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a b s t r a c t 

Many fluid-dynamics applications require solutions in complex geometries. In these cases, mesh gener- 

ation can be a difficult and computationally expensive task for mesh-based methods. This is alleviated 

in meshless methods by relaxing the neighborhood relations between nodes. Meshless methods, how- 

ever, often face issues computing numerically robust local operators, especially for the irregular node 

configurations required to effectively resolve complex geometries. Here we address this issue by using 

Discretization-Corrected Particle Strength Exchange (DC PSE) operator discretization in a strong-form Eu- 

lerian collocation meshless solver. We use the solver to compute steady-state solutions of incompressible, 

laminar flow problems in standard benchmarks and multiple complex-geometry problems in 2D with a 

velocity-correction method in the Eulerian framework. We verify that the solver produces stable and ac- 

curate results across all benchmark problems. We find that DC PSE operator discretization is more robust 

to varying node configurations than Moving Least Squares (MLS). In addition, we find that in more chal- 

lenging complex geometries, the solver using MLS operator discretization fails to converge, whereas DC 

PSE operators provide robust solutions without node adjustment. 

© 2016 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

Solving fluid dynamics equations in complex geometries is es-

ential across several branches of science and engineering. Exam-

les of applications that necessitate fluid-dynamics simulations in

omplex geometries include gas turbine combustors [46,49] , tur-

ulent flow past a landing gear [29] , physics of plasma process-

ng devices [36] , swimming of fish-like organisms [26,66] , and

hysics of active matter in biological morphogenesis [16,30,32,55] .

n such applications, the efficacy of mesh-based numerical meth-

ds, such as Finite Difference Methods (FDM), Finite Volume Meth-

ds (FVM), and Finite Element Methods (FEM) [17,70] , is limited by

he quality of the mesh used to discretize the spatial domain. De-
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pite developments, mesh generation in complex irregular geome-

ries still presents a significant bottleneck for mesh-based meth-

ds and can be the most computationally demanding part of a

imulation [3] . Furthermore, for irregular 3D geometries there is

 lack of fully automated mesh generators with hexahedral ele-

ents, with most methods still requiring manual mesh correction

40] . Motivated by these issues, a large family of numerical point-

ollocation schemes, called meshless methods or particle methods ,

ave been formulated [8,18,33,37,38,50,53,65] . Meshless methods

an eliminate the need for a mesh by relaxing the requirement

or explicit neighborhood relationships, or configurations, between

odes. 

In meshless methods, the spatial domain is discretized by a set

f nodes arbitrarily distributed without any interconnectivity. Res-

lution refinement, therefore becomes a relatively straightforward

rocedure of selectively adding nodes where more resolution is re-

uired in the domain. Since the introduction of Smoothed Particle

ydrodynamics (SPH) [28,45] , meshless methods proliferated with

evelopments such as the element-free Galerkin (EFG) method [9] ,
under the CC BY-NC-ND license. 
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diffuse element method (DEM) [52] , partition of unity finite el-

ement method (PUFEM) [7] , hp -clouds method [21] , finite point

method [54] , local boundary integral equation (LBIE) method [69] ,

meshless local Petrov-Galerkin (MLPG) method [4,5] , reproduc-

ing kernel particle methods (RKPM) [42,43] , and Particle Strength

Exchange (PSE) [23] . Specifically, in the field of fluid dynam-

ics, meshless methods have been developed based on the

weak (Galerkin) [1,39,44,4 8,62,6 8] , and strong (collocation) [10–

13,47,51] ] formulations. Strong-form methods largely rely on Mov-

ing Least Squares (MLS) [35,63] and Radial Basis Functions (RBFs)

[15] for the approximation/interpolation of the unknown field

functions and their derivatives. These methods do not face the

same consistency issues as earlier meshless methods, such as SPH

[41] . However, despite their success in producing accurate nu-

merical results across benchmark problems, strong-form methods

still pose challenges regarding robustness of operator computation

across different node configurations, especially when dealing with

irregular geometries [31] . Therefore, there is still a need for re-

search into finding meshless numerical schemes that combine the

ease of node generation of meshless methods with robust operator

computation in complex and irregular geometries. 

Strong-form meshless methods, also known as meshless collo-

cation methods, usually require the inversion of a matrix, often

termed the Moment Matrix or Coefficient Matrix , in order to com-

pute the kernel weights of the discrete operators. This matrix de-

pends on the local spatial distribution of nodes in the operator

support. The condition number of this matrix limits the accuracy

of the inversion and may dominate the global error [31] . Therefore,

strong-form collocation methods in the Eulerian framework have

been found to fail to converge under irregular node distributions

in complex geometries [14,31,40] . This is induced by the numerical

errors in the kernel weights and is not related to von-Neumann-

type stability. Jin et al. [31] proposed the use of positivity condi-

tions for the discretized operator, which, when satisfied, ensure a

low condition number of the coefficient matrix in the Finite Cloud

Method (FCM). For RBF, Schaback [58] proved an uncertainty prin-

ciple, stating that there is a trade-off between having a low con-

dition number for the operator and the operator’s order of accu-

racy. Using the MLS method, Bourantas et al. [14] found that the

condition number of the moment matrix for a given node distri-

bution anti-correlates with the stability of the numerical scheme,

with complex geometries and irregular node configurations of-

ten leading to high condition numbers and hence non-convergent

solutions. 

The DC PSE method [59–61] was originally formulated to over-

come consistency issues of weak-form PSE operators [19,20,23] on

irregular node distributions. The method is formulated by estab-

lishing a set of discrete moment conditions over a local distribu-

tion of nodes that, when satisfied, insure the approximation of

a given differential operators with a specified convergence order.

In the strong form [56] this results in a formulation similar to

other collocation methods, such as MLS or RPKM, with the re-

quired inversion of a matrix comparable to the moment matrix or

coefficient matrix of other schemes. The DC PSE method is gen-

eral, in that similar discrete moment conditions must be satisfied

by all meshless schemes to ensure convergence. For the strong-

form operators investigated here, the DC PSE formulation is simi-

lar to that of the independently developed Differential Reproducing

Kernels (DRK) [67] for solid mechanics applications. The DC PSE

method has previously been used in 2D and 3D Lagrangian parti-

cle methods for linear advection-diffusion problems [56,60,61] . In

Lagrangian methods, irregular node distributions occur due to ad-

vection of the particles. Simulating flows in a purely Lagrangian

framework is hampered by the all-against-all N -body interaction.

This is avoided in hybrid particle-mesh methods and in Eulerian

meshless formulations. 
f  
Here, we use DC PSE operator discretization in a standard Eu-

erian meshless collocation solver. We show that this improves

he robustness of the method, leading to coefficient matrices with

mall condition numbers. We also present a novel compact for-

ulation of strong-form DC PSE operators using the Vandermonde

ystem. This is the first time that DC PSE operators are used to

olve flow problems. We investigate the robustness of the DC PSE

ethod in the Eulerian framework by computing steady-state in-

ompressible flows using the velocity-correction method [22] in

rregular 2D geometries. Accuracy and robustness are assessed in

ell-known benchmark problems where we compare with estab-

ished results [2,24,25,27,34,64] . Without loss of generality, we fo-

us on 2D problems since they are easier to visualize and analyze.

he robustness of the local linear systems is independent of the

imensionality of the domain, as it is always a tensor of second

rder that only depends on the neighboring nodes. We focus on

he or robustness of DC PSE operators and the resulting numerical

cheme in several irregular geometries. Specifically, we use exam-

les of flow behind a cylinder, flow single and multiple stenosed

rteries, and a fully irregular bifurcating flow problem. For each

roblem, we test both regular and irregular node distributions. To

ssess the robustness of the DC PSE operators we provide maxi-

um condition numbers of the moment matrices for both DC PSE

nd MLS operators in comparison. Furthermore, we compare the

esults obtained in each test problem with those from the MLS

ethod [14] , as a meshless benchmark. 

The rest of this paper is structured as follows: In Section 2 , we

evisit DC PSE for operator discretization and provide a compact

nd cogent formulation of collocation DC PSE. In Section 3 , we re-

iew the governing flow equations in their velocity-vorticity for-

ulation along with the velocity-correction method. In Section 4 ,

e present the numerical benchmark examples, illustrating the

ccuracy and robustness of the proposed scheme in simple

nd complex geometries. Finally, in Section 5 , we present our

onclusions. 

