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Kurzdarstellung

Mit der zunehmenden Leistungsfähigkeit von Computern, beziehungweise von Com-

puterclustern, steigt die Bedeutung von numerischen Modellsimulationen im Bereich

biologischer Systeme, welche aufgrund ihrer hohen Komplexität besonders rechenaufwändig

sind. Mit dem "Subcellular Element Model" (SEM) können Gewebe modelliert wer-

den, die aus vielen Hundert Zellen bestehen, ohne dabei die elementaren Eigenschaft

der Diskretheit von Zellen sowie deren äuÿere Gestalt zu vernachlässigen. Grundle-

gende physikalische Eigenschaften wie Elastizität können bislang jedoch nur mit erheb-

lichen Fehlern implementiert werden. In dieser Arbeit wird ein Ansatz beschrieben, der

sich, anstatt vom kubischen Gitter auszugehen, vom Modell der dichten Kugelpackung

ableitet, und mit dem sich das elastische Modul wesentlich genauer modellieren lässt.

Dies stellt einen günstigen Ausgangspunkt für künftige Erweiterungen der SEM dar.

Abstract

With the increasing performance of computers and computer clusters, the importance of

numerical modelling in the �eld of biological systems has increased drastically. These

systems are usually simulated at huge computational cost, because of their complex

structure across scales. With the "Subcellular Element Model" (SEM), one can model

tissues consisting of several hundreds of cells, without neglecting elementary properties,

such as the discreteness of cells as well as their shape. So far, underlying physical

properties like elasticity can only be implemented within a considerable uncertainty.

In this thesis, a new approach based on close-packed lattices is developed. It yields a

much more precise value for the elastic modulus with respect to previous publications.

The results provide a basis for future extensions of the SEM.
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1 Introduction

There are numerous examples in the �eld of biology in which numerical modelling

of tissues and multicellular structures are employed in order to better understand and

interpret experimental data. The application of numerical models is versatile and ranges

from collective dynamics of unicellular organisms (myxobacteria [IMW+01] and slime

molds [MH01]) to dynamics within a multicellular organism (ascular tumor growth

[Byr03, SBGZ99], tumor angiogenesis [Cha00], embryogenesis [PMO00, DKKO95] and

cell sorting [DKM95, GG92]). Often biological systems of interest contain thousands

to millions of cells which in general have di�erent phenotypes. In these scenarios, a

lot of information needs to be processed. Forced by the limitation in computational

power, one has to make a number of simplifying assumptions. This can be realized

by limiting either the number of cells or the properties of a single cell model, such

as internal structure, shape, polarization or discreteness. Neglecting active processes

reduces complexity as well. Compromises can be made di�erently, resulting in a variety

of models for cell populations, ranging from coarse-grained cell-density models, where

tissues are treated as continuous media (e.g. [KJJ+05]) to single cell models covering

aspects like cytoskeleton dynamics via actin polymerization ([RJM05]).

In 2005, Newman introduced an intermediate model, which takes the shape of cells

into account, while keeping the computational cost for simulating one thousand cells

in a�ordable boundaries. As pointed out in [New05] the possibility for cells to change

their shape and orientation is an essential ingredient to simulate coherent dynamics

of tissues. One can �nd examples where morphological changes on large scales during

gastrulation are caused by cell intercalation, having its origin in the elongation along a

speci�c axis of individual cells [WSJL07]. The model is based on cells, each consisting of

a number of so-called subcellular elements � points in a two- or three-dimensional space.

The smallest volume containing all subcellular elements of a cell can be understood as a

single biological cell, as illustrated in Figure 1.0.1. Time evolution of this model is then

determined by the dynamics of the subcellular elements. Their equations of motion are

stochastic di�erential equations of Langevin type [VK92]. We consider a Subcellular

Element Model (SEM) of N cells with M elements per cell. An element of the cell

1



1 Introduction

Figure 1.0.1: An equilibrated SEM cell composed of N = 256 elements. The right
hand side shows the positions of all subcellular elements, while the
left hand side illustrates a cut-away view of what could be understood
as the cell boundary: a potential isosurface containing all subcellular
elements. Image taken from [New07].

i is denoted by αi and the position by xαi
, respectively. The reasonable assumption

of over-damped element motion allows to neglect inertial e�ects and the equation of

motion reads:

˙ηxαi
= ξαi

−▽αi

∑
βi ̸=αi

Vintra(|xαi
− xβi

|)−▽αi

∑
j ̸=i

∑
βj

Vinter(|xαi
− xβj

|). (1.0.1)

The weak stochastic term ξαi
is Gaussian noise, was introduced to model �uctuations

in the cytoskeleton:

⟨ξmαi
(t)ξnβj

(t′)⟩ = 2Dη2δi,jδαi,βj
δmnδ(t− t′), (1.0.2)

where m and n are labels of vector components. The damping constant η scales the

velocity and models viscous drag due to cytoplasm. On the right hand side of Equation

1.0.1, two interaction potentials appear: Vintra, a stronger potential to bind elements of

the same cell together, and Vinter, which is weaker and lets surface elements of di�erent

cells adhere. These phenomenological potentials show the same characteristics, namely

being repulsive at short distances, weakly attractive at intermediate distances, and

roughly zero on large scales. We will introduce two possible potentials later in Section

2.4.

The SEM is a powerful tool and has a couple of advantages. It works without an un-

2



1 Introduction

Figure 1.0.2: Grown from repeated cell growth and division, this single cell became
a large cluster of more than 1000 cells. Image taken from [New07].

derlying lattice, thus avoiding the risk of causing strong artefacts [Gri05]. Cell growth

and cell division as well as active processes can be implemented [SWN11, New07].

Figure 1.0.2 shows the result of a growth process, starting from a single cell.

Since subcellular elements have no real counterpart in nature, it is challenging to re-

produce physical quantities. Sandersius and Newman have implemented the elastic

modulus E in the SEM [SN08] and were able to retrieve values in the same order of

magnitude as results obtained from measurements on living cells. When considering a

model extension that includes active stress, it is necessary to ensure that basic proper-

ties, such as response under externally applied stress, is modelled correctly. The aim of

this thesis is to reproduce the elastic modulus within the error of a few percent.

This thesis is structured as follows: In Chapter 2 we will start recapitulating the

approach of Sandersius and Newman, and examine a new approach with di�erent

boundary conditions in two and three dimensions. We will derive four equations, which

will then be tested numerically. Chapter 3 contains the explanation of the used program

and the virtual experiment itself. Subsequently, we will focus on the computed results

in Chapter 4. After an error discussion in Chapter 5, there will be the �nal Chapter 6,

which will summarize this work and give an outlook.

3
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2 Theory

After we brie�y introduced the "Subcellular Element Model" (SEM) in the �rst chapter,

the focus will be on elasticity and how this property is connected to the model. So far

there is a considerable inaccuracy even in this very elementary physical behaviour. This

shall be our motivation for a new attempt to implement elasticity in the SEM.

The �rst section of this chapter will cover a short derivation of the fundamental

equation for the elastic modulus and a brief discussion about the problem we try to solve.

In the following section, we will recapitulate the simple cubic approach of Sandersius

and Newman [SN08]. The next part will contain a detailed derivation of how Young's

modulus can be implemented in the SEM when starting from close packing. Four

scenarios with increasing complexity will be studied not only for didactic reasons, but

also because of their relevance to biological systems. We will �nish this chapter with a

short discussion about the choice of the intercellular potentials.

2.1 Elastic modulus in SEM

Any physical theory of materials must predict the material's response to an applied

mechanical force. When neglecting temperature, electromagnetic �elds and inner struc-

ture, and restricting the problem to "small" forces (or stress), we can linearise the stress

strain relation and write Hooke's Law in its most general form for continuous media

using Einstein notation:

σij = Cijklϵkl. (2.1.1)

The stress σij indicates the stress in i-direction acting on the j-plane of an in�nitesimal

material volume as illustrated in Figure 2.1.1. Strain of k-plane in l-direction is denoted

by ϵkl. In three dimensions the 4th order tensor C has 81 entries and is called elastic

tensor. In general there are maximal 21 independent components, since the stress and

strain tensor as well as C are symmetric. To go on we need to apply the symmetry

of isotropy to the elastic tensor, although cells of interest may be anisotropic. By

doing this its 21 entries reduce to two independent quantities called Young's or elastic

5



2 Theory 2.1 Elastic modulus in SEM

Figure 2.1.1: Components of the stress tensor acting on a small volume element.
For a single stress component σij , the �rst index i indicates the dir-
ection in which the stress acts, and the second index j denotes the
plane that the stress acts on.

modulus E and Poisson's ratio ν. The elastic modulus links stress and strain on

one axis. Poisson's ratio is a measure for the transverse to axial deformation. Using

Voigt notation, Equation 2.1.1 can be formed into ϵ = C−1σ, where

C−1 =



1
E
− ν

E
− ν

E
0 0 0

− ν
E

1
E
− ν

E
0 0 0

− ν
E
− ν

E
1
E

0 0 0

0 0 0
2 (1 + ν)

E
0 0

0 0 0 0
2 (1 + ν)

E
0

0 0 0 0 0
2 (1 + ν)

E


.

Poisson's ratio shall not be of interest in this thesis, since we want to focus on one-axis

stress, thus the equation set collapses to the well-known scalar equation for Young's

modulus [Rec90]:

E =
σ

ϵ
. (2.1.2)

The strain ϵ depends on the length with (l) and without applied force (l0) such that

ϵ = l−l0
l0
. For the stress σ, the relation σ = F

A
holds, where F symbolizes the force which

acts on an Area A.

