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Abstract

Persistent homology (PH) studies the topology of data across multiple scales by building nested
collections of topological spaces called filtrations, computing homology and returning an algebraic
object that can be vizualised as a barcode—a multiset of intervals. The barcode is stable and
interpretable, leading to applications within mathematics and data science. We study the spaces
of point clouds with the same barcode by connecting persistence with real algebraic geometry
and rigidity theory. Utilizing a semi-algebraic setup of point cloud persistence, we give lower and
upper bounds on its dimension and provide combinatorial conditions in terms of the local and
global rigidity properties of graphs associated with point clouds and filtrations. We prove that
for generic point clouds in R? (d > 2), a point cloud is identifiable up to isometry from its VR
persistence if the associated graph is globally rigid, and locally identifiable up to isometry from
its Cech persistence if the associated hypergraph is rigid.

1 Introduction

Persistent homology (PH) provides a multiscale geometric descriptor of data that is functorial, sta-
ble to perturbations and interpretable [CSEH05, CCSGT09, BL14], leading to many applications in
mathematics [BPP*22, PS16, KS22| and the real-world [GHP 22, LBD"17, Mil15, BBK*24, RB19].
Although this process yields an interesting nontrivial descriptor of the “shape of data”, it is unclear
how much information is lost in the mapping that takes point clouds to their barcode assigned by PH.
To answer this, we ask the fundamental question: What is the shape of the fibers (i.e. level sets) of
the persistent homology map?

The most common set up in topological data analysis (TDA), which we consider here, is point
cloud data. Let P = (py,...,p,) be a configuration of ordered distinct points in RY. While P itself
has no interesting topology, the union of closed balls of radius r centered at each point does. The nerve
theorem implies that this union has the same homotopy type as its nerve, known as the Cech complex
[CO08]. Another complex, the Vietoris Rips (VR) complex starts with n points and k—simplices
are built on tuples of k 4+ 1 points whenever all pairwise distances in the tuple are within distance
r. The key idea of persistent homology is to consider all values of r, instead of a fixed choice, by
building a nested sequence of simplicial complexes indexed by r, called a filtration. Applying the ith
homology with coefficients in a field to a filtration gives a persistence module, a functor (R, <) — Vectp.
Persistence modules considered in this paper decompose uniquely up to isomorphism into a direct sum
of indecomposable modules. Indexing this direct sum is a multiset of intervals in the real line called a
barcode [ZCO04].

Here, we study the spaces of point clouds with the same barcode. Taking either the Cech or Vietoris
Rips filtration, the persistence map assigns a point cloud P to its barcode D; in homological degree 3.
Hence from our filtration of P we get an ordered collection of barcodes D = [Dy, D1, Da,...]. We
define PHY® to be the map which assigns to a point cloud P its collection of barcodes D under the

Vietoris-Rips filtration. Similarly we define PH® to be the analogous map for the Cech filtration. The
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dimension of the spaces (PHYR)=1(D) and (PH®)~(D) can be thought of as the maximal number of
independent ways a point cloud can be perturbed without affecting its persistent homology, giving us
a lower bound.

In a small neighborhood of any generic! P, the map PHY® is a polynomial function and the map
PHC is a rational function. We can compute the rank of the Jacobian of these maps at P. By genericty
of P, the Jacobian test says that the rank is the local dimension of the image around the barcode and
by standard dimension theory, this gives the local dimension of the fiber. The dimension of the whole

fiber has to be larger than the local dimension, which gives a lower bound for the dimension of the
whole fiber.

Theorem 1. Let PH denote either PHS or PHYR. For any generic P € PC,, 4, if there are exactly k
distinct bounded interval endpoints in barcodes in D = PH(P), then dimPH™Y(D) > nd — k + 1.

Computing the dimension of the fiber is complicated. The PH map, loosely speaking, behaves as
if a bunch of rational maps were glued together, where the codomain changes along the boundaries of

glued regions. Since the codomain of PHY and PH® is the space of ordered collections of barcodes,

not R”, even showing that the spaces (PHY®)~1(D) and (PH®)~!(D) have a well-behaved notion of
dimension requires some work. Following an observation of Carriere et al [CCG'21], we establish
that these level sets are semialgebraic sets, which implies that they have a well behaved dimension.
Even for a generic point cloud, the fiber contains generic and nongeneric points. For this reason, the
action of ambient isometries of R¢ does not produce a fiber bundle structure on all level sets of the
persistence map. It is worth mentioning that this lack of a fiber bundle structure makes calculating
the dimension of level sets quotiented by isometry considerably more difficult. It can be proven that
the local dimension of a level set quotiented by isometry at P is bounded above the local dimension of
the unquotiented level set at P minus @, since % is the dimension of the isometry group of
R?. Given these challenges, there is no hope to compute even the dimension of the fiber unquotiented
by isometry, but we can bound this number from above as well.

Theorem 2. For any ordered collection of barcodes D = [Dg, Dy, Dy .. ], the dimensions of (PHY)~1(D)
and (PHY®)=1(D) are both less than or equal to nd —n + 1, where n is the number of intervals in Dy
(and hence the number of points in any point cloud P in the fiber).

We next provide a series of combinatorial conditions on P that are sufficient to imply a barcode
is most descriptive, i.e. there is only one point cloud up to ambient isometry that can produce that
barcode. These results rely on concepts such as identifiability from real and applied algebraic geometry
and rigidity theory from algebraic combinatorics and discrete geometry. In applied algebraic geometry,
studying the degree of a single map can a difficult problem. Central to identifiability is determining
when the fiber of a rational map is a singleton, in which case the point in the fiber is called identifiable;
or finite, in which case points in the fiber are called locally identifiable [Sul23, HOPY20, DHR18].
There are many situations when such fibers are not even locally identifiable, e.g., point clouds in
the plane are not identifiable up to ambient isometry under the mapping considered in [BKO04]; the
problem of nonidentifiability is nontrivial for low rank tensors, where the map is the projection from
the abstract secant variety to the secant variety and the fiber is related to the notion of decomposition
locus [GS24, BOS24]. We have described identifiability of a point in the domain, in complex algebraic
geometry, if the map under consideration is algebraic, and the domain is irreducible either almost
all points are identifiable or are not. However, since the persistence map is more complicated, we
do not have a general dichotomy of this type. Nevertheless, we make progress on when a barcode
is most informative by connecting the problem with rigidity theory [CG22a]. Here, rigidity theory is
concerned with identifiability of an unknown set of n labeled points from the measurement of some m
labeled pairwise distances associated with the edges of a graph G, which is naturally determined by
the dimension of the image and the degree of the polynomial map mg from sets of n labeled points in
R? to R™ that records the m squared edge lengths of the graph G.

We denote by PC, 4 the space of (ordered) point clouds of n distinct points in d dimensional
Euclidean space. We are interested in collections of barcodes D that are as descriptive as possible.
Such a collection D satisfies that every point cloud in the fiber of D is related by an isometry. We say

1The definition of generic in this paper is of an algebraic nature, and will be detailed in Section 2.4.



a point cloud that maps to such a collection D under PHV® (resp. PHC) is identifiable under Vietoris-
Rips (resp. Cech) persistence. To give a sufficient condition for when this happens in the Vietoris-
Rips setting, we use notions arising in the rigidity theory of frameworks [ref], an area of algebraic
combinatorics. To each point cloud P we associate a graph Gp, for the Vietoris—Rips filtration or
a hypergraph Hp, for the Cech filtration. The pair (Gvr, P) is called a framework. Intuitively, we
should think of an edge in Gp between p; and p; as constraining the distance between p; and p; to
be constant if we allowed the framework (Gyg, P) to move freely. We say that a framework is globally
rigid (Gp, P) if, whenever (Gp, Q) is another framework with the same edge lengths, then P and @
are related by a Euclidean isometry that maps p; to g; for all i. A framework is locally rigid (or simply
rigid) if there is a neighborhood U 3 P so that if Q € U and the frameworks (Gp, P) and (Gp, Q)
have the same edge lengths, they are similarly related by an isometry. (See Sections 2.6 and 6 for
rigorous definitions).
We can now state one of our main theorem regarding Vietoris-Rips persistence:

Theorem 3. Let n > d+2 and d > 2. For generic P € PC,, 4, if (Gp, P) is globally rigid then P is
identifiable up to isometry under Vietoris-Rips persistence.

A crucial challenge for proving the above result is that, in general, varying P in the fiber of D
changes the graph Gp. One of the key steps in our proof of Theorem 3 is showing that this generically
does not happen when Gp is globally rigid. To show this, we leverage a modern rigidity-theoretic
result from [GTT19]. As we will discuss in Section 2.6, for generic P the global rigidity of (Gp, P)
only depends on the combinatorial structure of the graph Gp. As such, identifiability of a generic
point cloud P only depends on the combinatorial properties of the invariant Gp.

To analyze Cech persistence, a new theory of rigidity is required. We develop this theory in Section
7, to the point where we can achieve a local, but not global, identifiability result for Cech persistence.
Explicitly, we assign to each point cloud P a hypergraph Hp and the pair (Hp, P) will be an example
of what we call a circumsphere framework. We say that (Hp, P) is (locally) rigid if the only way to
perturb P without changing the circumradius of any tuple of points corresponding to a hyperedge in
Hp is via an isometry. We say that P is locally identifiable (under Cech persistence) when there is a
neighborhood U of P such that for any @ in U with the same barcodes from Cech persistence, P and
@ are isometric.

We have the following theorem for Cech persistence:

Theorem 4. A generic P € PC,, 4 is locally identifiable up to isometry under Cech persistence if and
only if the circumsphere framework (Hp, P) is rigid.

We give an analogous definition of local identifiability under Vietoris-Rips persistence, which gives
rise to an analogous result for Vietoris-Rips persistence, stated in Theorem 58.

The rigidity of (Gp, P) and (Hp, P) in fact only depends on the combinatorial structure of Gp or
Hp for generic point clouds P. For Gp this is a well-known fact from rigidity theory that we discuss
in Section 2.6. For hypergraphs Hp, this fact requires proof, and we establish it in Lemma 64.

1.1 Related Work

Gameiro, Hiraoka and Obayashi provide one of the first results towards inverse problems; namely, if
a collection of barcodes D can arise from a point cloud, they provide a point cloud whose persistent
homology is D, provided that D is close to another collection of barcodes known to come from a point
cloud P [GHO16]. Oudot and Soloman posed the first problem about level sets of the persistence maps

PH® and PHYR, they asked when they are empty [0S20]. While this question is still open, in fact
very little is known about the structure of these level sets when they are nonempty. It is well known
that PHY® and PH® are never unique due to isometry invariance, i.e. Vietoris-Rips filtrations of
any isometric point clouds have the same barcodes, and the same is true for Cech filtrations. Beyond
this, Smith and Kurlin have given conditions for different point clouds to have identical barcodes
for degree 1 homology [SK22]. To our knowledge, this is all that is known about the fibers, i.e.,
the level sets (PHY®)=1(D) and (PH®)~(D), of the persistence map on point clouds. In [LMO24],
the authors study to what extent the VR barcode of a compact, connected, smooth manifold M
determines the geometry of M. By relating the interval in the VR barcode that corresponds to
the fundamental class of M to the filling radius, they obtain various sufficient conditions for the



barcode to determine M in the case where M is a sphere. There is also a thread of research studying
level sets of persistent homology applied to filtrations arising from functions, not point clouds, see
[Curl8, CMW20, MW21, LT22, L.B23, LHP24, BL23].

1.2 Plan of the Paper

Section 2 reviews the notions from topology, geometry, algebra, combinatorics, graph theory and
rigidity theory that we will need throughout the paper. In Section 2.1 we discuss how persistent
homology assigns barcodes to arbitrary filtrations of spaces, specializing to filtrations arising from
point clouds in Section 2.2. Then in Section 2.3 we discuss some results in TDA which are well
known but which we could not find proven in detail in the literature. After this, we move to the
prerequisite notions we need in algebra and geometry. First, we define algebraic and semialgebraic
sets, and show how these notions lead to definitions of dimension and genericity in Section 2.4. Then
we define circumspheres and enclosing spheres of point clouds and discuss important facts we will need
about these kinds of spheres in Section 2.5. This section will in particular be useful for studying Cech
persistence. We conclude our section on preliminaries with a review of rigidity theory in Section 2.6.

In Section 3 we give a detailed semialgebraic setup for the PH map. One of the main results in this
section is how to chop the domain of the persistence map up into semialgebraic cells on which PH is
better behaved. We then establish facts about these cells that we use throughout the paper. Following,
Sections 4 and 5 give an upper and lower bound on the dimension of the fiber of the persistence map.

