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Abstract—We introduce a metric to determine when particle
shifting is expected to improve the convergence of weakly com-
pressible Lagrangian SPH. Shifting regularizes particle positions
by biasing them toward a more homogeneous distribution.
However, shifting also introduces an additional discretization
error. To quantify these two opposing effects, we analyze the two-
dimensional Taylor-Green case and show that particle shifting
is advantageous when there is strong-enough distortion in the
particle distribution. We propose a dimensionless metric of
particle distortion to predict this break-even point, which we
show to behave qualitatively similar across simulation cases. Since
the proposed metric can be computed in a running simulation,
it can be used to control the onset of shifting.

I. INTRODUCTION

In Lagrangian particle methods that use a single global
interpolation kernel across the entire computation domain,
like Smoothed Particle Hydrodynamics (SPH), convergence
depends on the regularity of the particle distribution [6]. In
typical SPH applications to fluid flow, the main causes of
particle distortion are shear velocities and locally compressible
expansion. Since particles follow Lagrangian material trajecto-
ries, an initially uniform particle distribution distorts over the
course of a simulation, eventually limiting the convergence of
the method. Therefore, maintaining sufficient regularity of the
particle distribution throughout an SPH simulation is necessary
to ensure convergence.

One approach to regularizing the particle distribution is the
popular particle shifting technique (PST) [11]. Its straightfor-
ward implementation makes it applicable to many use cases of
SPH, including free-surface flows. Particle shifting regularizes
the particle distribution by “slightly” shifting the particles in
the opposite direction of the local particle density gradient.
When applied with sufficient frequency, shifting maintains
a more regular particle distribution. However, the shifted
particles no longer follow Lagrangian trajectories, introducing
an additional discretization error. It is therefore unclear how
shifting affects convergence and if or when the shifting error is
amortized by the gained regularity in the particle distribution.

The error introduced by shifting has been analyzed by
second-order Taylor expansion of the physical particle quan-

tities around their shifted positions [11, 2]. In weakly com-
pressible SPH, the shifting magnitude is limited by the small
time steps required to resolve the artificial speed of sound. The
shifting error is therefore usually assumed to be negligible [8].
The conditions under which this assumption holds are not well
studied, though.

Here, we systematically study the validity of the shifting
assumption and the effect of shifting on the numerical con-
vergence of the SPH method. We show that while particle
shifting increases the simulation error for short times, it
becomes advantageous beyond a break-even time, which we
characterize. Since particle distortion is caused by advection,
we re-normalize time in terms of the Reynolds number, and
we characterize the regularity of the particle distribution by
an order parameter. Using this dimensionless quantity, we
provide a guideline for when shifting is expected to improve
convergence of SPH.

II. THE DISCRETIZATION MODEL

We consider the continuity equation in its compressible
form to permit small variations in density. The pressure can
directly be derived from an equation of state. To prevent larger
density variations, an artificial speed of sound c0 is introduced.
This artificial speed of sound is chosen to depend on the
expected flow field as

c0 = 10max

(
vmax,

√
pmax

ρ0

)
, (1)

with the expected maximum velocity vmax and the maximum
pressure pmax in the simulation, and the initial reference
density of the fluid ρ0. Setting c0 according to Eq. (1) limits
density fluctuations to about 1% of ρ0. In addition, the continu-
ity equation is complemented by an artificial diffusive term,
which dampens the spurious pressure oscillations occurring
when evaluating pressure and velocity at the same locations
in space. We use the formulation proposed by Molteni and
Colagrossi [3] with artificial diffusivity δ = 0.1. Momentum
diffusion is approximated using the Morris viscosity operator
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[4]. Altogether, this results in the following system of ODEs
governing the positions and properties of each particle i:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρi
dt

= ρi
∑

j

mj

ρj
(vi − vj) ·∇Wh,ij

+2c0δh
∑

j

mj

ρj

(ρi − ρj)
∥xi − xj∥

W ′
h,ij

dvi

dt
= − 1

ρi

∑

j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇Wh,ij

+2νi
∑

j

mj

ρj

(vi − vj)

∥xi − xj∥
W ′

h,ij

dxi

dt
= vi

pi =
c20ρ0
γ

((
ρi
ρ0

γ
)
− 1

)
.