6



2 Theory 2.2 Simple cubic approach

With element-element interaction potentials in SEM, sti�ness can be modelled. Hence,

we look for a proper potential or force �eld so that applying stress to the SEM cell

results in the right strain according to Equation 2.1.2. We will apply stress to the

modelled cell and measure the strain after elements have settled down. In general, after

compressing or stretching, one deals with multiple coupled non-Hookeean springs at

equilibrium. But although we are faced with this static problem, there is still the

need for introducing a cut-o� radius or a potential in which next-nearest neighbour

interactions can be neglected, otherwise it will be a very complex system. Non-linearity

poses an additional problem, since the underlying constitutive equation, Hooke's law,

is only of linear order. For the following derivations, we will use Hooke's law for

springs to describe the interacting force, with κ being the spring constant and ∆r the

elongation1.

f = κ ·∆r (2.1.3)

Nx, Ny, Nz Number of elements or primitive cells in x-,y- and z-direction
req Distance between two equilibrated elements

lx, ly, lz Spatial dimensions of the system
F Applied force in total
f ∗ Applied force on one element
f Force between two elements
κ Spring constant between two elements
∆r Elongation between two elements (r − req)
∆h Elongation of between two layers of elements
∆l Elongation in total

Table 2.1.1: Glossary of frequently used symbols.

2.2 Simple cubic approach

There is an approach to achieve a force�eld, where an elastic modulus can be inserted,

done by Sandersius and Newman [SN08]. It is based on a simple cubic lattice of

elements and contains a scaling law to get the elastic behaviour independent of the

number of elements. Following this approach, we start in three dimensions (3D) with

a simple cubic con�guration (see Figure 2.2.1).

This may not be a stable equilibrium, but since we set the noise term2 to zero,

elements will stay in their positions. Only taking nearest neighbour interactions into

1For a summary of the notation used in this work, see Table 2.1.1.
2See fundamental SEM equation 1.0.1 and 1.0.2.

7



2 Theory 2.2 Simple cubic approach

l
y

l
x

l
z

f *

r
eq

Figure 2.2.1: Simple cubic con�guration of Sub-cellular elements with Nx = Ny =
Nz = 5. The box represents the cell containing N = NxNyNz ele-
ments. The force F splits up in NxNy times f∗, each acts on one top
element (red arrow).

account, the elastic modulus for this system can be easily computed. The total number

of elements N is given by N = NxNyNz, and accordingly

lx = req (Nx − 1) , ly = req (Ny − 1) , lz = req (Nz − 1) . (2.2.1)

For the total force F , we sum up all forces f ∗, where each acts on one element of the

top surface3, so F = NxNyf
∗. The stress can now be written as:

σ =
F

A
=

NxNyf
∗

lxly
. (2.2.2)

After equilibration under stress, f ∗ acts on each subcellular element of the block. Inter-

actions of neighbouring elements in an x-y plane are not a�ected by this force applic-

ation, but those aligned in z-direction are, hence f = f ∗. Furthermore, the elongation

of the distance between two layers ∆h equals the element interaction elongation ∆r,

because of its complete normal alignment to these layers. We rewrite Equation 2.1.2

3See red arrows in Figure 2.2.1
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2 Theory 2.2 Simple cubic approach

with ϵ = ∆lz
lz

= ∆h
req
:

E =
σ

ϵ

=
NxNyf

∗req
lxly∆h

=
NxNy

(Nx − 1) (Ny − 1) req

f

∆r︸︷︷︸
=κ

(2.2.3)

In this approach, E is a function of f
∆r
. Thus, in order to obtain a constant elastic

modulus, the force f has to be linear in ∆r. Any non-linear forces result in a ∆r-

dependent elastic modulus. On the one hand, this could be a chance to model our

tissue even in the di�cult area of plasticity, but on the other hand, we will need other

constitutive equations to de�ne higher order terms. This possibility shall not be further

considered here.

Following Sandersius and Newman, we consider a cube (Nx = Ny = Nz = N
1
3 )

and see that Equation 2.2.3 simpli�es to

E =
N

2
3

N
1
3 − 1

κ

l
. (2.2.4)

Knowing that a cell modelled by SEM will have a more amorphous structure, we ap-

proximate κ with the following scaling relation [SN08]

κ = κ0N
− 1

3

(
1− λN− 1

3

)
. (2.2.5)

Where the scaling parameter λ = 0.5 gives an elastic modulus which is almost inde-

pendent of N. As a consequence of implementing the scaling relation 2.2.5, E reduces to

an approximation E ≈ κ0

l0
. In Section 4.1.1. of [SN08], there is an example where κ0 =

5× 10−3 Nm−1 and l0 = 10× 10−6 m, hence E ≈ 500 Pa. In contrast, the numerically

measured elastic modulus was found to have a value of 357±4 Pa, where the error refers
to di�erent numbers of elements N .

To bridge this gap, we will try to formulate an alternative expression to Equation

2.2.3, in the form κ = κ (E), by choosing a close-packed approach.

9
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f *

f *

r
eq

l
x

l
y

Figure 2.3.1: Hexagonal close-packed arrangement of elements in 2D under stress,
with periodic boundary in x-direction. The box represents the
computational domain containing N = NxNy elements, ghosts are
marked half opaque. Here Nx = 5 and Ny = 6.

2.3 Close-packed approach

The idea is to omit the introduction of a heuristic scaling law by simply starting the

derivation for a di�erent packing con�guration. Staying closer to the "numerical real-

ity", we may �nd more exact expressions than it was possible doing the simple cubic

approach. If the noise term does not dominate the dynamics, elements will equilibrate

at the energy minima of their potentials, near a close-packed con�guration. Although

the macroscopic shape of such an SEM cell may be a sphere, the core structure is

best described by close packing. In order to understand the three dimensional system

without boundaries, we will �rst have a look at hexagonal close-packed (hcp) elements

in 2D with a periodic boundary condition in x-direction. In the next step, we will

study a three-dimensional face-centered cubic (fcc) arrangement which also shall have

periodic boundaries in x- and y-direction. Afterwards the focus will be on both systems

with open boundaries.

2.3.1 HCP in 2D with periodic boundary condition

The starting point is a hcp system in 2D, as shown in Figure 2.3.1. For simplicity we

want to start with a periodic boundary and therefore "ghost" elements are introduced.

10



2 Theory 2.3 Close-packed approach

Figure 2.3.2: One equilateral triangle of a hcp structure. The original position of
the top element without applied force is indicated with half opacity.

Those are copies outside the domain of elements which lie within the cuto� radius

measured from the x-borders. Ghosts are marked half opaque. Thinking of a cylindrical

surface periodicity is not only easier, it has relevance too. Taking Equation 2.1.2 one

needs an expression for stress σ and strain ϵ dependent on element interactions, meaning

σ = σ(f) and ϵ = ϵ(∆r).

In the 2D case we de�ne stress by σ = F
lx
. Note that stress in 2D is not force per

area, but force per length. The hcp structure consists of equilateral triangles and thus

lx = Nxreq. The total force F distributes equally to Nx elements at the top, F = Nxf
∗.

One has to remark that at equilibrium under stress, there is pressure everywhere in the

domain, which leads to the fact that f ∗ is present at each element. Accordingly, it is

su�cient to look at a single equilateral triangle as depicted in Figure 2.3.2. The force

f ∗ separates into two element interaction forces f , f ∗ = 2f cos(α). In general, the angle

α between f and f ∗ has a f ∗-dependency. We will keep that in mind, but not consider

it in our calculation for the sake of simplicity. Thus, in the stressed case, we set α = 30◦

as in the unstressed case. This turns out to be a good choice, since �rstly it is a good

approximation for small deformations and secondly it is somehow an average value for

11
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pushing and pulling. As result we get:

σ =
F

lx

=
f ∗

req
(2.3.1)

=
2f cos(30◦)

req

=

√
3f

req
(2.3.2)

Of course there is a force between elements of the same hight acting in x-direction. In

the open scenario we will name it f2 with f2 = sin(α)f . We started with a periodic

boundary, because in this case f2 has no e�ect. We �nd the reason for that in the

limitation of the domain. Elements will �nally be distributed equally over the whole

width lx, but this is also how they started. This results in no movement at all in

x-direction. This is the reason why periodicity simpli�es the problem.

Moving on to strain ϵ we look for terms of ly and ∆ly. One easily �nds ly to be

the sum of the height of Ny − 1 triangles illustrated in �gure 2.3.1, leading to ly =

(Ny − 1) req cos(30
◦). In the same manner ∆ly = (Ny − 1)∆h. Since a linear force

describes the element interaction, one needs ϵ as well as ∆ly and ∆h to be linear in

∆r. In Figure 2.3.2 we �nd a rectangular triangle for which Pythagoras' theorem

implies:

(req −∆r)2 =
(req

2

)2
+

(√
3

2
req −∆h

)2

and

∆h =

√
3

2
req ±

√
(req −∆r)2 −

(req
2

)2
, respectively. (2.3.3)

Knowing that ∆h(∆r = 0) = 0 must be ful�lled, the "+"-solution is inappropriate. As

a next step we perform a �rst order Taylor expansion of Equation 2.3.3 with respect

to ∆r at ∆r = 0.

T
(1)
∆h,∆r=0(∆r) =

2√
3
∆r

∆h ≈ 2√
3
∆r (2.3.4)
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Plugging the latest results in the de�nition of ϵ one gets

ϵ =
∆ly
ly

=
(Ny − 1)∆h

(Ny − 1) req cos(30◦)

=

2√
3
∆r

√
3
2
req

=
4

3

∆r

req
. (2.3.5)

Using equation 2.3.2, 2.3.5 and f = κ∆r we can write

E =
σ

ϵ

=

√
3f

req

3

4

req
∆r

=
3
√
3

4
κ

κ(E) =
4

3
√
3
E (2.3.6)

This is a remarkable result since κ depends on nothing but E. Especially κ has no

Nx-dependency, which is a reasonable fact since periodicity in x was assumed.

2.3.2 FCC in 3D with periodic boundary conditions

A similar expression can be derived for the face-centered cubic con�guration as shown

in Figure 2.3.3. As in the previous section the complexity is reduced by considering

periodic boundaries. As an example we can think of a cell or a tissue in a tube or a

sphere covered with a tissue of a certain thickness. We will perform the derivation of

κ(E) in the same manner as in Section 2.3.1.