In Section 6 we define the critical graph Gp of P as the graph defined by the set of edges that
appear in the Vietoris-Rips filtration of P at a value of a barcode endpoint. This leads us to our
main identifiability result, Theorem 3, along with our local identifiability result for Vietoris-Rips
persistence, Theorem 58. In Section 7 we develop a new rigidity theory. This allows for us to prove
our local identifiability result for Cech persistence, Theorem 4, in Section 8.

We conclude with Section 9, where we discuss a few open questions arising from our work.

In the appendix we prove some elementary and well known facts about degree zero persistence for
point clouds and provide references for a couple of basic, though somewhat technical, lemmas about
semialgebraic sets.

2 Preliminaries

2.1 Persistent Homology

Persistent homology is an operation which takes as input a nested collection of topological spaces called
a filtration:

Definition 5. A filtration is a collection of topological spaces {X;}ier such that X, C X; whenever
s <t.

In this paper, H;(e) will always denote homology in degree ¢ over a field F. All statements hereafter
will be true regardless of the choice of F. When we apply H;(e) to the spaces in a filtration {X;}ier
we obtain a collection of vector spaces { H;(X¢)}ter. Moreover, the functoriality of homology implies
that we have commuting linear maps H;(X,) — H;(X;) whenever s < t. This is an example of an
algebraic structure called a persistence module.

Definition 6. A persistence module is a collection of vector spaces V.= {Vi}ier equipped with com-
muting linear maps Vs @ Vo — Vi for all s < t satisfying Vs s = id. Two persistence modules V
and W are said to be isomorphic if there are vector space isomorphisms ¢y : Vi — W, such that
proVsr=Wsio0dps.

The persistence module V' is called pointwise finite dimensional (or pfd) if V; is finite for each
t € R. A numbert € R is called a critical value of V' if there does not exist an € > 0 such that V, s is
an isomorphism for allt —e <r < s <t+e. A persistence module is called tame if it is pfd and has
finitely many critical values.

We are interested in tame persistence modules for two reasons. First, they frequently arise when
studying finite point clouds as we will see shortly. Second, they admit decompositions into basic
persistence modules called interval modules.



Definition 7. Given an interval I C R, define the persistence module x by

F tel id s,tel
(XI)t = { (Xl)s,t = {

0 otherwise, 0  otherwise,
Such a persistence module is called an interval module.

For persistence modules V' and W, the direct sum V & W is defined by (V @& W), := V, & W;, with
(V & W), being the obvious maps inherited from V;; and W, ;. The following result, which follows
from Theorem 4.6 and Corollary 4.7 of [BS14] for example, shows that any tame persistence module
decomposes into a direct sum of interval modules.

Theorem 8. If V is a tame persistence module, there is a unique multiset of nonempty intervals T
such that V is isomorphic to
D xr,

I€T
and the multiset I is finite.
We remark that this result also follows fairly directly from the classic [ZC04], and the from the

more general main result of [CB15]. However the statement of the decomposition theorem given in
[BS14] is most convenient for our purposes. The above theorem motivates the following definition.

Definition 9. A barcode is a multiset of nonempty intervals in the real line. A full barcode is a
sequence of barcodes D = {D;}2,.

Using Theorem 8 we may finally arrive at the definition of persistent homology.

Definition 10. For a filtration X = {X;}ier, let H;(X) denote the persistence module {H;(X¢) }bier,
and suppose this persistence module is tame. The persistent homology in degree i of X is the barcode
D, satisfying

HZ(X) = @ XI-

IeD;

If H;(X) is tame for each i > 0, the persistent homology of X is the full barcode D = {D;}5°,.

2.2 Filtrations for Point Clouds

Point clouds are the central objects of interest to this paper, and we define them as follows.

Definition 11. We define PC,, 4 as

PCha={(p1,-..,pn) ER™: p; € R and p; # p; Vi # j},

the configuration space of n points in RY. Any element of PC,, 4 is called a point cloud? (of n points
in dimension d).

Point clouds give rise to filtrations, and these filtrations allow us to assign barcodes to point clouds.
The following is a kind of filtration arising from point clouds.

Definition 12. For x EVRd, led By(x) denote the closed ball of radius r centered at x. Given P =
(p1;---,pn) € PC,, 4 the Cech filtration of P is the filtration {P, } cr, where

n

P. = U Br(pi)'

i=1

We denote the persistent homology in degree i of this filtration by PH?(P), should it be well defined,
and the persistent homology of this filtration by PHC(P), should it well defined.

2Strictly speaking PC,, 4 is the space of ordered point clouds of n points in R<. By quotienting by the action of the
symmetric group Sp, acting on PC,, 4 by permuting the order of the p;, we may obtain the space of unordered point
clouds of n points in R%, PCy.q/Sn-



We will see that PHZc (P) and PHC(P) always exist by using a combinatorial reformulation of the
Cech filtration of a point cloud, but before we introduce it, we need the following definition.

Definition 13. Let Ky be a finite set. An (abstract) simplicial complex K is a set of nonempty
subsets o C Ky such that if T C o and o0 € K, then 7 € K. An element o € K is called a simplex (pl.
simplices), and it is called a p-simplex if o has p+ 1 elements exactly. The p-skeleton of K, denoted
K, is the simplicial complex consisting of all j-simplices of K, for j < p. The dimension of K is the
mazimum d such that K contains a d-simplez.

A d-dimensional simplicial complex K has a geometric realization. Let f : Ko — R?¥*! be an
injective mapping from Ky to a point set such that any 2d + 2 of the points in f(Ky) are affinely
independent. The geometric realization of K is

IK|| = U conv{f(v):v € KogNo}
oceK

with the subspace topology from the ambient R2+1. (All the choices of f give an equivalent space up
to a PL homeo, for evample.)?

Note that the 1-skeleton of a simplicial complex is a graph. It is well known that at the level of
homology, the Cech filtration is a filtration of simplicial complexes. For convenience we will let [n]
denote the set {1,...,n} throughout. We will also denote by |K| the number of simplices in K. Of
particular interest to us will be the simplicial complex whose simplices are the nonempty subsets of
[n]. This simplicial complex is called the complete simplicial complex on n vertices. We denote this
simplicial complex by K(n).

Definition 14. For P = (p1,...,pn) € PC,, 4, let C(P,r) denote the simplicial complex
{0 C [n] : there exists ¢ € R such that d(p;,q) < for all i € o}.

These simplicial complezes define a filtration {C(P,7)}cr.

The following, which is a result of [CO08, Section 3.1], shows that indeed the filtration {C(P,7)}rer
of a point cloud has the same persistent homology as its Cech filtration.

Proposition 15. The persistence modules { H;(P.)}rcr and {H;(C(P,7))}rer are isomorphic for each
1> 0.

It is easily observed that {H;(C(P,7))}rer is tame, so PH?(P) and PHC(P) are defined for all
P € PC,, 4 by Proposition 15.
The Vietoris-Rips filtration is another commonly used filtration which is also defined simplicially:

Definition 16. For P = (p1,...,pn) € PC,, 4, let VR(P,r) denote the simplicial complex
{0 C[n]:d(p;,p;) < 2r foralli,jco}.

We refer to the filtration {VR(P,r)},cr as the Vietoris-Rips filtration of P. We denote the persistent
homology in degree i of this filtration by PH;/R(P), and the persistent homology of this filtration by
PHVR(P).

Clearly PHY®(P) and PHY®(P) are well defined since {H;(VR(P,7))}rer is tame. It is easily
checked that the Cech and Vietoris-Rips filtrations have identical 1-skeletons. For this reason, it is an
immediate consequence of the theory of simplicial homology that PHS (P) = PHY®(P) for any point
cloud P. We note that PHY®(P) and PH®(P) are in general not identical. The advantage of PH® is
that it reflects the changing topology of the spaces P,., whereas the advantage of PHV® is that it is
easier to compute for high dimensional point clouds [Bau21].

We conclude the subsection with a discussion of how to use a function on a simplicial complex to
get a filtration. We will identify maps f : K — R with elements of RI¥| where the o*® coordinate of
f when viewed this way, denoted f,, is the number f(o). If f satisfies that f; < f, whenever 7 C o,
then it follows that the sets {0 € K : f, < t}icgr are simplicial complexes, motivating the following
definition.

3This construction is outlined in detail in [EH22, Chapter 3.1]



Definition 17. Let K be a simplicial complex with f € RI¥l such that f. < f, whenever T C o. Then
f is called an order preserving map and we denote by PH;(f) the persistent homology in degree i of
the filtration of simplicial complezes

{0 S K : fO' S t}te]R.

We denote by PH(f) the persistent homology of this filtration.
A map © : PC, g — RIEl s called an order preserving map parametrized by PC, 4 if ®(P) is an
order preserving map for each P.

For example, defining ®VR : PC,, 4 — RIKMI by

1
@XR(P) ‘= max 7d(piapj)a
i,j€o 2
then we have PH(®V®(P)) = PHY™(P).
Similarly, defining ®© : PC,, 4 — RIK™| by

@S(P) := min {7’ € R : there exists ¢ € R? such that d(p;,q) < r for all i € O’},

then we have PH(®C(P)) = PHC(P). In Section 3 we will prove a general structure theorem about
the following kinds of sets

(PH; 0 ®)"!(B) := {P € PC,, 4 : PH,;(®(P)) = B}
(PHo ®)'(D) := {P € PC, 4 : PH(®(P)) = D},

where ¢ : PC,, 4 — RI%l is an order preserving map on a simplicial complex K parametrized by PC, 4,
B is a barcode, and D is a full barcode.

2.3 Persistence and Minimal Spanning Trees

The goal of this section is to state two results in topological data analysis which are fairly elementary,
we believe to be widely known to be true, that we will need later. Proofs of results in this subsection
are given in the appendix for completeness. First we establish a basic fact about degree zero Cech and
Vietoris-Rips barcodes.

Lemma 18. Let P = {p1,...,pn} € PCpq. Let Dy = PHS(P) (or equivalently Dy = PHY®(P)).
The barcode Dy has n intervals, each with a closed left endpoint and open right endpoint. All of these
intervals have left endpoint equal to 0. One of these intervals has oo as its right endpoint. All other
intervals in Do have a positive right endpoint.

The next result discussed here (mentioned in [CAMDES24], and [EK20] in a slightly different
context, for example) is widely known, but a little less clear. We will state it using the following
language.

Definition 19. A tree is a connected cycle free graph. Let P = {pi1,...,pn} € PC, 4. A minimal
spanning tree of P is a tree whose vertex set is [n] and whose edge set E satisfies

Z d(pi,p;) = min{ Z d(pi,pj) : [n] and E'are the vertices and edges of a tree.}.
{i.j}eE {i,j}YEE"

The intuition behind this definition is that a minimal spanning tree has the smallest cumulative
length of edges while still spanning the metric space P. The result we need says that the edge lengths
of a minimal spanning tree are specified by barcodes arising from P.

Lemma 20. Let P = {p1,...,pn} € PCpq. Let Dy = PHS(P) (or equivalently Dy = PHY®(P)).
Let r < ... < 1, denote the distinct finite right endpoints of intervals in Do and let p; denote the
multiplicity with which r; appears as a right endpoint in Dy. Let T be a minimal spanning tree of P.
Then the multiset of edge lengths of T consists of the numbers 2ry,...,2r,, where 2r; appears with
multiplicity p;.

It is explained how this fact follows from Kruskal’s algorithm in [CAMDES24, Section 2.3]. For
completeness, we nevertheless give a detailed proof of the lemma in the appendix.



2.4 Semialgebraic sets, dimension, and genericity

Throughout we will consider only polynomials with real coefficients and work with the following kinds
of sets.

Definition 21. A set S C R™ is called algebraic if S is of the form
{w €R™: fi(a) = ... = fulx) = O},

where each f; is a polynomial in x.
A set S CR™ is called semialgebraic if S is a finite of union of sets of the form

{zeR™: fi(z)=...= fr(x) =0, g1(x) >0,...,g/(x) > 0}, (1)

where each f; and g; is a polynomial in x.

If S CR™, function f : S — R* is called semialgebraic if its graph, viewed as a subset of R™t* is
semialgebraic.

The Zariski closure of a set S C R"™ is the intersection of all algebraic sets containing S.

One can show that the Zariski closure of any set is algebraic.

It can be checked also that finite unions of sets as in Equation 1, but with any number of the
gi(x) > 0 replaced with g;(z) # 0 or g;(x) > 0, are also semialgebraic. It follows that the intersection
of any semialgebraic set with PC,, 4 is semialgebraic. We state some basic results about semialgebraic
sets, all of which are discussed in detail in [BCR13].