(2)

For the SPH kernel, we use the shorthand notation Wh,ij :=
Wh(xi−xj), and we use the fifth-order Wendland kernel [10]
throughout this study:

Wh(x) =

⎧
⎪⎨

⎪⎩
αd

(
1− ∥x∥

2h

)4(
1 +

2∥x∥
2h

)
if

1 + 2∥x∥
2h

≤ 2

0 else .
(3)

The normalization factor αd is necessary to ensure zeroth-
order consistency of the kernel and, consequently, depends
on the space dimension d. For two and three dimensions, the
values of αd are:

α2 =
7

4πh2
, α3 =

21

16πh3
. (4)

The kernel gradient for the fifth-order Wendland kernel is
derived from the first derivative:

∇Wh,ij =
xi − xj

∥xi − xj∥
W ′

h,ij . (5)

The smoothing length h defines the kernel radius and thus how
many neighbors any particle interacts with. It is set relative to
the particle diameter ∆x and the smoothing ratio σ as:

h = σ∆x. (6)

The parameter γ in the equation of state is set to γ = 7
throughout this paper. We solve the set of ODEs in Eq. (2)
using the explicit Euler scheme to discretize time. Thus,
physical properties are advanced in time as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(t+∆t)
i = v(t)

i +∆t
dv(t)

i

dt

ρ(t+∆t)
i = ρ(t)i +∆t

dρ(t)i

dt

x(t+∆t)
i = x(t)

i +∆tv(t)
i .

(7)

To analyze convergence in space, the same time-step size
∆t = 10−5 is used for all spatial resolutions. This is small
enough to not dominate the error even for the finest resolution

tested. Smaller time steps have been tested and did not show
a significant effect on the results.

a) Particle Shifting: We use the particle shifting formu-
lation by Lind et al. [2]. This adds to the particle movements
from Eq. (7) a small non-physical displacement, referred to
as shift. The direction of the shift is given by the negative
concentration gradient. The concentration C is defined using
the SPH formulation for gradients:

∇Ci =
∑

j

mj

ρj
∇Wh,ij . (8)

The negative concentration gradient then points toward under-
resolved areas, and particles will be shifted in this direction.
The magnitude of the shift is controlled by the CFL number
of the time stepper and the smoothing length h as:

x̃i = −0.4CCFLh
2∇Ci . (9)

These parameters ensure that the shift magnitude is small
compared to the advective displacement. Additionally, they
ensure by construction that shifting converges with second
order in h, as the magnitude of the shifting displacement
scales with O(h2). In the literature, an upper limit for the
shifting magnitude is often additionally imposed [2, 5]. Here,
we do not do so, but we verified that none of the limits were
ever reached during our benchmarks. The modified position
update in the explicit Euler scheme of Eq. (7) with shifting
then becomes:

x(t+∆t)
i = x(t)

i +∆tv(t)
i + x̃(t)

i . (10)

In the original shifting paper [2], the particle properties were
corrected after shifting by a second-order Taylor expansion to
approximate the velocity and pressure at the shifted positions.
In the weakly compressible SPH literature, however, such
correction is usually omitted because time steps are much
smaller than in incompressible Smoothed Particle Hydrody-
namics (ISPH). In either case, particle shifting introduces an
additional error. In the following, the error induced by shifting
is compared with the expected improvement in convergence.

III. CONVERGENCE ANALYSIS

We quantify the convergence of weakly compressible SPH
with and without shifting and determine the degree of particle
distortion beyond which shifting is beneficial in the sense that
the shifting errors are amortized by the gain in convergence.