. DC PSE 

DC PSE [60] was originally formulated as a correction of the

article Strength Exchange method (PSE) [20,20,23] on irregular

article distributions. PSE is used for the evaluation of spatial

erivatives of any degree of a (sufficiently smooth) function dis-

retized over scattered collocation points. The PSE operators can be

erived in two steps: First by constructing an integral operator that

atisfies continuous moment conditions, ensuring it approximates

 spatial derivative to a defined order of accuracy in the continu-

us domain. Second, by discretizing the integral operator over the

article positions using the mid-point quadrature method. A draw-

ack from this two-step procedure is the introduction of an overlap

ondition for the PSE operators [60] . The overlap condition requires

hat for the operator to be consistent, the inter-particle spacing h

nd the width ε of the operator kernel have to satisfy h ≤ aεq , 0

 a < 1, q > 1, where q depends on the order of the operator. This

esults in a large number of particles being required for small ker-

el sizes ε. For the DC PSE method, the overlap condition can be

elaxed by directly satisfying discrete moment conditions over the

ollocation points, requiring only that h = aε, independent of the

rder of the operator and for any a > 0. 

The discrete moment conditions for DC PSE can be thought of

s a direct analogue to the continuous moment conditions for PSE.

he DC PSE operators therefore overcome the limitation in PSE that

he error resulting from operator discretization (i.e., the quadrature

rror) dominates the overall order of accuracy of the operator as

rescribed by the moment conditions. 

Here we briefly review the DC PSE operators for strong-form

ormulations (i.e. neglecting collocation point volumes) in 2D and
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ow to construct them. For simplicity, we present the DC PSE for-

ulation in 2D, with standard kernel functions and form. However,

he formulation of the DC PSE operators in n dimensions with arbi-

rary kernel functions is straight forward and the reader is directed

o [59–61] for the original formulations and in-depth analysis. 

We begin by considering a differential operator, of arbitrary

rder, for a sufficiently smooth field f ( x ) = f (x, y ) at point x p =
 x p , y p } on a particular collocation point set 

D 

m,n f ( x p ) = 

∂ m + n 

∂ x m ∂ y n 
f (x, y ) 

∣∣∣∣
x = x p ,y = y p 

(1) 

here m and n are integers that determine the order of the differ-

ntial operator. 

The DC PSE operator for the spatial derivative D 

m, n f ( x p ) is: 

 

m,n f ( x p ) = 

1 

ε( x p ) m + n 
∑ 

x q ∈N ( x p ) 

( f ( x q ) ± f ( x p ) ) η

(
x p − x q 

ε( x p ) 

)
, (2) 

here ε( x ) is a spatially dependent scaling or resolution function,

( x , ε( x )) a kernel function, 2 and N ( x p ) is the set of points in

he support of the kernel function. The sign in Eq. (2) is positive

or m + n odd, and negative if even. The form of the operator in

q. (2) , including the sign change, is chosen to match with [60] for

imilarity to the original PSE operators [23] . However, the DC PSE

ormulation outlined here can also be applied in general to opera-

ors written in the form 

∑ 

x q ∈N ( x ) f ( x q ) η( x q − x p ) . 

We want to construct the DC PSE operators so that as we de-

rease the average spacing between nodes, h ( x p ) → 0, the operator

onverges to the spatial derivative D 

m, n f ( x p ) with an asymptotic

ate r : 

 

m,n f ( x p ) = D 

m,n f ( x p ) + O(h ( x p ) 
r ) , (3) 

here it is convenient to explicitly define the component-wise

verage neighbor spacing as h ( x p ) = 

1 
N 

∑ 

x q ∈N ( x ) (| x p − x q | + | y p −
 q | ) , where N is the number of nodes in the support of x p . 

Therefore, we need to find a kernel function η( x ) and a scaling

elation ε( x p ) that satisfy Eq. (3) . To achieve this, we replace the

erms f ( x q ) in Eq. (2) with their Taylor series expansions around

he point x p . This substitution gives: 

 

m,n f ( x p ) 

= 

1 

ε( x p ) m + n 
∑ 

x q ∈N ( x p ) 

( ∞ ∑ 

i =0 

∞ ∑ 

j=0 

(x p − x q ) i (y p − y q ) j (−1) i + j 

i ! j! 

× D 

i, j f ( x p ) ± f ( x p ) 

)
η

(
x p − x q 

ε( x p ) 

)
. (4) 

t is convenient to re-write Eq. (4) in the form: 

 

m,n f ( x p ) = 

( 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

ε( x p ) i + j−m −n (−1) i + j 

i ! j! 
D 

i, j f ( x p ) Z 
i, j ( x p ) 

) 

± Z 0 , 0 ( x p ) ε( x p ) 
−m −n f ( x p ) , (5) 

here 

 

i, j ( x p ) = 

∑ 

x q ∈N ( x p ) 

(x p − x q ) i (y p − y q ) j 

ε( x p ) i + j 
η

(
x p − x q 

ε( x p ) 

)
(6) 

re the discrete moments of η. Now if we restrict the scaling pa-

ameter ε( x p ) to converge at the same rate as the average spacing
2 The original weak-form formulation includes a particle volume v p and a 

imension-dependent normalization factor for the particle volume ε( x p ) −d , where 

 is the number of spatial dimensions, providing a normalization of the integration 

ength, area, or volume for the particle. As we consider strong-form formulations 

oth are omitted here. 

Q

etween points h ( x p ), that is 

h ( x p ) 

ε( x p ) 
∈ O(1) , (7) 

hen we find that the discrete moments Z i,j are O(1) as h ( x p ) →
 and ε( x p ) → 0. This is because the terms 

(x p −x q ) i (y p −y q ) j (−1) i + j 
ε( x p ) i + j 

re O(1) from the scaling relation and definition of h ( x p ). Further,

he second term η
(

x p −x q 
ε( x p ) 

)
is O(1) , through normalization of the

unction argument. These qualities are the motivation for the form

f the normalized kernel function. Therefore, the scaling behav-

or of Eq. (5) is determined solely by the ε( x p ) 
i + j−m −n term with

he smallest power and non-zero coefficient. Note that Eq. (7) is

 much looser constraint on the average spacing of nodes when

ompared to the overlap condition h ≤ aεq , 0 < a < 1, q > 1 for

he PSE method [60] . 

Given Eq. (7) , the convergence rate r of the DC PSE operator

 

m,n ( Eqs. 3 and 5 ) is determined by the coefficients of the terms

( x p ) i + j−m −n in Eq. (5) . The coefficient of ε( x p ) i + j−m −n in Eq. (3) is

equired to be 1 when i = m and j = n, and 0 when i + j − m − n <

. This results in the following set of conditions for the discrete

oments, 

 

i, j ( x p ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

i ! j! (−1) 
i + j 

i = m, j = n 

0 αmin ≤ i + j < r + m + n 

< ∞ otherwise 

(8) 

here αmin is 1 if m + n is even and 0 if odd. This is due to the

eroth moment Z 0,0 canceling out for odd i + j. The choice of the

actor ε( x p ) 
−m −n in Eq. (2) acts as to simplify the expression of the

oment conditions. 

For the kernel function η( x ) to be able to satisfy the l conditions

iven in Eq. (8) for arbitrary neighborhood node distributions, the

perator must have l degrees of freedom. This leads to the require-

ent that the support N ( x ) of the kernel function has to include

t least l nodes. In this paper, as in Schrader et al. and Reboux et al.

56,60] , we use kernel functions of the form 

( x ) = 

⎧ ⎨ 

⎩ 

i + j<r+ m + n ∑ 

i, j 

a i, j x 
i y i e −x 2 −y 2 

√ 

x 2 + y 2 < r c 

0 otherwise. 

(9) 

his is a monomial basis multiplied by an exponential window

unction, where r c sets the kernel support and the a i, j are scalars

o be determined to satisfy the moment conditions in Eq. (8) . The

ut-off radius r c should be set to include at least l collocation

odes in the support N (x ) . In this paper, r c is set implicitly by

sing the l − 1 nearest neighbors of each node. Alternatively, adap-

ive methods can be used [56] . 

We direct the reader to [61] for the exploration of more gen-

ral kernel choices and the impact of the various parameters on

he computational cost. If αmin = 1 , the a 0, 0 coefficient is a free

arameter and can be used to increase the numerical robustness of

olving the linear system of equations for the remaining a i, j [59] . 

To construct the operator Q 

m,n f ( x p ) at node x p , the coefficients

re found by solving a linear system of equations from Eqs. (9) and

8) . We outline now a convenient novel way of formulating the

perator and the linear system ( [59] ). With our choice of kernel

unction we have, 

 

m,n f ( x p ) 

= 

1 

ε( x p ) m + n 
∑ 

x q ∈N ( x p ) 

( f ( x q ) ± f ( x p ) ) p 

(
x p − x q 

ε( x p ) 

)

× a 

T ( x p ) e 
−(x p −x q ) 

2 −(y p −y q ) 
2 

ε( x p ) 2 , (10) 



288 G.C. Bourantas et al. / Computers and Fluids 136 (2016) 285–300 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

a

 

b  

c  

t  

t  

s  

(

∇  

u  

w  

t

ω  

S  

m  

s

∇  

∇  

u  

w

3

 

t  

m  

e  

M  

t  

(  

p  

t  

a  

t

u  

W  

i  

H  

a  

s

m

∇  

O  

i  

t  

u  

i  

b  

t

 

where p ( x ) = { p 1 ( x ) , p 2 ( x ) , . . . , p l ( x ) } and a ( x ) are vectors of the

terms in the monomial basis and of their coefficients in Eq. (9) ,

respectively. 