Semialgebraic sets have the following basic properties

1. Finite unions, finite intersections, and complements of semialgebraic sets are semialgebraic.
2. If AC R™ and B C R" are semialgebraic, so is A x B C R™*",

3. If 7 : R — R? is an axis-aligned projection map, 7 sends semialgebraic sets to semialgebraic
sets?.

These facts are powerful tools for proving that a set is semialgebraic. Here is a simple but important
example of how these facts may be used to show a set is semialgebraic.

Example 22. Any rational function f : A — R is semialgebraic, provided the domain A of f is also
semialgebraic. To see this, write f(z) = g(z)/h(zx) for g, h polynomials. The graph of f is the set

I'={(z,y) € AxR:yh(z) = g(z)}.

If A C R™, then I is the intersection of semialgebraic sets AxR and {(x,y) € R™*! : yh(x)—g(z) = 0}.
So T is semialgebraic and therefore f is semialgebraic as well.

Whats more, one of the properties that semialgebraic sets enjoy as a consequence of the three above
facts is that any set that can defined by a sentence in first order logic with polynomial equalities and
inequalities is semialgebraic. The process of constructing the semialgebraic set corresponding to such
a sentence is called quantifier elimination. To show the reader why and how this works, we present
a simple example of quantifier elimination in action, and refer the reader to [BCR13] for the general
details.

Example 23. Let f = (f1,f2) : R — R? be a polynomial map. Then the set of points not in the
image of f, i.e. the set

S = {(z1,22) €R*: (-3 : (fily) = 21)) A (faly) = 2))}

is semialgebraic.

We can get rid of the ‘not’ symbol — in S by taking a complement, i.e. we have S = R? — X.
Where X := {(y1,y2) € R?: Fy: (fi(x) = 11)) A (f2(z) = y2))}. If X is semialgebraic, then so is S,
since semialgebraic sets are closed under relative complements. Now we let

Vo= {(z,y1,92) € R : (f1(x) = y1)) A (fa(x) = 2))}-

4This result is significantly more challenging to show than others in this list and is known as the Tarski-Seidenberg
theorem, see for example [BCR13, Proposition 5.2.1]




It suffices to show Y is semialgebraic since X is a projection of Y. Finally, Y is the intersection of
Zy = {(z,y1,y2) €R3: fi(x) = y1} and Zy := {(w,y1,y2) € R?: fo(x) = y2}, and so is semialgebraic,
since Z; and Z, are semialgebraic (and in fact algebraic). Therefore S is semialgebraic.

The topological interior, closure, and boundary of a semialgebraic set (with respect to the Euclidean
topology) are all semialgebraic. Semialgebraic sets can be partitioned into finitely many sets, each
homeomorphic to (0,1)%, for k potentially varying among the sets. In fact, semialgebraic sets admit
Whitney stratifications, but we will not need this.

Definition 24. If S is a semialgebraic set partitioned into r sets Si,...,Sy, with S; homeomorphic
to (0,1)%:, then the dimension of S, denoted dim S, is defined to be max;(k;). If S is empty, the
dimension of S is defined to be —co.

It turns out that the dimension of S does not depend on the choice of partition. Moreover, if S is
also a smooth real manifold of dimension k, then the manifold dimension of S and the dimension of §
as a semialgebraic set agree. As such, the dimension of PC,, 4 is nd. Furthermore the dimension of S
also agrees with its algebraic dimension, i.e. the dimension of its Zariski closure. The dimension of a
finite union of sets X; is the maximum of the dimension of X; over the finitely many indices .

Definition 25. We say that a property Q is generic if there is a proper algebraic subset A C R™
such that either the property Q holds for all P € PC,, 4 — A or the property Q does not hold for all
P e PC, q— A. If we are in the first situation we say Q 1is generically true, or that, for generic point
clouds P, Q holds.

We remark that proper algebraic subsets of R™ in particular are nowhere dense and have measure
Zero.

To show that a property Q holds for all generic point clouds it suffices to find a semialgebraic subset
A C PC,, 4 of dimension less than nd such that Q holds for all P € PC,, 4 — A. This is true because
the Zariski closure of A is algebraic, contains A, and has dimension less than nd, and therefore is a
proper algebraic subset of R™®. We will use this fact repeatedly throughout the paper.

2.5 Enclosing Spheres and Circumspheres

Here we recall well known facts about enclosing spheres and circumspheres of collections of points.
These facts will help us establish a rigidity theory related to Cech filtrations in Sections 7-8 and, setting
aside Lemma 28, will not be used elsewhere.

For convenience, we will always consider a sphere of radius 0 centered at ¢ € R? to be the set {c}.

Definition 26. Let P = (p1,...,pn) € PCpq. Let S be a sphere of dimension d — 1, with any
radius and center. If S intersects every point in P, then S is called a circumsphere of P. If S is a
circumsphere of P and no circumsphere of P exists with a smaller radius, then S is called the minimal
circumsphere of P. The radius of the smallest circumsphere of P is called the circumradius of P.

A sphere whose associated disk contains P is called an enclosing sphere of P. The smallest sphere
that encloses P is called the minimal enclosing sphere of P. We refer to the radius of this sphere as
the enclosing radius of P.

We illustrate these kinds of spheres in Figure 1.
The following lemma is a consequence of [Wel05, Lemma 1]°.

Lemma 27 ([Wel05]). Let P € PC,, 4 be a point cloud with affine span of dimension l. If a circum-
sphere of P exists, then the minimal circumsphere exists and is unique.

Regardless of the choice of P, the minimal enclosing sphere of P exists and is unique. Moreover
there is a set T = {i1,...,ix} C [n] where k <1+ 1 and the following are equal

1. The minimal enclosing sphere of P,

2. The minimal enclosing sphere of (piy,-..,pi,), and

5While this result is only stated for the k = 2. It is pointed out later in the paper that that the same lemma and
proof holds for arbitrary k, with every instance of the number 3 replaced by k + 1.



Figure 1: On the left is a circumsphere of a planar point cloud. In fact, since this point cloud has three
points, it has at most one circumsphere, so this circumsphere is minimal. On the right is the minimal
enclosing sphere of the same point cloud. Note that this enclosing sphere is the minimal circumsphere
of a sub-point cloud.

3. The minimal circumsphere of (pi,, ..., pi, ), which must have its center in the affine span of the
sub-configuration.

We will also need that the minimal enclosing radius function is reasonably well behaved.

Lemma 28. The map p, : PC,, 4 — R, sending P to the minimal enclosing radius of {p; : i € o} is
semialgebraic.

Proof. Let o = {i1,...,ir}. The graph of p, is the set
{(P,r) €PC,qaxR: (EIJ: :(d(a:,pil) <rA. Ad(zpg,) < 7’))
A (—Sr' 23z (F <rAd(r,py) <AL Ad(z,pgy) < r’))}.

In the above formula, the first line says that r is large enough furnish an enclosing sphere of o(P),
and the second line says that moreover, no smaller 7/ < r has this property, so that r is the minimal
enclosing radius of o(P). It follows by quantifier elimination that the graph of p,, and hence p, itself,
is semialgebraic. O

We note that the above result is already known in the TDA community, see for example [CCGT21].
To have a formulaic description of the minimal enclosing radius function we will need two different
kinds of matrices.

Definition 29. Let P = (p1,...,pn) € PC, 4. The Euclidean distance matrix of P is the n x n matriz
Ap that has entries

(Ap)ii =0 and (Ap)ij = d(pi,p;)? (when i # j)

The Cayley-Menger matrix of P is the (n + 1) x (n+ 1) matriz Ap

where 0 is a column vector of n ones.
For o = {i1,...,ix} C [n] we denote by o(P) the point cloud o(P) = (Diy,- -, Piy)-

The following result from [Fiell, Theorem 2.1.3] combined with Lemma 27 allows us to compute
the radii of enclosing spheres.

Proposition 30. Let P € PC,, 4 and 7 C [n] be such that T(P) is affinely independent. Then the
circumradius of T(P) is defined and its square is equal to
det AT P
_ o) (2)
2det AT(P)
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2.6 Rigidity Theory

We now introduce some background on the rigidity theory of frameworks. For a general reference,
see, e.g., [CG22b]. The basic objects of study are frameworks, which, informally are a placement of a
graph into a d-dimensional Euclidean space.

Definition 31. Let d € N. A d-dimensional framework (G, P) is a pair (G, P) where G = (V,E) is a
simple, undirected graph with vertex set V = [n] and m edges and P = (p1,...,pn) is a configuration
of n points in R, We treat G as an ordered graph, using the ordering on [n] for the vertices and any
bijection E — [m] to fix an ordering of the edges.

The squared edge-length measurement map

Jo: (BRY") = R™ P (Ipi = pill") s jyem

maps a framework to its vector of edge lengths. The correspondence between the coordinates of R™ is
from the ordering of the edges.

In this paper we will be interested in the following notions of equivalence between point clouds.

Definition 32. Two point clouds P = (p1,....pn),Q = (q1,...,¢n) € PC, 4 are congruent if
d(pi,p;) = d(gi,q;) for all 1 < i,j < n. The point clouds P and @) are isometric if P and Q are
isometric as finite metric spaces R%. Equivalently, P and Q are isometric if there is a permutation
f:[n] = [n] such that d(pi,p;) = d(qsay,qr()) for each i,j € [n]. The point clouds P and Q are
weakly homometric if the multiset of pairwise distances d(p;, p;) in P is equal to the multiset of pairwise
distances of Q.

Note that P = (p1,...,pn) and Q = (q1,...,qn) are congruent if and only if the map ¢ which
sends each p; to ¢; is an isometry. As such congruent point clouds are necessarily isometric, but the
converse is not true. It follows from the classical work of Young and Householder that if P and @ are
congruent, there is an isomorphism ¢ of R? sending p; to ¢; [YH38].

If P=(p1,...,pn) and @ = (¢1, . - -, ¢n) are merely isometric, then there is a bijection f : [n] — [n]
such that d(p;, p;) = d(qf@),qy(;)). Hence P is congruent to @ = (qf(1),--+»4fn))- So by the previous
paragraph there is an isometry ¢ of R? sending p; to qf(i)- We thus observe that isometries of point
clouds lift to isometries of RY.

Isomorphic point clouds are weakly homometric, but the converse is not true, as shown by the two
non-isomorphic point clouds in Figure 2. The notion of weakly homometric point clouds is not as
important to this paper as that of isometry and congruence. Our reason for defining this notion here
is to emphasize that, a point cloud is not always recovered up to isometry from its pairwise distances

4 V10 NG)
2 2
2 V10 V2

Figure 2: Two weakly homometric point clouds that are not isometric. This particular example comes
from [BK04, Figure 4].

Rigidity theory deals in questions about the set of frameworks that have the same edge lengths as
some fixed (G, P). Intuitively, we regard (G, P) as a structure made of fixed length bars connected at
their endpoints by freely rotating (universal) joints and study its allowed motions.

Definition 33. Let (G, P) and (G, Q) be d-dimensional frameworks. We say that (G, P) and (G, Q)
are equivalent if fo(P) = fa(Q), i.e., they have the same edge lengths and that P and @ are congruent

if

A n
o=l = las = foratt sy e (1)
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A framework (G, P) is (locally) rigid if there is a neighborhood U > P such that if Q € U and (G, P) is
equivalent to (G, Q), then P is congruent to Q. A framework (G, P) is globally rigid if any framework
that is equivalent to (G, P) is congruent to it. A framework that is not rigid is called flexible.

In Figure 3 we illustrate examples of flexible, rigid, and globally rigid frameworks.

-

Flexible Rigid Globally Rigid

Figure 3: Examples of frameworks in R2?. The framework on the left is flexible, since it can deform in
a way that expands one diagonal of the quadrilateral and contracts the other while holding the edge
lengths fixed. The framework in the middle is rigid. If we pin down a triangle to factor out ambient
isometries, there are two positions for the remaining unpinned vertex that keep the remaining edge
lengths fixed, so any equivalent but non-congruent frameworks must be at some fixed distance from
each other. The framework on the right is complete, so it is globally rigid by definition. We can also
see that adding the missing edge to the framework in the middle resolves the “flip ambiguity”.

Frameworks with the same graph can have different rigidity properties. However, for each fixed
graph, there is a generic behavior.

Theorem 34 ([AR78, GHT10]). Rigidity and global rigidity are generic properties. That is, for each
fized dimension d € N and n € N, and every graph G on n vertices, there is a Zariski open subset U of
d-dimensional configurations so that either every (G, P) with P in U is (globally) rigid or every (G, P)
with P € U is not (globally) rigid.

The statement for rigidity, which follows from standard differential geometry arguments, is due to
Asimow and Roth [AR78]. That global rigidity is a generic property of G is a non-trivial result of
Gortler—Healy—Thurston [GHT10], building on earlier work of Connelly [Con82]. In light of Theorem
34, we can define graphs to be rigid.