The numerical experiment: As a benchmark case, we
consider the two-dimensional incompressible Taylor-Green
vortex in the domain Ω = [−0.5, 0.5]2 with periodic boundary
conditions in both directions. For this case, the analytical
solution is:

v0(x, t) = U

[
sin(2πx1) cos(2πx2)
cos(2πx1) sin(2πx2)

]
F (t)

p0(x, t) =
ρ0
4

(cos(4πx1) + cos(4πx2))F
2(t) ,

(11)

with F (t) := e−8π2νt [9]. This allows us to accurately quantify
the convergence of the numerical error. The initial condition



291

2024 International SPHERIC Workshop Berlin, June 18–20, 2024

is taken to be the analytical solution at time t = 0. The case
parameters are set to U = 1 and ρ0 = 1. The characteristic
length of the Taylor-Green vortex is set to L = 1, as is the
width of the domain Ω. The kinematic viscosity ν is used to
control the Reynolds number

Re =
LU

ν
=

1

ν
. (12)

Particle methods often use a Cartesian initialization of
particle positions. The particle distribution that minimizes the
shifting gradient flow, however, is not Cartesian. This typically
leads to large initial shifts. We therefore equilibrate the initial
particle distribution by performing several rounds of shifting
until a threshold on the maximum concentration gradient is
reached. The initial condition is then discretized on the result-
ing set of particles. In this way, shifting during the simulation
is determined by the Lagrangian particle displacements from
the equations of motion, and not by the initial particle place-
ment. Pre-equilibration of particle positions also improves
comparability across different resolutions, as otherwise initial
shifting would vary between resolutions.

Convergence Analysis: We quantify convergence in terms
of the following norms of the errors ei on the particles i:

∥e∥L1 = ∆xd
∑

i

∥ei∥ ,

∥e∥L2 =

(
∆xd

∑

i

∥ei∥2
)1

2

,

∥e∥L∞ = max
i
∥ei∥ .

(13)

The error is computed in the L2 and L∞ norms of the velocity
vectors

∥ei(t)∥2,∞ = ∥vi(t)− v0(xi, t)∥L2,L∞ (14)

against the analytical solution v0(t) from Eq. (11). In order to
evaluate the impact of particle shifting on the accuracy of the
simulation results, we analyze the convergence behavior for
four different Reynolds numbers. For the two lower Reynolds
numbers (50 and 100), the viscosity rapidly dissipates the
initial momentum of the vortex, and the distortion of the
particle distribution remains small. For the higher Reynolds
numbers (1000 and 2000), momentum dissipation has a lesser
influence, and particles move further causing higher distortion.
In addition, an effect specific to the SPH model used here
appears for Reynolds numbers above 200: the particle distri-
bution starts to form voids at the centers of the vortices. This
is caused by the low (sometimes negative) pressures that can
occur in these areas and has been extensively studied [7]. This
effect disappears when shifting is enabled. Distortion of vortex
cores is not driven by shear forces, as particle speeds in those
regions are relatively small. Instead, the observed distortion
can be interpreted as the result of an expansion process. Even
though the Taylor-Green vortex, from a physical perspective,
only models effects of shear forces, the numerical errors in
the SPH model cause the discretized Taylor-Green vortex to

also contain expansion effects. This renders the present test
case well-suited for quantifying the effect of particle shifting
over a range of lower and higher Reynolds numbers.

Theoretical error analysis of SPH reveals two components
of the numerical error: First, the approximation error due to the
moments of the differential operators only being reproduced
up to a certain order. Second, the discretization error stemming
from the fact that the moment conditions are enforced in the
continuous but the operator is applied to a discrete domain.
The discretization error is independent of particle density
and therefore becomes limiting eventually at high-enough
resolutions [6].

These two error components are visible in Fig. 1, showing
convergence plots in the L2 norm for the Taylor-Green vortex
with and without shifting at different Reynolds numbers and
time t̃ = tUL = 0.1, i.e., after the first 104 time steps.
The error without shifting is smaller in almost all cases.
For the lower two Reynolds numbers, the errors meet at the
same the characteristic error plateau [6] for higher resolutions.
This indicates that at high resolutions the discretization error
dominates the shifting error. For the two higher Reynolds
numbers, however, the error with shifting drops below the error
without shifting for the highest resolution. For Re = 2000, the
error without shifting starts to increase again for the highest
resolution, as particle separation occurs at the vortex cores.
The plateau with shifting appears later and at a lower error
level, showing a first benefit from the regularized particle
distribution.