The stress σ = F
A
, where A = lxly. With Nx and Ny one counts primitive fcc cells.

They have a squared base with edge length
√
2req, hence A = 2r2eqNxNy. The elementary

geometry, which in 2D was the equilateral triangle, has now the shape of an equilateral

pyramid illustrated in Figure 2.3.4. There are four of these pyramids in one primitive

fcc cell. Since the size of its base is r2eq, two lie next to each other and in addition we

�nd one upside down pyramid on top of each which also �ts into the same primitive

13
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f *

req

lx
ly

lz

Figure 2.3.3: Face-centered-cubic arrangement of elements in 3D under stress with
periodic boundaries in x- and y-direction. The box represents the
computational domain containing N = 4NxNyNz elements, ghosts
are marked half opaque. Here Nx = Ny = Nz = 2.

Figure 2.3.4: One equilateral pyramid of a fcc structure. The original position of
the top element without applied force is indicated with half opacity.

14



2 Theory 2.3 Close-packed approach

cell. We need this geometry to understand how the total force F is distributed in the

domain. At �rst, F separates onto all top particles which number is two per primitive

cell, F = 2NxNyf
∗. As discussed in the previous section, f ∗ is present in each layer.

Secondly f ∗ splits up into f ∗ = 4f cos(α), where we set α = 45◦ and thereby disregard

that α actually has a f ∗-dependency. Again, there is no movement in x- and y-direction

because of periodicity. We consider these assumption and write:

σ =
F

A

=
f ∗

r2eq
(2.3.7)

=
4f cos(45◦)

r2eq

=
2
√
2f

r2eq
(2.3.8)

Searching for the ϵ-expression we start with the height lz. Since we took the bottom

elements of the primitive fcc cell into full account we discard the top layer. In �gure 2.3.3

Nz = 2 and one �nds the top elements of the upper primitive cell missing. Therefore

lz =
(
Nz − 1

2

)√
2req. Because we have a stack of two pyramids per primitive cell,

the axial elongation computes to ∆lz =
(
Nz − 1

2

)
2∆h. Also in this case we �nd a

rectangular triangle, where Pythagoras' theorem can be used to express ∆h in terms

of ∆r (Figure 2.3.4). One has

(req −∆r)2 =

(
req√
2

)2

+

(
req√
2
−∆h

)2

and

∆h =
req√
2
±

√
(req −∆r)2 −

(
req√
2

)2

, respectively. (2.3.9)

A Taylor expansion of equation 2.3.9 ("−"-version) leads to the desired linear relation:

∆h ≈
√
2∆r. (2.3.10)
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For ϵ we write:

ϵ =
∆lz
lz

=

(
Nz − 1

2

)
2
√
2∆r(

Nz − 1
2

)√
2req

=
2∆r

req
(2.3.11)

Finally one can combine Equation 2.3.8, 2.3.11 and the element interaction force f =

κ∆r:

E =
σ

ϵ

=
2
√
2f

r2eq

req
2∆r

=

√
2

req

f

∆r︸︷︷︸
=κ

κ(E) =
1√
2
reqE (2.3.12)

Again κ(E) does not depend on the number of elements, but linearly on req.

2.3.3 HCP in 2D without boundaries

In most cases one is faced with biological systems that have no periodic boundary. So

we go on with the open two-dimensional hcp structure shown in Figure 2.3.5. Compared

to the previous scenario, the number of elements N is reduced by Ny

2
to get a symmetric

shape.

Many expressions are very similar to those of Section 2.3.1. For example, the stress

term is in fact equal so we can make use of Equation 2.3.2. But without boundaries,

elements can move also sideways in x-direction. One has to take another force f2 into

account, which is orthogonal to f ∗ and spreads the lower elements of the equilateral

triangle illustrated in Figure 2.3.6. Pythagoras's theorem from above changes slightly
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f *
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y

Figure 2.3.5: Hexagonally-close-packed arrangement of elements in 2D under stress
without boundaries. The box represents the cell containing N =
NxNy − Ny

2 elements. Here Nx = 5 and Ny = 6.

Figure 2.3.6: One deformed equilateral triangle of a hcp structure. The original
positions without applied force are indicated with half opacity. In
the upper left corner it is illustrated how f splits up.
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to

(req −∆r)2 =
(req

2
+ ∆x

)2
+

(√
3

2
req −∆h

)2

and

∆h =

√
3

2
req ±

√
(req −∆r)2 −

(req
2

+ ∆x
)2
, respectively. (2.3.13)

When linearising Equation 2.3.13 we have to decide for either ∆r or ∆x. Both are

possible since there are two equations for κ: f = κ∆r and f2 = κ2∆x. For conventional

reasons we keep ∆r and express ∆x in terms of it. The elongation ∆x turns out to be

not constant and in all considered limits4 su�cient to have

∆x = w(Nx, Ny)∆r

with w(Nx, Ny) being a weighting factor that depends on Nx and Ny. Starting with

Figure 2.3.6 (Nx = 2, Ny = 2) one �nds the relation between f and f2 to be

f sin(α)︸ ︷︷ ︸
≈sin(30◦)= 1

2

= f2,

κ∆r
1

2
= κ2∆x,

∆x =
1

4
∆r and

w(2, 2) =
1

4
. (2.3.14)

We let Nx = 3 and think of two such triangles next to each other. There appears

another force acting between the two elements on the top. As a result these two are

no longer on the symmetry axis of their triangle. f ∗ separates into two unequal forces

thus making it complicated to �nd an analytical way to go on. A possible solution

comes along as Nx goes to in�nity. This limit will not converge to the value of the

periodic scenario. The top element o�set to their belonging symmetry axis gets smaller

and smaller and we assume that f ∗ splits up as in Section 2.3.1 into 2 cos(α)f . The

horizontal part of f does not only stretch the bottom elements, it also acts with the

same strength between the top ones. Of course there is one interaction more at the

bottom than at the top, but for simplicity we do not want to take that into account

4Considered limits are Nx and Ny being minimal, at the value of 2, and in�nite large.
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and rather write:

f sin(α)︸ ︷︷ ︸
≈sin(30◦)= 1

2

= 2f2,

∆r
1

2
= 4∆x and

w(∞, 2) =
1

8
. (2.3.15)

The way the initial positions are set, we are just allowed to let Ny be even. This will

let us have one f ∗ acting per equilateral triangle. An odd Ny will break the symmetry

at the edges. If we want to make the system arbitrarily big, we are constrained to use

even numbers for Ny.

Considering three triangles on top of each other (Nx = 2, Ny = 4) we notice that the

upper triangles share one edge, hence two times f2 contribute to ∆x. Unfortunately

this is not true for the lower triangle and so we are not able to calculate w(2, 4). But

in the limit of Ny →∞ we neglect the one at the bottom and get:

f sin(α)︸ ︷︷ ︸
≈sin(30◦)= 1

2

=
1

2
f2,

∆r
1

2
= ∆x and

w(2,∞) =
1

2
. (2.3.16)

In the limit of an in�nite two-dimensional grid:

f sin(α)︸ ︷︷ ︸
≈sin(30◦)= 1

2

= 2
1

2
f2,

∆r
1

2
= 2∆x and

w(∞,∞) =
1

4
. (2.3.17)

For arbitrary sizes of Nx and Ny, we calculate the geometric mean and the weighting

factor w(Nx, Ny) computes to:

w(Nx, Ny) =

[
1

4

(
1

8

)Nx−2(
1

2

)Ny−2
] 1

Nx+Ny−3

(2.3.18)
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With this result we can replace ∆x in Equation 2.3.13 and linearise it with respect to

∆r:

∆h =

√
3

2
req ±

√
(req −∆r)2 −

(req
2

+ w(Nx, Ny)∆r
)2

and

∆h ≈ T
(1)
∆h,∆r=0(∆r) =

2 + w(Nx, Ny)√
3

∆r. (2.3.19)

The strain formula (2.3.5) changes to:

ϵ =
2 (2 + w(Nx, Ny))

3

∆r

req
. (2.3.20)

Combining this result with the previously described stress term 2.3.2, we update the

elastic modulus E and �nally �nd the spring constant κ(E):

E =
3
√
3

2 (2 + w(Nx, Ny))

f

∆r
,

κ(E) =
2

3
√
3
(2 + w(Nx, Ny))E. (2.3.21)

Unfortunately κ depends not only on E, but on Nx and Ny. This causes two problems

for the numerical computation: Firstly κ is anisotropic and secondly changes with the

shape of the cell. We will discuss this in Chapter 6.

2.3.4 FCC in 3D without boundaries

The last case to study shall be the closed packed arrangement without boundaries

in three-dimensional space. Therefore we investigate the face-centered cubic system

illustrated in Figure 2.3.7. With Ni (i ∈ {x, y, z}) we count equilateral pyramids

instead of primitive fcc cells. In this way the derivation gets more intuitive, but there

are slight changes compared to some expressions of Section 2.3.2.

Starting with the stress σ we �nd the area A = (Nx − 1)(Ny − 1)r2eq and the total

force F = (Nx− 1)(Ny − 1)f ∗. The force on each pyramid f ∗ splits up as shown before

and depicted in Figure 2.3.8. Hence the force f ∗ computes to f ∗ = 4f cos(45◦). One
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Figure 2.3.7: Face-centered cubic arrangement of elements in 3D under stress
without boundaries. The box represents the cell containing N =
NxNyNz + (Nx − 1)(Ny − 1)Nz elements. Here Nx = Ny = 4 and
Nz = 3.

Figure 2.3.8: One deformed equilateral pyramid of an fcc structure. The original
positions without applied force are indicated with half opacity. In
the upper left corner it is illustrated how f splits up.
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can calculate stress:

σ =
F

A

=
(Nx − 1)(Ny − 1)4f cos(45◦)

(Nx − 1)(Ny − 1)r2eq

=
2
√
2f

r2eq
(2.3.22)

We want to proceed with the more complicated problem of deriving a formula for the

strain ϵ. The height computes to lz = (Nz − 1
2
)
√
2req and ∆lz = (Nz − 1

2
)2∆h.

