
Chapter 6

The First Cell Cycle of the Caenorhabditis
elegans Embryo: Spatial and Temporal

Control of an Asymmetric Cell Division

Maria L. Begasse and Anthony A. Hyman

Abstract Throughout the development of an organism, it is essential that the cell

cycle machinery is fine-tuned to generate cells of different fate. A series of

asymmetric cell divisions leads to lineage specification. The Caenorhabditis ele-
gans embryo is an excellent system to study various aspects of the early embryonic

cell cycle. The invariant nature of the rapid cell divisions is the key feature for

studying the effects of small perturbations to a complex process such as the cell

cycle. The thorough characterization of the asymmetric first cell division of the

C. elegans embryo has given great insight on how the oscillations of the cell cycle

coordinate with the cytoplasmic rearrangements that ultimately lead to two devel-

opmentally distinct daughter cells.

6.1 Introduction

The mechanisms underlying the duplication and division of cells have stimulated

research ever since Virchow postulated that cells can only come from preexisting

cells (omni cellulae e cellula) in 1858. Earlier, in 1839, Schleiden and Schwann had

recognized the importance of cells as the basic building blocks of life. From 1970s

onward, groundbreaking work was done to understand the regulation of the cell

cycle in genetically tractable eukaryotes, such as yeast, where many of the key

players in the cell cycle were first described (Hartwell et al. 1970, 1974; Nurse et al.

1976; Nurse and Thuriaux 1980). The characterization of genes essential for a cell

to divide was complemented by the discovery of temporally regulated protein

synthesis, which was made possible by working in biochemical accessible organ-

isms such as frog and sea urchin embryos (Masui and Markert 1971; Evans et al.

1983). With these two methods at hand, the model of the eukaryotic cell cycle based

on the activity of cyclin dependent kinases (CDKs) was established. Over the years,
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many details of the regulatory pathways were described in a variety of organisms,

and it has been found that the core regulatory principles are extremely well

conserved among eukaryotic species. The discovery of the cell cycle machinery

is reviewed in a great series of Nobel Prize lectures (Hartwell 2002; Hunt 2002;

Nurse 2002). The question remaining is how the cell cycle regulators can be

adopted throughout development to give rise to different tissues. Before we can

comprehend the role of the cell cycle in cell fate regulation, we first need to

understand how the cell cycle machinery mediates the morphological changes a

cell undergoes during an asymmetric cell division.

6.1.1 Temporal Control: The Idea About a Cell Cycle Clock

The eukaryotic cell cycle is often described as a clock, with the different phases of

the cell cycle occurring at certain times. Each clock is made up of an oscillator

that defines the time periodicity, a controller that corrects the frequency of the

oscillator, a counter that translates the oscillations to a more convenient unit, and

an indicator that tells the time. In the cell cycle clock, the expression of cyclins sets

the oscillations, a checkpoint or entrainment mechanism acts as a controller,

the CDKs correspond to the counter, they translate the oscillations of the cyclins

to biochemical changes in the cell, and the morphology of the cell tells us in which

phase the cell cycle is, it tells the time. In most cell types, different species of cyclins

oscillate at an internal frequency, and a mechanism is required to entrain the

oscillations to activate the CDKs in the proper order. In some cell types, such as

yeast, strong checkpoints were observed that are able to halt the cell cycle clock and

restart it only when the oscillations are synchronized again. In other systems, there is

only evidence for a subtle controller that can coordinate events but is not able to halt

all aspects of cell division. Because of the differences observed in various cell types,

different models were proposed on how a minimalist cell cycle clock could work.

We discuss three models that imply different controller mechanisms.

The first model on cell cycle regulation was based on results from genetic studies

in yeast (Nasmyth 1996; Stern and Nurse 1996). This model suggests that an

increasing activity of a certain CDK will reach a threshold level at which it crosses

a checkpoint (Fig. 6.1a). Recently, it has been shown for human cells that mitotic

events are indeed ordered by their dependence on different thresholds of CDK

activity (Gavet and Pines 2010). This view of the cell cycle is termed the ratchet

model as each checkpoint acts as a switch from one phase to the next by irreversible

protein degradation (reviewed by Reed 2003). These switches are called check-

points because the cell will halt every aspect of cell division until the switch has

been triggered (Kastan and Bartek 2004). An alternative hypothesis is that the cell

cycle is composed of a set of independent clocks that are coordinated by check-

points (Fig. 6.1b). This idea was initially proposed for the cell cycle of the

prokaryote Escherichia coli (Jones and Donachie 1973). Nordstr€om et al. (1991)

supported this view of the E. coli cell cycle and suggested that the cell cycle of
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higher organisms is also regulated by multiple independent clocks (Boye and

Nordstr€om 2003). In their model, the checkpoints act to synchronize events that

run in parallel and do not necessarily depend on the same signals. The third model is

the only one that does not depend on strict checkpoints as a controller unit. Lu and

Cross (2010) proposed a phase-lock model for the cell cycle of a eukaryote, the

budding yeast Saccharomyces cerevisiae. Phase locking presumes the presence of

multiple independent oscillators, which run in parallel at their own frequencies.
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Fig. 6.1 Schematic

illustrations of cell cycle

clock models. (a) The ratchet

model assumes that the

phases of the cell cycle are

initiated by overcoming

thresholds of CDK activity.

The threshold is passed by

satisfying a checkpoint. This

is a point of no return,

ensuring that every event only

happens once per cell cycle

(Stern and Nurse 1996).