Using this formulation, the operator system becomes straight-

forward. For example, if we set r = 2 and approximate the first

spatial derivative in the x direction, D 

1,0 , we have l = 6 moment

conditions and the monomial basis is p (x, y ) = { 1 , x, y, yx, x 2 , y 2 } .
The linear system for the kernel coefficients then is: 

A ( x p ) a 

T ( x p ) = b , (11)

where 

A ( x p ) = B ( x p ) 
T B ( x p ) ∈ R 

l×l (12)

B ( x p ) = E ( x p ) 
T V ( x p ) ∈ R 

k ×l (13)

b = (−1) m + n D 

m,n p ( x ) | x =0 ∈ R 

l×1 . (14)

The scalar number k ≥ l is the number of nodes in the support

of the operator, l the number of moment conditions to be sat-

isfied, and V ( x p ) the Vandermonde matrix constructed from the

monomial basis p ( x p ). E ( x p ) is a diagonal matrix containing the

square roots of the values of the exponential window function at

the neighboring nodes in the operator support. Further, for node x p 
we define { z q ( x p ) } k q =1 

= { x p − x q } x q ∈N ( x p ) , the set of vectors point-

ing to x p from all neighboring nodes x q in the support of x p . So

then explicitly 

 ( x p ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

p 1 

(
z 1 ( x p ) 

ε( x p ) 

)
p 2 

(
z 1 ( x p ) 

ε( x p ) 

)
· · · p l 

(
z 1 ( x p ) 

ε( x p ) 

)
p 1 

(
z 2 ( x p ) 

ε( x p ) 

)
p 2 

(
z 2 ( x p ) 

ε( x p ) 

)
· · · p l 

(
z 2 ( x p ) 

ε( x p ) 

)
. . . 

. . . 
. . . 

. . . 

p 1 

(
z k ( x p ) 

ε( x p ) 

)
p 2 

(
z k ( x p ) 

ε( x p ) 

)
· · · p l 

(
z k ( x p ) 

ε( x p ) 

)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

∈ R 

k ×l 

(15)

E ( x p ) = diag 

⎛ 

⎜ ⎜ ⎝ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

e 

−| z q ( x p ) | 2 
2 ε( x p ) 2 

⎫ ⎪ ⎬ 

⎪ ⎭ 

k 

q =1 

⎞ 

⎟ ⎟ ⎠ 

∈ R 

k ×k . (16)

Once the matrix A ( x p ) is constructed at each node x p , the linear

systems can be solved for the coefficients a ( x p ) used in the DC

PSE operators at each node as in Eq. (10) . The matrix A ( x p ) only

depends on the number of moment conditions l and the local dis-

tribution of nodes in N ( x p ) . Therefore, if the system in Eq. (11) is

solved using a decomposition (such as LU), of A ( x p ). This form can

be re-used for multiple right-hand sides, i.e., for different differen-

tial operators (albeit with different convergence rates r ). The ma-

trix A has an analogue in MLS where it is often called moment ma-

trix .This contains information about the spatial distribution of the

collocation nodes around the center point x p . The invertibility of A

depends entirely on that of the Vandermonde matrix V , due to E

being a diagonal matrix with non-zero entries. The condition num-

ber of A depends on both V and E and determines the robustness

of the numerical inversion. 

3. Governing equations at steady state 

The governing equations express conservation of mass and lin-

ear momentum. In their velocity-pressure formulation ( u − v − p)

at steady state, they are: 

Continuity equation 

∇ · u = 0 , (17)

Momentum equation 

ρ( ( u · ∇) u ) = −∇ p + μ∇ 

2 u , (18)
here u is the fluid velocity, p is the fluid pressure, ρ the density,

nd μ the dynamic viscosity. 

Since for Eulerian primitive-variables formulations pressure

oundary conditions are hard to define, the governing equations

an be rewritten in velocity-vorticity formulation, which can be ex-

ended to 3D studies, by taking the curl of the momentum equa-

ion and accounting for the continuity equation. A vector Pois-

on equation relates the velocity and vorticity fields. Eqs. (17) and

18) then become: 

 

2 u = −∇ × ω , (19)

 · ∇ ω = ω · ∇ u + 

1 

Re 
∇ 

2 ω , (20)

here ω is the vorticity. We seek a solution of Eqs. (19) and (20) in

he spatial domain � that satisfies the boundary conditions 

u = u ∂ �, 

 = ( ∇ × u ) ∂ �. (21)

ince we consider the steady-state case in two-dimensional do-

ains, the governing equations in a Cartesian coordinate system

implify to: 

 

2 u = −∂ω 

∂y 
, (22)

 

2 v = 

∂ω 

∂x 
, (23)

 

∂ω 

∂x 
+ v 

∂ω 

∂y 
= 

1 

Re 
∇ 

2 ω, (24)

here u = (u, v ) and ω = 

∂v 
∂x 

− ∂u 
∂y 

is a scalar. 

.1. Velocity-correction method 

After discretizing the governing Eqs. (17) –(24) using DC PSE,

he differential operators are represented by sparse matrices of di-

ension N × N , with N being the total number of nodes. An it-

rative velocity correction scheme [22] , previously also used for

LS in [12] , is used for numerically solving these linear equa-

ions. Initially, the Poisson equations for the velocity components

 Eqs. (22) –(23) ) are solved and an intermediate velocity u 

∗ is com-

uted that, in general, does not satisfy the continuity equation,

hat is ∇ · u 

∗ 	 = 0. Satisfaction of the continuity equation is then

ccomplished by updating the velocity field with a velocity correc-

ion ∂ u 

k +1 : 

 

k +1 = u 

∗ + ∂ u 

k +1 . (25)

ithout loss of generality, we assume that the velocity correction

s irrotational (but not the flow itself), i.e. ∇ · ∂ u 

k +1 	 = 0 , then a

elmholtz potential (or correction potential) ψ 

k +1 can be defined

s: ∇ψ 

k +1 = ∂ u 

k +1 . Since the new velocity update is required to

atisfy continuity, i.e. ∇ · ∂ u 

k +1 = 0 , the correction potential ψ 

k +1 

ust satisfy the Poisson-type equation 

 

2 ψ 

k +1 = −∇ · u 

∗. (26)

nce this Helmholtz-Poisson problem is solved, the velocity field

s updated in order to satisfy continuity. The momentum equa-

ion is still satisfied because the correction is irrotational. From the

pdated velocity field u 

k +1 we calculate the vorticity. The vortic-

ty transport Eq. (20) is then solved using the updated vorticity

oundary values. Then, the new vorticity values ω 

k +1 are used for

he next iteration. The entire algorithm hence is: 

• Use an initial guess for the velocity components u (0) and v (0) . 
• Calculate the initial vorticity field ω 

(0) using the formula ω 

(0) =
∇ × u 

(0) . 
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Fig. 1. Lid-driven cavity flow: Convergence for Re = 400 for increasing resolution: 

21 × 21, 41 × 41, 81 × 81, 121 × 121, and 161 × 161. The absolute L 2 and L ∞ error 

norms over all nodes are calculated with respect to a solution computed with 201 

× 201 nodes, as in [27] . N × N is the total number of nodes used in the simulation, 

and N the number of nodes in each direction. 
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• Calculate the vorticity gradients (right-hand sides of Eqs. (22) –

(23) ) and solve the Poisson equations for the velocity compo-

nents, yielding the intermediate velocity field u ∗ and v ∗. 
• Calculate the Helmholtz potential ψ using the appropriate

boundary conditions and calculate the updated velocity fields. 
• Solve the vorticity transport equation ( Eq. (24) ). 
• Check for error convergence and iterate. 

This is a standard method that has been used before. How-

ver, the convergence of the iterative scheme to the steady

tate solution depends on how the differential operators are

iscretized. 

. Numerical experiments 

We explore the robustness of the solution when using DC PSE

nd MLS. First, we assess our method in terms of accuracy and va-

idity by using two well-established benchmark problems: the lid-

riven cavity flow, and the backward-facing step. Second, we ex-

lore the stability of the numerical scheme in complex geometries

n four flow problems: flow behind a cylinder, single and multiple

tenosed arteries, and a bifurcating artery. 