ϵ =
∆lz
lz

=
(Nz − 1

2
)2∆h

(Nz − 1
2
)
√
2req

=

√
2∆h

req
(2.3.23)

One writes Pythagoras' theorem for the triangle in Figure 2.3.8 which contains the

top, one bottom element, and the center of the base. We obtain the elongation equation:

(req −∆r)2 =

(
req√
2
+ ∆xy

)2

+

(
req√
2
−∆h

)2

and

∆h =
req√
2
±

√
(req −∆r)2 −

(
req√
2
+ ∆xy

)2

,respectively. (2.3.24)

At this point one needs ∆xy to be expressed in terms of ∆r. We do this by again

introducing the weighting factors w(Nx, Ny, Nz) with ∆xy = w(Nx, Ny, Nz)∆r. The

weights can be derived from the force balance equation for f and f2. As a starting

point w(Nx, Ny, 1) shall be found with the help of Figure 2.3.9. What can be seen

is one layer of equilateral pyramids. The force f ∗ acts on all red elements and each

diagonal red line indicates the force f . Elements of the pyramids base are coloured

white. The base elements are stretched by f2, the vertical and horizontal components

of f . If lower elements are a�ected, f2 is green, for upper ones f2 is coloured in blue.

From a numerical test run we �nd red elements on the edge to be quite �exible, so

their interactions are only taken into account by the factor of 0.5 if the other involved

element is not located at the edge. Neglected interactions are indicated with a dashed

blue line. For deriving the force balance on the left hand side fleft, we simply sum
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Figure 2.3.9: One layer of equilateral pyramids, where elements at the top are
coloured red and at the bottom white. Here Nx = 5, Ny = 4 and
Nz = 1. All nearest neighbour interactions are marked in di�erent
colors. A dashed line indicates an interaction which is neglected and
solid lines are taken into account.

up the projections of f on the x- and y-axis and get 2 sin(45◦) sin(45◦)f . But we also

have to divide by two since two of these projected forces are involved in one element

interaction at the bottom. Per pyramid one �nds four times f , meaning all in all

fleft = 4 sin2(45◦)(Nx − 1)(Ny − 1)f. (2.3.25)

The right hand side fright consists of a sum of all interaction forces between elements

of the same height. With a look at �gure 2.3.9 we just have to count solid lines and

easily we �nd (Nx− 1)Ny +Nx(Ny − 1) green ones. The top elements on the edge have

to be treated di�erent since they move far too close to their red neighbours. As a good

heuristic compromise we will count all four blue interactions of an inner top element

but weight it with the factor 1
2
. For arrangements with Nx > 2 and Ny > 2 there are

1
2
· 4(Nx − 3)(Ny − 3) blue solid lines. Plugging this together gives us the amount of

horizontal and vertical forces with the strength of f2 which is the right hand side of the

balance equation:

fright = (2NxNy −Nx −Ny + 2(Nx − 3)(Ny − 3)) f2. (2.3.26)
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The force balance reads as follows:

fleft = fright

2(Nx − 1)(Ny − 1)f = (2NxNy −Nx −Ny + 2(Nx − 3)(Ny − 3)) f2

f2 =
(Nx − 1)(Ny − 1)

NxNy − 1
2
(Nx +Ny) + (Nx − 3)(Ny − 3)

f (2.3.27)

When writing Hooke's law for f2, we remark that we assume symmetry and let ∆x =

∆y. For that reason we can always write f2 = κ2∆x. With ∆xy =
√
2∆x we can

replace f2 with f2 = κ
√
2∆xy in Equation 2.3.27. Furthermore we replace f by κ∆r

and the balance equation now reads

κ
√
2∆xy =

(Nx − 1)(Ny − 1)

NxNy − 1
2
(Nx +Ny) + (Nx − 3)(Ny − 3)

κ∆r.

If one compares the latest result with∆xy = w(Nx, Ny, 1)∆r the expression for w(Nx, Ny, 1)

is found to be

w(Nx, Ny, 1) =
1√
2

(Nx − 1)(Ny − 1)

NxNy − 1
2
(Nx +Ny) + (Nx − 3)(Ny − 3)

. (2.3.28)

To achieve the w(Nx, Ny, Nz)-formula we can apply the same strategy used for the

derivation of Equation 2.3.15, where we built a stack out of triangles, saw that all but

the lowest one share the base, formed the limit so we could neglect the singularity and

�nally built the geometric mean. In the three-dimensional case the pyramids share also

their base with the one above or below, meaning that for the same elongation half of the

force is needed. In the limit Nz →∞ this results in the weighting factor w(Nx, Ny,∞)

being 2w(Nx, Ny, 1). Computing the Nz-dependent mean gives us:

w(Nx, Ny, Nz) =
[
w(Nx, Ny, 1) (2w(Nx, Ny, 1))

Nz−1
] 1

Nz (2.3.29)

To have the elongation ∆h (Equation 2.3.24) purely written in terms of ∆r,∆xy is to be

replaced by w(Nx, Ny, Nz)∆r. We approximate ∆h by performing a Taylor expansion

with respect to ∆r:

∆h ≈ T
(1)
∆h,∆r=0(∆r) =

(√
2 + w(Nx, Ny, Nz)

)
∆r.
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Using this result, the former ϵ term from Equation 2.3.23 now reads:

ϵ =

√
2

req

(√
2 + w(Nx, Ny, Nz)

)
∆r. (2.3.30)

We write the elastic modulus E = σ
ϵ
with the stress expressed in Equation 2.3.22 and

ϵ from Equation 2.3.30 in the following form:

E =
2
√
2

r2eq

req√
2
(√

2 + w(Nx, Ny, Nz)
) f

∆r︸︷︷︸
=κ

κ =

(
1 +

1√
2
w(Nx, Ny, Nz)

)
reqE (2.3.31)

The problem of Ni-dependence (i ∈ {x, y, z}) is the same as in the previous section

with Equation 2.3.21.

Finally, we have been able to derive formulas for κ in all scenarios with approximations.

We will discuss their validity, when testing our outcome in numerical simulations. With

the spring constant κ we just calculate the force to 1st order around equilibrium, but

there is no need to restrict ourselves to a linear force or parabolic potential respectively.

Therefore the next section deals with details about the interaction potential.

2.4 Selecting a potential

For the Subcellular Element Model interaction potentials have to ful�l certain condi-

tions. According to Newman [New07] these are being

• 'repulsive at short distances' to not collapse and shrink to a point,

• 'weakly attractive over slightly longer scales' to stays compact,

• 'essentially zero (...) beyond a moderate scale' to let two isolated cells feel no

attraction and

• inharmonic to allow 'elements to smoothly release each other under larger forces,

such as during cell division or cell migration'.

The last argument shall not be of interest since we just want to model elasticity. There

are of course a lot of possibilities and from Newman's point of view the precise shape of
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2 Theory 2.4 Selecting a potential

the potential does not a�ect cell mechanics - at least semi-quantitative. As an example

we will have a look at the potential Sandersius and Newman used for testing their

formula from the simple cubic approach [SN08]. The parabola potential shall be subject

of our studies as well.

2.4.1 Modi�ed Morse potential

A standard potential to model inter-molecular interactions in physics or chemistry is

named after Morse [Sch68] and reads

VMorse(r) = u0e
−2ρ(r−req) − 2u0e

−ρ(r−req).

In the SEM publication [SN08] the exponential terms are replaced by Gaussian func-

tions, because of their steeper decay. The modi�ed Morse potential has the form

V (r) = u0e
2ρ

(
1− r2

r2eq

)
− 2u0e

ρ

(
1− r2

r2eq

)
. (2.4.1)

The parameter u0 controls the potential depth. The radius req is the distance to the

energy minimum and ρ varies the slope. Figure 2.4.1 helps to understand the in�uence of

ρ on the scaled potential V (r)/u0 and the scaled force F (r)req/u0, which are parameter

independent. The force F (r) reads

F (r) = −▽r V (r),

= −4u0ρ

r2eq
r

(
1− e

ρ

(
1− r2

r2eq

))
e
ρ

(
1− r2

r2eq

)
. (2.4.2)

To combine this force �eld with κ(E) of each scenario we linearise F (r) around req and

identify κ, thus being able to calculate u0(E) and fully determine the potential:

T
(1)
F,r=req

(r) = − 8
u0ρ

2

r2eq︸ ︷︷ ︸
=κ

· (r − req)

κ = 8
u0ρ

2

r2eq
(2.4.3)

This potential ful�ls all demands, but with the aim to be quantitative we quickly identify

a signi�cant problem: Linearisation holds only in a very small area around req. But

this is actually on what we based our approaches. When having a higher value of ρ we
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Figure 2.4.1: Scaled modi�ed Morse potential V (r)/u0 in (a) on the left and
associated force F (r)req/u0 in (b) on the right. Solid lines refer to
ρ = 2 and dashed lines to ρ = 4. The black dots in (b) mark the
in�ection points of the potential V (r). The tangents show the linear
approximation at equilibrium.

might minimize the error but at once we get another problem. The in�ection point, the

point of maximum elongation, moves towards the equilibrium distance. This reduces

the range of elongation, because interaction forces decrease and the modelled cell rips

apart under a constant applied stress. With ρ = 2 the maximum elongation is about

20%, but for the value ρ = 4 the elongation cannot exceed 10%. Therefore, it might be

useful to have a look at the parabola potential.

