizes exclusively to subcompartments of the 
sensory cilia, namely, the tubular body in campaniform receptors 
and the ciliary dilation in Johnston ’ s organ. In DCX-EMAP mutants, 
these ciliary structures display speci$ c ultrastructural defects: inter-
fering with the DCX-EMAP function abolishes the electron-dense 
material between the microtubules in the tubular body and ciliary 
dilation while the shape of these subciliary structures is preserved. 
DCX-EMAP is a microtubule-binding protein and contains 10 WD 
domains that are known to serve as interaction platforms for other 
proteins 43 . We thus hypothesize that DCX-EMAP binds to micro-
tubules within the modi$ ed sensory cilia and organizes a protein 
network that is visible as the electron-dense material and that may 
consist of diverse proteins. ! e defects caused by mutations in 
DCX-EMAP document a molecular equivalence of these materials 
for di" erent types of ciliated mechanoreceptor cells. 

 For campaniform receptors, the distal fan-shaped region of the 
tubular body has been hypothesized to be the site of transduc-
tion 23 . According to this hypothesis, the cuticle functions as a pair 
of pincers that exerts compressive force on the sensory dendrite, 
leading to compression of the $ laments linking the dendritic sheath 
and plasma membrane to microtubules 6 . Our results support this 
hypothesis by showing that a gene, the mutation of which leads to 
a mechanotransduction phenotype, encodes a protein that localizes 
to the tubular body, and leads to ultrastructural alterations when 
mutated. 

 For chordotonal receptors, the ciliary dilation has been pro-
posed as one of the candidate sites for transduction 24 . The locali-
zation of DCX-EMAP, together with the presence of a similar 
electron-dense material seen in campaniform receptors, and its 
requirement for transduction support this idea. What role might 
the dilation, together with its electron-dense material, have in 
mechanotransduction? Because of its shape, the ciliary dilation 
is likely to be the weakest mechanical element along the cilium. 
The ciliary dilation is expected to deform when the cilium is 
stretched and compressed. Stretch leads to excitation of chordo-
tonal neurons in Johnston ’ s organ, whereas compression leads to 
hyperpolarization 44 . The electron-dense material may then have 
the role of a rigid substrate against which the channels are gated 
when the dilation constricts. Gating will be abolished if this 
mechanical support is lost, consistent with the effects seen in 
DCX-EMAP mutants. Our observations thus lead to a hypothe-
sis about the mechanism of transduction channel gating in chor-
dotonal mechanoreceptors.   

 Methods  
  EMAP cloning and transgenic fl ies   .   Full-length DCX-EMAP was ampli$ ed from 
the DGRC cDNA clone IP09257 and the short splice variant from RE01752 using 
the primers EMAP_fullF ATGCCACAAATTAGTCCGAACGC, CG13466F 
ATGTGGTATGCATCGCCTGGA, CG13466B TTCCTCGACAATGTCCCACACC 
and Phusion polymerase (NEB). ! e resulting construct was cloned into the 
pUAST vector 45  in frame with the coding sequence for dsRED or EYFP C terminal 
of the DCX-EMAP coding sequence. UAS-constructs were driven with Sca-Gal4, 
Elav-Gal4 or DJ648-Gal4 into campaniform receptors and chordotonal organs. 
Confocal microscopy was performed using a Z eiss LSM 510 Meta setup  ( Zeiss , 
Germany) or a  spinning disk  (IAV-GFP localization) ( LEICA  DMI 6000B). DNA 
and protein sequence analysis, as well as phylogenetic tree reconstruction, was 
performed using  MacVector  ( MacVector ).   

