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Many fluid-dynamics applications require solutions in complex geometries. In these cases, mesh gener-
ation can be a difficult and computationally expensive task for mesh-based methods. This is alleviated
in meshless methods by relaxing the neighborhood relations between nodes. Meshless methods, how-
ever, often face issues computing numerically robust local operators, especially for the irregular node
configurations required to effectively resolve complex geometries. Here we address this issue by using

Keywords: Discretization-Corrected Particle Strength Exchange (DC PSE) operator discretization in a strong-form Eu-
Incompressible steady state lerian collocation meshless solver. We use the solver to compute steady-state solutions of incompressible,
DC PSE laminar flow problems in standard benchmarks and multiple complex-geometry problems in 2D with a

MLS ) ) velocity-correction method in the Eulerian framework. We verify that the solver produces stable and ac-
ll:/leshlless polmtdcollocatlon curate results across all benchmark problems. We find that DC PSE operator discretization is more robust
article methods to varying node configurations than Moving Least Squares (MLS). In addition, we find that in more chal-
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Velocity-correction lenging complex geometries, the solver using MLS operator discretization fails to converge, whereas DC
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PSE operators provide robust solutions without node adjustment.
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1. Introduction

Solving fluid dynamics equations in complex geometries is es-
sential across several branches of science and engineering. Exam-
ples of applications that necessitate fluid-dynamics simulations in
complex geometries include gas turbine combustors [46,49], tur-
bulent flow past a landing gear [29], physics of plasma process-
ing devices [36], swimming of fish-like organisms [26,66], and
physics of active matter in biological morphogenesis [16,30,32,55].
In such applications, the efficacy of mesh-based numerical meth-
ods, such as Finite Difference Methods (FDM), Finite Volume Meth-
ods (FVM), and Finite Element Methods (FEM) [17,70], is limited by
the quality of the mesh used to discretize the spatial domain. De-
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spite developments, mesh generation in complex irregular geome-
tries still presents a significant bottleneck for mesh-based meth-
ods and can be the most computationally demanding part of a
simulation [3]. Furthermore, for irregular 3D geometries there is
a lack of fully automated mesh generators with hexahedral ele-
ments, with most methods still requiring manual mesh correction
[40]. Motivated by these issues, a large family of numerical point-
collocation schemes, called meshless methods or particle methods,
have been formulated [8,18,33,37,38,50,53,65]. Meshless methods
can eliminate the need for a mesh by relaxing the requirement
for explicit neighborhood relationships, or configurations, between
nodes.

In meshless methods, the spatial domain is discretized by a set
of nodes arbitrarily distributed without any interconnectivity. Res-
olution refinement, therefore becomes a relatively straightforward
procedure of selectively adding nodes where more resolution is re-
quired in the domain. Since the introduction of Smoothed Particle
Hydrodynamics (SPH) [28,45], meshless methods proliferated with
developments such as the element-free Galerkin (EFG) method [9],
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diffuse element method (DEM) [52], partition of unity finite el-
ement method (PUFEM) [7], hp-clouds method [21], finite point
method [54], local boundary integral equation (LBIE) method [69],
meshless local Petrov-Galerkin (MLPG) method [4,5], reproduc-
ing kernel particle methods (RKPM) [42,43], and Particle Strength
Exchange (PSE) [23]. Specifically, in the field of fluid dynam-
ics, meshless methods have been developed based on the
weak (Galerkin) [1,39,44,48,62,68], and strong (collocation) [10-
13,47,51]] formulations. Strong-form methods largely rely on Mov-
ing Least Squares (MLS) [35,63] and Radial Basis Functions (RBFs)
[15] for the approximation/interpolation of the unknown field
functions and their derivatives. These methods do not face the
same consistency issues as earlier meshless methods, such as SPH
[41]. However, despite their success in producing accurate nu-
merical results across benchmark problems, strong-form methods
still pose challenges regarding robustness of operator computation
across different node configurations, especially when dealing with
irregular geometries [31]. Therefore, there is still a need for re-
search into finding meshless numerical schemes that combine the
ease of node generation of meshless methods with robust operator
computation in complex and irregular geometries.