(b) The model of independent

clocks proposes that the

different phases of the cell

cycle run in parallel and are

kept in synchrony by the

activity of cell cycle

checkpoints (Boye and

Nordstr€om 2003). (c) The

phase-lock model is based on

independent clocks that are

entrained by the oscillations

of a master regulator (Lu and

Cross 2010)
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In contrast to the former model, these clocks depend on each other, they act like

slave clocks that are entrained by a master clock (Fig. 6.1c). In this model, each

peripheral oscillator could be responsible for a different phase of the cell cycle. In

eukaryotic cells, the CDK/cyclin system is the most likely candidate to provide a

reliable oscillator capable of synchronizing the peripheral clocks and ensuring a

stable order of events (Pomerening et al. 2003).

It is possible to distinguish these three models experimentally. Perturbation of

the first and second model could lead to a complete arrest of the cell. Distinct events

could only be decoupled by disruption of the checkpoint mechanisms. If non-

checkpoint proteins are perturbed, the second and third model could result in a

deceleration of the cell cycle but only the third model could lead to the decoupling

of events as observed in many embryonic systems, such as the first cell cycle of the

Caenorhabditis elegans embryo (see Sect. 6.1.3).

6.1.2 An Elegant Model: C. elegans

The free-living, bacterivorous nematode C. elegans is an excellent model organism

for the genetic analysis of cell cycle regulation during embryonic development. The

first two rounds of cell division are highly reproducible in their temporal and spatial

sequence (Fig. 6.2). All consecutive embryonic divisions have been characterized

(Deppe et al. 1978). Any discrepancy from the stereotypical cell divisions can be
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Fig. 6.2 Nomarski

micrographs of a C. elegans
hermaphrodite and a one-cell

stage embryo (P0). The

lineage up to the four-cell

stage is depicted. The cell

divisions of P0 and P1 are

asymmetric. The division of

P1 is initiated later than the

symmetric division of AB
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detected as a phenotype if the system is experimentally compromised. Another

advantage as a genetic model organism comes from its mode of reproduction.

Genetic homogeneity can be achieved by self-fertilization of the hermaphrodites,

while genetic crosses can be set up with males that are infrequently occurring in the

population (Brenner 1974; Sulston and Brenner 1974). Two breakthroughs for

C. elegans as a model organism came in 1998 when it became the first animal to

have its genome fully sequenced (C. elegans Sequencing Consortium 1998). At the

same time, RNA interference was adopted as a tool to deplete cellular protein levels

in C. elegans (Fire et al. 1998) and opened the possibility of genome wide screens

(Fraser et al. 2000; G€onczy et al. 2000; S€onnichsen et al. 2005). The early embryo

proved to be ideal for studying the effects of small perturbations such as single gene

knockdowns. The size (roughly 50-mm long, with a diameter of 30 mm) and trans-

parency of the C. elegans embryo make it easily accessible for light microscopy.

This is a clear advantage for studying the morphological changes that a cell under-

goes throughout the cell cycle. Individual proteins can be fluorescently tagged, and

their distribution can be followed through the cell cycle by time-lapse microscopy.

Through recent technological advance in the generation of transgenic lines, it is

promising that the activity of any gene or promoter of interest can be tracked

throughout the development of the worm (Sarov et al. 2006; Frøkjaer-Jensen et al.

2008; Murray et al. 2008). The first division of the C. elegans embryo is asymmetric,

providing an opportunity to study the coordination between the CDK/cyclin rhythms

and the series of polarization events leading to the segregation of cell fate determi-

nants. Many players essential to the complex process of asymmetric cell division

were uncovered by using the C. elegans embryo as a model organism.

6.1.3 Regulation of the Embryonic Cell Cycle in C. elegans

The first divisions of the C. elegans embryo are fast and do not require growth of

cells. The cell cycle in the early embryo is only comprised of consecutive rounds of

DNA synthesis (S phase) and cell division during mitosis (M phase), with no gap

phase until the 28-cell stage (Edgar and McGhee 1988). Although the cell cycles of

the embryo progress in a highly stereotypical fashion, it is clear that various

processes essential to cell division can be uncoupled. The fact that endoreduplica-

tion cycles, the duplication of DNA without segregation of sisters, exist in later

stages in the development of the embryo suggests that various aspects of cell

division can be separated (van den Heuvel 2005). Specific experimental disturbance

confirmed that the individual steps in the cell cycle in C. elegans are not strictly

dependent on each other. If one aspect of the cell cycle like chromosome segrega-

tion is artificially blocked in the one-cell embryo, it does not prevent a later phase of

the cell cycle; the cytokinesis furrow will still dissect the cell even though it has to

cut through the DNA and spindle (van der Voet et al. 2009). Another example is

that DNA and centrosome duplication proceed normally in the absence of cytoki-

nesis (Chase et al. 2000). In a classic experiment, Schierenberg and Wood (1985)
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showed that enucleated blastomeres of the one-cell embryo divided with typical

timing. These examples indicate that at least the nuclear and the cytoplasmic cell

cycle can be uncoupled to a certain extent in the early embryo.

Furthermore, these experiments indicate that the checkpoint mechanisms present

in the embryo are not sufficient to halt all aspects of cell cycle progression. The lack

of definite checkpoints in the one-cell C. elegans embryo makes it an ideal model

system to study the finer details of the cell cycle. In other systems with strong

checkpoint mechanisms, most perturbations of the cell cycle will lead to a check-

point dependent arrest and give rise to a number of phenotypes limited by the

number of checkpoints. Thus, studying the cell cycle in C. elegans has given great

insight into some peripheral regulatory mechanism, but the system that synchro-

nizes all aspects of the cell cycle is still poorly understood. In this review, we

discuss various features of the first cell division of the C. elegans embryo individu-

ally and also emphasize steps that coordinate the different processes essential to the

cell cycle.