2.4.2 Parabola potential

A quadratic potential and its derived force as shown in Figure 2.4.2 have the simple

form

V (r) =
κ

2
(r − req)

2 − V0 and (2.4.4)

F (r) = −κ(r − req). (2.4.5)

These two equations shall be valid within a certain cuto� radius rcut. If r > rcut, then

V (r) = 0 and also F (r) = 0. This cuto� can be determined by considering the next

nearest neighbour distance being 2req in 2D and
√
2req in 3D. To be equally able to

compress and stretch the cell, we de�ne the distance to the middle between nearest and
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Figure 2.4.2: Scaled parabola potential V (r)/κ in (a) on the left and associated
force F (r)/κ in (b) on the right. To show the di�erent ranges de-
pending on the dimension of space, 2D is illustrated with a solid line
and dashed lines represent 3D. Notice that dashed lines are partly
covered.

next nearest neighbours as rcut.

r2Dcut = req +
2− 1

2
req

=
3

2
req (2.4.6)

r3Dcut = req +

√
2− 1

2
req

=

√
2 + 1

2
req (2.4.7)

To follow the convention V (∞) = 0 one has to modify an o�set V0 according to the

chosen rcut.

Despite the smaller computational cost when comparing both force formulas 2.4.2

and 2.4.5, we �nd other advantages. For example, there is no error to our linearisation

used in the derivation, because we chose the parabola on purpose. One also gains larger

elongation, meaning about 21% in 3D and 50% in 2D. These bene�ts come along with

the price of losing the smooth release of elements. Watching an SEM cell which rips

apart in a movie provided in the publication [SN08], cell rupture appears to be modelled

very well. But in fact, it is not clear what one actually can model beyond elasticity. In
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2 Theory 2.4 Selecting a potential

contrast, this thesis will only focus on an area of strain, where our model more or less

works, meaning the elastic modulus can be reproduced within a reasonable error.
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3 Numerics

May the derivation of the previous chapter be reasonable and convincing, the need for

an experimental validation is beyond dispute. Since the Subcellular Elements have no

physical equivalent we cannot perform a real experiment. To test our results, we will

simulate an SEM cell with a computer program. The following section deals with details

about that program and the virtual experiment respectively. There will be one section

about the solver used for the time integration. Afterwards, we will discuss the used set

of parameters and how to deal with the measure of units will concern us. On a �nal

note, we will �nd some words about the programming language.

But now we will give our attention to the explicit procedure of the experiment.

3.1 Experiment and pseudocode

Basically the experiment of determining a cell's elastic modulus is really simple. One

needs the unstressed height of the arrangement as well as the height under stress. There

are two di�erent possibilities to achieve the latter. Either a well de�ned force is applied

and the height is computed from the highest and lowest elements or the top elements

are placed at a known height and the force acting on the entire system is computed

after equilibration. For the second option we have start time evolution with elements

distributed equally over the whole height otherwise top elements may be out of reach

(> rcut) for the layer of elements below. The simulation may even converge faster

since elements are already almost at their �nal positions. However, in the �rst case

less assumptions need to be made. Starting from the unstressed arrangement we really

study the application of force to that SEM cell. This appears to be a more natural way.

We stay with the picture of a cell on a solid ground under stress. One needs to

identify the bottom elements and �x them to the ground by setting their respective

spatial component in every time step to zero. Stress shall be applied by a �at surface

on top to which the cell adheres. This can be simulated by forcing all top elements al-

ways to have the same height. When equilibrium is reached, one can measure the height

of the top elements and thus the elastic modulus can be computed. One can infer more
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3 Numerics 3.1 Experiment and pseudocode

Algorithm 1 Measuring the elastic modulus of an SEM cell.

Input: We have to choose the number of dimensions D, the number of elements in
i-direction Ni, the equilibrium distance req, the time step size dt, the length of
run tn, the strength of force f ∗ and the input elastic modulus EIN . Furthermore
the we need to specify a potential and provide the function gradV(r) with all its
parameters.

1: function Force(x,N, rcut,gradV) ◃ calculate the force between all elements
2: if periodic boundary then
3: if x closer than rcut to boundary then
4: Create(xGhost) ◃ create ghost elements
5: x← x+ xGhost

6: rij ← xi − xT
j ◃ compute distance matrix

7: fij ← −gradV(rij) ◃ compute potential gradient
8: fii ← 0 ◃ set self interaction to zero
9: fij ← fij · (rij < rcut) ◃ apply cuto� radius
10: Fi ←

∑
j fij ◃ compute resulting force for each element

11: Fi ← Fi[i ≤ N ] ◃ neglecting ghosts
12: return Fi

13:

14: function Euler(x, tn, f ∗, N, rcut, h,gradV) ◃ calculate time evolution
15: xt[0]← x
16: while t ≤ tn do

17: v ←Force(xt[t], N, rcut,gradV)
18: v[indtop]← v[indtop] + f ∗ ◃ apply force to top
19: xt[t+ 1]← xt[t] + v · dt
20: xt[t+ 1, indbottom, h]← 0 ◃ �x bottom
21: xt[t+ 1, indtop, h]← xt[t+ 1, indtop, h] ◃ average height of top
22: t← t+ 1

23: return xt
24:

25: x← initial position ◃ place elements at position of force free equilibrium
26: N ← some function of Ni ◃ see caption of �gure 2.3.1, 2.3.3, 2.3.5 and 2.3.7
27: rcut ← 3

2
req (2D) or

√
2+1
2

req (3D) ◃ see equation 2.4.6 and 2.4.7
28: h← y (2D) or z (3D) ◃ component of axis aligned with the height
29: xt←Euler(x, tn, f ∗, N, rcut, h,gradV) ◃ time evolution
30: σ ← f∗

req
(2D) or f∗

r2eq
(3D) ◃ see equation 2.3.1 and 2.3.7, compute stress

31: ϵ← (xt[tn, indtop, h]− xt[0, indtop, h]) /xt[0, indtop, h] ◃ compute strain
32: EOUT ← σ/ϵ
33: output EOUT
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3 Numerics 3.2 Solver

details from Algorithm 1, where the whole procedure is illustrated as a pseudocode.

To model the speed of reaching equilibrium one needs to adjust the viscous damping

constant1[SN08]. We will set η = 1 since dynamic behaviour is not relevant to elasticity.

3.2 Solver

A time integration needs to be performed to solve the di�erential equations for a single

SEM cell ηẋα = ξα−▽α

∑
β ̸=α V (|xα−xβ|). As seen already in algorithm 1, the Euler

scheme is used for resolving this issue. To justify this choice we consider 103 elements,

meaning without a smart domain decomposition we have to call F(r) at least 103 times

per time step. The simple Euler solver

xt+1 = xt + F(rt) · dt (3.2.1)

may not be very precise compared for example with the 4th order Runge-Kutta

scheme [PTVF07], but fast since it has minimal number of function calls. Precision is

in our special case no problem. We just simulate the convergence to a minimum which

does not dependent on dynamics, but on the distances between elements. For that

reason, the Euler method is a reasonable choice for this time evolution. At the end

of each equilibration, oscillations around the true converged positions occur when the

time step dt is chosen too large. This size is also often limited by the fact that elements

destroy the close-packed order of the arrangement, when moving too far in one time

step. By reducing its size oscillations disappear, a smooth movement is guaranteed and

an unavoidable numerical error ensues. We estimate its order of magnitude with a test

run. Two elements with the initial distance 1.5req are left to equilibrate. Subtracting the

�nal distance rf from the theoretical value req gives the error due to the chosen Euler

solver. In Table 3.2.1 the result is shown for di�erent time step sizes dt. Surprisingly

the errors increases with a smaller dt. As can easily be seen from the Euler de�nition

3.2.1 and the values of the table, the spatial step dx = |F(rf )| · dt is of order 10−17.

Thus being smaller than machine precision elements cannot move any further - the

numerical equilibrium is reached. In most cases a good choice for a large, but still not

order destroying value for dt is 3.14× 10−3 with an error |req − rf | = 2.7× 10−15. We

need to keep that in mind when later discussing about possible sources of error.

1See the fundamental SEM equation 1.0.1 and 1.0.2
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3 Numerics 3.3 Parameters

dt |req − rf | |F(rf )|
1× 10−2 8.9× 10−16 2.7× 10−15

1× 10−3 8.9× 10−15 2.7× 10−14

1× 10−4 9.0× 10−14 2.8× 10−13

Table 3.2.1: The numerical error arising from using the Euler solver depends on
the time step size dt. rf is the distance between two elements after
reaching computational equilibrium. The theoretical value req is set
to 1.

3.3 Parameters

Of course, we simulate in order to compare our results later on with actual physical

measurements. That means parameters should have reasonable values. Basically, there

are the number of elements in every dimension Ni, the equilibrium distance req, the

applied force f ∗ and the input elastic modulus EIN . Hence, the parameter space has

�ve or six dimensions and is therefore tricky to explore. Setting all parameters but one

to a standard value and vary the remaining one, makes it possible to plot the variation

against the measured elastic modulus EOUT in a clear 2D plot.

As in any numerical simulation, we need to de�ne units of measure for all quantities.

The following consideration leads us to the size of these units and the standard value

of our parameters: For the sake of a short runtime we will always try to take the

smallest number for Ni, which leads to a satisfying error. To come right to the point:

Ni is of order 101. The size of biological cells can vary a lot, but with the choice

l ≈10 µm, which is roughly the size of a red blood cell, we are somewhere in the

right scale. Letting a unit of length (UL) equal one micron the standard value for

req = l
Ni

= 1UL. The elastic modulus of a living cell is in the order of 100Pa to

1000Pa ([LFS+06],[MSO05],[BMS99],[DRSA05a]). Assumed EIN = 100UF/UL2 (unit

of force per unit of length squared), one has the advantage of estimating the percentage

error easily and can let the standard value of EIN = 100UF/UL2 = 100Pa. The unit

of force has to be adjusted to ful�l this condition; from it we derive 1UF = 10−12N.

Notice that in 2D EIN = 100UF/UL thus 1UF = 10−6N. The standard f ∗ should be a

weak force so the cell stretches just a little. Otherwise we may get into trouble arising

from the approximations we made. To be on the safe side we let f ∗ = 10−3UF and

apply stress of 10−3 Pa so that ϵ should be in the order of ≈10−5. Note that we made

the arbitrary choice of f ∗ being positive, meaning that we pull on the top. Table 3.3.1

collates standard values and unit of measures.
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3 Numerics 3.4 Language

Parameter Standard value Unit of measure

req 1UL 1UL=1 µm

f ∗ 10−3UF 1UF=10−12N

EIN 100UF/UL2 1UF/UL2=1Pa
Table 3.3.1: Unless otherwise stated req, f

∗ and EIN will always be set to their
standard value given in this table.