The lid-driven cavity flow and the backward-facing step are

tandard test problems with extensive reference data available in

he literature. They are frequently used to assess numerical meth-

ds for flow problems [2,24,25,27,34,64] . We present both qualita-

ive, through figures, and quantitative solution values, through ta-

les, in order to assess the method’s accuracy and as a reference

or comparison with previous works. In all cases we check the va-

idity of the computed solutions by comparing with benchmark

ata from established methods. Furthermore, we perform grid-

onvergence studies for all problems to obtain grid-independent

olutions with respect to these benchmark solutions. 

A key issue in the application of meshless methods, especially

or strong-form collocation methods, is their lack of numerical ro-

ustness in complex geometries [14,31,33,40,50,60,65] . Lack of con-

ergence of the iterative solver, has been associated with node

istributions with high condition numbers of the moment matri-

es [14,31,40] , or with certain asymmetries [60] . Here, we use four

ow problems in complex geometries to test our method’s numeri-

al stability and assess its robustness against node rearrangements.

e validate the accuracy of the solutions by comparison with the

stablished solvers from COMSOL and the same meshless scheme

14] using MLS, instead of DC PSE to discretize the differential op-

rators. We use the MLS meshless scheme as a stability bench-

ark for the different geometries. For every problem we provide

he maximum condition number of the moment matrix for the

LS operators and its equivalent for DC PSE, the maximum ab-

olute difference of the solution, and whether either scheme had

ssues regarding convergence. Although the comparison of the ab-

olute value of the condition numbers across the MLS and DC PSE

ethods is not meaningful, due to different prefactors, the relative

ariation of the condition numbers for each method by itself across

ode distributions does provide an indication of the sensitivity of

he operator to node rearrangement. The robustness of the over-

ll solution is also reflected in the condition number of the global

inear system for the Poisson-type equations. While the condition

umber of the global linear system depends on the condition num-

ers of the local (i.e., moment matrix) systems, it also depends on

any other factors that are problem dependent. Therefore, we re-

trict our discussion of robustness to the local linear systems. Fur-

her, we do not provide a computational cost study for the method

ere, as the numerical procedure of computing the DC PSE opera-

ors is identical to that when using other strong-form collocation

ethods, such as MLS or FCM. The computational cost is indepen-

ent of the choice of operator discretization and simply reflects the
ost of the Eulerian solver [12] . Here we are interested in whether

olutions can be obtained at all and how robust they are across

ifferent node configurations. 

.1. Lid-driven cavity flow 

We first test our method on the lid-driven flow in a square

avity, for the domain x ∈ [0, 1] and y ∈ [0, 1]. Lid-driven flow

s a computationally demanding problem due to the multiple re-

irculation zones at the corners, especially for moderate and high

eynolds numbers. The problem has been intensively studied over

he years, and numerical studies for Re ≤ 10 0 0 produce consistent

esults across methods. Here we present numerical solutions from

ur method for Reynolds numbers up to 10,0 0 0, for which the flow

egime is considered to be laminar and the solution stable. 

For the flow boundary conditions, we apply no slip at all cavity

alls, except the top, which moves with unit velocity to drive the

ow. For the DC PSE operators, r = 2 for first-order derivatives, and

 = 1 for second-order derivatives. The support cutoff radius r c of

he kernel is set to 2.5 h for interior nodes and 3.5 h for boundary

odes, where h ( h = 

1 
260 ) is the inter-node spacing. To assess the

onvergence of our method in a mesh-refinement sense, we com-

ute the solution with progressively higher resolution at constant

e = 400, reporting norms relative to the highest resolution used

201 × 201). We use regular Cartesian node distributions for this

est. The resulting convergence curve is shown in Fig. 1 , demon-

trating that the scheme converges at a rate between 1.5 and 2.5. 

For Re = 10 0 0 and Re = 20 0 0 we use a uniform node dis-

ribution of 261 × 261 nodes with a total of 68 , 121 nodes. For

e = 10,0 0 0 we use a uniform grid of 361 × 361 nodes. We

ssess the numerical solution of our method through both quan-

itative and qualitative comparisons with benchmark numerical

esults from the literature [24] . For qualitative evaluation of the

olution, stream-lines (computed as in [24] ) of the flow field are

resented for Re = 10 0 0 in Fig. 2 , for Re = 2500 in Fig. 3 , and

or Re = 10,0 0 0 in Fig. 4 . These figures show the formation of the

ounter-rotating secondary vortices that appear as the Reynolds

umber increases. For quantitative comparison, we present veloc-

ty values along the vertical center line for u in Table 1 , and for

 in Table 2 , for both Re = 10 0 0 and Re = 2500 alongside the

umerical results form [24] . 
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Fig. 2. Lid-driven cavity flow: Streamline patterns of primary and secondary vortices (computed as in [24] ) obtained for Re = 10 0 0. ( a ) The full domain; ( b ) close-up on the 

eddies BL1 and BL2; ( c ) close-up on BR1 and BR2. BL1, BL2, BR1 and BR2 are defined as in [24] . 
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Assessing the numerical robustness of the scheme relative to

MLS, we find the maximum condition number of the moment

matrix for MLS and DC PSE operators on the same 261 × 261

node distribution to be 167 for DC PSE and 2.74 × 10 13 for MLS.

When comparing the solutions using MLS and DC PSE as oper-

ator discretization, the maximum absolute differences for the u

and v velocity components are 5 . 54 × 10 −2 and 5 . 06 × 10 −2 for

Re = 10 0 0, and 5 . 96 × 10 −2 and 5 . 34 × 10 −2 for Re = 2500, re-

spectively. Therefore, we find that the DC PSE scheme reproduces

previous results for the lid-driven cavity flow benchmark problem

in this simple geometry. 

4.2. Backward-facing step 

As a second benchmark problem, we consider the backward-

facing step (BFS) [2] . The backward-facing step involves a chan-

nel of width H ( H = 1 ) and length L ( L = 30 H), with a backward-

facing step (of height H /2) placed at the left-most edge of the

inlet ( x = 0 ) where flow is assumed to be fully developed. This

flow is set to have a parabolic inflow velocity profile given by
 = (12 y − 24 y 2 , 0) for y > 0.5. Fully developed flow is also as-

umed at the outlet (right edge), with the velocity profile given

y u = (0 . 75 − 3 y 2 , 0) for 0 < y < 1. 

The BFS is considered a demanding benchmark flow problem

ue to the vortices formed after the step. The BFS has been stud-

ed both experimentally [2] and numerically [2,25,34,64] . The flow

as been found to be stable and two-dimensional for Re � 400,

llowing the flow to be numerically modeled in 2D and compared

irectly with experiments [2] . Beyond this Reynolds number, the

ow is 3D and the 2D approximation is no longer valid. How-

ver, numerical results for the 2D problem for Re > 400 are still

iven in the literature as a purely numerical benchmark problem

25] . 

Here, we present numerical results for our method for Re = 200,

or comparison with both experimental and numerical results such

s [2] , and Re = 800 for comparison with the purely numerical

enchmarks given in [25,34,64] . For the DC PSE operators, r = 2

or first-order derivatives, and r = 1 for second-order derivatives.

he cut-off radius r c of the kernel function is set to 2.5 h for

nterior nodes and 3.5 h for boundary nodes, with h being the
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Fig. 3. Lid-driven cavity flow: Streamline patterns of primary and secondary vortices (computed as in [24] ) obtained for Re = 2500. ( a ) The full domain; ( b ) close-up on the 

eddies BL1 and BL2; ( c ) close-up on BR1 and BR2. BL1, BL2, BR1 and BR2 are defined as in [24] . 

Table 1 

Lid-driven cavity flow: u velocity component along the vertical line passing through 

the center of the cavity at Re = 10 0 0 and Re = 2500 compared with [24] . 

Re = 10 0 0 Re = 2500 

y DC PSE Ref. [24] DC PSE Ref. [24] 

1 1 1 1 1 

0 .99 0 .8436 0 .8486 0 .7585 0 .7704 

0 .98 0 .6976 0 .7065 0 .5712 0 .5924 

0 .97 0 .5799 0 .5917 0 .4688 0 .4971 

0 .96 0 .4958 0 .5102 0 .4283 0 .4607 

0 .95 0 .4418 0 .4582 0 .417 0 .4506 

0 .94 0 .4098 0 .4276 0 .414 0 .447 

0 .93 0 .3916 0 .4101 0 .4107 0 .4424 

0 .92 0 .3807 0 .3993 0 .4052 0 .4353 

0 .91 0 .373 0 .3913 0 .3973 0 .4256 

0 .9 0 .3661 0 .3838 0 .3874 0 .4141 

0 .5 −0 .0591 −0 .062 −0 .0369 −0 .0403 

0 .2 −0 .3612 −0 .3756 −0 .3036 −0 .3228 

0 .18 −0 .3701 −0 .3869 −0 .3244 −0 .3439 

0 .16 −0 .3666 −0 .3854 −0 .3487 −0 .3688 

0 .14 −0 .349 −0 .369 −0 .3747 −0 .3965 

0 .12 −0 .3183 −0 .3381 −0 .3944 −0 .42 

0 .1 −0 .2778 −0 .296 −0 .3948 −0 .425 

0 .08 −0 .2316 −0 .2472 −0 .3652 −0 .3979 

0 .06 −0 .1825 −0 .1951 −0 .3069 −0 .3372 

0 .04 −0 .1299 −0 .1392 −0 .2307 −0 .2547 

0 .02 −0 .0702 −0 .0757 −0 .1362 −0 .1517 

0 0 0 0 0 
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nter-node spacing; h = 0 . 05 and h = 0 . 025 for Re = 200 and

e = 800, respectively. The kernel width ε is set to be equal to

 . To ensure a resolution-independent numerical solution, several

ode configurations are tested, specifically 301 × 11, 601 × 21, 901

31, and 1201 × 41. This shows convergence in a mesh-refinement

ense of the solution to the required precision. For Re = 200 and

e = 800, regular grid distributions of 12 , 621 (601 × 21) and

9 , 241 (1201 × 41) nodes are used, respectively. 