6.2 The Nuclear and Centrosome Cycle

6.2.1 Meiosis and DNA Synthesis Phase

Before fertilization, the C. elegans oocyte is arrested at diakinesis of meiosis I in the

gonad of the hermaphrodite. The oocytes are kept in a quiescent state by the activity

of CKI-2, an inhibitor of the S-phase initiating CDK-2/cyclinE complex (Buck et al.

2009). The inhibition of CDK-2 by CKI-2 also seems to be the mechanism that

eliminates the maternal centrosomes (Kim and Roy 2006). It is important that the

set of centrosomes, which enters the oocyte at fertilization together with the

paternal nucleus, will form the only microtubule-organizing center in the one-cell

embryo. Upon fertilization, the activation of the oocyte triggers several events.

First, meiosis I and II proceed, resulting in the extrusion of two polar bodies. Next

an incompletely understood centrosome signal initiates a change in cortex activity

at the site of sperm entry, leading to polarity establishment (see Sect. 6.3.1). Proper

timing of this centrosome signal requires an active CDK-2/cyclinE complex

(Cowan and Hyman 2006). From the activation of the oocyte onward, the CDK-

2 complex is thought to be constantly active during early embryonic development

(Fig. 6.3a) (Brodigan et al. 2003). The onset of cytoplasmic streaming by the

asymmetric activation of the actomyosin cortex slightly precedes the migration of

the maternal pronucleus toward the paternal pronucleus (Fig. 6.3b). Polarity estab-

lishment coincides with the DNA synthesis phase of the cell cycle (Edgar and

McGhee 1988). Before the pronuclei migrate toward each other, the haploid

chromosomes within both nuclei are replicated. The DNA damage checkpoint is

silenced in the one-cell embryo (Holway et al. 2006). Stalling DNA replication

delays cell cycle progression in the first cell division, which leads to defects in the
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Fig. 6.3 Outline of the mitotic cell cycle in the one-cell C. elegans embryo. (a) The nuclear cycle

and the activities of the cyclin dependent kinases are depicted. Timing is relative to prometaphase

at 20�C. (b) The dynamics of the cortical actomyosin network (orange). (c) The cortex of the

embryo is patterned by the anterior (red) and posterior (green) PAR proteins. (d) The distribution

of the cytoplasmic cell fate determinants is downstream of PAR polarity. The somatic determi-

nants MEX-5/-6 (yellow) segregate to the anterior and the germline specific P granules (purple) to
the posterior. (e) The microtubule cytoskeleton (green) reorganizes into the mitotic spindle to

segregate the sister chromatids. The anterior of the embryo is to the left, the posterior to the right.
Arrows indicate motion
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asymmetric cell division and hence it is not a true checkpoint (Encalada et al. 2000).

The lack of a delay mechanism in case of DNA damage ensures that the cell cycle

timing is not disrupted and S-phase completes before pronuclei meet in the poste-

rior of the cell. DNA damage checkpoint activation becomes apparent in the two-

cell embryo (see Sect. 6.6).

6.2.2 Prophase and Prometaphase

The increase of CDK-1 activity during mitotic prophase is accompanied by chro-

mosome condensation in the nuclei (Hachet et al. 2007; Portier et al. 2007). The

activation of CDK-1 in the early embryo is dependent on the phosphatase CDC-

25.1 (Ashcroft et al. 1999; Rivers et al. 2008). At the same time, daughter centrioles

are nucleated off the existing centrioles within the centrosomes (reviewed by

M€uller-Reichert et al. 2010). The mitotic kinase Aurora B (AIR-2) recruits the

condensin complex to the chromosomes and is required for the phosphorylation of

histone H3 during prophase, which temporally regulates DNA condensation

(Kaitna et al. 2002; de Carvalho et al. 2008). Upon phosphorylation, the C. elegans
homologue of CENP-A, centromere histone H3 (HCP-3), relocalizes from the

center of the chromosomes to their surface, a process called centromere resolution.

HCP-3 decorates almost the entire length of the chromosomes, typical for the

establishment of holocentric kinetochores, which assemble around the centromeres

(Moore et al. 2005). At the time of pronuclear meeting, the polo-like kinase PLK-1

can be detected at the centrosomes and has been implicated in promoting centro-

some maturation (Chase et al. 2000). After pronuclear meeting, the nucleocentro-

somal complex migrates to the middle of the cell and rotates. Timely regulation of

nuclear envelope break down (NEBD) requires the cell cycle regulators PLK-1,

CDC-25, and CDK-1 (Chase et al. 2000). Furthermore, it has been shown that the

association of centrosomes with the nuclei is critical for timely NEBD (Hachet et al.

2007; Portier et al. 2007). Centrosomes are thought to act as signaling hubs that

coordinate certain aspects of cell cycle progression. The maturation of centrosomes

by Aurora A kinase (AIR-1) is essential for the simultaneous dissociation of the

nuclear envelopes of both pronuclei (Hannak et al. 2001; Hachet et al. 2007; Portier

et al. 2007). The coupling of centrosome maturation to nuclear envelope breakdown

ensures that both sets of chromosomes are located between the spindle poles to be

efficiently captured by spindle microtubules during prometaphase (Fig. 6.3e).