Strong-form meshless methods, also known as meshless collo-
cation methods, usually require the inversion of a matrix, often
termed the Moment Matrix or Coefficient Matrix, in order to com-
pute the kernel weights of the discrete operators. This matrix de-
pends on the local spatial distribution of nodes in the operator
support. The condition number of this matrix limits the accuracy
of the inversion and may dominate the global error [31]. Therefore,
strong-form collocation methods in the Eulerian framework have
been found to fail to converge under irregular node distributions
in complex geometries [14,31,40]. This is induced by the numerical
errors in the kernel weights and is not related to von-Neumann-
type stability. Jin et al. [31] proposed the use of positivity condi-
tions for the discretized operator, which, when satisfied, ensure a
low condition number of the coefficient matrix in the Finite Cloud
Method (FCM). For RBF, Schaback [58] proved an uncertainty prin-
ciple, stating that there is a trade-off between having a low con-
dition number for the operator and the operator’s order of accu-
racy. Using the MLS method, Bourantas et al. [14] found that the
condition number of the moment matrix for a given node distri-
bution anti-correlates with the stability of the numerical scheme,
with complex geometries and irregular node configurations of-
ten leading to high condition numbers and hence non-convergent
solutions.

The DC PSE method [59-61] was originally formulated to over-
come consistency issues of weak-form PSE operators [19,20,23] on
irregular node distributions. The method is formulated by estab-
lishing a set of discrete moment conditions over a local distribu-
tion of nodes that, when satisfied, insure the approximation of
a given differential operators with a specified convergence order.
In the strong form [56] this results in a formulation similar to
other collocation methods, such as MLS or RPKM, with the re-
quired inversion of a matrix comparable to the moment matrix or
coefficient matrix of other schemes. The DC PSE method is gen-
eral, in that similar discrete moment conditions must be satisfied
by all meshless schemes to ensure convergence. For the strong-
form operators investigated here, the DC PSE formulation is simi-
lar to that of the independently developed Differential Reproducing
Kernels (DRK) [67] for solid mechanics applications. The DC PSE
method has previously been used in 2D and 3D Lagrangian parti-
cle methods for linear advection-diffusion problems [56,60,61]. In
Lagrangian methods, irregular node distributions occur due to ad-
vection of the particles. Simulating flows in a purely Lagrangian
framework is hampered by the all-against-all N-body interaction.
This is avoided in hybrid particle-mesh methods and in Eulerian
meshless formulations.

Here, we use DC PSE operator discretization in a standard Eu-
lerian meshless collocation solver. We show that this improves
the robustness of the method, leading to coefficient matrices with
small condition numbers. We also present a novel compact for-
mulation of strong-form DC PSE operators using the Vandermonde
system. This is the first time that DC PSE operators are used to
solve flow problems. We investigate the robustness of the DC PSE
method in the Eulerian framework by computing steady-state in-
compressible flows using the velocity-correction method [22] in
irregular 2D geometries. Accuracy and robustness are assessed in
well-known benchmark problems where we compare with estab-
lished results [2,24,25,27,34,64|. Without loss of generality, we fo-
cus on 2D problems since they are easier to visualize and analyze.
The robustness of the local linear systems is independent of the
dimensionality of the domain, as it is always a tensor of second
order that only depends on the neighboring nodes. We focus on
the or robustness of DC PSE operators and the resulting numerical
scheme in several irregular geometries. Specifically, we use exam-
ples of flow behind a cylinder, flow single and multiple stenosed
arteries, and a fully irregular bifurcating flow problem. For each
problem, we test both regular and irregular node distributions. To
assess the robustness of the DC PSE operators we provide maxi-
mum condition numbers of the moment matrices for both DC PSE
and MLS operators in comparison. Furthermore, we compare the
results obtained in each test problem with those from the MLS
method [14], as a meshless benchmark.

The rest of this paper is structured as follows: In Section 2, we
revisit DC PSE for operator discretization and provide a compact
and cogent formulation of collocation DC PSE. In Section 3, we re-
view the governing flow equations in their velocity-vorticity for-
mulation along with the velocity-correction method. In Section 4,
we present the numerical benchmark examples, illustrating the
accuracy and robustness of the proposed scheme in simple
and complex geometries. Finally, in Section 5, we present our
conclusions.