Fig. 5 shows the streamlines and vorticity contours for

e = 200. The flow separates at the step corner and a vortex

s formed downstream. For Re = 200 the reattachment length of

he vortex is L = 2 . 55 . Table 3 lists the reattachment length val-

es obtained using Radial Basis Functions and the Finite Element

ethod from [12] along with those from our DC PSE method. The

C PSE reattachment lengths are consistent with those of estab-

ished methods. Fig. 6 shows the streamlines and vorticity con-

ours for Re = 800. After reattachment of the upper wall eddy, the

ow slowly recovers towards a fully developed Poiseuille flow. For

ur method, the measured separation and reattachment points at

e = 800 are L lower ≈ 6.1 for the lower wall separation zone, L upper 

5.11 for the upper separation zone, and separation begins at

 ≈ 5.19. Comparison of the present scheme with other numer-

cal methods for 2D computations shows good agreement, espe-

ially with respect to the lower wall separation zone. In [64] the

uthors used a finite difference method and predicted separation

engths of L lower ≈ 6 . 0 and L upper ≈ 5 . 75 , while [64] using the FI-

AP code predicted L lower ≈ 5.8 and the upper L upper ≈ 4.7. In

rder to validate our method, cross-channel profiles of a variety

f quantities, and the equivalent data form [25] , are provided at
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Fig. 4. Lid-driven cavity flow: Streamline patterns of primary and secondary vortices (computed as in [24] ) obtained for Re = 10,0 0 0. ( a ) The full domain; ( b ) close-up on 

the eddies in bottom left corner; ( c ) close-up on eddies in bottom right corner, and ( d ) close up on eddies in top left. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

t  

a  

d  

i  

t

 

s  

r  

c  

F  

S  

S  

r  

w  

l  

a  

 

m  

2  

n  

t  

v  

D  

D  

u  

s  

c  

t

x = 7 in Table 4 , and at x = 15 in Table 5 . These cross-channel pro-

files and solution comparisons for Re = 800 are shown in Fig. 7 ,

providing an example of the convergence studies performed for all

test cases. 

Assessing the relative numerical robustness of the DC PSE

scheme, we find the maximum condition number for DC PSE to

be 167 and for MLS 1.01 × 10 9 for the same node distributions.

Further, when the solution is compared to that with MLS oper-

ators, the maximum absolute differences for the u and v veloc-

ity components are 3 . 11 × 10 −2 and 6 . 65 × 10 −2 for Re = 800,

and 2 . 1 × 10 −2 and 9 . 1 × 10 −2 for Re = 200, respectively. In sum-

mary, the numerical results obtained here show good agreement

with the established benchmarks for the backward-facing step flow

problem. 

4.3. Flow past a cylinder 

We consider flow in a 2D rectangular duct with a circular oc-

clusion. This problem showcases a regular geometry with an inter-

nal obstacle. The spatial domain is � = [0 , 0 . 1] × [0 , 0 . 01] (m) with

a cylinder of radius r = 0 . 0015 (m) located at B r = (0 . 02 , 0 . 005)

(m). We set the kinematic viscosity ν = 

μ
ρ = 

0 . 001 
997 

m 

2 

s . For the flow

boundary conditions we set no-slip conditions, u = (u, v ) = (0 , 0) ,

for the upper and lower walls of the duct and also along the

perimeter of the cylinder. For the inlet (left edge), a uniform

velocity of u (0 , y ) = (0 . 01 , 0) m 

s is enforced, while at the outlet

(right edge), a do-nothing outflow boundary condition is applied:

ν ∂u 
∂ n 

− p n = 0 , where n denotes the outward unit normal. 
We present results for Re = 30. A total number of 25 , 405

odes is used, with 45 nodes distributed on the cylinder perime-

er to enforce the boundary condition there. For the DC PSE oper-

tors, r = 2 for first-order derivatives, and r = 1 for second-order

erivatives. The cut-off radius r c of the kernel function is 2.5 h for

nterior nodes and 3.5 h for boundary nodes, where h ( h = 0 . 02 ) is

he inter-node spacing. 

Contour plots for the velocity components and streamlines are

hown in Fig. 8 . Two symmetric vortices with opposite rotation di-

ections are formed behind the cylinder. These vortices have a re-

irculation length of L = 0 . 00144 m from the center of the cylinder.

or solution validation, the same problem is solved using COM-

OL with a total number of 72 , 466 degrees of freedom. The COM-

OL solution is interpolated to the DC PSE node locations for di-

ect comparison. The COMSOL solution shows similar flow profiles

ith a recirculation length of L = 0 . 00142 m. The maximum abso-

ute differences in the u and v velocity components of the COMSOL

nd DC PSE solutions are 1 . 67 × 10 −2 and 9 . 31 × 10 −3 , respectively.

Checking the relative numerical robustness of the solution, the

aximum condition numbers are 179 for DC PSE operators and

.496 × 10 15 for MLS. When computing the solution with MLS, the

ode arrangement needed to be manually refined with nodes close

o degeneracy having to be redistributed for the method to con-

erge. This manual refinement was not required when using the

C PSE operators. The maximum absolute difference between the

C PSE and MLS solutions are 4 . 88 × 10 −4 and 5 . 47 × 10 −4 for the

 and v velocity components, respectively. In summary, we have

hown that DC PSE produces consistent solutions for flow past a

ylinder, and shows improved robustness with regard to node dis-

ribution than when using MLS operators. 
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Table 2 

Lid-driven cavity flow: v velocity component along the vertical 

line passing through the center of the cavity at Re = 10 0 0 and 

Re = 2500 compared with [24] . 

Re = 10 0 0 Re = 2500 

y DC PSE Ref . [24] DC PSE Ref . [24] 

1 0 0 0 0 

0 .985 −0 .0916 −0 .0973 −0 .151 −0 .1675 

0 .97 −0 .2046 −0 .2173 −0 .3382 −0 .3725 

0 .955 −0 .3208 −0 .34 −0 .4786 −0 .5192 

0 .94 −0 .4183 −0 .4417 −0 .5254 −0 .5603 

0 .925 −0 .4811 −0 .5052 −0 .4995 −0 .5268 

0 .91 −0 .5041 −0 .5263 −0 .4499 −0 .4741 

0 .895 −0 .4942 −0 .5132 −0 .4078 −0 .4321 

0 .88 −0 .464 −0 .4803 −0 .3794 −0 .4042 

0 .865 −0 .4262 −0 .4407 −0 .3596 −0 .3843 

0 .85 −0 .3891 −0 .4028 −0 .3432 −0 .3671 

0 .5 0 .0264 0 .0258 0 .0165 0 .016 

0 .15 0 .3558 0 .3756 0 .368 0 .3918 

0 .135 0 .3498 0 .3705 0 .3814 0 .4078 

0 .12 0 .3394 0 .3605 0 .3894 0 .4187 

0 .105 0 .3249 0 .346 0 .3895 0 .4217 

0 .09 0 .3066 0 .3273 0 .38 0 .4142 

0 .075 0 .2842 0 .3041 0 .3602 0 .395 

0 .06 0 .2558 0 .2746 0 .3311 0 .3649 

0 .045 0 .2178 0 .2349 0 .2923 0 .3238 

0 .03 0 .1652 0 .1792 0 .2355 0 .2633 

0 .015 0 .0933 0 .1019 0 .1418 0 .1607 

0 0 0 0 0 
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.4. Flow in stenosed arteries 

As a first test case with complex geometry, we simulate fluid

ow in a stenosed, or contracted, artery. We present results for

wo cases: a duct with an asymmetric stenosis, and a more general

ase with several irregular stenoses. In both problems, the length

nd width of the unconstrained channel is L = 10 and H = 1 , re-

pectively. At the inlet, the flow is assumed to be fully developed

ith the velocity having a parabolic profile. On the lower and up-

er walls, no-slip boundary conditions are imposed. Hence: 

Inflow: ( x = 0 , 0 ≤ y ≤ 1 ) (
u = 4 y − 4 y 2 , v = 0 

)
utflow: ( x = 10 , 0 ≤ y ≤ 1 ) (

∂u 

∂x 
= 0 , v = 0 

)
Walls: ( y = y (x ) , 0 ≤ x ≤ 10 ) 

( u = 0 , v = 0 ) . (27) 

hese flow problems showcase the performance of our method on

ncreasingly irregular geometries and node distributions. Therefore,

e test both regular and irregular node distributions. The irregu-
Fig. 5. Backward-facing step: ( a ) Stream function contours for Re = 200 
ar distributions are generated by extracting the vertex positions,

nd ignoring the mesh neighbor properties, produced by the COM-

OL mesh generator. While this is not how one would place nodes

n practice, it serves as a reproducible benchmark for comparison

etween the MLS and DC PSE operators. 

