
Neurochemical Research, Vol. 28, Nos. 3/4, April 2003 (© 2003), pp. 637–644

637
0364-3190/03/0400–0637/0 © 2003 Plenum Publishing Corporation

Guinea Pigs as a Nontransgenic Model for APP Processing
in Vitro and in Vivo*
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Alzheimer’s disease (AD) is characterized, amongst others, by the appearance of vascular and
parenchymal b-amyloid deposits in brain. Such aggregates are mainly composed of b-amyloid
peptides, which are derived by proteolytic processing of a larger amyloid precursor protein
(APP). APP is highly conserved among mammalian species, but experimental studies in rodents
are often hampered by the humble APP-processing in the amyloidogenic pathway and by the
inability of rodent b-amyloid peptides to form higher molecular aggregates such as soluble
oligomers and insoluble b-amyloid plaques. Thus, there is need for in vitro and in vivo model
systems that allow identification of factors that increase amyloidogenic APP processing and ac-
celerate b-amyloid plaque formation and testing the potency of pharmacological manipulations
to ameliorate b-amyloid load in brain. Transgenic mice that overexpress human APP contain-
ing AD-associated mutations that favor the amyloidogenic pathway of APP processing repre-
sent such a model. However, mutations of the APP gene are not frequent in AD and, therefore,
the mechanisms of b-amyloid plaque formation, the composition of b-amyloid plaques, and the
accompanying tissue response in brain of these animals may be different from that in AD. In
contrast, guinea pigs express b-amyloid peptides of the human sequence and appear to repre-
sent a more physiological model to examine the long-term effects of experimental manipula-
tions on APP processing and b-amyloid plaque formation in vivo. Additionally, APP processing
in guinea pig primary neuronal cultures has been shown to be similar to cultures of human
origin. In this article we highlight the advantages and limitations of using guinea pigs as
experimental models to study APP processing.
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genesis of Alzheimer’s disease (AD). APP is a family
of glycosylated transmembrane proteins that are ubiq-
uitously expressed but are most abundant in the brain
(for review see 1). The APP gene maps to chromo-
some 21 in humans (2,3) and constitutes a family of
different isoforms that are derived by alternative splic-
ing of APP mRNA and named according to their
length in amino acids (for review see 4). APP can be
processed by both amyloidogenic or nonamyloido-
genic pathways. The nonamyloidogenic secretory path-
way includes cleavage of APP by an a-secretase within
the b-amyloid sequence, which generates a secreted
water-soluble 90–100 kD protein while the membrane-
anchored C-terminal fragment of APP (P3-CT) remains

APP Expression and APP Processing Pathways

There is ample evidence suggesting that increased
expression or altered processing of amyloid precursor
protein (APP) is one of the early events in the patho-
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in the cell (5–8). Such a-secretase activity has been at-
tributed to the metalloproteinases ADAM9 (also called
MDC9) (9) and ADAM10 (10). The b-secretase, which
initiates the generation of b-amyloid peptides by pro-
teolytic cleavage of APP at the N-terminus of b-amy-
loid (11,12), has been identified recently (b-secretase,
also called beta-site APP-cleaving enzyme 1; BACE1)
(13–15). The g-secretase, which finally liberates b-
amyloid or P3-peptides, is not yet identified definitely.
There is accumulating evidence, however, that prese-
nilins, or a protein complex containing presenilins,
possess g-secretase activity (16–18).

Soluble b-Amyloid Peptides, Oligomers, 
b-Amyloid Fibrils, and b-Amyloid Plaques—Who
Is the Culprit?

It is of particular interest to understand which
form of b-amyloid is toxic to neurons or interferes
with the learning and memory process even in the ab-
sence of neurotoxicity. In early studies, the number of
b-amyloid plaques has been shown to correlate with
the extent of clinical severity of AD (19–21), a finding
that remains controversial (for overview see 22). Later
on, studies in AD patients (22,23) and aged animals
(24) demonstrated a close correlation between the
mean “amyloid load” (i.e., volume of amyloid plaques
per volume brain tissue) and the degree of cognitive
dysfunction. However, more recently it was demon-
strated that passive immunization with an antibody
against b-amyloid peptides reduced levels of b-amy-
loid peptides and reversed memory deficits in APP
transgenic mice even while the number of amyloid
plaques was not reduced (25,26). This provides some
evidence arguing that not the number or the concen-
tration of b-amyloid plaques but the levels of soluble
b-amyloid peptides predict the extent of memory
deficits. In line with that, soluble b-amyloid levels
measured in postmortem brains could distinguish be-
tween people who had plaque pathology but no de-
mentia and those who also exhibited clinical dementia
(27), and soluble b-amyloid levels have been shown to
correlate better with disease severity than do b-amy-
loid plaque levels (28). In addition, soluble b-amyloid
peptides but not amyloid plaques are implicated in
spatial learning deficits in APP-transgenic mice (29).
The mechanisms by which soluble b-amyloid peptides
interfere with learning and memory are not completely
understood, but there is evidence of perturbance of
hippocampal long-term potentiation in rats (30) and in
rat hippocampal slices (31) by b-amyloid oligomers.
Additionally, such oligomers have been reported to
cause neurological dysfunction independent of neu-