2. DC PSE

DC PSE [60] was originally formulated as a correction of the
Particle Strength Exchange method (PSE) [20,20,23] on irregular
particle distributions. PSE is used for the evaluation of spatial
derivatives of any degree of a (sufficiently smooth) function dis-
cretized over scattered collocation points. The PSE operators can be
derived in two steps: First by constructing an integral operator that
satisfies continuous moment conditions, ensuring it approximates
a spatial derivative to a defined order of accuracy in the continu-
ous domain. Second, by discretizing the integral operator over the
particle positions using the mid-point quadrature method. A draw-
back from this two-step procedure is the introduction of an overlap
condition for the PSE operators [60]. The overlap condition requires
that for the operator to be consistent, the inter-particle spacing h
and the width € of the operator kernel have to satisfy h < aed9, 0
< a < 1,q > 1, where q depends on the order of the operator. This
results in a large number of particles being required for small ker-
nel sizes €. For the DC PSE method, the overlap condition can be
relaxed by directly satisfying discrete moment conditions over the
collocation points, requiring only that h = ae, independent of the
order of the operator and for any a > 0.

The discrete moment conditions for DC PSE can be thought of
as a direct analogue to the continuous moment conditions for PSE.
The DC PSE operators therefore overcome the limitation in PSE that
the error resulting from operator discretization (i.e., the quadrature
error) dominates the overall order of accuracy of the operator as
prescribed by the moment conditions.

Here we briefly review the DC PSE operators for strong-form
formulations (i.e. neglecting collocation point volumes) in 2D and
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how to construct them. For simplicity, we present the DC PSE for-
mulation in 2D, with standard kernel functions and form. However,
the formulation of the DC PSE operators in n dimensions with arbi-
trary kernel functions is straight forward and the reader is directed
to [59-61] for the original formulations and in-depth analysis.

We begin by considering a differential operator, of arbitrary
order, for a sufficiently smooth field f(x) = f(x.y) at point x, =
{xp,yp} on a particular collocation point set

D™ f(xy) = o f(X.Y) (M

X=Xp.y=Yp

8x"‘ E)y"

where m and n are integers that determine the order of the differ-
ential operator.
The DC PSE operator for the spatial derivative D™ "f(x;,) is:

Y () if(xp>)n( or ’§") @)

XgeN (xp)

Q™" f(xp) =

€ (xp)m+n

where €(x) is a spatially dependent scaling or resolution function,
n(x,e(x)) a kernel function,” and AN(x,) is the set of points in
the support of the kernel function. The sign in Eq. (2) is positive
for m+n odd, and negative if even. The form of the operator in
Eq. (2), including the sign change, is chosen to match with [60] for
similarity to the original PSE operators [23]. However, the DC PSE
formulation outlined here can also be applied in general to opera-
tors written in the form que v FXg)n(xg — xp).

We want to construct the DC PSE operators so that as we de-
crease the average spacing between nodes, h(xp) — 0, the operator
converges to the spatial derivative D™ "f(x,) with an asymptotic
rate r:

Q™" f(xp) =D™" f(xp) + O(h(xp)"), (3)
where it is convenient to explicitly define the component-wise
average neighbor spacing as h(x,) = % quevv(x)(lxp —Xql + lyp—
Yql|), where N is the number of nodes in the support of x;.

Therefore, we need to find a kernel function 7n(x) and a scaling
relation €(xp) that satisfy Eq. (3). To achieve this, we replace the
terms f{xq) in Eq. (2) with their Taylor series expansions around
the point xp. This substitution gives:

Q™" f(xp)
1 o (% = %) (¥ — ¥g) (=D
= ey 2 (ZZ —

X,eN (%) \i=0 j=0

x D f(xy) if(xp)) ( "") (4)

e(xp)

It is convenient to re-write Eq. (4) in the form:

Qs = (L3 S DY

Di’jf(xp)zi'j (xp)

ilj!
i=0 j=0
+ ZO'O(Xp)G(Xp)iminf(xpL (5)
where
. — i — J _
s

are the discrete moments of n. Now if we restrict the scaling pa-
rameter €(X,) to converge at the same rate as the average spacing

2 The original weak-form formulation includes a particle volume v, and a
dimension-dependent normalization factor for the particle volume €(x,)~¢, where
d is the number of spatial dimensions, providing a normalization of the integration
length, area, or volume for the particle. As we consider strong-form formulations
both are omitted here.

between points h(xp), that is

h(xp)

c®,) € O(1), (7)

then we find that the discrete moments ZJ are O(1) as h(xp) —

(xp=x9)'rp—yg) (=)
€(xp)it

are O(1) from the scaling relation and definition of h(x). Further,

xe”(;:;’) is O(1), through normalization of the

function argument. These qualities are the motivation for the form
of the normalized kernel function. Therefore, the scaling behav-
ior of Eq. (5) is determined solely by the € (xp)™/~™" term with
the smallest power and non-zero coefficient. Note that Eq. (7) is
a much looser constraint on the average spacing of nodes when
compared to the overlap condition h <ae9, 0 <a < 1, ¢ > 1 for
the PSE method [60].