6.2.3 Metaphase and Anaphase

After NEBD, the spindle microtubules attach to the kinetochores on the chromo-

somes and arrange the condensed DNA onto the metaphase plate. Premature
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chromosome segregation is prevented by cohesin, which holds the sister chromatids

together. Cell cycle dependent activation of the catalytic function of separase

cleaves the cohesin molecules all along the chromosomes and allows segregation

of sister chromatids at the onset of anaphase. Two of the ultimate targets of the

Anaphase Promoting Complex/Cyclosome (APC/C), an ubiquitin E3-ligase, are the

inactivation of CDK-1 as well as the activation of separase (McCarthy Campbell

et al. 2009). A study by van der Voet et al. (2009) has shown that association of

CDK-1 with cyclinB1 is required for full condensation of chromosomes and for

proper alignment at the metaphase plate, while cyclinB3 (CYB-3) is essential for

the segregation of sister chromatids. The direct target of the CDK-1/CYB-3 com-

plex has not yet been identified. Interestingly, inhibition of chromosome segrega-

tion by CYB-3 depletion does not activate a checkpoint to prevent cytokinesis. The

activation of separase not only leads to sister chromatid segregation but also plays a

role in centriole separation and regulation of spindle dynamics (Sullivan et al. 2001;

Tsou et al. 2009). In C. elegans, the catalytic activity of separase is essential for

sister chromosome separation, while it has a noncatalytic function in the comple-

tion of cytokinesis. Bembenek et al. (2010) described a separase mutant, which

successfully segregates chromosomes but leads to cytokinesis failure. This indi-

cates, for the first time, that the various functions of separase during exit of mitosis

are likely to depend on different cell cycle signals.

Following successful sister chromatid segregation and initiation of cytokinesis,

the nuclear envelopes reform in the two daughter cells during telophase. Centriole

and centrosome dynamics in the one-cell C. elegans embryo have recently been

reviewed (M€uller-Reichert et al. 2010). For a review on nuclear envelope dynam-

ics, see Gorjánácz et al. (2007). After telophase, the two-cell embryo is ready for

a new division cycle, which is equipped with one nucleus and two centrioles

per cell.

6.3 Asymmetric Cell Division: PAR Polarity

The first cell division of the C. elegans embryo is asymmetric, producing one larger

anterior cell and one slightly smaller posterior cell (reviewed by Cowan and Hyman

2004, 2007; Munro and Bowerman 2009). Making two cells with different volumes

is not the only challenge of the asymmetric cell division in the one-cell embryo. In

order for the embryo to develop into an adult organism, cell fate determinants need

to be segregated into one or the other half of the cell before the first division. The

anterior cell will give rise to purely somatic tissue. The posterior cell will go on to

give rise to the germline of the adult organism, among other tissues, and needs to

inherit the germ cell factors, which are initially distributed throughout the oocyte.

The prerequisite for an asymmetric cell division is the polarization of the parent

cell. Asymmetry is initiated by the segregation of anterior and posterior PAR

(partitioning defective) domains (Fig. 6.3c). Polarization of the one-cell embryo

requires the PDZ domain proteins PAR-3 and PAR-6, as well as the atypical protein
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kinase C (PKC-3) to form the anterior domain. The serine threonine kinase PAR-1,

the ring-finger protein PAR-2, and the tumor suppressor LGL-1 establish the

contrasting posterior domain (Hoege et al. 2010). The PAR-3/PAR-6/PKC-3 com-

plex will thereafter be called the anterior PAR-6 domain, and the localization of

PAR-1, PAR-2, and LGL-1 will be referred to as the posterior PAR-2 domain. The

cytoplasmic proteins PAR-5, a member of the regulatory 14-3-3 protein family and

PAR-4, a serine-threonine kinase, are also required for stable polarity domains in

the embryo although their functions are less well understood.

Once the PAR polarity is established, it is essential to keep the cell polarized to

ensure the accurate distribution of other factors, which ultimately gives rise to

daughter cells with different fate. On the one hand, the PAR polarity regulates

cortical factors to position the spindle slightly posterior before cytokinesis, leading

to two differently sized daughters. On the other hand, it signals to cytoplasmic

components that segregate the fate determinants, ensuring that the daughters will

form different types of tissue.

6.3.1 Polarity Establishment Phase

In the C. elegans embryo, the onset of polarity is triggered by the sperm, which

enters the oocyte in the process of fertilization. The site of sperm entry designates

the posterior of the embryo (Goldstein and Hird 1996). The one-cell embryo

continues to be unpolarized during meiosis. At meiosis II, the PAR-2 complex is

weakly associated with the cortex. At the end of meiosis II, PAR-2 falls off the

cortex and PAR-6 decorates the whole cortex (Fig. 6.3c). The onset of anterior–

posterior (AP) polarity is not apparent until the start of mitotic prophase when the

cortex contractility becomes asymmetric and PAR-2 forms a posterior domain,

thereby replacing PAR-6 in this region (Cuenca et al. 2003). The mechanism by

which sperm entry initiates polarity establishment half an hour after sperm–egg

fusion is incompletely understood. The asymmetric activation of the actomyosin

network has been suggested as an important factor for the timely regulation of

polarity onset. A spatial cue that is dependent on the centrosome is thought to lead

to the exclusion of the activating RHO-1 guanine exchange factor (GEF) ECT-2 (Cowan

and Hyman 2006; Motegi and Sugimoto 2006). The GAP (GTPase activating

protein) CYK-4 has also been proposed to play a role in the asymmetric activation

of the cortex (Jenkins et al. 2006). In this model, the regulation of RHO-1 activity

through spatial localization or exclusion of RHO inhibitors or activators has been

proposed to induce the retraction of the active actin cytoskeleton toward the

anterior. However, due to a lack of tools to image the activity level of RHO-1,

this model remains controversial. The cortical actomyosin flow from the posterior

pole correlates with the displacement of the PAR-6 domain toward the anterior,

allowing the complementary PAR-2 domain to establish on the noncontractile

cortex at the posterior (Munro et al. 2004).