ronal degeneration (32). Another mechanism by which
b-amyloid peptides may perturb cognition is the inter-
ference with the major steps that constitute cholinergic
neurotransmission (for review see 33). For example,
solubilized b-amyloid peptides strongly inhibit the
potassium-stimulated release of acetylcholine from
hippocampal slices (34) and decrease ChAT activity
but not acetylcholinesterase activity in the cholinergic
SN56 cell line (35). b-Amyloid peptides also decrease
the intracellular acetylcholine concentration (36) and
impair M1 receptor–associated signalling (37) in pri-
mary septal or cortical cultures. The effects of b-amy-
loid on reduction of pyruvate dehydrogenase activity
(36), the key enzyme for the generation of acetyl-CoA
used for neurotransmitter synthesis and the citrate
cycle, might explain both cholinergic hypoactivity and
metabolic dysfunction of cholinergic neurons after ex-
posure to b-amyloid peptides at low concentrations.

Additionally, the concentration or ratio of distinct
b-amyloid species appears to be a critical factor for
b-amyloid plaque formation and for the genesis of
memory deficits. The C-terminal variants ending at
Val40 and Ala42 constitute the majority of b-amyloid
proteins present in plaques (38,39). Although b-amyloid
1–42 is more enriched in parenchymal plaques than
b-amyloid 1–40, the shorter isoform is more abundantly
secreted (40,41). These observations led to the seeding
hypothesis, wherein b-amyloid 1–42 serves as seed for
plaque formation and b-amyloid 1–40 is incorporated
later as b-amyloid peptides deposit in the AD brain
(42,43). However, there are remarkable differences in
the ability of b-amyloid 1–42 and b-amyloid 1–40 to
form b-amyloid fibrils in vivo and in vitro, as dis-
cussed in detail by Shin et al. (44).

Transgenic Animal Models of Amyloidogenesis

To understand mechanisms of b-amyloid plaque
formation, animal models that mirror that feature of
AD are required. Such models are also of great inter-
est for pharmacological studies aimed at slowing down
the progression of b-amyloid plaque formation or even
removing existing b-amyloid plaques from the brain.
However, when establishing rodent models it has to be
taken into account that b-amyloid from mice and rats
contains three amino-acid substitutions as compared to
human b-amyloid (R5G, Y10F, and H13R; see also
Fig. 1A). These alterations were shown to influence
APP processing (45,46) and the ability of b-amyloid
peptides to form secondary structures such as oligomers
and fibrils (47,48). This could explain the virtual ab-
sence of b-amyloid deposits in normal or aged rodent
brain.
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Fig. 1. A, Schematic representation of the APP molecule, depicting
the signal peptide (SP), alternative spliced exons, the Ab and trans-
membrane regions, and epitopes of antibodies used (22C11, 1E8).
The sequence of human/guinea pig and rodent (rat, mouse) Ab (in
capitals) is shown in the lower part, indicating amino acid substitu-
tions and secretase cleavage sites as well as the partial membrane in-
sertion of Ab. The similarity of APP orthologues in different species
is greater than 90% troughout the molecule with exception of the
signal peptide and the ‘Ox-2’ homology domain, which do show
higher divergence. The R676G exchange is a key factor for the re-
duced amyloidogenic processing of rodent APP (ref. 45). B, Het-
erologous expression of gpAPP in human SY5Y neuroblastoma
cells. Western blot analysis of secreted (left panel) and cellular APP
(middle), as well as Ab detection in conditioned cell culture media
of SY5Y cells transfected with gpAPP695 (gp), human APP695
(hum), or vector (pCEP4) only control (0) utilizing monoclonal anti-
bodies 22C11 (APP blots) and 1E8 (Ab). Analysis was performed
as described elsewhere (ref. 58). There are virtually no differences
between human and gpAPP detectable.

Therefore, valuable models of b-amyloid plaque
formation have been developed by overexpression of
human APP constructs containing APP-associated mu-
tations that favor the amyloidogenic b-secretase path-
way of APP processing (see e.g. 49–54). These mice
have been used to test therapeutic strategies aimed at
reducing b-amyloid plaque formation, for example, by
treatment with antiinflammatory compounds and by
immunization approaches. However, mutations of the
APP gene are not frequent in AD and, therefore the
mechanisms of b-amyloid plaque formation, the mo-
lecular composition of b-amyloid plaques, and accom-
panying tissue response in brain of these animals may
be different from that in the AD brain.