Definition 35. A graph G is generically rigid (GLR) in dimension d if every generic d-dimensional
framework (G, P) is rigid. A graph G is generically globally rigid (GGR) in dimension d if every
generic d-dimensional framework (G, P) is globally rigid.

In Figure 4 we show an example of a graph GG which is generically rigid, but for certain point clouds
P can have (G, P) flexible, or (G, P) globally rigid.

In general, there is no simple combinatorial description of GGR or GLR graphs in three or greater
dimensions. More precisely, there is no known deterministic polynomial time checkable description of
which graphs are GLR or GGR in d > 2 dimensions. However, whether a graph is generically rigid
or generically globally rigid in dimension d can be tested in randomized polynomial time, whereas
determining whether a particular framework (G, P) is rigid is co-NP hard. Whether or not a graph
is GLR or GGR when d < 2 can be checked in polynomial time, however. A few graph-theoretic
definitions are needed.

Definition 36. A graph G is k-connnected if any graph G’ obtained from G by removing k vertices
and all edges incident to these vertices is connected. A graph G is redundantly rigid if any graph G’
obtained from G by removing a single edge is GLR.

Theorem 37 ([PG27, JJ05]). A graph G is GLR in dimension 2 if and only if G contains a spanning
subgraph G' such that

1. |[E(G")| =2n -3, and
2. if X is a subset of [n], the number of edges of G' whose endpoints are both in X is less than or
equal to 2| X| — 3.

12



Non-generic Generic Non-generic

=N/ W/

Flexible Rigid, not globally Globally Rigid
rigid

Figure 4: A GLR, but not GGR, graph G which can non-generically be either flexible or globally rigid.
On the left we see a non-generic framework (G, P) that is flexible (one triangle can be rotated around
the other). In the center, a generic framework that is rigid but not globally rigid (rotate the inner
triangle by 120 degrees counterclockwise). On the right a non-generic framework that is globally rigid,
see [CW96].

A graph G is GGR in dimension 2 if and only if G is complete or
1. G is 3-connected, and
2. G is redundantly rigid in dimension 2.

The characterization of graphs that are GLR in dimension 2 was established in [PG27] and later
rediscovered in [Lam70]. The result for GGR graphs was proven decades later still in [JJ05]. For GGR
graphs, the phrase “G is complete” is only needed in the second part of the above theorem when G
has 3 or fewer vertices, as graphs with this many vertices are never redundantly rigid.

Remark 1. In the rigidity theory literature, theorems about generic frameworks are usually stated
in terms of P having coordinates that are algebraically independent over Q. As discussed in [GTT19],
the theorems we use here hold with the genericity assumption of Definition 25.

In what follows, we will need a strengthening of global rigidity to the situation where the know the
edge lengths of (G, P) but not G. Here is the relevant combinatorial definition.

Definition 38. Let G = ([n], E) and H = ([n], F) be ordered graphs with m edges and bijections
g:E — [m] and f : F — [m] giving the edge orderings. We say that G and H are isomorphic as
ordered graphs if there is a permutations o € Sym([n]) and 7 € Sym([m]) so that, so that

{o(),c)telF <« {ijteE and  7(f({i,j}) =9({o(),0(i)}) (all{i,j} € E)

In words, the graph isomorphism o reorders the edges of G according to 77 1.

We will use the following result about “unlabeled” generic global rigidity, which says, informally,
that the unordered multi-set of edge lengths from a generic, globally rigid framework determine the
graph, up to isomorphism, and the configuration, up to congruence.

Theorem 39 ([GTT19]). Suppose n > d+2 and d > 2. Let G be an ordered GGR graph in dimension
d with n vertices and (G, P) a generic d-dimensional framework. If H is any other ordered graph with
n vertices and m edges, and there is a T € Sym([m]) so that

fu(Q) = 7(fa(P))

then there is a o € Sym([n]) that makes H isomorphic to G with the same T and, under the vertex
relabeling o, Q is congruent to P.

Corollary 40 ([BK04]). Let P,Q € PC,, 4 and suppose n > d+ 2 and d > 2. If P is generic and P
and Q are weakly homometric then P and @ are isometric.

Proof. Take G to be an ordered complete graph, which is GGR, and apply Theorem 39. O
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We note that Corollary 40 was proven by Boutin and Kemper before Theorem 39. The genericity
assumption is necessary for Corollary 40, as is shown by Figure 2. Since Corollary 40 is a special case
of Theorem 39 we see the genericity assumption is necessary there as well. We remark here that this
result of Boutin and Kemper has been used to motivate studying pairwise distances of point clouds in
data science settings, for example in [WK21].

3 Semialgebraic Structure

The goal of this section is to show that given a full barcode D, the level sets (PHY)~(D) and
(PHY®)~1(D) in PC,, 4 both have a semialgebraic structure, closely following arguments from [CCGT21].
This will establish that the notion of dimension established in Section 2.4 is well defined for fibers of
the persistence map. Moreover, the observations we make along the way will help us determine a
generic lower bound on the dimensions of the fibers of these two persistence maps, and will be useful
later in establishing connections to rigidity theory.

In greater generality, we want to show that persistence arising from any ®, an order preserving map
parametrized by PC,, 4, has semialgebraic level sets. This is more general since it is straightforward
to check that ®VE : PCpq — RIXI is semialgebraic, since each ®YR is semialgebraic. Moreover, the

following lemma shows that ®C is also semialgebraic.
Proposition 41. The map &€ s semialgebraic.

Proof. The coordinate maps of @S are the maps p,, which assign to P the enclosing radius of o(P).
These maps are semialgebraic by Lemma 28. Thus ®° is semialgebraic, since it is coordinate-wise
semialgebraic. O

The main result of this section is the following:

Theorem 42. Let K be a finite simplicial complex. Suppose that ® : PC,, 4 — RIXl is a semialgebraic
order preserving map parametrized by PC,, 4. Then given a barcode B, the set (PH; o ®)~1(B) is
semialgebraic for all i > 0. It follows that the set (PH; o ®)~1(D) is semialgebraic for any full barcode
D.

Our method of proof is based on those of [CCGT21], and will involve the following construction.
Definition 43. Given a set W, a total preorder < on W is a relation such that

1. Forallz e W, x < x.

2. Forall x,y € W, either x <y, y <X x, or both.

8. Ifr <y andy =Xz, thenz < z.
We denote by TPO(W) the set of total preorders = of W. If x <y but not y <X x we write x < y.

This definition is relevant to the above theorem because, given any P € PC,, 4, ® as stated in the
theorem assigns a total preorder to the simplices of K via the rule 7 < o whenever ®,(P) < ®,(P).
As such, we get a map from point clouds into the set of total preorders on K.

Definition 44. Let K be a simplicial complex and ® be an order preserving map parametrized by
PC,, 4. Define the map T : PC,, g — TPO(K) such that T (P) == where < is the relation satisfying

T=0 <= &, (P) <P, (P).
We let S< :=T 1(=).

As we will observe, the persistence map is well-behaved on the subspaces S< C PC,, 4. The reason
for this is that the sets S< consist of point clouds where simplices appear in the same order, the order
determined by <. We illustrate this scenario in Figure 5.

Insofar as proving Theorem 42 is concerned, we care about the sets S< since we have that

(PH;0®)"'(B)= |J (PHio®) ' (B)NSx.
<eTPO(K)
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Figure 5: On the left we see the sets S< partition point cloud space. On the right, a particular filtration
assiciated to a set S<. The definition of S« forces each point cloud P € S< to have their simplices
appear in the same order in their associated filtration, for example the order in the filtration on the
right.

Since there are only finitely many elements in TPO(K), this union is finite and so it suffices to prove
that each set in this union is semialgebraic to prove that the union itself is semialgebraic. We will
need often that persistence is well behaved on the sets S< later, so let us make it a result of its own.

Lemma 45. Let K be a finite simplicial complex. Suppose that ® : PC,, 4 — RIXl is a semialgebraic
order preserving map parametrized by PC,, 4. Then for any total preorder <€ TPO(K), S< is semi-
algebraic. Moreover, P,Q € S< have PH;(®(P)) = PH;(®(Q)) = B if and only if, for every bounded
endpoint b of B and 0 € K,

‘ba(P) =b — (I)G(Q) =b.

Proof. The set S< consists is the set of point clouds P € PC,, 4 such that for all 0,0’ € K,
O,(P)=,(P) < P,(P)—P,(P)=0

if both ¢ < ¢’ and ¢’ < o, and
O, (P) > P, (P) < P,(P)— P, (P)>0

if 0/ < 0. Both the above inequalties and equalities each define a semialgebraic set. Since finitely
many such equations define S<, it is the intersection of finitely many semialgebraic sets, and so is
semialgebraic. Note that these constraints imply that for any P,Q € S<, there is a strictly increasing
map ¢ : R — R such that ¢ o ®,(P) = ®,(Q) for each 0 € K. Let us see how the condition of P and
Q@ having the same barcode further constrains .

Fix P € S« such that PH;(®(P)) = B. For any () € S< there exists a strictly increasing map
¥ : R — R such that ¢ o ®,(P) = ¢,(Q) for all 0 € K. If additionally we have PH;(®(Q)) = B, then
by [LT22, Lemma 1.5]°, for any value b that is the endpoint of an interval of B, we have 1 (b) = b.
Conversely, fix any strictly increasing map 1 : R — R such that ¢(b) = b for every interval endpoint
bin B. Given @ € PC,, 4 satisfying ¢ o ®,(P) = ®,(Q) for all 0 € K, we observe that 7(P) = T(Q)
and, by [LT22, Lemma 1.5], PH;(®(P)) = PH;(®(Q)) = B. In summary, @ € S< has PH,;(®(Q)) = B
if and only if there exists a strictly increasing function v fixing endpoints of intervals in B such that
Yo®,(P) = @,(Q) for all 0 € K. This happens for P,Q € S< ifand only if &,(P) =b < ®,(Q) =b
for all o € K, and all barcode endpoints b of B, as desired. O

Proof of Theorem /2. To show that (PH; o ®)~1(B) is semialgebraic it suffices to show that, for each
=€ TPO(K), the set (PH; o ®)~1(B) N Sx is semialgebraic. If this set is empty it is automatically
semialgebraic. Otherwise, there exists P € (PH;0®)~1(B)NS<. Let W C K be the subset of simplices
o such that ®,(P) is an endpoint value of B. By Lemma 45, Q € (PH; o ®)~(B) N S< if and only if
?,(Q) = ®,(P) for all o € W. Define X C PC,, 4 by

X :={Q €PCphy: P, (Q) — B, (P) =0 for all o € W}.

SWhile this result technically only applies to PH, by inspecting the proof we see the result also holds for PH;, for
each i > 0.
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Thus we have that (PH; o ®)~1(B) N S< = X N S<. Moreover X is semialgebraic. To see this, note
that the graph of the function ®,(Q) — ®,(P) (as a function of @ with P fixed), which is an element
of PC,, 4 x R, is semialgebraic. Hence its intersection with PC,, 4 x {0} is semialgebraic, and so by
projecting we see that the set of @ such that ®,(Q) — ®,(P) = 0 is semialgebraic. By varying o over
W, we see that X is the intersection of finitely many semialgebraic sets, one for each 0 € W. So X is
indeed semialgebraic.

The set S is semialgebraic by Lemma 45, so (PH;0®) ™1 (B)NS< = X NS is the intersection of two
semialgebraic sets, and so is semialgebraic. This moreover shows that (PH; o ®)~!(B) is semialgebraic.

Now all that remains is to show that given a full barcode D = {D;}32, that the set

(PHo ®)~'(D) = (|(PH; 0 ®)~"(D;)
=0

is semialgebraic. Since K is finite, there is an IV such that the dimension of each o € K is less than N.
It follows that if D; is nonempty for some i > N then (PH;0®)~!(D;) is empty- the homology in degree
i of subcomplexes of K is always trivial. In this case it follows (PH o ®)~!(D) is empty, and hence
semialgebraic. Otherwise, D; is empty for all i > N. For such i we have that (PH;0®)~1(D;) = PC,, 4,
again because the homology in degree ¢ of subcomplexes of K is always trivial. In this case,

0o N-1
(PHo®)"'(D) = (|(PH; 0 ®)"'(D;) = (] (PH; 0 @)~ '(Dy)
i=0 i=0
Hence (PH o ®)~!(D) is a finite intersection of semialgebraic sets, and therefore semialgebraic. O

Corollary 46. Let D = {D;}2, be a full barcode. Then the spaces (PHC)*I(D) and (PHV®)~1(D)
are both semialgebraic, as are the spaces (PHY)™1(D;) and (PHY®)~1(D;) for each i > 0.