.4.1. Single stenosis 

The computational domain has a single stenosis of asymmetric

hape: 

 lower = A 1 sech ( B 1 (x − x 1 ) ) , 0 ≤ x ≤ 10 (28) 

 upper = 1 − A 2 sech ( B 2 (x − x 2 ) ) , 0 ≤ x ≤ 10 (29) 

here sech is the hyperbolic secant function. The positive con-

tants A 1 , A 2 control the degree of constriction of the channel,

hile B 1 , B 2 control the length of the constricted area. The steno-

is location is controlled by the constants x 1 and x 2 for the lower

nd upper channel walls, respectively. We use A 1 = 0 . 5 , A 2 = 0 . 4 ,

 1 = 6 , and B 2 = 4 , with the stenosis positioned at x 1 = 3 , x 2 = 4 .

e present results for the flow problem at Re = 200. A grid-

ndependent solution was obtained by a convergence study using

uccessively finer node distributions. For the uniform node dis-

ribution, we use a total number of 61 , 073 nodes with 1760 of

hem representing the boundary. For the irregular node distribu-

ion, 12 , 061 nodes are used. For the DC PSE operators, r = 2 for

rst-order derivatives, and r = 1 for second-order derivatives. The

utoff r c of the kernel function is 2.5 h for interior nodes and 4.5 h 

or boundary nodes, where h is the average inter-node distance

 h = 0 . 0125 ). 

Fig. 9 shows the solution’s stream function isocontours ( a ) and

orticity isocontours ( b ) for Re = 200. Two vortices of opposite

ign form downstream of the stenosis, the first clock-wise and the

econd counter-clock-wise. For future validation, cross-channel ve-

ocity profiles at x = 3 . 5 and x = 5 (where the vortices are) are tab-

lated in Tables 6 and 7 , respectively. The results are compared

ith a solution obtained using COMSOL. The maximum absolute

rror between the DC PSE and COMSOL solution are 0.14 and 0.022

nd the L2 norms are 0.04494 and 0.00962 for the u and v ve-

ocity components, respectively. To assess the robustness of our

ethod against variations in the node distribution, we interpo-

ated the solution from the irregular nodes to the regular nodes.

he maximum absolute difference between the two solutions is

 . 234 × 10 −9 . 

For the regular node distribution, the DC PSE operators had

 maximum condition number of 2.64 × 10 3 , whereas MLS had

.28 × 10 10 . For the irregular node distribution, the DC PSE op-

rators had a maximum condition number of 2.5 × 10 2 , MLS of

.5 × 10 13 . The solver using the MLS operators on the irregular

ode distribution did not converge unless further node refinement

as done manually. The maximum absolute differences between

he MLS and DC PSE solutions for the u and v velocity components

s 3 . 25 × 10 −2 and 5 . 64 × 10 −2 . 
and ( b ) vorticity isocontours. Stream function computed as in [25] . 
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Table 3 

Backward-facing step: Primary vortex strength and location, length of recirculation region, 

and comparison with RBF and FEM solutions from [12] for Re = 200. 

DC PSE RBF FEM 

Length of recirculation 2 .55 2 .72 2 .67 


min −0 .0321 −0 .0315 −0 .0331 


min location (0 .975, −0.200) (1 .333, −0.2167) (1 .0021, −0.2030) 

Fig. 6. Backward-facing step: ( a ) Stream function contours for Re = 800 and ( b ) vorticity isocontours. Stream function computed as in [25] . 

Table 4 

Backward-facing step: Cross-channel profiles for the two velocity components u, v and the 

vorticity ω at x = 7 compared with the FEM solution from Ref. [25] . 

u v (×10 −2 ) ω 

y DC PSE FEM DC PSE FEM DC PSE FEM 

0 .5 0 0 0 0 −0 .992 −1 .034 

0 .45 −0 .037 −0 .038 −0 .026 −0 .027 −0 .462 −0 .493 

0 .4 −0 .047 −0 .049 −0 .086 −0 .086 0 .083 0 .061 

0 .35 −0 .028 −0 .032 −0 .16 −0 .147 0 .651 0 .635 

0 .3 0 .019 0 .015 −0 .238 −0 .193 1 .256 1 .237 

0 .25 0 .097 0 .092 −0 .33 −0 .225 1 .916 1 .888 

0 .2 0 .21 0 .204 −0 .466 −0 .268 2 .622 2 .588 

0 .15 0 .357 0 .349 −0 .689 −0 .362 3 .291 3 .267 

0 .1 0 .532 0 .522 −1 .03 −0 .544 3 .746 3 .751 

0 .05 0 .719 0 .709 −1 .478 −0 .823 3 .777 3 .821 

0 0 .893 0 .885 −1 .973 −1 .165 3 .269 3 .345 

−0 .05 1 .029 1 .024 −2 .427 −1 .507 2 .27 2 .362 

−0 .1 1 .105 1 .105 −2 .753 −1 .778 0 .958 1 .046 

−0 .15 1 .113 1 .118 −2 .89 −1 .925 −0 .445 −0 .374 

−0 .2 1 .053 1 .062 −2 .811 −1 .917 −1 .728 −1 .684 

−0 .25 0 .936 0 .948 −2 .522 −1 .748 −2 .733 −2 .719 

−0 .3 0 .778 0 .792 −2 .054 −1 .423 −3 .38 −3 .392 

−0 .35 0 .598 0 .613 −1 .447 −1 −3 .632 −3 .658 

−0 .4 0 .415 0 .428 −0 .766 −0 .504 −3 .625 3 .687 

−0 .45 0 .226 0 .232 −0 .202 −0 .118 −4 .014 −4 .132 

−0 .5 0 0 0 0 −5 .087 5 .14 
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4.4.2. Multiple stenoses 

As a more complex case, we simulate flow past multiple

stenoses in the same duct. First, the channel narrows with a

symmetric stenosis close to the inlet, then recovers its width

downstream. A second, more severe asymmetric stenosis follows

halfway through the channel. After full recovery from this second

stenosis, the channel slowly narrows towards the exit, which has a

smaller diameter than the inlet. The lower and upper walls of the

channel are defined by the equations: 

y lower = C 1 

(
1 − cos 

(
2 π(x − D (x )) 

E(x ) 

))
, 0 ≤ x ≤ 10 (30)

y upper = 1 − C 2 (x ) 

(
1 − cos 

(
2 π(x − D (x )) 

E(x ) 

))
, 0 ≤ x ≤ 1

(31)
here C 1 is a positive constant taken as C 1 = 0 . 075 and the

iecewise-constant functions C 2 ( x ), D ( x ), and E ( x ) are defined as: 

 2 (x ) = 

⎧ ⎨ 

⎩ 

0 . 075 x < 3 . 2 

0 . 225 3 . 2 ≥ x ≥ 5 . 8 

0 . 075 x > 5 . 8 , 

E(x ) = 

⎧ ⎨ 

⎩ 

3 . 2 0 ≤ x < 3 . 2 

2 . 6 3 . 2 ≥ x ≥ 5 . 8 

7 . 2 x > 5 . 8 , 

D (x ) = 

⎧ ⎨ 

⎩ 

0 0 ≤ x < 3 . 2 

2 . 6 3 . 2 ≥ x ≥ 5 . 8 

7 . 2 x > 5 . 8 . 

(32)
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Table 5 

Backward-facing step: Cross-channel profiles for the two velocity components 

u, v and the vorticity ω at x = 15 compared with the FEM solution from Ref. 