Given Eq. (7), the convergence rate r of the DC PSE operator
Q™" (Egs. 3 and 5) is determined by the coefficients of the terms
€(xp)J~M=1 in Eq. (5). The coefficient of € (x,)/=™-" in Eq. (3) is
required to be 1 wheni=m and j=n, and O wheni+j-m—-n <
r. This results in the following set of conditions for the discrete
moments,

0 and €(xp) — 0. This is because the terms

the second term n(

ijr(—1)"

i=m,j=n
ZH(xp) =10 Omin <i+j<r+m+n (8)
< 00 otherwise

where oy, is 1 if m+n is even and O if odd. This is due to the
zeroth moment Z00 canceling out for odd i+ j. The choice of the
factor € (x,)~™™ in Eq. (2) acts as to simplify the expression of the
moment conditions.

For the kernel function 7(x) to be able to satisfy the I conditions
given in Eq. (8) for arbitrary neighborhood node distributions, the
operator must have [ degrees of freedom. This leads to the require-
ment that the support A (x) of the kernel function has to include
at least I nodes. In this paper, as in Schrader et al. and Reboux et al.
[56,60], we use kernel functions of the form

i+j<r+m+n o
a Xlyle ™V /x4y <,
nw={ & ®X Vi<t (9)
0 otherwise.

This is a monomial basis multiplied by an exponential window
function, where rc sets the kernel support and the g; ; are scalars
to be determined to satisfy the moment conditions in Eq. (8). The
cut-off radius r. should be set to include at least [ collocation
nodes in the support N(x). In this paper, r. is set implicitly by
using the | — 1 nearest neighbors of each node. Alternatively, adap-
tive methods can be used [56].

We direct the reader to [61] for the exploration of more gen-
eral kernel choices and the impact of the various parameters on
the computational cost. If o, =1, the ag o coefficient is a free
parameter and can be used to increase the numerical robustness of
solving the linear system of equations for the remaining a; ; [59].

To construct the operator Q™"f (xp) at node xp, the coefficients
are found by solving a linear system of equations from Eqs. (9) and
(8). We outline now a convenient novel way of formulating the
operator and the linear system ([59]). With our choice of kernel
function we have,

Q™" f(xp)
B 1
- E(xp)m+n

> () if(xp))p( a *‘;Q)

XgeN (Xp)

~(Xp—xg)2~(Wp-yg)?
x al(xp)e <@’ , (10)
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where p(x) = {p;(x), p2(x),..., p;(x)} and a(x) are vectors of the
terms in the monomial basis and of their coefficients in Eq. (9),
respectively.

Using this formulation, the operator system becomes straight-
forward. For example, if we set r =2 and approximate the first
spatial derivative in the x direction, D0, we have | = 6 moment
conditions and the monomial basis is p(x,y) = {1,x,y, yx, x2, y2}.
The linear system for the kernel coefficients then is:

A(xp)a’ (x,) = b, (11)
where

A(x,) = B(x,)"B(x,) € R™*! (12)
B(xp) = E(x,)"V (x,) € R¥ (13)
b= (—1)™"D™"p(x)|x_o € R (14)

The scalar number k > [ is the number of nodes in the support
of the operator, | the number of moment conditions to be sat-
isfied, and V(xp) the Vandermonde matrix constructed from the
monomial basis p(x,). E(xp) is a diagonal matrix containing the
square roots of the values of the exponential window function at
the neighboring nodes in the operator support. Further, for node x,
we define {z; (xp)}’c;:1 = {Xp — X¢}x,en(x,). the set of vectors point-
ing to X, from all neighboring nodes x4 in the support of x,. So
then explicitly

z1(xp) z1(xp) z1(Xp)
pl(el(x:)) P2<6](x:)) pl(;(x:))

2 (xp) 25(xp) 2 (xp)
pl(ezm.f)) p2<e2(x:>) pl(ezoef))