6 The First Cell Cycle of the Caenorhabditis elegans Embryo 119



6.3.2 Polarity Maintenance Phase

The contractility of the anterior cortex ceases as the nuclei migrate toward the

center of the cell. The boundary between the cortical polarity domains needs to be

maintained at the center of the cell until mitotic metaphase. While RHO-1 is the

major regulator of the actomyosin network during polarity establishment, main-

taining two stable domains depends on the interaction between the anterior PAR

proteins and the rho family GTPase CDC-42 (Schonegg and Hyman 2006; Kumfer

et al. 2010). The active form of CDC-42 interacts with PAR-6 and is enriched on the

anterior cortex, possibly by the opposing activity of the GAP CHIN-1 localized at

the posterior cortex (Gotta et al. 2001; Aceto et al. 2006; Kumfer et al. 2010). At the

cortex, PAR-6 is thought to interact with the kinase PKC-3, which can phosphory-

late PAR-2 to keep it off the anterior cortical domain (Hao et al. 2006). It has been

proposed that PKC-3 is able to phosphorylate PAR-1, while PAR-1 phosphorylates

the anterior protein PAR-3, constructing a feedback loop. This model is based on

cell polarity studies in other organisms, mainly Drosophila melanogaster (Benton
and St Johnston 2003; Hutterer et al. 2004). The Drosophila polarity model can be

mapped onto C. elegans, considering that the C. elegans specific polarity protein

PAR-2 performs the same function as LGL in flies (Hoege et al. 2010). The other

polarity proteins discussed here are conserved. The ability of the anterior complex

to phosphorylate the components of the posterior PAR complex and vice versa is at

the heart of mutual antagonism, the process that is thought to allow maintenance of

the polarity boundary. The cytoplasmic 14-3-3 protein PAR-5 functions to ensure a

sharp boundary between the anterior and posterior cortical complexes but mecha-

nism by which it does so is not yet clear. 14-3-3s are known to bind to phosphory-

lated proteins, and it has been speculated that they are able to remove phosphorylated

PAR proteins from the cortical region, thereby increasing the turnover of proteins at

the cortex.

If polarity establishment was blocked in early prophase by inhibiting cortical

contractility, there is an alternative mechanism to form the two opposing domains

during the maintenance phase (Zonies et al. 2010). The signal initiating the

accumulation of PAR-2 on the posterior cortex at this time point in the cell

cycle has yet to be revealed. The expansion of the PAR-2 domain in the absence

of strong cortical flows is dependent on the activity of CDC-42 (Zonies et al.

2010). This indicates that the antagonistic interaction between the posterior and

anterior PAR complexes allows the PAR-2 domain to push back the PAR-6

domain. The position of a PAR boundary established in the absence of flows

would, therefore, depend on the balanced activity between the antagonistic com-

plexes. On the basis of our current understanding of PAR polarity, it is likely that

the redistribution of the PAR domains during early prophase is due to passive

transport by cortical flows while the delayed onset of polarity in the absence of

strong cortical contractility as well as the maintenance of the established domains

is due to an active mechanism involving mutual antagonism between anterior and

posterior PARs.
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6.3.3 Repositioning the PAR Boundary to Match
the Cytokinesis Furrow

The final position of the PAR polarity boundary correlates with the site of the

asymmetric position of the cytokinesis furrow (Schenk et al. 2010). Just before the

sister chromatids segregate to opposite poles of the one-cell embryo at anaphase,

the spindle is displaced slightly toward the posterior (see Sect. 6.5.3) (Labbé et al.

2004; McCarthy Campbell et al. 2009). At metaphase, the shift in spindle position

induces a reorganization of the actomyosin cortex (Werner et al. 2007). The

formation of the cytokinesis furrow depends on a spatial activation of RHO-1,

which is required to assemble the actomyosin based contractile ring. During the

establishment phase, positioning the boundary between the anterior and the poste-

rior PAR complexes can be artificially adjusted by changing the activity of RHO-1

(Schonegg et al. 2007; Werner et al. 2007).

The exact position of the polarity boundary at cytokinesis is important, since

the PAR proteins ultimately mediate the distribution of cytoplasmic cell fate

determinants.

6.4 Cytoplasmic Segregation of Cell Fate Determinants

The PAR protein complexes pattern the cortex and thereby establish the polarity of

the embryo; however, this is not sufficient to form daughter cells with different

fates. The segregation of cytoplasmic germline factors from determinants of the

somatic lineage in the one-cell embryo is essential for proper development. The

exclusive inheritance of P granules, germline specific ribonucleoprotein (RNP)

aggregates, and free germline proteins to the posterior daughter, conditions the

cells to follow their fate (Strome and Wood 1982). The differential segregation of

fate determining factors leads to the induction of specific cell cycle control in the

two-cell embryo (Budirahardja and Gonczy 2008; Rivers et al. 2008).

6.4.1 A Gradient in MEX Proteins Determines
the Somatic Lineage

Protein and RNA segregation in the cytoplasm of the one-cell embryo is dependent

on PAR polarity and on an anterior–posterior gradient of MEX (muscle excess)

proteins (Schubert et al. 2000; Cuenca et al. 2003). As the PAR-6 complex retracts

after polarity onset, it cosegregates the active form of MEX-5 and MEX-6 (MEX-

5/-6) toward the anterior (Fig. 6.3d). These CCCH finger proteins are required for

the asymmetric distribution of all cell fate determinants, and they inhibit the

expression of germline factors in the somatic daughter cells. The MEX proteins
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were identified in a mutant screen for aberrant muscle cells (Schubert et al. 2000).