At t̃ = 1 (105 time steps) the situation is different, as
shown in Fig. 2. The error with shifting is now lower in
most cases. Without shifting, also, the convergence order for
the higher Reynolds numbers is reduced, whereas it remains
quadratic with shifting. The error plateau is not observed
when using shifting for the higher Reynolds numbers. This
has two possible explanations: Either the improved particle
distribution created by shifting reduces the discretization error
and thus pushes the plateau beyond the resolutions tested, or
the error of the SPH operators is not the dominant error any
more, but rather the quadratic shifting error. Since the early-
time convergence analysis on pre-shifted particle distributions
showed a plateau, the latter explanation is more likely. This
means that the second-order error introduced by shifting starts
to dominate over the SPH errors at later times and higher
Reynolds numbers. This is consistent with the observation in
Fig. 2 that the error grows for larger Reynolds numbers.

We verify the results also for a smaller kernel with h
∆x = 2.

The discrepancy between the two kernel sizes is largest for the
earliest time point. With the smaller kernel, the results with
and without shifting already differ at the earliest time. Still, as
with the larger kernel, shifting is not beneficial to the error for
low levels of particle distortion. At time t̃ = 1.0, shifting again
reduces the error for all resolutions and Reynolds numbers,
like it did for the larger kernel. As expected, though, the
break-even point for shifting occurs earlier for smaller kernels
that introduce less inter-particle smoothing and are thus more
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Figure 1: Convergence with and without shifting in the L2 norm for different Reynolds numbers at time t̃ = 0.1 for h
∆x = 6.

vulnerable to distortions in the particle distribution.
Taken together, these results confirm that the SPH model in

Eq. (2) shows the expected convergence behavior. Addition-
ally, they show that shifting initially increases the velocity
error when particle distortion is still low, but eventually
becomes beneficial for higher distortion.

IV. ANALYSIS OF THE SHIFTING ERROR

Beyond the individual time points considered so far, we
analyze how the two competing error terms—the shifting error
and the error from particle distortion—evolve over time. This
will allow us to quantify the break-even point for shifting by
considering the error difference

∆E(t) = e−L∞
(t)− e+L∞

(t) , (15)

where +, − represent the errors with and without shifting,
respectively. Negative values of ∆E indicate that shifting
is not beneficial to the overall error, whereas positive ∆E
indicate that shifting reduces the overall error. The time
evolution of ∆E across Reynolds numbers and resolutions
is plotted in Fig. 3. It confirms the conclusions drawn from
the individual time points in the previous section. At early
times, shifting always increases the overall error, as shown
by the negative ∆E values. After a certain break-even time,
corresponding to a certain accumulated particle distortion, the
sign of ∆E flips in all cases, and shifting starts to reduce the
overall error. The break-even point is always followed by a
sharp increase in ∆E and a peak. But even after the peak,

∆E remains positive in all cases. The amplitude of the ∆E
peak, as well as the break-even times, however, differ between
resolutions and Reynolds numbers, reflecting differences in the
accumulated particle distortion.

Specifically, for Re = 50, the simulation without shifting
has a lower error for approximately the first 0.3 seconds. Be-
yond that time, shifting improves the results for the remaining
simulation time. The greatest improvement from shifting can
be seen at around 0.55 s for all resolutions. The behavior for
Re = 100 follows a similar pattern, but shifting improves
the error already after about 0.2 s. The maximum in ∆E
also occurs earlier, at around 0.45 s. Additionally, a higher
maximum is reached for all resolutions. Both observations can
be explained by stronger advection leading to more particle
distortion. Consequently, the shifting error amortizes earlier
and quicker.

This trend remains consistent also for the two higher
Reynolds numbers, with break-even times reached earlier and
the peaks becoming more pronounced. However, the peaks
no longer occur at the same time for all resolutions. This is
due to the phenomenon of particle separation around vortex
cores. At the higher two Reynolds numbers, particle separation
becomes the dominant source of particle distortion, and indeed
the peaks coincide with the times when particle separation first
occurs. For coarser resolutions, separation occurs later. This
is in contrast to the lower Reynolds numbers, where particle
distortion is only caused by viscous forces and hence the peak