Proof. Applying Theorem 42, this follows immediately from the facts that &€ and ®VR are semi-

algebraic, combined with the fact that (PHS)~Y(D;) = (PH; o ®C)~Y(D;) and (PHY®)"1(D;) =
(PH, o ®VR)~1(D,). O

Later we will need to understand the interior and boundary of the sets S<, so we record a basic
definition and fact regarding these sets here.

Definition 47. We say that a point cloud P is interior to S< if there is an open ball B in PC,, 4 such
that P € B C 5<.

The following proposition shows that being interior to a set S< is a generic condition.

Proposition 48. The set of point clouds that are not interior to any set S< is semialgebraic and has
dimension less than nd.

Proof. Denote the set of point clouds not interior to any S< by N, and let N< := N N S<. The set
of point clouds interior to S< is by definition the interior of S<, when viewed as a subspace of PC,, 4,
and hence is semialgebrac. Hence N is the complement of a finite union of semialgebraic sets, and
so is semialgebraic, implying that each N< is also semialgebraic. Also, N< contains no points in the
interior of S< and so is a subset of the boundary of S<, viewed as a subspace of R"?. We will denote
this boundary by bd(S<). Using Lemma 73 in the appendix, we have

dim N = max dim N< < max dimbd(S<) < nd,
<ETPO(K (n)) N <€TPO(K(n)) -

giving the result. O

Lastly, we will need that we have the following generic relationship between isometric and congruent
point clouds on the sets S<.

Lemma 49. Let & = &€ or ¢ = ®VR and suppose that P € PC,, 4 is generic. If P,Q € S< are
isometric, then P and Q are congruent.
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Proof. By genericity of P, we may suppose that the pairwise distances d(p;,p;) of P are all distinct.
Now suppose P, Q € S<. In S, the simplices of K (n) always appear in the same order. In particular,
the same is true for the pairs {i,j} € K(n). For either choice of ® in the theorem, ®y; ;1(P) =
%d(pi7pj). Therefore, d(p;,p;) is the k™ smallest pairwise distance of points in P if and only if the
same is true for the distance d(g;, ¢;) in Q.

If : P — @ is an isometry, then P and @ have the same multiset of edge lengths. Since
d(pi,p;) = d(d(pi), d(p;)), it follows that d(d(p;), d(p;)) is the k' smallest pairwise distance of points
in @ if and only if d(p;,p;) is the k™ smallest pairwise distance of points in P. The latter happens if
and only if d(g;,q;) is the k™ smallest pairwise distance of points in Q. Hence we have:

d(pi; pj) = d(6(pi), 6(p;)) = d(gi, 45)-

This is true for all pairs {4, j} where i # j and so P and @ are congruent. O

4 An Upper Bound

We are now ready to prove our first result about the dimension of level sets of the persistence map.
We will make use of the following lemma, which describes the space of point clouds with a particular
spanning tree.

Lemma 50. Let T be a tree with vertex set [n] and edge set E with positive real weights w;; for each
{i,j} € E. The space

S={(p1,...,pn) € PCra:if{i,j} € E then d(p;,p;) = wi;}.
18 semialgebraic and has dimension less than or equal to nd —n + 1

In fact, with very little more work it can be shown that the dimension of S is equal to nd —n + 1,
but we do not need this.

Proof. The space S is the intersection of a space defined by finitely many polynomial equalities with
PC,, 4 a semialgebraic set. Hence S is semialgebraic. Moreover, S is a subspace of

M :={(p1,...,pn) €R™ :if {i,j} € E then d(p;,p;) = wij;, for some k}.
The space M is semialgebraic by similar reasoning, and moreover is homeomorphic to
Rd % (Sd—1>n—1

To see this, fix a root R of T. This choice fixes an orientation on the edges of T' away from R. Let
E' denote the set of directed edges (,7) of T from 4 to j. For each (4,j) € E’, we have a unit vector
v(i,5)(P) = (pj — pi)/llp; — pil| indicating the direction from p; to p;. Pick an ordering ey, ...,e,_1 of
the elements of E’. Since a point cloud P in M is specified by

1. the location of pg, and
2. the direction vy, j(P) for each {i,j} € E',
we have a homeomorphism
M — R x (84!
P (PR, ve, (P); - -5 Ve, (P))

Hence M is homeomorphic to R? x (S9~1)"~1 which as a manifold has dimension nd —n + 1. So M
has the same dimension since the dimension of a semialgebraic set that is a manifold agrees with its
manifold dimension. Since S C M, dim .S < dim M. O

Now we prove an upper bound for the dimension of fibers of the persistence map.

Theorem 2. For any ordered collection of barcodes D = [Dgy, D1, D5 .. ], the dimensions of (PHC)_l(D)
and (PHY®)=1(D) are both less than or equal to nd —n + 1, where n is the number of intervals in Dy
(and hence the number of points in any point cloud P in the fiber).
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Proof. Fix any point cloud P = {p1,...,p,} and Dy = PHS(P) (and so Dy = PHB’R(P)). Suppose
the finite right endpoint values of Dy are r; < ... < 7,,,. By Lemma 20 there exists a tree T" with
vertex set [n] and edge set E such that if {i,j} € E, then d(p;,p;) = 2r) for some 1 < k < m. Hence
P lies in the following subspace of R™?

{(q1,...,qn) € PC,, 4 :if {3, j} € E then d(g;, q;) = 2r, for some k}.

The tree T in general depends not only on Dy, but also on the geometry of P (and is not necessarily
uniquely defined!). However, if we let S denote the set of trees T with vertex set [n], and R(T) the
set of maps from the edges of a given spanning tree T on [n] to the set {2r1,...,2r;} we have for now

arbitrary P with PHC(P) = Dy that

Pel) U {@. . .qn) €PCpa:if {i,j} € E(T) then d(gi,q;) = ¢({i,j})}-
TeS ¢eR(T)

However, each set

{(q17 cee 7Q11) € PCn,d sif {Z’j} € E(T) then d(‘]iv Qj) - 2¢({Zv.7})}

has dimension nd —n + 1 by the previous lemma. Hence P lies in a finite union of semialgebraic sets
of dimension at most nd —n + 1. Hence (PH®)~1(D) has dimension at most nd — n + 1.

Note both S and the sets R(T) are all finite. Thus a point cloud P with Cech barcode D lies
on a union of finitely many nd — n + 1 dimensional manifolds. So PH™!(D) has dimension at most
nd—mn+ 1. O

_ Using the results of [SK22] we observe that this upper bound is sharp when d = 2 and we take
Cech persistence.

Proposition 51. Let D be any full barcode with D; empty for all © > 0. In the case where d = 2, the
space (PHY)"Y(D) has dimension nd —n +1=n+ 1.

Proof. Suppose that the n — 1 bounded right endpoints of Dg are r1,...,r,—1. Let X C PC,, 4 denote
the subset of point clouds P = {p1,...,pn} € PC, 4 such that

L. d(pit1,p;) = 21y, and
2. the angle between the vectors p; — p; and (1,0) is less than /4 any i < j.

By methods used in the previous proof we can show that X has dimension n + 1.

The Cech filtration of any P € X is a filtration of closed, locally contractible, and proper subsets
of the plane, and hence has trivial persistence in degrees greater than 1 by Alexander duality and the
universal coefficient theorem. Meanwhile, by combining Proposition 3.3 and Lemma 3.5 from [SK22],
P must also have trivial persistence in degree 1. Hence it remains to show that P has barcode Dy in
degree zero.

Let T be the minimal spanning tree of P with edge set E. Given i < j < k, suppose that
{i,k},{j,k} € E. Since the vectors p; — p; and py — p; both make an angle with (1,0) of less than
m/4, the angle between p; — p; and p — p; is obtuse. Hence d(p;, p;) < d(p;,pr). Let E’ denote the
set E, but with {7, k} replaced by {i,j}. We have that

Z d(pi, pj) < Z d(pi,p;),

{i,j}eE’ {i,j}€E

contradicting that 7" is a minimal spanning tree. Similarly it cannot be the case that {7, k},{i,j} € E.
Therefore, E consists of the edges {i,i + 1} for 1 < i < n. Lemmas 18 and 20 imply that the Cech
persistence module of P has barcode Dy in degree zero. O

The reason this proof does not apply to Vietoris-Rips filtrations is that there is no guarantee that
Vietoris-Rips filtrations of planar point clouds have trivial homology in degree 2 and greater (see for
example the proof of Proposition 5.3 in [CDSEG10]). If it were shown that an analogous construction
of X for d greater than 2 consists of point clouds with trivial persistence in every degree greater than
zero for Cech and Vietoris-Rips filtrations (we suspect this to be the case), the above proof could be
extended to the case d > 2, and to the Vietoris-Rips setting.

18



5 A Lower Bound

Now we see how the semialgebraic structure of level sets of the persistence map establishes lower bounds
on the generic dimension of fibers of the persistence map for the Cech and Vietoris-Rips filtrations.

Theorem 1. Let PH denote either PHC or PHYR. For any generic P € PC,, 4, if there are ezactly k
distinct bounded interval endpoints in barcodes in D = PH(P), then dimPH (D) > nd — k + 1.

We will prove this by showing that the same result holds on each Sx.

Lemma 52. Let PH denote either PHC or PHYE. Given <e TPO(K (n)), there is a semialgebraic
subset A< C S< of dimension less than nd with the following property. For each P € S< — A<, if there
are exactly k distinct bounded interval endpoints in barcodes in D = PH(P), then dimPH (D) >
nd —k+ 1.

Proof. If PH = PH let ® = ®°. Otherwise let ® = ®VR. We will make crucial use of the fact
that for any P € PC,, 4, ®,(P) = 0 if and only if ¢ is a singleton. Since for any P,Q € S, there
exists a strictly increasing ¢ : R — R such that ¢ o ®,(P) = ¢,(Q) for all 0 € K, by [LT22, Lemma
1.5] PH(P) and PH(Q) have the same number of distinct bounded endpoints k. Hence on S<, k is
independent of P.

By Lemma 45, S< is semialgebraic. Pick any Py € S< and let D = PH(FP). Let 0 = by < ... < bi—1
be the distinct bounded endpoint values that appear in intervals of D. Since the homology of either
the Cech or Vietoris-Rips filtration changes at each b;, the simplicial filtration itself must change at
each b;, so there must be at least one simplex o; with ®,,(FPy) = b; for each i. In particular, the
simplex oy must be a singleton. Define

f: Sj — RFL
P (9,,(P),...,0,, ,(P)).
Since the coordinate maps of ® are semialgebraic functions, so is f, as S< is semialgebraic. Given any

P,@Q € S<, there exists a strictly increasing map ¢ : R — R such that ¢ o ®,(P) = &,(F) for all
o € K. Hence, by Lemma 45, PH(P) = PH(Q) if and only if

O, (P) =9~ 'b; = 0,(Q) =1""b;.

From the structure of S< we deduce that this happens if and only if ®,,(P) = ®,,(Q) for all 3.
In particular we always have that ®,,(P) = ®,,(Q) = 0, since gy is a singleton. Hence PH(P) =
PH(Q) if and only if f(P) = f(Q). Since we assumed P,Q C S<, if D = PH(P) and a = f(P), then
f~'(a) C PH (D). This is an inclusion and not an equality since PH™*(D) is a subset of PC,, 4 while
f~1(a) is only a subset of S<.

Let S¢(1) := {a € R*=1 : dim f~*(a) = {}. For I < nd—k+1 we have by Lemma 74 in the appendix
that S¢(l) and f~1(Sf(l)) are semialgebraic and

dim fH(S(1) = dim Sp(1) +1 <k —1+1< (k—1)+ (nd — k + 1) = nd.

Thus we define
A<= U s

I<nd—k+1

This set is semialgebraic and has dimension less than nd, being a finite union of semialgebraic sets of
dimension less than nd. Moreover, for P € S< — A<,

dim PH™Y(PH(P)) > dim f~*(f(P)) > nd — k + 1.
This proves the lemma. O
With this lemma we can prove the theorem easily.
Proof of Theorem 1. For each <€ TPO(K (n)), the result follows immediately from taking A< as in
the above lemma and letting
A= U 4=

<€TPO(K(n))

Then every point cloud in PC,, ;4 — A has the desired property and dim A < nd. O
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PH(D)

Figure 6: A point cloud P in the fiber of the full barcode D, with a neighborhood highlighted. The
point cloud P is locally identifiable if every @ inside the fiber of D and the neighborhood is isometric
to P.