The observed defect was that the muscle specific transcription factor SKN-1 was

not restricted to the posterior daughter cell, which implied the regulatory role of the

MEX proteins on generating cytoplasmic asymmetry. The activity of MEX-5/-6 is

regulated in a cell cycle dependent manner. Maternally provided MEX-5 is evenly

distributed in the oocyte, so are the germline specific zinc-finger protein PIE-1 and

the P granules (Schubert et al. 2000; Cuenca et al. 2003). At meiosis II, CDK-1

activates the DYRK kinase MBK-2, which subsequently marks oocyte specific

proteins for degradation (Stitzel et al. 2006; Cheng et al. 2009). For a discussion

of the oocyte-to-embryo transition and the regulation of MBK-2, see Parry and

Singson (2011). The cell cycle dependent activation of MBK-2 leads to a priming

phosphorylation of MEX-5/-6 (Nishi et al. 2008). During polarity establishment,

PLK-1 and PLK-2 bind to the primed MEX-5/-6 and activate them. As a result of

active MEX-5/-6 being sequestered to the anterior half, PIE-1 and other germline

factors get restricted to the posterior half of the one-cell embryo (Nishi et al. 2008).

Interestingly, PLK-1 segregates to the anterior half together with MEX-5/-6, which

ultimately leads to an unequal inheritance of PLK-1/-2 to the daughters. The next

three divisions of the P lineage continue to be asymmetric, producing one somatic

and one germline daughter (Fig. 6.2). These divisions of the germline blastomere

show that MEX-5/-6 and PLK-1 are always enriched in the somatic daughter cell.

MEX-5/-6 abundance diminishes in somatic daughters after cell division (Schubert

et al. 2000), while PLK-1 protein levels stay high in somatic cells (Nishi et al.

2008), indicating that MEX-5/-6 are only transiently required to deplete the somatic

cytoplasm of germline factors, while high levels of PLK-1 might be required for the

regulation of the somatic cell cycle. In the posterior, MEX-5/-6 was shown to

assemble with P granules (Schubert et al. 2000; Tenlen et al. 2008). The association

of determinants of somatic tissues with P granules could be relevant by ensuring

that minimal amounts of somatic determinants are inherited by the P lineage.

6.4.2 Spatial Regulation of Protein Mobility Generates
Segregation of Cytoplasmic Components

We are slowly starting to understand how the partitioning of the anterior and

posterior PAR domains influences the antagonistic distribution of cytoplasmic

factors. As for the cell cycle in general, the differential distribution of cytoplasmic

components also greatly depends on the activity and spatial distribution of kinases

and phosphatases. The PAR-1/PAR-4 dependent phosphorylation status of MEX-

5/-6, for example, has been reported to be important for the asymmetric segregation

to the anterior (Tenlen et al. 2008). It has also been shown that cytoplasmic flows,

generated during polarity establishment, are neither sufficient nor necessary to

segregate cell fate determinants. The current models for the distribution of cyto-

plasmic factors are based on spatial regulation of the mobility of these factors in the
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embryo (Tenlen et al. 2008; Brangwynne et al. 2009; Daniels et al. 2010). An

alteration in mobility can be brought by phosphorylation. Tenlen et al. (2008)

proposed that phosphorylation of MEX-5 at a specific site would enhance its

mobility in the posterior increasing the likelihood that it crosses the boundary

into the anterior cytoplasm. In the anterior, the mobility of MEX-5 is reduced,

limiting its chance to move back to the posterior. This model proposes that a

difference in diffusive mobility would drive the AP gradient of MEX-5. It is still

unclear if the asymmetric distribution of MEX-5 requires asymmetric binding sites

to improve its enrichment in the anterior (Tenlen et al. 2008; Daniels et al. 2010). In

the case of the RNP rich P granules, a slightly different diffusion based model has

been proposed. Brangwynne et al. (2009) illustrate that P granules behave

like liquid droplets in the cytoplasm, and hence they can be in a dissolved, or in

a condensed form. In this model, the MEX-5 dependent dissolution of P granules in

the anterior increases the mobility of proteins and RNAs, while the condensation

into droplets in the posterior serves to decrease the mobility of soluble

components. The segregation of cell fate determinants, achieved by differential

diffusion mechanisms, is dependent on polarity establishment of the cortical PAR

proteins.

6.5 Microtubule Dynamics Throughout the Cell Cycle

The mitotic spindle has to faithfully orchestrate the segregation of chromosomes to

the daughter cells. In order to do so, the structure of the microtubule network needs

to be dramatically altered throughout the cell cycle (Fig. 6.3e). For proper develop-

ment of an organism, it is essential that the shape of the spindle correlates with the

size of cells (Hara and Kimura 2011). The length of the mitotic spindle at meta-

phase of the early C. elegans embryo is regulated by the size of the centrosomes

(Greenan et al. 2010).

6.5.1 Interphase and Prophase

In the one-cell embryo, the microtubules exhibit the fastest growth rates at inter-

phase and early prophase but they stay short and lack directionality (Srayko et al.

2005). Upon centrosome maturation in late prophase, the microtubule network in

the cell drastically alters its structure. Long, microtubules emanate from centro-

somes, forming asters that span the whole cell soon after pronuclear meeting.

Microtubules are thought to anchor to the cell cortex where force is generated to

pull the centrosomes anterior toward the center of the cell and then rotate along the

AP axis (Park and Rose 2008). This process also centers the pronuclei, which are

tightly attached to the centrosomes (reviewed by Gorjánácz et al. 2007).
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6.5.2 Prometaphase

At this stage of the cell cycle, the centrosomes are fully mature and induce the

disintegration of the nuclear envelope. In the early stages of nuclear envelope

breakdown, fenestrae form in the membrane, allowing the nucleoplasm to mix

with the cytoplasm and microtubules to grow toward the chromosomes (Gorjánácz

et al. 2007; M€uller-Reichert et al. 2010). The mitotic spindle is established by a

biased growth of microtubules toward the chromosomes. This process depends on

the small GTPase RAN-1 but not on de novo microtubule formation at the kine-

tochores (Srayko et al. 2005). For more details on the functions of RAN gradients in

meiosis and mitosis, see Kaláb et al. (2011). The assembly of a microtubule rich

spindle between the centrosomes ensures efficient capture of kinetochores and

alignment of the chromosomes on the metaphase plate.