3.4 Language

The program used for the following simulation runs is written in Python. Being a

script language Python requires no compiling which makes testing the code pretty fast.

Together with the intuitive library VPython the element movements can be visualized

at the same time. For lager simulations a more performant language should be used.

For example the SEM client of the 'MOSAIC' group which is written in FORTRAN95.

This code uses the 'Parallel Particle Mesh' (PPM) library which was developed from

the same group [SWB+06, ADS10, AMRS13]. The client runs in parallel, thus it can

achieve a much smaller run time. But since the code distributes di�erent cells to

di�erent processors single cell experiments still run on only one core. In this work,

the elastic modulus of single cells is computed and thus, the Python language is used

without signi�cant loss of computational time.
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4 Results

At the transition from 'numerics' to this chapter a lot of computation was done using the

SEM program. The elastic modulus has been calculated in two and three dimensions,

with and without periodic boundaries for di�erent parameters, namely the number

of elements in each dimension, the equilibrium distance, the applied force and the

theoretical elastic modulus we want to model. We will initially start with parameter

standard values and �nd smallest acceptable values for element numbers Ni. To explore

the parameter space we will proceed with varying all parameters one by one. According

to the setup order we introduced in the theory chapter 2, one will �nd sections for each

scenario containing results and plots of all associated simulation runs.

Also the two di�erent shapes of the potential introduced in Section 2.4 will be checked

for their impact on the elastic modulus. A comparison between them will be drawn

on the basis of the periodic, two-dimensional HCP structure, hence right in the �rst

section.

4.1 Periodic HCP in 2D and potential comparison

This section deals with the veri�cation of the formula we derived for the two-dimensional

case of a periodic, close-packed arrangement:

κ =
4

3
√
3
EIN .

The elastic modulus we want to model is denoted by EIN . In contrary there is the

computed elastic modulus EOUT . To recapitulate the scenery see Figure 2.3.1. Two

potentials have been introduced in Section 2.4 and this will be the only arrangement in

which we check their e�ect on the output. One has to pass the force �eld gradV(r)

to Algorithm 1, which is Equation 2.4.5 for the parabola. For the modi�ed Morse

potential we use Equation 2.4.2, where u0 is determined by Equation 2.4.3.

As already mentioned there is the problem of a huge parameter space. To get started
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Figure 4.1.1: EOUT (Nx) graph of the periodic HCP in 2D. Ny is set to 6 and
all other parameters have their standard value. Time steps are of
size 3.33× 10−3. Black crosses belong to the parabola VP and blue
(ρ = 2) and dark yellow (ρ = 4) crosses to the modi�ed Morse

potential VM .

we let all parameters have their standard value and try to �nd the minimal, reasonable

number of elements Nx and Ny. Starting with Nx we �x Ny at some point. For not

hitting a special case we choose it not smallest possible, but for example Ny = 6. The

result shown in Figure 4.1.1 illustrates that with the derived formula we are able to

reproduce a given elastic modulus within the error of 0.0004% to 0.008% depending on

the choice of the potential. The sources of error will be discussed in the next chapter.

Since the system is periodic in x-direction the plot looks like expected and can be

regarded as a validation of a proper implementation of ghost elements in the program.

With Nx having no in�uence on EOUT we are free to choose Nx = 1 in the following

simulations. This is what we do when testing the Ny in�uence - all other parameters

remain the same. In Figure 4.1.2 (a) one gets the impression that EOUT does not

dependent on Ny. In fact the error increases exponentially as can be seen in (b) of

the same �gure. But with this order of magnitude it gives no occasion to revise the

formula. The error may become relevant for huge numbers of Ny.

One can continue with varying the equilibrium distance req using a minimal system

size of Nx = 1 and Ny = 2. A meaningful range for this parameter might be from req =

10−2UL to req = 102UL. For 1UL=1 µm, this refers to a SEM cell with about 1000

elements of size 0.3µm to 30mm. Figure 4.1.3 illustrates the program output EOUT in

(a) and an exponentially decrease of the absolute error δE = EOUT − EIN in (b). The

error is still small enough to accept the result. But with an exponential in�uence, we

see that req has to be chosen wisely.
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(a) Ny-dependence of EOUT
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(b) Subtracting the �rst value of EOUT with Ny =
2 from the data, an exponential error dependence
on Ny becomes visible.

Figure 4.1.2: EOUT (Ny) graph in (a) and |EOUT − EOUT (Ny = 2)| (Ny) graph in
(b) of the periodic HCP in 2D. The legend is valid for both plots.
Nx = 1 and all other parameters have their standard value.
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Figure 4.1.3: EOUT (req) graph in (a) and |EOUT −EIN | (req) graph in (b) of the
periodic HCP in 2D. The legend is valid for both plots. The system
has the size Nx = 1 and Ny = 2. All other parameters have their
standard value.
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Figure 4.1.4: EOUT (f
∗) graph in (a) and |EOUT − EIN | (f∗) graph in (b) of the

periodic HCP in 2D. The legend is valid for both plots. The system
has the size Nx = 1 and Ny = 2. All other parameters have their
standard value.

To study the force response, we measure EOUT for f ∗ being positive and negative in

the range from 10−5UF to 102UF. By doing so, we model the cell from a very small

strain to breakage. Figure 4.1.4 shows the model behaviour. In the case of pulling

(f ∗ > 0), the maximal elongation is reached when r = rcut. For compressing (f ∗ < 0),

the model fails if the y component of f starts to decrease with an increasing α, the

angle between the force f and f ∗.

Finally, one changes the sti�ness of the SEM cell. We extend the already mentioned,

reasonable range for a cell's elastic modulus and let EIN take the values from 1Pa to

104 Pa. With 1Pa=1UF /UL2 the same values are used for computation. Figure 4.1.5

illustrates the relative error in (a) and the absolute error in (b). Since EIN has no

in�uence on the absolute error, the relative error decreases for larger values.

When comparing the potentials, the parabola gives always the best result. There

are a couple of error contributions as we shall see in the next chapter (Chapter 5), but

using the modi�ed Morse potential one gets a signi�cant error in addition due to the

fact that our approach is based on the parabola. Thus, the following simulations will

employ the parabola potential. Furthermore, we can summarize that di�erent potential

shapes have no in�uence on the qualitative behaviour.
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Figure 4.1.5: The graph shows the relative error as a function of the modelled
modulus EIN in (a) and the absolute error in (b) of the periodic
HCP in 2D. The legend is valid for both plots. The system has the
size Nx = 1 and Ny = 2. All other parameters have their standard
value.

4.2 Periodic FCC in 3D

For a three-dimensional close-packed arrangement, which is periodic in two dimensions,

we derived the formula:

κ =
req√
2
EIN .

The related illustration is Figure 2.3.3. We will proceed by the analogy of the last

section, in which also the su�ciency of only studying the parabola as force �eld poten-

tial has been established. Parameters are varied within the same range as in the two

dimensional problem.

Starting with the system size, we arbitrary set Ny = Nz = 3 and vary Nx. The result

is illustrated in Figure 4.2.1(a) and allows us to continue with Nx = 1, since EOUT is

constant for di�erent Nx. For symmetry reasons the Ny-dependency, shown in Figure

4.2.1(b), looks the same and we let Ny = 1 for further simulations.

Varying Nz yields almost the same as we had for the Ny-dependency in the two

dimensional case. In a reasonable range the error stays su�ciently small, though it

increases exponentially as can be seen in Figure 4.2.2. Finding the elastic modulus

to be independent of the system size, one can let Nx = Ny = Nz = 1 and test the
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Figure 4.2.1: EOUT (Nx) graph in (a) and EOUT (Ny) graph in (b) of the periodic
FCC in 3D. In (a) Ny = Nz = 3. In (b) Nx = 1 and Nz = 3. All
other parameters have their standard value.

remaining parameters in a minimal runtime.

For the in�uence of req we consider Equation 2.3.12 and remark that κ is a function

of req. In Figure 4.2.3(a) one �nds the elastic modulus to be modelled considerable

precise, except for very small req. In fact, EOUT seems to be an exponential function

of req as shown in Figure 4.2.3(b), which is much more sensitive than it has been in

the last section. For roughly req ≥ 10 a numerical error occurs and δE stays almost

constant.

When varying the applied force f ∗, we get almost the same result as in the two

dimensional case. Figure 4.2.4 illustrates the behaviour of EOUT in (a) and of the

absolute error δE in (b). As the force f ∗ is increased and the system gets closer to the

point of breakage, the error in the elastic modulus increases signi�cantly.

If one changes EIN , one gets the result shown in Figure 4.2.5. The relative and

absolute error plots look almost the same as in the HCP structure in 2D (Figure 4.1.5).

With a constant absolute error we may get into trouble when modelling a very small

elastic modulus. But staying in this reasonable range, our model works with a satisfying

precision.
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Figure 4.2.2: EOUT (Nz) graph in (a) and |EOUT − EOUT (Nz = 1)| (Nz) graph in
(b) of the periodic FCC in 3D. Nx = Ny = 1 and all other parameters
have their standard value.
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Figure 4.2.3: EOUT (req) graph in (a) and |EOUT −EIN | (req) graph in (b) of the
periodic FCC in 3D. The system has the size Nx = Ny = Nz = 1.
All other parameters have their standard value.
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Figure 4.2.4: EOUT (f
∗) graph in (a) and |EOUT − EIN | (f∗) graph in (b) of the

periodic FCC in 3D. The legend is valid for both plots. The system
has the size Nx = Ny = Nz = 1. All other parameters have their
standard value.
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Figure 4.2.5: The graph shows the relative error as a function of the modelled
modulus EIN in (a) and the absolute error in (b) of the periodic
FCC in 3D. The system has the size Nx = Ny = Nz = 1. All other
parameters have their standard value.
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4.3 Open HCP in 2D

In Section 2.3.3, we derived an approximate expression for κ (Equation 2.3.21) in the

scenario of a two dimensional SEM-cell, where the computational domain is not periodic.