  Stocks   .   UAS-dsRed (Bloomington-stock number: 6282), UAS-GFP-Tubulin 
(7374), UAS-GFP-Cnn1 (7254), Sca-Gal4 (6479), ELAV-Gal4 (8760), DJ648-Gal4 
(8172), the DCX-EMAP allele CG42247 f02655  (PBac(WH)CG42247 f02655 ), the 
P-element Mi(ET1)CG42247 MB00356  (22774) and de$ ciencies Df(3L)BSC441 (24945) 
and Df(3L)ED217 (8074) were obtained from the Bloomington  Drosophila  stock 
centre. Flies were raised on standard medium at 21 – 25    ° C. ! e f02655 excision 
line was produced by precise piggyBac excision using PBac\T transposase (Flybase 
stock number 8285). IAV-GFP (second  chromosome) stocks were kindly provided 
by Yun Doo Chung.   

  Microarray probe preparation   .   High-density oligonucleotide microarray analysis 
was performed using the A" ymetrix  Drosophila  Genome1 array  ( A" ymetrix 
 Drosophila  GeneChip microarrays , lot number 2004163 and 2004164; part 
number 510548;  A" ymetrix ). Halteres of 1- to 3-day-old male and female OregonR 
wild-type % ies were dissected and cut at the hinge between the pedicel and 
capitellum.  ! oracic ganglion was prepared from the same % ies. RNA extraction 
was  performed using the  RNeasy Mini kit  ( Qiagen ). Ampli$ cation and labelling 
followed the GeneChip Eukaryotic Small Sample Target labelling assay version 
II (A" ymetrix technical notes  https://www.a" ymetrix.com/support/downloads/
manuals/ expression_s21_manual.pdf. ) Hybridization and scanning were 
carried out according to the standard manufacturer ’ s protocols using the G2500A 
 Gene Array scanner  ( Agilent Technologies ) at 3    µ m per pixel resolution at 570   nm. 
Arrays were scanned and quanti$ ed following the standard A" ymetrix protocol. 

 Probe level % uorescence intensities from A" ymetrix CEL $ les were read into 
the R Bioconductor environment for analysis ( http://www.r-project.org , 
 http://www.bioconductor.org ).   

  Microarray data analysis   .   Raw data analysis was performed using the  Microarray 
Suite 5.0.  (MAS 5.0;  A" ymetrix ) according to A" ymetrix standard procedures 
(A" ymetrix 2002a, b). Probe sequence-dependent correction for nonspeci$ c 
 binding background 46  was performed using the  ‘ a'  nity ’  model of the gcrma 
library: whereas  ‘ MM ’  probes were used for the determination of a'  nity 
parameters, only  ‘ PM ’  probes were used for probe-dependent background 
correction. Linear model analysis was performed using Bioconductor packages 
( http://www.Bioconductor.org ) as described in detail in  Supplementary 
Information . ! e latest set of annotations has been downloaded from NCBI / GEO 
 http://www.ncbi.nlm.nih.gov/geo/  47 . Further data analysis and data 
presentation were carried oute with  IgorPro 5  ( Wavemetrics ) and  Excel  
( Microso#  ). ! e complete data set (E-MEXP-1921) is available from  ArrayExpress  
( http://www.ebi.ac.uk/microarray-as/ae/ ).   

  Flight test   .   ! e % ight test assay is based on Benzer 37 . Flies between 1 and 3 days of 
age were anaesthetized with carbon dioxide and inspected for wing defects under 
a stereomicroscope. Only % ies without apparent wing defects were transferred to a 
fresh vial and allowed to recover from carbon dioxide anaesthesia for a minimum 
of 3   h to overnight. Usually, the number of % ies per vial was 20 – 30. Standard 500   ml 
measuring cylinders were coated with para'  n oil ( SIGMA , Cat. no.: 76235). Vials 
were opened and upturned inside a funnel. Flies falling into the cylinder initiate 
% ight and get stuck in the para'  n oil when they hit the walls ( Fig. 2a ). ! e position 
of each % y was recorded, within 50   ml intervals of the cylinder scale. 

 Data analysis and graphical presentation were performed with  IgorPro 5  
( Wavemetrics ). An unpaired  t -test assuming unequal variances was used for 
signi$ cance testing. Box plots are used for data plotting. ! e box marks the upper 
and lower quartiles (25 and 75 % ). Whiskers indicate the 10th and 90th percentiles.   