6.5.3 Posterior Displacement of the Spindle During
Metaphase and Anaphase

Before the onset of anaphase, the whole spindle starts rocking and is displaced

toward the posterior, preparing for the asymmetric division of the one-cell embryo.

The regulation and mechanisms of spindle displacement in C. elegans has been a

focus of intense research over the last decade. The asymmetric positioning of the

spindle places the cytokinesis furrow off center resulting in two daughter cells of

different size. Displacement of the spindle is tightly linked to anaphase onset and

both processes depend on the inactivation of CDK-1 (McCarthy Campbell et al.

2009). C. elegans has become the prime model to study the forces that are exerted

on a spindle during mitosis, as Grill et al. (2001) introduced the technique of local

microtubule severing by directed laser light. With this method, distinct sections of

the spindle microtubules were cut or centrosomes were disintegrated, which

allowed the indirect determination of forces by measuring the rates at which the

remaining parts of the spindle move. Application of this method allowed the

dissection of the pathway leading to an asymmetric cell division. The cell cycle

components that activate the force-generating complex (FGC) on the cortex, which

promotes spindle displacement, are largely unknown. The phosphatase PPH-6 has

been implicated in the localization of the FGC and in the timing of force generation

during anaphase (Afshar et al. 2010). As mentioned above, cortex-generated forces

mediate the centration of the nucleocentrosomal complex during prophase. The

force generating Ga (GOA-1 and GPA-16) signaling complex acts downstream of

the PAR polarity and is redistributed from an anterior enrichment at prophase to a

posterior cortical localization at metaphase (Park and Rose 2008). Microtubule-

based forces and an asymmetric position of the spindle can only be achieved upon

proper localization of Ga and its associated proteins GPR-1/-2 (G protein regulator)

and the coiled-coil protein LIN-5 (Colombo et al. 2003; Gotta et al. 2003;
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Srinivasan et al. 2003). LIN-5 can bind to both the Ga/GPR complex as well as the

microtubule motor dynein, thereby anchoring the astral microtubules to the cortex

and achieving force generation (Couwenbergs et al. 2007; Nguyen-Ngoc et al.

2007). At anaphase, the cortex is patterned with low GPR-1/-2 and LIN-5 at the

anterior domain, a band of LET-99 slightly posterior to the center of the cell

and a posterior domain enriched in GPR-1/-2 and LIN-5 (Colombo et al. 2003;

Bringmann et al. 2007; Wu and Rose 2007; Krueger et al. 2010). In order to move

the spindle, the FGC needs to link the microtubules to the cortex or membrane of

the embryo. It has been shown recently that the actomyosin network at the cortex

stabilizes the anchoring of the FGC at the membrane (Redemann et al. 2010). By

weakening of the actomyosin network, single force generating events could be

observed, as microtubules were able to pull membrane invaginations toward the

centrosomes. Spindle severing experiments, analysis of centrosome movements as

well as observation of individual force generation events came to the conclusion,

that the asymmetric distribution of force generators results in a net asymmetry of

cortical pulling forces that enables the posterior positioning of the spindle

at metaphase and anaphase (Grill et al. 2003; Pecreaux et al. 2006; Redemann

et al. 2010).

6.5.4 The Role of the Central Spindle During Anaphase

The destruction of cyclin B by the APC/C deactivates CDK-1 at anaphase onset.

As discussed, this leads to the segregation of sister chromatids and centrioles

(see Sect. 6.2.3), and ultimately evokes cytokinesis. It also induces a remarkable

change in spindle morphology. As the chromosomes separate, the central spindle

forms between the opposite poles and limits the rate of spindle elongation (Grill

et al. 2001). For a functional central spindle, the nonkinetochore microtubules

need to form stable bundles. Bundling of microtubules requires the activity of the

kinesin-like protein ZEN-4 (CeMKLP-1) and the microtubule-associated protein

SPD-1 (Verbrugghe and White 2004). ZEN-4 is inactivated prior to anaphase

onset by an inhibitory CDK-1 mediated phosphorylation. Upon anaphase onset,

the phosphatase CDC-14 removes the inhibitory modification that prevented the

association of ZEN-4 with microtubules (Mishima et al. 2004). Localization of

ZEN-4 to the central spindle depends on Aurora B and the inner centromere

protein ICP-1 (Kaitna et al. 2000; Severson et al. 2000). ZEN-4 functions in the

centralspindlin complex (ZEN-4 and CYK-4), which not only stabilizes the central

spindle but is also required for the midzone to signal to the cytokinesis furrow and

for the completion of cytokinesis (Bringmann and Hyman 2005). The capacity of

the central spindle to position the contractile actomyosin ring is most likely

through the ability of CYK-4 to recruit the RHO-1 activator ECT-2, which in

turn recruits myosin to pattern the cortex around the spindle midzone (Werner

et al. 2007).
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6.5.5 Two Consecutive Signals Determine the Cleavage
Plane of the Embryo

It has been established that two successive signals position the cytokinesis furrow

in the one-cell embryo (Dechant and Glotzer 2003; Bringmann and Hyman 2005;

Werner et al. 2007). Both signals are mediated by the microtubule cytoskeleton.

The first signal comes from an interaction between the astral microtubules and the

cortex. The separation of the asters at anaphase onset temporally couples chromo-

some segregation with the initiation of the cytokinesis furrow (Lewellyn et al.