[25] . 

u v (×10 −2 ) ω 

y DC PSE FEM DC PSE FEM DC PSE FEM 

0 .5 0 0 0 0 2 .027 2 .027 

0 .45 0 .101 0 .101 0 .021 0 .021 2 .011 2 .013 

0 .4 0 .202 0 .202 0 .072 0 .072 2 .019 2 .023 

0 .35 0 .303 0 .304 0 .14 0 .14 2 .051 2 .058 

0 .3 0 .407 0 .408 0 .209 0 .207 2 .08 2 .09 

0 .25 0 .511 0 .512 0 .263 0 .26 2 .063 2 .075 

0 .2 0 .611 0 .613 0 .292 0 .288 1 .947 1 .959 

0 .15 0 .703 0 .704 0 .288 0 .283 1 .694 1 .703 

0 .1 0 .778 0 .779 0 .252 0 .245 1 .292 1 .298 

0 .05 0 .83 0 .831 0 .186 0 .18 0 .761 0 .761 

0 0 .853 0 .853 0 .102 0 .095 0 .146 0 .141 

−0 .05 0 .844 0 .844 0 .01 0 .003 −0 .49 −0 .5 

−0 .1 0 .804 0 .804 −0 .075 −0 .081 −1 .083 −1 .096 

−0 .15 0 .737 0 .737 −0 .143 −0 .147 −1 .575 −1 .588 

−0 .2 0 .649 0 .649 −0 .183 −0 .185 −1 .929 −1 .939 

−0 .25 0 .547 0 .547 −0 .19 −0 .191 −2 .134 −2 .139 

−0 .3 0 .438 0 .438 −0 .167 −166 −2 .211 −2 .213 

−0 .35 0 .328 0 .328 −0 .12 −0 .119 −2 .211 −2 .21 

−0 .4 0 .218 0 .218 −0 .065 −0 .065 −2 .186 −2 .1 84 

−0 .45 0 .109 0 .109 −0 .019 −0 .019 −2 .174 −2 .174 

−0 .5 0 0 0 0 −2 .183 −2 .185 

Fig. 7. Backward-facing step: ( a ) Horizontal velocity u profile at x = 7 and x = 15 

for Re = 800 compared to [25] and ( b ) grid convergence study for successfully higher 

numbers of y -direction nodes N y ; u -velocity profile at x = 7 , compared against [25] . 

Table 6 

Single stenosis: Cross-channel velocity profiles for the ve- 

locity components u and v , the vorticity ω, and the stream 

function ψ at x = 3 . 5 for Re = 200. 

y u v ω ψ 

0 .1 −0 .1288 0 .0513 1 .9604 −0 .0035 

0 .15 −0 .1728 0 .0881 0 .0526 −0 .0114 

0 .2 −0 .1377 0 .0914 −1 .7952 −0 .0194 

0 .25 −0 .0362 0 .0514 −3 .5642 −0 .024 

0 .3 0 .1339 −0 .0378 −5 .7624 −0 .0219 

0 .35 0 .406 −0 .1844 −8 .8686 −0 .0088 

0 .4 0 .8113 −0 .3842 −11 .7023 0 .0211 

0 .45 1 .2787 −0 .5858 −10 .8888 0 .0734 

0 .5 1 .6183 −0 .7093 −6 .0149 0 .1467 

0 .55 1 .7404 −0 .7408 −1 .8799 0 .2314 

0 .6 1 .7289 −0 .7265 −0 .14 0 .3185 

0 .65 1 .6577 −0 .6931 0 .8637 0 .4033 

0 .7 1 .5362 −0 .6404 2 .2517 0 .4834 

0 .75 1 .3374 −0 .5542 4 .7004 0 .5556 

0 .8 1 .0153 −0 .4161 8 .2573 0 .615 

0 .85 0 .5404 −0 .2198 12 .2121 0 .6545 
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The flow is simulated at both Re = 200 and Re = 400. For the

niform node distribution a total of 51,794 nodes are used with

 737 nodes representing the boundary. For the irregular distribu-

ion, 88 164 nodes are used. For the DC PSE operators, r = 2 for

rst-order derivatives, and r = 1 for second-order derivatives. The

utoff radius r c of the kernel is 2.5 h for interior nodes and 4.5 h 

or boundary nodes, with h being the average inter-node spacing

 h = 0 . 0125 ). 

We present the solution’s velocity stream function and vortic-

ty isocontours in Fig. 10 for both Re = 200 and Re = 400. A

rid-independent solution was obtained in a convergence study

sing successively finer node distributions. For future validation,

ross-channel velocity profiles are provided in Table 8 ( x = 3 ) and

able 9 ( x = 6 ) at the locations of the vortices. The results are

ompared with a solution obtained using COMSOL. The maximum

bsolute error between the DC PSE and COMSOL solutions for

e = 200 is 0.16 and 0.044 and the L2 norms 0.0174 and 0.0027

or the u and v velocity components, respectively. For Re = 400

he maximum absolute errors are 0.17 and 0.042 and the L2 norms

.0182 and 0.0029 for the u and v velocity components, respec-

ively. 

For the regular node distribution, the DC PSE operators had a

aximum condition number of 2.51 × 10 3 (7.31 × 10 8 for MLS).

or the irregular node distribution, the DC PSE operators had a

aximum condition number of 2.5 × 10 2 (2.7 × 10 13 for MLS).

he solution using the MLS operators on the irregular node distri-

ution did not converge without manual node curation. The maxi-

um absolute differences in the u and v velocity components be-

ween the MLS and DC PSE solutions on the regular node distribu-

ion is 4 . 5 × 10 −2 and 2 . 6 × 10 −2 for Re = 200, and 3 . 4 × 10 −2 and

 . 3 × 10 −2 for Re = 400. In summary, we find that DC PSE produces

obust solutions across increasingly complex geometries without

equiring manual curation on irregularly distributed nodes. 

.5. Flow in a bifurcation 

As a final complex-geometry test case, we consider flow in

n irregular bifurcating channel. This case models a 2D stenosed

rtery with a bifurcation. As boundary conditions, a uniform ve-

ocity of u = 0 . 001 m 

s and v = 0 is imposed at the inlet of the do-

ain, while at both outlets we assume fully developed flow with
∂u 
∂ n 

= 0 . For the remaining walls, no-slip boundary conditions are

pplied ( u = v = 0 ). The kinematic viscosity of the fluid is set to

= 

0 . 001 
999 m 

2 s −1 . We again test both uniform and irregular node

istributions. 
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Fig. 8. Flow past a cylinder: ( a ) u velocity, ( b ) v velocity, and ( c ) streamlines of the flow for Re = 30. ( d ) Close-up of the streamlines in the recirculation zone behind the 

cylinder. 
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We present results for Re = 80. For the uniform distribution,

we use a total number of 25 , 282 nodes with 1840 nodes dis-

tributed on the boundary. For the irregular distribution, 35 , 421

nodes are used. For the DC PSE operators, r = 2 for first-order

derivatives, and r = 1 for second-order derivatives. The cutoff r c 
of the kernel is set to 2.5 h for interior nodes and 3.5 h for

boundary nodes, with h being the average inter-node spacing

( h = 5 × 10 −4 ). 
The numerical results for the isocontours of the u -velocity, v -

elocity, and stream function are presented in Fig. 11 . For valida-

ion, the results are compared against COMSOL, with the maximum

bsolute differences found as 4 . 7 × 10 −2 and 2 . 64 × 10 −2 for the u

nd v velocity components, respectively, interpolated from the uni-

orm node distribution. 

For the regular node distribution, the DC PSE operators had a

aximum condition number of 2.5 × 10 2 (4.5 × 10 15 for MLS). For



G.C. Bourantas et al. / Computers and Fluids 136 (2016) 285–300 297 

Fig. 9. Single stenosis: ( a ) Stream function isocontours for Re = 200 and ( b ) vorticity isocontours. 