293

2024 International SPHERIC Workshop Berlin, June 18–20, 2024

10−5

10−4

10−3

e L
2

10−5

10−4

10−3

50 100 200 400 800

10−4

10−3

10−2

L
∆x

e L
2

Baseline
Shifting

50 100 200 400 800

10−4

10−3

10−2

L
∆x

Re=50 Re=100

Re=1000 Re=2000

Slope 1

Slope 2

Slope 1
Slope 2

Slope 1

Slope 2

Slope 1

Slope 2

Figure 2: Convergence with and without shifting in the L2 norm for different Reynolds numbers at time t̃ = 1.0 for h
∆x = 6.

always occurs at the same time.
In order to understand the origin and scaling of the shifting

error, we consider the shifting displacements as defined in
Eq. (9), expressed in terms of the particle diameter ∆x instead
of h:

x̃i = K∆x2∇Ci . (16)

The constant K = −0.4CCFLσ2 controls the distance a particle
is shifted. The accumulation of all shifting displacements up
until a time t is called global shifting distance, and it is defined
as:

R(t) :=
∑

i

∥x̃i(t)∥2 = |K|∆x2
∑

i

∥∇Ci(t)∥2 . (17)

Therefore, R(t) = |K|∥∇C(t)∥L1 for the two-dimensional
L1-norm defined in Eq. (13). Normalizing this by the particle
number N and diameter, we obtain the quantity

R̄d(t) :=
R(t)

N∆x
, (18)

which describes the average global shifting distance per par-
ticle in units of particle diameters. The number of particles in
d dimensions is N = L

∆xd . For L = 1, as used in the above
benchmarks, the average global shifting distance per particle
can thus be expressed as:

R̄d(t) =
∆xdR(t)

∆x
= ∆xd−1R(t) , (19)

which for the two-dimensional case becomes R̄2(t) =
∆xR(t) = ∆x|K|∥∇C(t)∥L1 .

This quantity can be used to compare different cases across
varying particle diameters. It describes how many particle
diameters a particle has been shifted on average by time t. It
behaves qualitatively similar across resolutions and Reynolds
numbers of the Taylor-Green test case, as shown in Fig. 4. For
all Reynolds numbers and resolutions, a similar magnitude
of R̄ is observed. Thus, the magnitude of the particle dis-
placement from shifting is comparable across cases. Another
similarity among all cases is that R̄ increases significantly
in the beginning of the simulation, reaching a first local
maximum around 0.1 seconds. From there, the value decreases
monotonously over time for the smaller Reynolds numbers.
This is in agreement with the viscous forces decaying over
time and causing less particle distortion. For the larger
Reynolds numbers, R̄ remains more or less constant beyond
0.1 seconds, which is consistent with particle separation from
vortex core expansion dominating the shifting.

Another difference can be observed between the lower and
higher Reynolds numbers: For the former, the average shifting
distance is practically independent of the resolution, whereas
for the latter higher resolutions lead to less shifting. This is
consistent with the results in Fig. 3, where finer resolutions
benefited earlier from shifting.

Taken together, across all Reynolds numbers and resolu-
tions, shifting adds additional error initially, but becomes
amortized beyond a certain break-even point and remains ad-
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Figure 3: Time evolution of the error difference ∆E between the L∞ errors without shifting and with shifting for different
resolutions (line styles, inset legend) and Reynolds numbers (panels). Positive values indicate that shifting reduces the overall
error.

vantageous thereafter. In all cases, the normalized global shift-
ing distance per particle behaves similarly across Reynolds
numbers and resolutions. The break-even times, however,
depend on the resolution and the Reynolds number in a case-
specific manner.

V. BREAK-EVEN POINT FOR SHIFTING

From the observations in the previous section, we design
a case-independent metric for when shifting is beneficial for
the accuracy of SPH. This metric should be independent of
Reynolds number and resolution, hence predicting shifting
break-even times across cases.

As we know from the previous section, such a metric should
be proportional to time at lower Reynolds numbers, where
break-even times do not depend on resolution, but capture
the resolution-dependent particle expansion behavior at higher
Reynolds numbers. All of these effects are captured in a
problem-independent manner by the accumulated Lagrangian
particle distortion. Since shifting acts on the particle distortion,
a distortion metric should provide a universal and problem-
independent way of quantifying the effect of shifting on
convergence.