6 Vietoris-Rips Persistence Meets Rigidity Theory

In this section we only consider Vietoris-Rips persistence and write PH(P) := PHYR(P) as well as
® := &VE. Here we will look for point clouds that the persistence map describes in a sense as well as
possible.

It is well known that PH is isometry invariant (see [OS20] for example). Therefore, if we have
a point cloud P and want that D = PH(P) differentiates P from other point clouds @, a best case
scenario would be that any other point cloud @ with PH(Q) = D is in fact isometric to P. Barring
this, a second best case scenario would be that this is true for all @) in a neighborhood of P. So we
have the following definition.

Definition 53. Let P € PC, q satisfy PH(P) = D. We say that P is identifiable up to isometry
(under Vietoris-Rips persistence) if for all Q € PH™Y(D), P and Q are isometric.

We say P is locally identifiable up to isometry (under Vietoris-Rips persistence) if there exists a
neighborhood U of P in PC,, 4 such that every point cloud Q € U N PH_l(D) is isometric to P.

We illustrate our notion of local identifiability in Figure 6.

Now we begin to characterize the point clouds that are identifiable up to isometry. It will be
convenient to first study point clouds that are locally identifiable up to isometry. The key idea is that
Vietoris-Rips persistence only records metric information about pairwise distances between points in
a point cloud P. We need a notion of the pairs of points whose distances are indeed recorded by the
Vietoris-Rips filtration.

Definition 54. Let P = (p1,...,pn) € PC,, 4 with D = PH(P). For i # j, we say that {i,j} is a
critical edge if D has %d(pi,pj) as a bounded endpoint. We denote the set of critical edges of P by
Crit(P).

Near a generic point cloud P, another point cloud @ has the same full barcode if and only if they
have the same lengths of edges determined by Crit(P). To show this we will make use of the following
lemma.

Lemma 55. If P,Q € S< then Crit(P) = Crit(Q).

Proof. Since P,Q € S< we may pick a strictly increasing map ) : R — R such that o ®,(P) = ®,(Q)
for each simplex o € K. If {i, j} € Crit(P), then b = %d(p;, p;) is a bounded endpoint of D. By [LT22,
Lemma, 1.5}, ¢(b) is a bounded endpoint of PH(Q). Moreover ®y; 1(Q) = ¥ o ®y; 1 (P) = 4(b). Hence
{i,7} € Crit(Q). So Crit(P) C Crit(Q). Similarly Crit(Q) C Crit(P). O

Proposition 56. Let P = (p1,...,pn) € PC, 4 be interior to S<. There is a neighborhood U of
P such that for all Q = (q1,...,qn) € U, PH(P) = PH(Q) if and only if for all {i,j} € Crit(P),
d(pi, ;) = d(4;,q5)-
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Proof. Set U to be the interior of S<. It follows that U contains P. Let D = PH(P).

(=) Suppose Q = (q1,...,qn) € U satisfies PH(Q) = D. If {i, j} € Crit(P), then 1d(p;,p;) = b,
for some bounded endpoint b of D.

By Lemma 45 we have

d(pi,pj) = 2@ ;3 (P) = 2@, 1(Q) = d(gi, ;)

(<= ) Suppose Q = (¢1,...,¢,) € U has that for all {7,j} € Crit(P), d(pi,p;) = d(¢i,q;). Let b
be any bounded endpoint of D, and ¢ be a simplex such that ®,(Q) = b. The fact that P,Q € S<
implies that the maxima defining ®,(P) and ®,(Q) are both attained by the same pair of indices
{i0,jo}. Since we have b = ¢,(Q) = %d(qio,qjo), we observe {ig,jo} € Crit(Q). By Lemma 55, we
therefore have {4, jo} € Crit(P). Thus,

1 1
CI)U(P) = §d(pi0’pj0) = Ed(qimqjo) = cI)U(CZ) =b.
The same argument (except that we do not need to invoke Lemma 55) shows that if b is a bounded
endpoint of D and o is a simplex such that ®,(P) = b, then ¢,(Q) = b.
Therefore, for all bounded endpoints b of D and o € K, ®,(P), we have that ®,(P) = b if and
only if ®,(Q) = b. Lemma 45 implies that PH(P) = PH(Q). O

We now define the critical graph of a point cloud in the obvious way.

Definition 57. Given P € PC,, 4, we define the critical graph of P to be the graph Gp with N(Gp) =
[n] and E(Gp) = Crit(P).

We immediately have the following result from Proposition 56.

Theorem 58. Let P € PC,, 4 be a generic point cloud. P is locally identifiable up to isometry under
Vietoris-Rips persistence if and only if (Gp, P) is rigid.

Proof. Let P = (p1,...,pn). By genericity of P we may assume P is to some S<, using Proposition
48.

( <= ) Suppose (Gp,P) is rigid. Let U be the intersection of neighborhoods of P given by
Proposition 56 and by the rigidity of (Gp, P). Let Q = (q1,-. ., ¢n) be another element of U satisfying
PH(P) = PH(Q). Proposition 56 implies that @ satisfies d(p;,p,;) = d(gi,q;) for all {i,j} € Crit(P).
The rigidity of (Gp, P) implies that @Q is congruent to P, and hence isometric to P. So P is locally
identifiable up to isometry.

( = ) Suppose P is locally identifiable up to isometry. Let U be the intersection of the
neighborhoods of P given by Proposition 56 and the local identifiablility of P up to isometry. Let
Q = (q1,.-.,qn) be another element of U, such that d(p;,p;) = d(g;, ¢;) for all {i, j} € Crit(P). Propo-
sition 56 implies that PH(P) = PH(Q). Local identifiability of P implies that P and @ are isometric.
By genericity of P and Lemma 49, P and ) are congruent. O

Below we present a couple basic examples of the theorem in action.

Example 59. Let P = {p1,p2,p3} be a point cloud of three points. Without loss of generality,
assume that d(p1,p2) is the largest of the pairwise distances. By assuming genericity of P, we may
take d(p1,p2) to be the strictly largest of the pairwise distances. It is then straightforward to check
that {2,3} and {1,3} are critical edges of P, corresponding to the two bounded right endpoints of
PHy(P). However, {1,2} is not a critical edge. This is because the inclusion of this edge cannot change
degree zero homology as the filtration of K (3) is already connected for values below d(p1,p2). The
only other possibility is that {1,2} changes homology by creating a cycle. However this also cannot
happen as {1,2} appears at the same time in the Vietoris-Rips filtration as the 2-simplex {1, 2, 3}.
Hence, Gp is the graph on [n] with edges {1,3} and {2,3}, and this graph is not rigid. Hence we
deduce that generic point clouds with three points are not locally identifiable.

Example 60. Let P = (p1,p2,ps3,ps) be a planar point cloud given by the vertices of a square in
clockwise order, perturbed slightly so that P is generic. For convenience we write di := d(p1,p2),
do == d(p2,ps), ds := d(p3,p4), dg := d(ps,p1) and d} := d(p1,p3), dy := d(p2, ps). We show a possible
filtration of such a point cloud in Figure 7.
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Figure 7: Left: A possible filtration given by a point cloud P as in Example 60. Right: The full
barcode arising from this filtration.

Assuming the perturbation is sufficiently small we have that dy, do, ds, and d4 are less than both
d} and d}. As such we have that the smallest three of d; through d4 determine the three bounded right
endpoints of PHy(P), whereas the inclusion of the edge corresponding to the largest of dy through dy
creates a cycle, and hence determines a left endpoint in PH;(P). As such, the edges {1,2}, {2,3},
{3,4}, and {1,4} are all critical. Without loss of generality, suppose that dj < d,. Then {1,2,3} and
{1, 3,4} both have filtration value d] since the simplex {1,3} appears at this filtration value, and all
other subsimplices of these 2-simplices appear earlier. In particular, the cycle given by the first four
edges becomes a boundary at filtration value dj. We deduce that {1,3} is a critical edge. The point
cloud P equipped with the graph G on [n] with edges {1, 2}, {2, 3}, {3,4}, {1,4}, and {1, 3} is known
to be rigid. We deduce that P is locally identifiable.

As a consequence of Theorem 58, when d = 2 we have the following characterization of generic
point clouds that are locally identifiable up to isometry.

Corollary 61. Any generic P € PC,, o is locally identifiable up to isometry if and only if Gp contains
a spanning subgraph G satisfying

1. |[E(G)| =2n -3, and

2. if X is a subset of [n], the number of edges of G whose endpoints are both in X is less than or
equal to 2|X| — 3.

Proof. This follows immediately from Theorem 58 the first part of Theorem 37. O
Using Theorem 39 we can also find a criterion for identifiability up to isometry.

Theorem 3. Let n > d+ 2 and d > 2. For generic P € PC,, 4, if (Gp, P) is globally rigid then P is
identifiable up to isometry under Vietoris-Rips persistence.

Proof. Given any full barcode D, let E(D) denote the set of nonzero, non-infinite endpoints appearing
in D. Note that F(D) is a set, and so has no repeated entries. We have a map

¢p : Crit(P) — E(PH(P))
. 1
The structure of the barcode D implies that this map is surjective for any P. The condition that for

all pairs of critical edges {7,j} # {k,}, d(p:,p;) # d(pk,p1) is generically satisfied. By imposing this
condition on P we see that ¢p is also injective, and hence bijective.
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Now fix D = PH(P), and suppose Q € PH™!(D). As a result ¢q is surjective on E(D). Therefore
we can choose a subgraph G’Q C G with the same multiset of edge lengths as Gp. It follows from
Theorem 39 that @ and P are isometric. Therefore P is identifiable up to isometry. O

As a consequence of Theorem 3 we have the a generic criterion for identifiability up to isometry
when d = 2.

Corollary 62. Letn > 4 and P € PC,, 2 be a generic point cloud. If
1. Gp is 8-connected, and
2. Gp is redundantly rigid in dimension 2,

then P is identifiable up to isometry.

Proof. This follows immediately from Theorem 58 and the second part of Theorem 37. O

7 Circumsphere Rigidity Theory

To study identifiability for persistent homology of the Cech filtration, we need to replace rigidity theory
of Euclidean frameworks with an analogue involving circumspheres. The setup we develop follows steps
that are mostly standard in the rigidity and geometric constraint literature, but this specific variant
is, to our knowledge, new.

Definition 63. Let d € N be a fized dimension and H = ([n], E) a hypergraph in which each hyperedge
o € E has between 2 and d + 1 endpoints and P € PC,, 4. We call the pair (H, P) a circumsphere
framework.

We say that two circumsphere frameworks (H, P) and (H,Q) are equivalent if

det A, (pydet Ay = det A,y det Ay (p) (for all hyperedges o € E)

A circumsphere framework (H, P) is (locally) rigid if there is a neighborhood U > P such that, if
Q €U and (H,Q) is equivalent to (H, P), then @ is congruent to P.
A circumsphere framework (H, P) is generic if P is generic.

As a first step, we verify that circumsphere (local) rigidity is a generic property, analogously to the
results of [AR78]. The proof is somewhat standard, though we need to take a bit of care because the
measurement map is a rational function.

Lemma 64. Circumsphere rigidity is a generic property. That is, for every dimension d € N and
n € N, there is a Zariski open, dense subset V' of PC,, 4 such that for any hypergraph H with n vertices
and hyperedges consisting of between 2 and d+ 1 endpoints, either every framework (H, P) with P € V
is circumsphere rigid or no (H, P) with P € V is circumsphere rigid.

Proof. Let d and n be given as in the statement. We first observe that circumsphere rigidity is a
non-trivial property in the sense that there are rigid and non-rigid frameworks. This follows because
the minimal circumradius of a 2-point configuration {p;, p;} is simply %d(pi,pj). In particular, if P are
@ are congruent in the circumsphere sense, they are congruent in the conventional sense as well. We
now see that if H has no edges, then any circumsphere framework (H, P) must not be rigid and that
if H contains every hyperedge with two endpoints it must be rigid (because circumradii are invariant
under affine isometry).