Table 7 

Single stenosis: Cross-channel velocity profiles for the 

velocity components u and v , the vorticity ω, and the 

stream function ψ at x = 5 . 0 for Re = 200. 

y u v ω ψ 

0 .1 1 .2766 0 .0286 −8 .8914 0 .0698 

0 .15 1 .6384 0 .0404 −5 .5626 0 .1433 

0 .2 1 .8575 0 .0475 −2 .9395 0 .2312 

0 .25 1 .9468 0 .0529 −0 .2065 0 .3269 

0 .3 1 .8903 0 .0568 2 .9325 0 .4234 

0 .35 1 .6729 0 .0573 6 .0851 0 .5131 

0 .4 1 .3211 0 .0508 8 .0499 0 .5884 

0 .45 0 .919 0 .0358 8 .0208 0 .64 4 4 

0 .5 0 .5569 0 .0152 6 .5724 0 .681 

0 .55 0 .2782 −0 .0053 4 .7954 0 .7016 

0 .6 0 .0816 −0 .0218 3 .3005 0 .7103 

0 .65 −0 .0504 −0 .0323 2 .1739 0 .7108 

0 .7 −0 .1338 −0 .0367 1 .3018 0 .7061 

0 .75 −0 .178 −0 .0356 0 .5733 0 .6982 

0 .8 −0 .1887 −0 .0301 −0 .0669 0 .6889 

0 .85 −0 .1697 −0 .0219 −0 .6303 0 .6798 

0 .9 −0 .1249 −0 .0128 −1 .1123 0 .6723 

0 .95 −0 .0584 −0 .0045 −1 .5171 0 .6677 
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Table 8 

Single stenosis: Cross-channel velocity profiles for the 

velocity components u and v , the vorticity ω, and the 

stream function ψ at x = 3 . 5 for Re = 400. 

y u v ω ψ 

0 .1 0 .2698 −0 .0211 −3 .2656 0 .0121 

0 .15 0 .443 −0 .0339 −3 .5979 0 .0299 

0 .2 0 .626 −0 .0445 −3 .6445 0 .0566 

0 .25 0 .8017 −0 .0518 −3 .3187 0 .0923 

0 .3 0 .9522 −0 .0557 −2 .6839 0 .1363 

0 .35 1 .0659 −0 .0566 −1 .9003 0 .1869 

0 .4 1 .1392 −0 .0554 −1 .1149 0 .2422 

0 .45 1 .1741 −0 .0524 −0 .3883 0 .3002 

0 .5 1 .1733 −0 .0478 0 .3026 0 .359 

0 .55 1 .1374 −0 .0414 1 .0141 0 .4169 

0 .6 1 .0645 −0 .0331 1 .7742 0 .4721 

0 .65 0 .9532 −0 .0233 2 .5335 0 .5227 

0 .7 0 .8068 −0 .0131 3 .1575 0 .5669 

0 .75 0 .6363 −0 .004 3 .487 0 .603 

0 .8 0 .4592 0 .0024 3 .4329 0 .6304 

0 .85 0 .2945 0 .0054 3 .0258 0 .6491 

0 .9 0 .1573 0 .005 2 .3812 0 .6603 

0 .95 0 .0565 0 .0026 1 .6252 0 .6655 
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F  
he irregular node distribution, the DC PSE operators had a max-

mum condition number of 2.5 × 10 2 (4.5 × 10 15 for MLS). The

olution using MLS operators did not converge without further

anual node adjustment for both the regular and irregular node

istributions. DC PSE produced consistent results in all cases.

n addition, the DC PSE operators result in numerically robust

chemes for irregular node distributions and geometries, where

tandard MLS operators fail to converge due to the large condition

umbers of the moment matrices. 

. Conclusions 

We presented for the first time the use of DC PSE operators for

ulerian meshless collocation schemes in computational fluid me-

hanics. We used a velocity-correction method to numerically solve

ncompressible steady-state flow problems in two-dimensional ge-

metries. We have focused on the method’s robustness in com-

lex geometries and on irregular node distributions, demonstrat-

ng competitiveness and superiority of the DC PSE approach when

ompared to MLS. 

First, we showed that DC PSE provides accurate results in reg-

lar geometries using the benchmark fluid flow problems of the

id-driven cavity and the backward-facing step. Both numerical and
ualitative results were given, with tabular results provided for fu-

ure reference. We then showed the robustness of DC PSE across

our complex-geometry problems. COMSOL was used as a reference

olver for the complex geometries, demonstrating that our method

rovides consistent results. To assess the robustness to different

ode configurations and relative to established strong-form collo-

ation methods, we repeated all numerical experiments using MLS

o discretize the differential operators instead of DC PSE. Across all

omplex geometry problems, we found favorable robustness of the

umerical solutions when DC PSE operators were used. This was

n contrast to the MLS scheme that had convergence issues across

ll four complex geometry flow problems, especially when using

rregular node distributions. In the flow past a cylinder, DC PSE

id not require any refinement to the node distribution. This is in

ontrast to MLS that required manual removal of near-degenerate

odes to render the method stable. For the stenosis flow problems,

C PSE was again observed to be robust for both regular and irreg-

lar node distributions, whereas MLS did not converge for irregu-

ar node distributions. Finally, for flow in a bifurcation only DC PSE

ielded solutions. 

The condition numbers of the moment matrices at each node,

r the equivalent matrix in DC PSE ( Eq. (14) ), has been associated

ith the numerical robustness of meshless schemes [14,31,40,60] .

or all results we have presented maximum condition numbers
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Fig. 10. Multiple stenoses: Stream function isocontours for Re = 200 ( a ) and Re = 400 ( c ), and vorticity isocontours for Re = 200 ( c ) and Re = 400 ( d ). 

Table 9 

Single stenosis: Cross-channel velocity profiles for the 

velocity components u and v , the vorticity ω, and the 

stream function ψ at x = 6 . 0 for Re = 400. 

y u v ω ψ 

0 .1 0 .5801 −0 .0062 −6 .7998 0 .0271 

0 .15 0 .9428 −0 .0081 −7 .3475 0 .065 

0 .2 1 .3055 −0 .0032 −6 .6267 0 .1213 

0 .25 1 .5983 0 .0072 −4 .5469 0 .1943 

0 .3 1 .7669 0 .0195 −1 .7367 0 .279 

0 .35 1 .7902 0 .0306 1 .2182 0 .3685 

0 .4 1 .6685 0 .0387 3 .9993 0 .4555 

0 .45 1 .4208 0 .0417 6 .1142 0 .5332 

0 .5 1 .0955 0 .0379 6 .9844 0 .5962 

0 .55 0 .7585 0 .0276 6 .5696 0 .6425 

0 .6 0 .4622 0 .0139 5 .4186 0 .6728 

0 .65 0 .228 0 .0 0 05 4 .1244 0 .6898 

0 .7 0 .0548 −0 .0095 2 .9659 0 .6966 

0 .75 −0 .065 −0 .0148 1 .9572 0 .6962 

0 .8 −0 .1373 −0 .0152 1 .0273 0 .6909 

0 .85 −0 .1646 −0 .0117 0 .1312 0 .6832 

0 .9 −0 .1484 −0 .0062 −0 .7253 0 .6752 

0 .95 −0 .0915 −0 .0013 −1 .5138 0 .669 
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for both DC PSE and MLS operators. Although the magnitudes of

the condition numbers across the schemes can not be meaning-

fully compared due to prefactors, the variability and sensitivity of

the condition numbers of either scheme is meaningful. We ob-

served that the maximum condition numbers for MLS operators

varied over seven orders of magnitude, whereas those of DC PSE
howed variations over only one order of magnitude. This shows

hat DC PSE operators are more robust. Condition numbers of 10 12 

nd higher, as found for MLS, render it impossible to numerically

btain accurate solutions from the matrix. 

Our results show that using DC PSE for operator discretization

n meshless Eulerian collocation methods for fluid flow provides

obust and accurate solutions across a range of 2D problems in

oth regular and irregular geometries. The robustness to node con-

guration of the DC PSE scheme was superior to that of MLS as an

perator discretization. However, we have only presented a small

ubset of numerical problems with empirical results, Gaussian ker-

el functions, and a specific strong-form velocity-vorticity correc-

ion method. It is possible that for alternative problem formula-

ions, window functions, and node distributions, the DC PSE and

LS operators have different performance and robustness proper-

ies. However, the results presented here are an encouraging indi-

ation, but not a final proof. In addition, we have only presented

esults for 2D steady-state flow problems, while the most compu-

ationally demanding applications require fluid flow solutions in

omplex 3D geometries. While the method presented here is ex-

endable to transient and 3D cases, this is left for future research. 

These limitations indicate that further exploration of the use of

C PSE operators for the numerical computation of solutions to

ystems of partial differential equations in complex geometries is

eeded. First steps should include the benchmarking and evalua-

ion of accuracy and stability in both 3D and transient flow prob-

ems. The results also motivate further analytical analysis of the DC

SE operators and of their relationship to other meshless methods,
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Fig. 11. Bifurcation: Isocontours for the u velocity component ( a ), v velocity component ( b ), and stream function ( c ) for Re = 80. 
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uch as MLS and RKPM, and how this relates to their respective

umerical robustness and condition numbers under varying node

onfigurations. In addition, further research is required in order

o understand how the choice of kernel function and/or window

unction affects the numerical robustness under different node dis-

ributions. This would help select optimal operators for different

roblems [61] . 

We believe that DC PSE operators have the potential for pro-

iding a robust paradigm for numerically solving fluid flow prob-

ems in complex geometries. In addition, DC PSE meshless methods

an utilize the infrastructure provided by software libraries like the

arallel particle-mesh library (PPM) [57] along with its domain-

pecific language (PPML) [6] to perform scalable parallel simula-

ions. This would enable highly resolved stable numerical simula-

ions of fluid flow problems in complex geometries. 
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