2010). The ingression of the furrow is mediated by the constriction of an actomyo-

sin ring. Furrow ingression based on the astral signal alone is faster than wildtype,

indicating that the central spindle sends a retardation signal to the actomyosin

network. The activity of the myosin light chain NMY-2 determines the speed of

furrow ingression (Bringmann and Hyman 2005). This indicates that the second

furrow-positioning signal, which depends on the central spindle, is able to correct

the position of the cleavage plane by influencing actin dynamics.

6.6 The Differential Segregation of Cell Cycle Regulators

Determines Cell Cycle Timing and Cell Fate

of the Daughter Cells

The development of an organism with many different tissues requires the differen-

tiation of the stem cell-like, one-cell embryo into various cell lineages. The

asymmetric first division determines the future developmental program of the

whole worm as it leads to the segregation of germline factors to one daughter

exclusively. The specific timing of the cell cycle is tightly linked to cell fate (Bao

et al. 2008; Lange et al. 2009). Schierenberg and Wood demonstrated in 1985 that

the lineage specific timing in the C. elegans embryo is dependent on the nature of

the cytoplasm and not a differential control by the nuclei. As discussed above, the

asymmetric first division gives rise to two cells with distinct cytoplasmic protein

compositions (see Sect. 6.4).

The larger anterior, somatic cell AB divides around 2 min prior to the smaller,

posterior germline progenitor P1. It is known that PLK-1, CDC-25, and CDK-1 are

required for timely breakdown of the nuclear envelope in the first mitosis of the

embryo (Chase et al. 2000). These cell cycle regulators have been implicated in

mediating the differential timing between the AB and the P1 cell, as the embryo

goes from the two- to the four-cell stage (Fig. 6.2). From this set of cell cycle

regulators, only PLK-1 is distributed in an asymmetric fashion. It has been pro-

posed that the kinase PLK-1 promotes the nuclear accumulation of the phosphatase

CDC-25. Activation of CDC-25 triggers CDK-1 function, leading to DNA conden-

sation and the initiation of mitosis. At this point, it is not clear if PLK-1 activity is

required upstream of CDK-1 or if these two kinases function in parallel. Sixty-percent
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of the difference between the cell cycle timing of AB and P1 can be accounted for

by the unequal distribution of PLK-1 (Budirahardja and Gonczy 2008; Rivers et al.

2008). The kinase PLK-1 is enriched in the somatic AB cell, giving rise to a faster

import of CDC-25 into the nucleus of the anterior cell. It has also been shown that

the posterior cell is more sensitive to the levels of PLK-1 and CDC-25, while it

seems that there is an excess of these cell cycle regulatory proteins in the anterior

daughter. It is plausible that the timing of cell division in the early embryo is

regulated by a balance between PLK-1, CDC-25, and CDK-1, with different

emphasis on one of these proteins in different lineages. Bao et al. (2008) have

shown that CDC-25 levels are rate limiting for the cell division timing of P3 and the

E lineage but not for any other lineage in the developing worm. The remaining 40%

in the difference in cell cycle timing between AB and P1 comes from a differential

activation of the DNA replication checkpoint (Brauchle et al. 2003). The regulation

of cell cycle timing in a DNA checkpoint dependent manner is specific to the

germline precursors. It is reasonable that DNA replication is monitored more

carefully in cells that give rise to the germline to ensure healthy offspring.

6.7 Conclusion

The development of the nematode C. elegans is highly reproducible (Sulston and

Horvitz 1977; Deppe et al. 1978). The exact timing and stereotypic order of events

in the one-cell C. elegans embryo allow for the precise description of the major

morphological changes during a cell division cycle. The detailed characterization of

different events with high time resolution encourages new studies on possible links

between seemingly independent parts of the cell cycle and provides a base for

further hypothesis driven research. The continuous advance in the genetic tools

available for C. elegans provides opportunities to answer long-standing questions

such as which mechanism regulates the cell cycle clock and how is an asymmetric

cell division coordinated with the cell cycle.

The mapping of cell divisions and cell fates throughout the worm’s development

is the perfect prerequisite to study the regulation of cell cycle control throughout its

development. It has been recognized that the temporal regulation of the cell cycle is

critical for cell fate determination as each lineage has its own rhythm of divisions.

The challenge is the identification of the key regulators for the individual steps of

the cell cycle and of development without loosing sight of the complexity of

cell division and cell–cell interactions. It will be interesting to learn how the cell

cycle, as we understand it today, is modified to produce cells with different

developmental fate.
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Kaláb P, Šolc P, Motlı́k J (2011) The role of RanGTP gradient in vertebrate oocyte maturation. In:

Kubiak JZ (ed) Cell cycles in development (results and problems in cell differentiation 53).

Springer, Heidelberg

130 M.L. Begasse and A.A. Hyman



Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323.

doi:10.1038/nature03097

Kim DY, Roy R (2006) Cell cycle regulators control centrosome elimination during oogenesis in

Caenorhabditis elegans. J Cell Biol 174(6):751–757. doi:10.1083/jcb.200512160
Krueger LE, Wu J-C, Tsou M-FB, Rose LS (2010) LET-99 inhibits lateral posterior pulling forces

during asymmetric spindle elongation in C. elegans embryos. J Cell Biol 189(3):481–495.

doi:10.1083/jcb.201001115

Kumfer KT, Cook SJ, Squirrell JM, Eliceiri KW, Peel N, O’Connell KF, White JG (2010) CGEF-1

and CHIN-1 regulate CDC-42 activity during asymmetric division in the Caenorhabditis
elegans embryo. Mol Biol Cell 21(2):266–277. doi:10.1091/mbc.E09-01-0060
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