We first consider the case n > d 4+ 1, wherein the heart of our argument lies. The case n < d+1 is
then intuitive, but rather technical. Given a hypergraph H = ([n], F) with n > d + 1 vertices and m
hyper-edges with between 2 and d + 1 endpoints. Define a set Uy of configurations P of n points so
that, for all o € E, the sub-configuration o(P) is affinely independent. Because each hyperedge ¢ has
at most d 4+ 1 endpoints, Uy is a dense Zariski open subset of configuration space. For all P in Uy, the
polynomial constraint system

det Ag(pydet Ay = det A, () det Ay(p) (for all hyperedges o € E)
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with @ as the variable has P as a solution and no trivial equations of the form 0 = 0. Set U to be

subset of Uy on which the Jacobian of this geometric constraint system has its maximum rank, which

we denote as r. Becuase Uy is dense in an (irreducible) affine space, it is also irreducible. Hence U is a

dense, Zariski open subset of Uy (as the rank being less than the maximum is defined by determinants).
The constant rank theorem implies that, for P € U, there is a neighborhood V' of P so that

c=Vn {Q : det Ag(p) det AU(Q) = det AU(Q) det Ag(p)}

is a smooth manifold of dimension dn — r. The manifold C' consists of the @ in V so that (H,Q) is
equivalent to (H, P).
Ifr=nd-— (d‘gl), then C' is of dimension (d‘gl) and otherwise it has higher dimension. These two
d+1)
2

cases correspond to rigid and flexible, since there is a ( -dimensional space of images of P under

affine isometries in any neighborhood of P, and all of these are in C'. If C' has dimension (dgl), then
V' is the neighborhood in the definition of rigidity; if the dimension is larger, then any neighborhood
of P will contain an equivalent but non-congurent @ in C.

Since U is a dense, Zariski open set, we have shown that, for this H, circumsphere rigidity is a
generic property. Since there are finitely many H, we can intersect the U for each of them, and the
lemma follows.

Now we handle the case n < d+ 1. For n < d+ 1 let Aff,, 4 C PC, 4 denote the subspace of
affinely independent point clouds. We note that PC,, 4 — Aff,, 4 is semialgebraic and has dimension less
than nd. For every pair n,d such that n < d 4+ 1 we construct continuous semialgebraic maps ¥, 4 :
Aff,, g — Aff,, .1 and ¥y, q 0 Aff, ¢ — R"™~! by induction. For the base case, we set ¥,, 4 = Yn,a = 0.
Let tq : R — R? be the inclusion map sending (1, ...,74_1) to (x1,...,24,0). For simplicity we
write ¢ = ¢g with the value d to be understood from context. We set t(p1,...,pn) = (D1, .-, tPn)-
Given any P = (p1,...,pn) € Aff), 4, set P_ = (po,...,pn—1). Letting d; = d(pn,p;), we note that
by affine independence of P, there is a unique p € R? such that the distance of p from the i*" entry
of tW,,_1,4(P-) is d; for each i < n, and such that the (n — 1)'" coordinate of p, denoted 7,,—1(p)
is positive. Therefore define ¢, 4(P) = p. It follows that ), 4 is continuous, provided we assume
inductively that W,,_; 4 is continuous. The graph of 1, 4 is the set

Vna=1{(P,p) € Aff, g xR, _1(p) >0 A d(p, (1V,_1,4(P-))i)? = d? for 1 <i < n},

As such, 1, q is semialgebraic if we assume ¥,,_; 4 is semialgebraic, by quantifier elimination. Now we
define ¥, 4(P) = (¥,—1,4, ¥n,a), which is therefore also continuous and semialgebraic, again inductively
assuming ¥,,_1 4 is continuous and semialgebraic. Moreover, by construction, ¥,, 4(P) is congruent to
P. In fact, ¥,, 4 sends each congruence class to a single point cloud.

Let Z denote the image of ¥,, 4, which is independent of the choice of n > d. There is a homeo-
morphism:

h:ZxO(d) x R — Aff,, 4
((p1y---spn), M,v) = (Mpy +v,..., Mp, +v).

Here, the Z coordinate of h™! is precisely the map ¥,, ,,_1. Now fix some hypergraph H as given in the
lemma. By the proof of the case n > d + 1, there exists a dense, Zariski open subset U C Aff,, ,_1 in
which every P has that, say, (H, P) circumsphere rigid, with the case of every P being not circumsphere
rigid being handled similarly to what follows. We write U" = ¥,, ,,_1(U). Since the complement of
U in Aff,, ,_ is algebraic, the complement of U’ in ¥,, ,,_; in Z is semialgebraic. Moreover, up to a
homeomorphism, ¥,, ,,_1 is a projection map, and projections of dense sets are dense, so U’ is dense.
Since being circumsphere rigid is a property that is constant along congruence classes in R* ™!, every
P € U’ is circumsphere rigid.

Now set U"” = \II;’E(U "y C Aff, 4. Since the complement of U’ in Aff,, ,,_; is semialgebriac,
quantifier elimination shows the complement of U” in Aff, 4 is semialgebraic as well. Again, up to a
homeomorphism, ¥,, ; is a projection map. Since preimages of dense sets under projections are dense,
U" is dense. Since U" is dense and Aff,, ;—U" is semialgebraic, Aff,, ;—U" has dimension less than nd,
implying that moreover PC,, 4 —U” is semialgebraic with dimension less than nd. Taking the algebraic
closure of this set we get a set A with dimension less than nd. Hence X := PC,, 4 — A is a dense,
Zariski open set. Note that X C U”. Given P € X, we claim P is circumsphere rigid. Otherwise, there
exists a sequence Py, P, ... approaching P of point clouds such that (P;, H) is equivalent to (P, H),
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but P; is not congruent to P. By continuity of ¥,, 4, the sequence {¥,, 4(P;)}2, approaches ¥,, 4(P).
Moreover, since ¥, 4 is an isometry of point clouds, each ¥, 4(F;) is not congruent to ¥,, 4(P), while
(H, ¥, q(P;)) is equivalent to (H, ¥,, 4(P)). This contradicts that ¥,, 4(P) is circumsphere rigid, since
P € U”. Hence V is a dense, Zariski open set on which every P is circumsphere rigid.

Since X depends on H, we conclude the proof by again setting V' to be the intersection of the sets
X given by each H. Since there are only finitely many hypergraphs with edges of between 2 and d + 1
endpoints on n vertices, V is still dense and Zariski open. O

This result motivates the following definition.

Definition 65. A hypergraph H with each hyperedge consisting of hyperedges with between 2 and d+ 1
endpoints is generically rigid (GLR) in dimension d if the circumsphere framework (H, P) is rigid in
dimension d for generic P.

For edges o = {i,7}, the condition det A,pydet A,y = det A,(g)det Ay(py is the same as
—d(pi,pj)* = —d(gi,q;)?, which is equivalent to d(p;,p;) = d(g:,q;). As a result, this definition of
GLR extends the earlier Definition 35 of the GLR property to hypergraphs.

Remark 2. The condition on the size of the hyperedges in H is necessary for the proof of Lemma 64
to work. When there are larger hyperedges, the configurations P such that the points corresponding
to every hyperedge lie on a common sphere are a proper algebraic subset of configurations, which may
have complicated topology or be empty.

We conjecture the following.

Conjecture 66. Let n be such that (dil) > dn— (dgl). Then the complete (d+1)-uniform hypergraph
s generically circumsphere rigid in dimension d.

We have verified this conjecture computationally via the Jacobian test on random point clouds for
d <5.

8 The Rigidity Theory of Cech Persistence

In this section we investigate how the proposed circumsphere rigidity theory applies to Cech persistence.

For convenience, let PH(P) := PH®(P) and ® := ®°. Analogously to Section 6, we have the following
definitions.

Definition 67. Let P € PC, q satisfy PH(P) = D. We say that P is identifiable up to isometry
(under Cech persistence) if for all @ € PH™Y(D), P and Q are isometric.

We say P is locally identifiable up to isometry (under Cech persistence) if there exists a neighbor-
hood U of P in PC,, 4 such that every element Q € U NPH™ (D) is isometric to P.

The point of departure from the Vietoris-Rips case is that having a certain barcode no longer
only constrains pairwise distances between points, motivating the following definition. Recall that
®,(P) = p,(P), the minimal enclosing radius of o(P).

Definition 68. Let P = (p1,...,pn) € PC,, 4 and D = PH(P). We say that 0 € K(n) is a critical
simplex of P if

1. ps(P) is an endpoint value of D and
2. For all strict subsimplices T C o, p(P) < ps(P).
We denote the set of critical simplices of P by Hp and call this the critical hypergraph of P.

Note that if we have an inclusion of simplices 7 C o, then p,(P) < p,(P), so the second condition
of a critical simplex really amounts to saying the equality is never attained for strict subsets of o.

Every singleton {i} has p;3(P) = 0 for all P, and 0 is necessarily an endpoint of PH(P) by Lemma
18. In general, it may not be the case that given o € CritS(P) we have 7 € CritS(P) for all 7 C o.
These two facts imply that we may view Hp as a hypergraph ([n], Ep), which is not guaranteed to be
a simplicial complex. Note that this hypergraph does not need to be pure, i.e. the edges in Ep may
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have varying size. However, Lemma 27 and property 2 in the above definition imply that all critical
simplices have at most d + 1 elements. Therefore, (Hp, P) defines a circumsphere framework.

As before, we will need that the critical hypergraph does not change within the sets S<. The proof
is similar to that of the previous section.

Lemma 69. If P,Q € S< then Hp = Hg.

Proof. Let 0 € Hp. Thus p,(P) is an endpoint b of PH(P). Since P,Q € Sx, there is a strictly
increasing function ¥ such that p,(Q) = ¥ o p,(P) for all simplices 7 € K(n). It follows from [LT22,
Lemma 1.5] that ¢(b) is an endpoint of PH(Q). Thus o satisfies the first condition for being a critical
simplex. For the second condition, if 7 is a strict subsimplex of o, then p,(P) < p,(P). Since
P,Q € S<, we therefore have p,(Q) < ps(Q). Hence o is a critical simplex of ). Therefore Hp C Hg,.
The proof of the reverse inclusion is the same with the roles of P and @ switched. O

Proposition 70. Let P be interior to S<. There is a neighborhood U of P such that for all Q in U,
PH(P) = PH(Q) if and only if po(P) = po(Q) for all o € Hp.

The proof of this proposition is similar to that of Proposition 56.

Proof. Set U to be the interior of S<. It follows that U contains P. Let D = PH(P).

( = ) Suppose Q € U satisfies PH(Q) = D. If 0 € Hp, then p,(P) = b, for some bounded
endpoint b of D. By Lemma 45 we have p,(Q) = b.

( <= ) Suppose @ € U has that for all ¢ € Hp, p-(P) = p,(Q). If 7 € K(n) is any simplex
such that p.(Q) = b, where b is an endpoint of D, then let o be a minimal subset of 7 such that
po(Q) = pr(Q). From Lemma 69 we have that 0 € Hg = Hp. Thus p,(Q) = ps(P). Since
po(Q) = p-(Q) and P,Q € S< we have that p,(P) = p-(P). In summary

pr(P) = pa(P) = po(Q) = p-(Q) = 1.

The same argument (without needing Lemma 69) shows that if p,(P) = b where b is a barcode
endpoint of PH(P), then p,(Q) = b. Lemma 45 then implies that PH(P) = PH(Q). O

Now we use the facts about circumradii and enclosing radii established in the background to write
an algebraic formula for p,(P), when o is a critical simplex of P.

Proposition 71. Let P € PC,, 4 and 0 € Hp. Then

po(P)* = —72(? Botr)
et AO‘(P)

Proof. Suppose o(P) is not affinely independent. Then let k& be the dimension of the affine span of

o(P). It follows that o has more than k£ + 1 elements. Lemma 27 implies that o has a subset of k + 1

elements with the same enclosing radius. Hence o is not an element of Hp, a contradiction.

Given any o € Hp, Lemma 27 also implies that there is a subset 7 C ¢ of at most d + 1 points
such that the minimal enclosing sphere of o(P) is the minimal enclosing sphere and the minimal
circumsphere of P,. Since p.(P) = p,(P) we must have that 7 = o since ¢ € Hp. By the first
part o(P) = 7(P) is affinely independent and hence we may compute its circumradius squared via
Proposition 30, since the circumradius of 7(P) is the enclosing radius of 7(P). Hence

det Ag(p)

o(P)? = —— 2"
po(P) 2detAg(p)

Now we arrive at our analogue of Theorem 58 for Cech persistence.

Theorem 4. A generic P € PC,, 4 is locally identifiable up to isometry under Cech persistence if and
only if the circumsphere framework (Hp, P) is rigid.
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Proof. By the genericity assumption we may take P to be interior to some S<.

(<= ) If (Hp,P) is rigid then take a neighborhood U as given in the definition of rigidity of
a circumsphere framework. Let U be the intersection of U with the interior of S<. Forall @ e U
such that PH(P) = PH(Q), Proposition 70 implies we have that p,(P) = p,(Q) for all o € Hp.
Squaring both sides and multiplying by —2det A, (p) det Ay () we see by Proposition 71 that (Hp, P)
and (Hp, @) are congruent circumsphere frameworks. Hence P and @) are isometric.