The Guinea Pig as a Nontransgenic Animal Model
of Amyloidogenesis

As discussed above, in rodents the b-amyloid se-
quence differs from that of human b-amyloid by three
amino acid substitutions. There are, however, other

animal species expressing b-amyloid peptides identi-
cal to the human b-amyloid sequence (55) and some of
them (hamster, guinea pig, and rabbit) appear to be
well suited for experimental studies in vitro and in
vivo. Before such animals could be used for biochem-
ical analysis of APP processing in vivo, general prop-
erties of APP, its expression profiles, and APP
processing pathways in vitro need to be documented.
Therefore, in the first step, we cloned and sequenced
the entire coding region of guinea pig APP (gpAPP)
and used this construct for recombinant expression of
gpAPP in human neuroblastoma cells.

Sequence analysis of gpAPP cDNA revealed sim-
ilarities of approximately 90% and 97% to human APP
at gene and protein level, respectively, a complete con-
servation of protein domain structure in human and
gpAPP (for details see 56), and alternative splicing
that occurs exclusively at exons 7, 8, and 15, generat-
ing an isoform pattern equivalent to human APP (for
schematic presentation see Fig. 1A). The APP695 iso-
form is most abundant in guinea pig brain, whereas the
longer isoforms are predominantly expressed in pe-
ripheral organs such as muscle and liver (56).

In Vitro Studies 

When recombinant gpAPP was expressed in
human SY5Y neuroblastoma cells, we observed com-
parable amounts of amyloidogenic processing products
as compared to transfected human APP, indicating that
there are no intrinsic sequence-specific factors that
influence gpAPP processing (Fig. 1B). Likewise, in
guinea pig cerebrospinal fluid (CSF) approximately
80%–90% of b-amyloid peptides were of the 1–40
species, which mirrors the situation in human CSF (57).

GpAPP expression and processing was further
characterized in primary cell cultures derived from
guinea pig embryonic brain at gestation day 24 (58).
We observed that APP expression and b-amyloid for-
mation increased during cultivation in parallel with cel-
lular maturation. At approximately 10–14 days in vitro
a stable phase was reached, thus providing a suitable
time for analysis. Western blot analysis of conditioned
culture medium revealed accumulation of endogenous
b-amyloid peptides shown to consist of approximately
80%–90% b-amyloid 1–40 and able to form oligomeric
aggregates. Furthermore, it was shown that single neu-
rons retain their typical pattern of APP isoform expres-
sion throughout cultivation (58).

Further analysis of guinea pig primary cultures in-
clude the effects on APP processing of the protein phos-
phatase inhibitor okadaic acid (59). In this study we
observed a dose-dependent upregulation of intracellular
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and secreted APP, while the amount of b-amyloid pep-
tides was decreased (59). These data resemble and
extend previous observations of increased nonamy-
loidogenic APP processing under conditions of in-
creased protein phosphorylation (for review see 4) in a
more physiological experimental system.

Fetal guinea pig brain cultures were also used to
reveal the role of glycophosphatidylinositol-anchored
proteins in secretory APP processing and b-amyloid
generation (60). By treatment of guinea pig brain pri-
mary cultures with phosphatidylinositol-specific phos-
pholipase C and a series of other experiments it was
shown that one or more glycophosphatidylinositol-
anchored proteins play an important role in b-secretase
activity and in b-amyloid biogenesis.

The human b-amyloid sequence of gpAPP and
the significant amounts of b-amyloid peptides present
in conditioned medium of primary neuronal cultures
derived from guinea pig brain and in guinea pig CSF
made it possible to establish novel techniques for the
quantification of human b-amyloid peptides using
guinea pig biological samples. Clarke et al. (61) de-
veloped an immunoprecipitation-HPLC-MS procedure
to detect b-amyloid peptides with a comparable sensi-
tivity performance as compared to ELISA assays. The
advantages of the MS detection system are a higher
specificity and greater flexibility, which yield much
more information from a single sample than an ELISA
assay. Likewise, a liquid phase electrochemilumines-
cent detection system introduced by Khorkova et al.
(62) for the quantification of b-amyloid peptides and
secretory APP fragments offers advantages with re-
gard to assay time and the linearity of the signal across
a wide range of concentrations.