An example arrangement is shown in Figure 2.3.1. We recall the formula:

κ =
2

3
√
3
(2 + w(Nx, Ny))EIN , where

w(Nx, Ny) =

[
1

4

(
1

8

)Nx−2(
1

2

)Ny−2
] 1

Nx+Ny−3

.

In this section, the theoretical outcome shall be tested numerically in the same manner

as it has been done in the two previous sections. We will vary parameters in the same

range.

We cannot look separately on the Nx- and Ny-dependency, because the curves for a

constant Ny and a varied Nx di�er considerably from each other. Therefore Figure 4.3.1

illustrates in (a) the data for Nx and Ny taking all even numbers up to 20. We remark

that κ is derived by averaging di�erent limits. Checking the validity of these limits can

be done with the help of Figure 4.3.1(b). For Nx and Ny going independently and also

at the same time to large values, the elastic modulus EOUT seems to converge to the

desired value EIN = 100. Therefore, the maximal error for systems with intermediate

values Ni of about 3% in the elastic modulus arises from the averaging process of the

derived limits. With Nx = Ny = 10 the error in EOUT is less than 1%, which is small

enough for us to continue with this system size.

The equilibrium distance is varied and Figure 4.3.2 illustrates the result. In the

modelled range, req in�uences the elastic modulus just about 0, 1%. But when taking

smaller values beyond this range one has to be careful, because of the rapid increase

for shrinking req.

Enlarging the applied force gives almost the same result as in the previous scenarios

of periodic HCP in 2D and periodic FCC in 3D as can be seen in Figure 4.3.3. As before,

we �nd an exponential decrease in the elastic modulus EOUT for shrinking f ∗, but only

down to a certain value of f ∗ and beyond that point the averaging error dominates,

hence the absolute error stays constant.

We are left with testing the EIN -dependence, which surprisingly shows a di�erent

behaviour than the one of EOUT of the periodic scenarios, as illustrated in Figure

4.3.4. Here the absolute error is not constant, it rather increases exponentially as EIN

increases, meaning the relative error |EOUT − EIN |/|EIN | stays almost constant.
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Figure 4.3.1: EOUT (Nx) graph for di�erent values Ny in (a) and three special cases
of Nx- and Ny-dependence of EOUT in (b) of the open HCP in 2D. All
other parameters have their standard value. For a better visualization
data points are linked through coloured lines, but they do not have
any physical or numerical meaning.
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Figure 4.3.2: EOUT (req) graph of the open HCP in 2D. The system has the size
Nx = Ny = 10. All other parameters have their standard value.
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Figure 4.3.3: EOUT (f
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open HCP in 2D. The legend is valid for both plots. The system has
the size Nx = Ny = 10. All other parameters have their standard
value.
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Figure 4.3.4: The graph shows the relative error as a function of the modelled
modulus EIN in (a) and the absolute error in (b) of the open HCP
in 2D. The system has the size Nx = Ny = 10. All other parameters
have their standard value.
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4.4 Open FCC in 3D

At last, we consider the three-dimensional face-centered cubic arrangement with open

boundary conditions. For this system, illustrated in Figure 2.3.7, we have derived the

following equation (Equation 2.3.31), which will be tested numerically in this section:

κ =

(
1 +

1√
2
w(Nx, Ny, Nz)

)
reqEIN , where

w(Nx, Ny, Nz) =
[
w(Nx, Ny, 1) (2w(Nx, Ny, 1))

Nz−1
] 1

Nz and

w(Nx, Ny, 1) =
1√
2

(Nx − 1)(Ny − 1)

NxNy − 1
2
(Nx +Ny) + (Nx − 3)(Ny − 3)

.

Also in this case we expect a considerable error due to the process of averaging in z-

direction and due to the way we derived w(Nx, Ny, 1) for a single layer. To investigate

these errors separately, we let Nz = 1 and varyNx andNy in the range from 2 to 20. The

result is shown in Figure 4.4.1(a), where one sees that all limits (EOUT (Nx = 2, Ny = 2),

EOUT (Nx = 2, Ny → ∞), EOUT (Nx → ∞, Ny = 2) and EOUT (Nx → ∞, Ny → ∞))

seem to converge to EIN . The weight w(Nx, Ny, 1) is only valid if Nx > 2 and Ny > 2,

otherwise the (Nx−3)(Ny−3) term does not appear. Therefore the behaviour of EOUT

is di�erent in these cases. For continuing the parameter investigation, we decide to let

Nx = Ny = 6, which yields an error of about 1.2% for Nz = 1 at a short runtime. Now

we �x Nx and Ny at 2 to examine only the Nz-dependency. Figure 4.4.1(b) illustrates

that as Nz →∞ the elastic modulus seems to converge also in this case to the desired

limit EIN = 100. For the choice Nx = Ny = 6 the values of EOUT when varying Nz are

almost only shifted. This shift will be smaller and smaller, when increasing the number

of elements in x- and y-direction. We want to continue with a cube and set Nz = 6

with an error of about 2.1%.

Figure 4.4.2 illustrates the behaviour of the elastic modulus when the equilibrium

distance is varied in the range from req = 10−2UL to req = 102UL. There is a strong

decrease of the error up to certain value of req ≈ 1, when the error of Nz averaging and

the one caused by w(Nx, Ny, 1) start to dominate.

Stretching and compressing with di�erent values of stress yield a very similar result

as we had before in the periodic scenarios as well as in the open HCP in 2D. One can

see from Figure 4.4.3, that the model fails when it comes to high values of f ∗.

The last parameter left to check is the elastic modulus we want to simulate EIN .

With an exponentially increasing absolute error the relative error almost remains at

about 2%, as visualized in Figure 4.4.4.
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Figure 4.4.1: EOUT (Nx) graph for di�erent values Ny while Nz = 1 in (a) and
EOUT (Nz) graph in (b) of the open FCC in 3D. All other parameters
have their standard value. For a better visualization data points are
linked through coloured lines, but they do not have any physical or
numerical meaning.
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Figure 4.4.2: EOUT (req) graph of the open FCC in 3D. The system has the size
Nx = Ny = Nz = 6. All other parameters have their standard value.
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Figure 4.4.4: The graph shows the relative error as a function of the modelled
modulus EIN in (a) and the absolute error in (b) of the open FCC
in 3D. The system has the size Nx = Ny = Nz = 6. All other
parameters have their standard value.
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5 Error discussion

The numerical results of the previous chapter are a�icted with modelling errors. It was

obvious from the very beginning that the elastic modulus will only be reproduced with

a certain precision, which in fact changes remarkably from scenario to scenario. The

aim of this chapter shall be the examination of error contributions, which is the basis

for further improvements of the model.

If one recapitulates the derivation and the simulation, several possible sources of

error occur. There are two numerical errors (the precision error δEprec and the solver

error δEsolv) and two systematic errors from approximating ∆h (δE∆h) and α (δEα).

Furthermore one has to consider the choice of the interaction potential (δEpot) and, for

non-periodic arrangements, the factor w causes an error (δEw). Therefore the most

general error δE = |EOUT − EIN | reads:

δE = δE
(
δEprec, δEsolv, δEpot, δEα, δE∆h, δEw

)
. (5.0.1)

Doing a numerical experiment, no matter how much memory is assigned, the precision

of each parameter or variable is limited. Sometimes, this circumstance can result in

a considerable error - but not for the models presented in this thesis, because the dy-

namics do not at all depend on machine precision. The impact of the precision error is

largest on the solver error δEsolv, when it limits the smallest spatial step (Table 3.2.1).

And of course we compute the elastic modulus as a 32-bit �oat number, thus it cannot

be in�nitely precise. In the following we will not consider δEprec, because it is very

small compared to the other contributions.

First, we explain the errors of the two-dimensional HCP structure with periodic bound-

ary conditions. In this case, δEw = 0 and we write the absolute error δE as a sum of

independent error contributions:

δE = δEsolv + δEpot + δEα + δE∆h. (5.0.2)

This error is also shown in Figure 4.1.1.
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5.1 Solver error: δEsolv

The solver error δEsolv is de�ned by the Euler solver. The time step is of size

3.14× 10−3, which results in a distance error between elements of δr = 2.7× 10−15.

With this information one calculates the error of length computes to δl ≈ (Ny−1)
√
3
2
δr.

Thus, the numerical contributions to the error are roughly:

δEnum ≈
∣∣∣ σ
ϵ2

∣∣∣ δϵ with δϵ =
δl

l
=

δr

req
and E =

σ

ϵ

≈
∣∣∣∣E2

σ

∣∣∣∣ δrreq
≈
∣∣∣∣ 10410−3

∣∣∣∣ 2.7× 10−15

≈ 2.7× 10−8 (5.1.1)

With this order of magnitude the solver cannot be the reason for the observed error of

δE = 4× 10−4 as seen in Figure 4.1.1. Even if we have to change the step size, this

error will always remain beyond our interest.

5.2 Fixed-angle approximation: δEα

For δEα, we remember the derivation of the stress σ where the assumption f ∗ =

2f cos(α) with α = 30◦ was made. Indeed α has a f ∗ dependency and therefore its

value varies around 30◦. To get an idea of δEα one calculates
∣∣∣ dE
d cos(α)

∣∣∣ δ cos(α) where
δ cos(α) = cos(α)−cos(30◦). After each simulation run α is known and can be computed

by

α(ϵ) = tan−1

(
req
2

2√
3(1 + ϵ)req

)
= tan−1

(
1√

3(1 + ϵ)

)
.
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Figure 5.2.1: The error arising from the �xed-angle approximation δEα. Shown is
the plot of Equation 5.2.3 for positive strain ϵ in black and in red for
negative strain ϵ respectively.