  Biophysical measurements   .   ! e biophysical properties of the % y ’ s antennal sound 
receiver were investigated by a concurrent measurement of sound receiver mechan-
ics and mechanically evoked nerve responses 48 . For measurements, the % ies were 
mounted ventrum-down on top of a te% on rod with their heads, pedicels, wings, 
legs and halteres stabilized by wax or dental glue to minimize movements. Sound 
receiver mechanics were monitored at the tip of the arista using a  Polytec PSV-400 
Laser Doppler vibrometer  ( Polytec GmbH ) focussed to the tip of the arista. 

 To deduce mechanical parameters diagnostic of a ear ’ s physiological integrity, a 
simple harmonic oscillator model was $ tted to the power spectrum of its receiver ’ s 
free % uctuations, that is, its motions in the absence of sound 49 . To measure 
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sound-evoked responses, a receiver was stimulated with pure tones at its individual 
best frequency, which was determined from the free % uctuation analysis 40 . Sound 
stimuli were broadcast through a loudspeaker positioned  ~ 10   cm behind the % y. 
Stimulus intensities were monitored as the particle velocity at the receiver ’ s position 
using an Emkay NR23158 pressure gradient microphone (Knowles  Electronics, 
Itasca, IL, USA). Responses to force steps were evoked by  electrostatically 
actuating the receiver with voltage steps fed to an electrostatic probe 7,38 . To this end, 
the experimental % ies were charged to a potential value of  ~ 15   V against ground 
using a tungsten electrode inserted into the % y ’ s thorax. Force-displacement 
 characteristics were analysed by $ tting a two-state gating spring model 38  to the 
data. Stimulus-evoked CAPs were recorded from the % y ’ s antennal nerve by insert-
ing an electrolytically tapered tungsten wire, serving as a di" erent electrode, into 
the so#  joint membrane between the $ rst antennal segment and the head capsule 38 . 
! e charging electrode in the % y ’ s thorax simultaneously served as an indi" erent 
electrode for nerve recordings. Signals were passed through a custom-built di" er-
ential ampli$ er system and a digital noise eliminator ( Hum-Bug ,  Quest Scienti$ c ).   

  Electron microscopy   .   Flies between 1 and 3 days a# er eclosion were anaesthetized 
with carbon dioxide, their halteres or Johnston ’ s organs were dissected and these 
tissues were submerged in PBS containing 20 %   BSA  ( Sigma ) and 0.05 %   pluronic 
acid  ( Sigma ) 50 . Specimens were collected in cellulose capillary tubes, transferred to 
100    µ m-deep membrane carriers, and cryoimmobilized using an  EMPACT2    +    RTS 
high-pressure freezer  ( Leica Microsystems ) 50 . Freeze substitution was carried out 
in anhydrous acetone containing 1 %  osmium and 0.1 %  uranyl acetate at     −    90    ° C 
up to 72   h. Samples were allowed to warm to room temperature at a rate of 5 ° C   h     −    1  
and thin-layer embedded in optically clean layers of Epon / Araldite on microscope 
slides 51 . ! in sections (70   nm) were collected on Formvar-coated copper slot grids, 
poststained with 2 %  uranyl acetate in 70 %  methanol, followed by Reynold ’ s lead 
citrate, and imaged in a  TECNAI 12  transmission electron microscope ( FEI , 
Netherlands) operated at 100   kV.   

  Cell culture   .   U2OS cells stably expressing  α -tubulin-mCherry 52  were grown in 
DME containing 10 %  fetal bovine serum, 2   mM  l -glutamine, 100   U   ml     −    1  penicillin, 
100    µ g   ml     −    1  streptomycin and 500    µ g   ml     −    1  G418 at 37    ° C in 5 %  carbon dioxide. 
Cells were transfected with full-length DCX-EMAP cloned in pCMV and tagged 
with C-terminal EGFP using  E" ectene  ( Qiagen ) according to the supplier ’ s 
protocol.                    
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