In Vivo Studies

The a-secretory, nonamyloidogenic processing of
the APP is regulated in part by mechanisms that in-
volve protein kinase C (PKC) (63–65; for review see
4). Disturbances in PKC activation or activation of
PKC coupled receptors have been implicated in the in-
creased amyloidogenic APP processing in the brains
of AD patients (66,67). To test the hypothesis of a re-
ciprocal relation between secretory APP processing
and generation of b-amyloid peptides in vivo, neocor-
tical PKC activity was constitutively overactivated in
guinea pig brain by in utero treatment with methyl-
azoxymethanol (MAM). This treatment resulted in
increased basal and phorbol ester-stimulated PKC-
activity (by up to 70%) and in elevated secretory APP
processing (by 35%) in cortex of MAM-treated guinea

pigs (68). Subsequently, PKCa and PKCb1 isoforms
were identified as the key regulators of a-secretory
APP processing in this experimental paradigm (69).
The levels of b-amyloid peptides, however, remained
unchanged as compared to control animals, suggesting
an independent regulation of a- and b-secretase path-
ways (68). These results are inconsistent with those
demonstrating reduced b-amyloid formation under
conditions of increased APP a-secretion in vitro, but
corroborate other reports, demonstrating no association
between APP a-secretion and b-amyloid generation
in vitro (70–73). These data suggest that competition
for the substrate APP in the a-secretase and b-secre-
tase pathway only occurs when one pathway is upreg-
ulated dramatically. This implies that pharmacological
stimulation of PKC-coupled neurotransmitter recep-
tors might increase secretory APP processing but not
reduce b-amyloid generation or slow b-amyloid plaque
formation.

This hypothesis is supported by observations
made by Stephenson and Clemens (74) after the direct
stimulation of the PKC-coupled metabotropic gluta-
mate receptor by agonist infusion in the guinea pig
hippocampus. The activation of this glutamate recep-
tor failed to reduce b-amyloid levels but rather in-
creased intraneuronal labelling for b-amyloid.

On the other hand, these observations are partly
contradictory to those made by Beach et al. (75) after
increased cholinergic stimulation by systemic admin-
istration of the acetylcholinesterase inhibitor physostig-
mine to guinea pigs for 10 days. In this experimental
setup, reduced concentrations of insoluble but not of sol-
uble b-amyloid 1–40 and 1–42 peptides were detected
in guinea pig cortex (75), indicating a protection from
amyloidogenesis after stimulation of PKC-coupled
acetylcholine receptors.

Epidemiological studies demonstrated a strong re-
duction in the incidence of AD by estrogen replace-
ment therapy in postmenopausal women and in patients
treated with cholesterol-lowering statins. The question
whether these are direct effects of estrogens and statins
was addressed in experimental studies in vivo using
guinea pigs. In the first study, female guinea pigs were
subjected to ovariectomy followed by estrogen treat-
ment (76). The authors observed an increase in total
b-amyloid levels and in the ratio of b-amyloid 1–42 to
1–40 peptides after ovariectomy, which was attenuated
by treatment of ovariectomized guinea pigs with
17b-estradiol (76). Another study demonstrated the
reduction of cerebral b-amyloid 1–40 and 1–42 levels
in guinea pig brain and CSF after systemic treatment
with the cholesterol-lowering drug simvastatin (77).
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Furthermore, guinea pigs have been used to re-
veal whether breakdown of the blood-brain barrier
after experimental thiamine deficiency leads to the
formation of b-amyloid aggregates in brain. However,
despite prolonged thiamine deprivation and advanced
neurological symptoms, no altered APP or b-amyloid
immunostaining was detected (78). Given that the for-
mation of b-amyloid plaques is a process that may re-
quire years, this observation is not surprising, but it is
not unlikely that manipulations that alter the concen-
tration of b-amyloid peptides could possibly contribute
to b-amyloid plaque formation.

CONCLUSIONS

In summary, data from our own work and that of
others demonstrate that guinea pigs represent a valu-
able nontransgenic animal model to follow APP me-
tabolism in vitro and after experimental modulations
or pharmacological treatments in vivo. The advantages
of guinea pigs over rodents are the human b-amyloid
sequence of gpAPP and the higher activity of the
b-secretase pathway in guinea pig brain, as shown
here for the first time, employing a BACE enzymatic
assay (Fig. 2). Additionally, the higher amount of
brain tissue and CSF samples that can be collected al-
leviate the analysis of APP and fragments thereof.
Guinea pig b-amyloid peptides form higher molecular
structures such as oligomers, which are reported to be
involved in the suppression of long-term potentiation
and that have the potential of b-amyloid plaque for-
mation in a more chronic process than in APP-trans-
genic mice.

However, such experiments on amyloid plaque
formation in guinea pigs after experimental manipula-

tions are time consuming, the reproduction kinetics of
guinea pigs is low (about 70 days of pregnancy, 2–5 off-
spring per litter), and guinea pigs are not a proper animal
species to perform learning or memory tasks. Addition-
ally, in many cases the cross-reactivity of antibodies
raised against human or rodent antigens is not known
and analysis of gene expression is hindered by the low
number of genes sequenced in guinea pigs. Neverthe-
less, for biochemical studies aimed at understanding
APP processing pathways in a more physiological envi-
ronment than in APP transgenic mice, guinea pigs are
an appropriate experimental animal model.
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