(=) Suppose P is locally identifiable. Let U be the interior of S<. Suppose now that

det Ag(p) det AU(Q) = det AU(Q) det Ag(p) (3)

holds for some @) € U and all 0 € Hp. Fixing o € Hp, Proposition 71 implies that det A, (p) is nonzero.
Since Hp = Hg by Lemma 69, Proposition 71 also implies that det A, () is nonzero. Dividing both
sides of Equation 3 by det A, (g)det A, (py we get that p,(P)? = p,(Q)?, by Proposition 71 again.
The numbers p,(P) and p,(Q) are both positive, so ps(P) = ps(Q). As this holds for all 0 € Hp and
P is locally identifiable up to isometry, Proposition 70 implies that P and @ are isometric. Lemma 49
implies that P and @ are therefore congruent, since P is generic. O

Example 72. Let P = (p1,p2,p3) € PC3 4. If P is generic then the triangle with vertices p1, p2, and
p3 is either acute or obtuse. If this triangle is obtuse, then by reordering points we may assume without
loss of generality that the angle between the vectors ps — p1 and ps — p; is greater than 7/2. This
implies that {1.2} and {1,3} appear before {2,3} in the induced Cech filtration of K (3). Meanwhile,
the obtuse angle also implies that the enclosing radius of P is %d(pg,pg), so that {1,2,3} appears at the
same value as {2,3} in the Cech filtration of K(3). In particular, the filtered complex is contractible
for after the appearance of both {1,2} and {1,3}. Meanwhile, the inclusion of the edges {1,2} and
{1, 3} both decrease the number of path components by 1. Hence, Hp consists of all vertices of K(3)
and the two edges {1,2} and {1,3}. In particular Hp is a graph and the rigidity of (Hp, P) as a
circumsphere framework is equivalent to the rigidity of (Hp, P) as a classical rigidity framework. The
graph Hp is not rigid so P is not locally identifiable up to isometry.

If the points of P form the vertices of an acute triangle, then the minimal enclosing sphere of
P is the circumsphere of P, and moreover, {1,2,3} appears after all pairs in the filtration of K (3).
Therefore, the inclusion of each pair in K (3) corresponds either to a reduction in the number of path
components in the filtration or the creation of a cycle. Meanwhile the inclusion of {1,2,3} kills this
cycle. Hence every simplex in Hp is critical. In particular, the graph G of edges {i,j} forms a
(classically) globally rigid framework (G, P), and hence (Hp, P) must be globally rigid as well. We
illustrate our conclusions in Figure 8.

Rigid
Not Rigid

Figure 8: An illustration of Example 72. When the three points form the vertices of an obtuse triangle,
the critical hypergraph is in fact a graph with two edges on the three points, which is flexible. When
the three points form the vertices of an acute triangle, the critical hypergraph is the entire complete
simplicial complex on three points, K(3). In particular, the complete graph on three points is a sub-
hypergraph of the critical hypergraph, implying in this case the framework (Hp, P) is rigid, and in
fact globally rigid.

9 Open Questions

In this paper we have turned questions of identifiability of the persistence map into questions in rigidity
theory. Our research here leaves several natural questions in both persistence theory and rigidity theory
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unanswered, and we list a few of them here, some with commentary.

1. For Vietoris-Rips persistence, describe sufficient conditions on a point cloud P for the critical
graph Gp to be locally or globally rigid.

2. For Vietoris-Rips persistence, when n > d + 2 and d > 2, is our sufficient condidion for global
identifiability in Theorem 3 necessary as well?

The obstruction to proving this is as follows. It could plausibly be the case that P = (p1,...,pn)
(say in the interior of some S<) is identifiable and yet Gp is locally rigid, but not globally rigid.
Local rigidity of Gp would imply that that P is isometric to any other point cloud in the interior
of S< with the same full barcode, by Proposition 56. However non-global rigidity of Gp implies
there is some Q = (¢1,...,¢n) € PC, 4 that is not isometric to P but has d(g;,q;) = d(ps, p;)
for all 4,5 € Crit(P). The problem is that ¢ does not need to be in S< and hence () may not
have the same full barcode as P. Moreover, we have no way of proving in this situation that any
Q € PC,, 4 with PH(Q) = PH(P) has a graph G¢ which makes (Gg, Q) globally rigid. In this
case we cannot apply [GTT19], as we do to show our condition is sufficient.

3. What are combinatorial conditions on a hypergraph H that makes H GLR in d dimensions?

We already know, trivially, that if the edges with two vertices of H form a rigid graph G, then
H must be rigid. However beyond this we have established no sufficient combinatorial condition
that implies local rigidity of H, other than being complete with n large enough in dimensions at
most 5. (See Conjecture 66, inter alia.)

4. Ts global rigidity in d dimensions a generic property of circumsphere frameworks (H, P), for H
fixed? If so, the previous question applies just as well to globally rigid frameworks.

5. Is there a global identifiability criterion for Cech persistence analogous to Theorem 3? In more
generality, when does a filtration ® furnish a similar global rigidity criterion? For example, what
happens if we take the Vietoris-Rips filtration, but with distance between points is defined using
a different norm?
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Appendix

A Properties of Degree Zero Persistence

Here we provide detailed proofs of the lemmas in Section 2.3, both restated here for convenience.

Lemma 18. Let P = {p1,...,pn} € PCpq. Let Dy = PHS(P) (or equivalently Dy = PHY®(P)).
The barcode Dy has n intervals, each with a closed left endpoint and open right endpoint. All of these
intervals have left endpoint equal to 0. One of these intervals has oo as its right endpoint. All other
intervals in Do have a positive right endpoint.

Proof. Let F(r) denote either C(P,r) or VR(P,r). Either way, the following are true
1. F(r) contains no elements for r < 0

2. For sufficiently large r, F(r) = K(n),

w

. F(0) consists only of n 0-simplices, and,

N

. For r > 0, the map Hy(F(0)) — Hy(F(r)) induced by inclusion of simplicial complexes is
surjective.

These facts have the following consequences for the barcode Dy
1. No interval in Dy has left endpoint less than 0,
2. Exactly one interval in Dy has right endpoint oo,
3. There are n intervals in Dy with closed left endpoint equal to 0, and
4. No interval in Dg has left endpoint greater than 0.

The filtration F also has the property that for any r, there exists ¢ sufficiently small that F(r) =
F(r + ¢), implying that each right endpoint of Dy is open. In particular, this means that the right
endpoints of Dy are all positive. O

Lemma 20. Let P = {p1,...,pn} € PCphq. Let Dy = PHS(P) (or equivalently Dy = PHY®(P)).
Let ry < ... < 1, denote the distinct finite right endpoints of intervals in Do and let p; denote the
multiplicity with which r; appears as a right endpoint in Dy. Let T be a minimal spanning tree of P.
Then the multiset of edge lengths of T consists of the numbers 2ry,...,2r,, where 2r; appears with
multiplicity p;.

Proof. Fix a point cloud P = {p1,...,pn}. We have that PHS (P) = PHY®(P) so let Dy = PH§(P).
Let G(r) denote the 1-skeleton of C(P,r) and note that the persistence modules { Ho(G(r))}rer and
{Ho(C(P,7))}er are isomorphic, since Hy and its induced maps only depend on 1-skeleta. Define
r; and p; as in the lemma and for our convenience we let rg := 0. We construct the desired kind
of minimal spanning tree on the vertex set [n]. First, consider the set A; of pairs {i,j} such that
d(pi,pj) = 2r1. We fix Wi, a maximal cycle free subset of A;, and define E; := W;. Inductively,
suppose we have constructed already Ej_1 for kK < m. Let Ay denote the set of pairs {i,j} such that
d(p;,p;) = 2rg. Let Wy be a maximal subset of Ay subject to the constraint that Wj, U Ej_; is cycle
free. We let Ep, := Wi U E_1.

For each 1 < k < m we define a graph T}, with vertex set [n] and edge set Ej. We let Ty denote the
edgeless graph with vertices [n]. Since T} is a subgraph of G(ry) with the same vertex set, it has at
least as many components as G(r), and moreover each component of T}, is a subset of a component
of G(rg). We show by induction on k that Ty and G(r) in fact have the same number of components,
and therefore have the same components, with the base case k¥ = 0 being obvious. For k > 0, if T has
more components than G(r), let

¢ :=min {d(p;,p;) : ¢ and j are disconnected in T} but connected in G(ry)}.

If ¢ and j are disconnected in T}, but connected in G(ry) then we can pick a path of edges in G(r)
connecting ¢ and j. At least one of these edges must connect different components of Tj. Taking i’
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and j’ to be the incident vertices of one such edge we see that ¢ < 2r,. Moreover, by our inductive
hypothesis, any i and j such that d(p;,p;) < 2rp—1 are connected in Tj. Thus 2rp_; < ¢ < 2r. If
2rp—1 < ¢ < 2ry, pick some ¢ and j in different components of T}, such that d(p;,p;) < c¢. Hence i
and j are connected in G(c). From the barcode Dy we deduce that ¢ and j must also be connected in
G(ri—1), and therefore connected in Ty_1, a subgraph of Ty. This is a contradiction. Thus ¢ = 27y,
and so we may pick ¢ and j disconnected in T but connected in G(ry), such that d(p;, p;) = 2ry. The
existence of such a pair implies that W}, is not maximal. Hence by contradiction we have shown that
T, has the same components as G(ry).

We let T = T,,. The graph T is connected since from Dy we deduce that G(ry,) is connected.
Further T is cycle free by construction, so T is a tree. Hence T has n — 1 edges. For each edge {i,j}
of T we assign a weight d(p;,p;). Let w1 < ... < wy,_1 denote these weights in ascending order. In
particular, we know that each w; = 2r;, for some j, by the construction of 7'. Moreover, 2rj will occur
in this sequence with the same multiplicity as the number of elements in Wj.

We have already shown that T}, has exactly as many components as G(ry) for all k. The structure
of the barcode Dy then implies that Tj_1 has p; more connected components than 7}, has. Moreover,
Ty, is obtained from Tj_; by attaching the edges Wj. Since T} is cycle free, this implies that each
edge attached to Tj_1 decreases the number of components of the resulting graph by one. Hence W
has pj elements. This shows that T is a spanning tree with multiset of edge lengths identical to the
multiset of finite right endpoints in Dy.

Now let T be any other spanning tree of [n], and assign edge weights to 7" as to T', mapping {7, j}
to d(p;, pj). Ordering the edge weights of T”, we obtain another sequence wj < ... < w),_;. We claim
w; < w} for all i. Suppose otherwise and pick the smallest [ such that w] < w;. Define T'(r) to be the
subgraph of T consisting of the vertex set [n] and the edges of T with weight less than or equal to 2r.
Note that T'(ry) = Tk. Similarly, define T'(r) to be the subgraph of T” consisting of the vertex set [n]
and the edges of T” with weight less than or equal to 2r. This makes both T'(r) and T”(r) subgraphs
of G(r). By assumption, T'(wj) has more edges than T'(wj). Since both are cycle free, this means
that T"(wj]) has fewer components than T'(w;). Let ry be the largest of the numbers 79 < ... <1y,
that satisfies 7, < wj. Since T only has edges with weights values 2r;, T'(w]) = T(ry). Moreover,
the barcode Dy shows that the inclusion G(r;) — G(w]) induces an isomorphism on Hy, so G(ry)
has exactly as many components as G(w;). By construction, 7(wyj) is a subgraph of G(wj},) with the
same vertex set, so T'(wj) has at least as many components as G(wy},). Let C(G) denote the number
of components of a graph G. The arguments in this paragraph show:

C(T(w})) = C(T(r)) = C(Ty,) = C(G(rx)) = C(G(wy)) < C(T"(w))),
and
C(T(wy)) > C(T"(wy)).

These statements are obviously contradictory, so w; < w)} for all .
This proves that T is a minimal spanning tree and that any other minimal spanning tree has the
same multiset of edge lengths, as desired. O

B Lemmas from Real Algebraic Geometry

Here we state two elementary, though somewhat technical, results we need from real algebraic geometry,
and provide citations for the proofs.

Lemma 73. Let X C R™ be semialgebraic. Then dimbd(X) < m, where bd is the topological
boundary of X in R™ with respect to the Fuclidean distance.

Proof. This is immediate from [VdD98, Chapter 4, Corollary 1.10]. O

Lemma 74. Let X C R" be semialgebraic and f : X — R™ be a semialgebraic map. Then for each
d €{0,1,...,n} the sets Sf(d) :== {a € R™ : dim f~!(a) = d} and f~'(S¢(d)) are semialgebraic and
dim f~1(Sf(d)) = dim S¢(d) + d.

Proof. This follows immediately from [VdD98, Chapter 4, Corollary 1.6 (ii)] and the fact that preimages
of semialgebraic sets under semialgebraic maps are semialgebraic. O
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