One calculates straight forward:

δ cos(α) =

√
3

2
− cos

(
tan−1

(
1√

3(1 + ϵ)

))
and (5.2.1)

δEα =

∣∣∣∣ d

d cos(α)

(σ
ϵ

)∣∣∣∣ δ cos(α) (5.2.2)

=

∣∣∣∣ d

d cos(α)

(
2 cos(α)f

Aϵ

)∣∣∣∣ δ cos(α),
=

∣∣∣∣2fAϵ
∣∣∣∣ δ cos(α),

≈
∣∣∣∣ E

cos(30◦)

∣∣∣∣ δ cos(α). (5.2.3)

Figure 5.2.1 illustrates this function and for the current situation with standard values

of ϵ ≈ 10−5. The �xed-angle error becomes δEα ≈ 2 × 10−4. The �xed-angle approx-

imation turns out to be a proper candidate for the error that we see in Figure 4.1.1.

5.3 Linear elongation approximation: δE∆h

Another contribution to the error occurs due to the ∆h approximation. It became

necessary when we expressed the height ∆h as a linear function of ∆r, the elongation

between elements. One can estimate the size of δE∆h by calculating
∣∣ dE
d∆h

∣∣ δh. We

de�ne δh as the di�erence between the actual ∆ha and ∆hT which is the Taylor
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Figure 5.3.1: The error arising from the∆hTaylor expansion δE∆h. Shown is the
plot of Equation 5.3.2 for positive ϵ in black and in red for negative
ϵ respectively.

approximation. As can be seen easily ∆ha = −ϵ
√
3
2
req. For ∆hT we make use of this

result, plug it into Pythagoras' theorem 2.3.3 and get the value for ∆r

∆r =

(
1−
√
3

2

√
(1 + ϵ)2 +

1

3

)
req. (5.3.1)

With the Taylor expansion ∆hT = 2√
3
∆r (Equation 2.3.4) we write the error δE∆h

as a function of ϵ in the following form:

δE∆h =

∣∣∣∣ dEd∆h

∣∣∣∣ δh
=

∣∣∣∣ d

d∆h

(
σl0

(Ny − 1)∆h

)∣∣∣∣ (∆ha −∆hT
)

=

∣∣∣∣ E∆h

∣∣∣∣
(
−ϵ
√
3

2
req −

2√
3

(
1−
√
3

2

√
(1 + ϵ)2 +

1

3

)
req

)

=

∣∣∣∣ 2√
3

E

ϵreq

∣∣∣∣
(
−ϵ
√
3

2
− 2√

3
+

√
(1 + ϵ)2 +

1

3

)
req

=

∣∣∣∣Eϵ
∣∣∣∣
(

2√
3

√
(1 + ϵ)2 +

1

3
− 4

3
− ϵ

)
(5.3.2)

Figure 5.3.1 illustrates the function graph, which looks surprisingly similar to the one

of δEα(ϵ). Indeed, the error δE∆h for the actual case where ϵ = 10−5 is about 10−4.

We see that the linear elongation approximation contributes signi�cantly to the total

error δE.
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Figure 5.4.1: The error arising from the choice of the potential δEpot. Shown is the
plot of Equation 5.4.1 for ρ = 2 and ρ = 4 in the case of stretching
(ϵ > 0) and compressing (ϵ < 0).

5.4 Parabolic potential approximation: δEpot

Since our approach is based on linear forces, meaning the parabola potential, we �nd an

additional source of error δEpot. We examine the in�uence of the force f by calculating∣∣∣dEdf ∣∣∣ δf where δf = fP (req +∆r)− fM(req +∆r). In order to compare this error with

those described previously, we express δf in terms of ϵ. To derive the full equation we

need the force �elds fP (2.4.5) and fM (2.4.2). Using the u0(κ) relation (2.4.3) we can

insert the κ expression 2.3.6 in both force �elds. Replacing ∆r with Equation 5.3.1

yields the entire δf(ϵ), which is not be given here, because of its length. The error

δEpot reads

δEpot =

∣∣∣∣ ddf
(
2 cos(α)f

Aϵ

)∣∣∣∣ δf(ϵ)
≈
∣∣∣∣2 cos(30◦)Ef ∗

∣∣∣∣ δf(ϵ) with E =
f ∗

reqϵ
and cos(30◦) =

√
3

2

≈

∣∣∣∣∣
√
3

reqϵ

∣∣∣∣∣ δf(ϵ) (5.4.1)

Figure 5.4.1 shows the function δEpot(ϵ) for the modi�ed Morse potential for ρ = 2

and ρ = 4. We notice that the error has the opposite sign compared to δEα and δE∆h,

so they compensate each other partly. With a potential steeper than the parabola, the

error would have been worse, since each contribution would have a positive sign. Look-
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ing at ϵ = 10−5 for our actual case we have δEpot
ρ=2 ≈ 3.4×10−3 and δEpot

ρ=4 ≈ 7.8×10−3.

Summing up the �xed-angle approximation, the linear elongation approximation and

the parabolic potential approximation, it �ts perfectly well with the error seen in Figure

4.1.1.

5.5 Weighting factor: δEw

The error caused by the weighting factor w shall be discussed brie�y using the example

of the open FCC structure. We recall, that for a non-periodic arrangement the fact of

having an asymmetry at the edges, forces us to introduce an averaged ∆h. This is done

by the factor w(Nx, Ny, Nz).

There is no need to derive the error formulas from above also for this scenario. The

measuring point in Figure 4.4.1(a) with (Nx = Ny = 2, Nz = 1), gives us an indication

of the error without δEw. We easily see that w yields the major contribution. Since

this problem exists due to the open boundaries, one can minimize the error by choosing

large values for the number of elements Nx,Ny and Nz. Thus, the number of elements

at the edges will be small compared with the number of elements from the interior of

the modelled cell.
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6 Summary

The aim of this thesis was to adjust the Subcellular Element Model in order to model

the linear elasticity of cellular tissues at a quantitative level. We derived formulas for

the spring constant of a linearised force. The most probable arrangement of subcellular

elements, namely the close-packed con�guration, has built the basis for this approach.

Several approximations were made and their impact on the numerical result was dis-

cussed. We subsequently tested these formulas in a numerical single cell experiment

using a computer program and explored the parameter space.

We are able to reproduce an elastic modulus with the SEM in the range of living

cells ([LFS+06], [MSO05], [BMS99], [DRSA05a]). This is achieved in two and in three

dimensions, with periodic and with open boundary conditions. But there are two

restrictions:

• The �rst restriction occurs only in open boundary systems. The problem of

asymmetry at the edges forces us to have a small surface to volume ratio in

order to push the error δEw down to the desired precision. On the one hand there

is the positive aspect, that it is in fact possible to let this error shrink arbitrarily.

But on the other hand the number of elements and thus the simulation runtime

increases remarkably. As counteraction and of course for multicellular structures

one should write the program di�erently, so it decomposes the computational

domain, not to calculate all possible interactions, but important ones between

neighbouring elements. Equipped with such a feature it can be run in parallel,

thus the run will be considerable faster.

• The second restriction arises from the �xed-angle approximation and the linear

elongation approximation, because they are only valid in a certain range of strain.

Depending on the accuracy of the modelled elastic modulus the model fails at some

point. For example, for ϵ ≈ 10%, both relative errors, δE∆h/E and δEα/E, reach

the size of about 1% to 10%. Stretching the SEM cell further, will lead to plastic

breakage, meaning that the strain restriction becomes only relevant in a small

range of strain. If we want to model living cells, which have been stretched by
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6 Summary

Desprat et al to strain values of around 400% to 600% [DRSA05b], the SEM

has to be extended. One attempt has been made by Sandersius et al [SWN11]

in which the authors introduced active subcellular elements which disappear in

regions of low stress and appear in regions of high stress. In this way, they were

able to stretch an SEM cell up to a strain value of 200%. However to further

develop this model to a quantitative level will probably require some e�ort.

We also have to mention two drawbacks due to the weighting factor w, which are

accordingly just relevant in open boundary scenarios:

• Since cells can change their shape, the number of subcellular elements in one

dimension Ni can evolve in time. There are two possibilities to deal with the

Ni-dependence of the weighting factor w(Nx, Ny) in 2D and w(Nx, Ny, Nz) in 3D.

Either we are precise and update the numbers Ni from time to time for the price

of a time dependent fore �eld or we just let Ni scale with
D
√
N , where D indicates

the number of space dimensions. The second option will lead to an additional

error, which should be small using a lot of subcellular elements per cell.

• Another drawback due to the introduction of the weighting factor w, is that it

is not symmetric in the element numbers Ni. Hence we need to know in which

direction the stress acts. In all other cases, than in these limited ones, one again

must let Ni scale with
D
√
N .

This work can be regarded as the basis of several positive future SEM improvements.

The stress-strain relation should be extended with linear as well as non-linear elastic cell

responses to �nally model a cell in at higher strain values. This might be possible with

an adaptive cut-o� radius. For further mechanical force applications, also the shear

modulus is an additional relevant quantity necessary to properly model deformation.

But also shearing will have narrow limits, because all subcellular elements are equal,

so they will be soon attracted by a next-nearest neighbour instead of tending to their

initial position. The interesting question remains if one can set the elastic and shear

modulus independent of each other, because in principle the force �eld was de�ned

completely by focussing on Young's modulus. Therefore, it may be necessary to take

previous time steps into account or to introduce an anisotropic interaction potential,

since the applied shear force acts orthogonal to the force for single axis elasticity.

A promising expansion for the SEM would be a combination with an active continuum

theory, in order to model active processes without losing the achieved mechanical be-

haviour of this work. By de�ning a concentration �eld of a biomechanical fuel, such as
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6 Summary

ATP, to model molecular motors, one could compute an additional force at the coordin-

ates of each subcellular element. Afterwards from the elements movements, one could

approximate a velocity �eld, which enters in the constitutive equation of the concentra-

tion �eld. Once such a hybrid framework exists, one can extend it with achievements

from other successful continuum theories, like the active polar gel model by Kruse et

al [KJJ+05].
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