We quantify the accumulated Lagrangian particle distortion
using an order parameter for the particle distribution, which
is independent of the cause of distortion. In two dimensions,
we start by applying Delauney triangulation to the positions

of the particles. The resulting triangulation, denoted by D(t),
contains k triangles with areas Ak(t) at time t. In a perfectly
uniform particle distribution, the reference area A0 would be:

A0 =
∆x2

2
. (20)

We hence use the maximum relative deviation of Ak from A0

to measure Lagrangian particle distortion in the L∞ sense:

max
k∈D(t)

|Ak(t)−A0|
A0

. (21)

The normalization with A0 renders the order parameter dimen-
sionless. This provides a way of expressing the shifting error
in a problem-independent way. However, simply expressing
∆E in terms of these quantities is not particularly insightful,
since both the errors with and without shifting accumulate over
time steps. Therefore, the trajectory of the particle distortion
until the current time has to be taken into account, and not
just the magnitude of the current distortion. We thus define
the distortion metric

AD(t) =
∑

t′∈[0,t]

max
k∈D(t′)

|Ak(t′)−A0|
A0

(22)

over simulation time steps.
Figure 5 shows the shifting error difference ∆E as a

function of AD. Consistently, simulations without shifting
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Figure 4: The average global shifting distance per particle as a function of time for the two-dimensional Taylor-Green vortex
at different resolutions (line styles, inset legend) and Reynolds numbers (panels).

have lower errors for small AD. At a certain distortion,
there is a break-even point followed by a pronounced peak.
Unsurprisingly, AD reaches higher values for larger Reynolds
numbers, rendering the results consistent with the previous
observations. Importantly, however, both the break-even points
and the locations of the peaks are similar across problem
cases, and the behavior is qualitatively similar for both the
lower and higher Reynolds numbers. This indicates that indeed
the dimensionless accumulated particle distortion AD can
be used to determine when shifting becomes advantageous,
independent of the cause of the distortion.

Table I: Break-even points in AD for the Reynolds numbers
and resolutions tested.

L
∆x = 200 L

∆x = 300 L
∆x = 400 avg.

Re = 50 131.71 116.80 129.0 125.84

Re = 100 91.63 76.85 62.59 77.02

Re = 1000 93.03 69.42 49.71 70.72

Re = 2000 102.58 72.93 46.09 73.87

In order to check to what extent the universality in the
behavior of the shifting error difference with AD is also
quantitative, we report the AD values of the break-even points
in Table I for the different Reynolds numbers and resolutions
tested. While there is still a trend for higher resolutions to
have smaller break-even AD, especially at high Re, the overall

recommendation is to use shifting when AD exceeds a value
of about 70 to 80.

VI. CONCLUSION

We have studied how particle shifting affects the conver-
gence behavior of SPH. We found that shifting introduces
an additional second-order error to the simulation, which can
restore convergence when it becomes dominant. We examined
the properties of the shifting error across different Reynolds
numbers and resolutions in the two-dimensional Taylor-Green
vortex case, for which an analytical solutions is available.
We observed distinct behavior between smaller and larger
Reynolds numbers. The disparities were attributed to two
different dominant drivers of Lagrangian particle distribution
distortion: viscous shear forces at lower Reynolds numbers and
particle separation at higher Reynolds numbers. Regardless of
the cause of particle distortion, however, the shifting error was
always amortized for long-enough simulated times.

Based on our observations, we proposed a case-independent
recommendation for when shifting is expected to improve the
accuracy of SPH. This was based on a dimensionless metric of
the accumulated Lagrangian particle distortion. When plotted
in this metric, the difference in error with and without shifting
was qualitatively similar across resolutions and Reynolds
numbers. Finally, we found that the proposed distortion metric
is approximately quantitative and can thus be used to predict
when shifting should be beneficial.
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Figure 5: L∞ shifting error difference ∆E as a function of the dimensionless Lagrangian particle distortion metric AD for
different resolutions (line styles, inset legend) and Reynolds numbers (panels).

In the future, the present results could be extended to three-
dimensional problems and to free-surface flows. They could
also be compared with other measures of particle distortion
[1].
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