V(Xp): c kal
2z, (xp) 2z (Xp) 2z (xp)
p1<ek<x.f>) pz(;(x:)> pz(;(,,p")>
(15)
_|zq(xp)|2
E(x,) = diag| {e 2¢(®p)? e Rk, (16)

q=1

Once the matrix A(xp) is constructed at each node xp, the linear
systems can be solved for the coefficients a(xp) used in the DC
PSE operators at each node as in Eq. (10). The matrix A(xp) only
depends on the number of moment conditions [ and the local dis-
tribution of nodes in N (xp). Therefore, if the system in Eq. (11) is
solved using a decomposition (such as LU), of A(xp). This form can
be re-used for multiple right-hand sides, i.e., for different differen-
tial operators (albeit with different convergence rates r). The ma-
trix A has an analogue in MLS where it is often called moment ma-
trix.This contains information about the spatial distribution of the
collocation nodes around the center point X,. The invertibility of A
depends entirely on that of the Vandermonde matrix V, due to E
being a diagonal matrix with non-zero entries. The condition num-
ber of A depends on both V and E and determines the robustness
of the numerical inversion.

3. Governing equations at steady state

The governing equations express conservation of mass and lin-
ear momentum. In their velocity-pressure formulation (u — v — p)
at steady state, they are:

Continuity equation
V.u=0, (17)

Momentum equation
p((u-Viu)y=-Vp+uViu, (18)

where u is the fluid velocity, p is the fluid pressure, p the density,
and p the dynamic viscosity.

Since for Eulerian primitive-variables formulations pressure
boundary conditions are hard to define, the governing equations
can be rewritten in velocity-vorticity formulation, which can be ex-
tended to 3D studies, by taking the curl of the momentum equa-
tion and accounting for the continuity equation. A vector Pois-
son equation relates the velocity and vorticity fields. Eqs. (17) and
(18) then become:

Viu=-V xw, (19)

1 2
u-Vw_w-VquﬁVw, (20)

where @ is the vorticity. We seek a solution of Egs. (19) and (20) in
the spatial domain €2 that satisfies the boundary conditions
u=1ugq,

®=(Vxu)g. (21)
Since we consider the steady-state case in two-dimensional do-

mains, the governing equations in a Cartesian coordinate system
simplify to:

dw
w2y = 99
u 3y’ (22)
ow
24y
Vi = I (23)
o  do 1,
“ox +v8y _iev @ (24)
where u = (u,v) and w = 3V — g—; is a scalar.

3.1. Velocity-correction method

After discretizing the governing Eqs. (17)-(24) using DC PSE,
the differential operators are represented by sparse matrices of di-
mension N x N, with N being the total number of nodes. An it-
erative velocity correction scheme [22], previously also used for
MLS in [12], is used for numerically solving these linear equa-
tions. Initially, the Poisson equations for the velocity components
(Egs. (22)—(23)) are solved and an intermediate velocity u* is com-
puted that, in general, does not satisfy the continuity equation,
that is V . u* # 0. Satisfaction of the continuity equation is then
accomplished by updating the velocity field with a velocity correc-
tion Juk+1;

uk+l —u 4+ auk+1. (25)

Without loss of generality, we assume that the velocity correction
is irrotational (but not the flow itself), i.e. V-dukt! £0, then a
Helmbholtz potential (or correction potential) ¥¥+! can be defined
as: Vykt1 = guk+1, Since the new velocity update is required to
satisfy continuity, i.e. V- dukt! =0, the correction potential yrk+!
must satisfy the Poisson-type equation

V2gk = V., (26)

Once this Helmholtz-Poisson problem is solved, the velocity field
is updated in order to satisfy continuity. The momentum equa-
tion is still satisfied because the correction is irrotational. From the
updated velocity field uk+! we calculate the vorticity. The vortic-
ity transport Eq. (20) is then solved using the updated vorticity
boundary values. Then, the new vorticity values w**! are used for
the next iteration. The entire algorithm hence is:

« Use an initial guess for the velocity components u(® and v(9),
e Calculate the initial vorticity field ®© using the formula ®© =
V xu©®,
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e Calculate the vorticity gradients (right-hand sides of Eqs. (22)-
(23)) and solve the Poisson equations for the velocity compo-
nents, yielding the intermediate velocity field u* and v=.

o Calculate the Helmholtz potential i using the appropriate
boundary conditions and calculate the updated velocity fields.

 Solve the vorticity transport equation (Eq. (24)).

o Check for error convergence and iterate.

This is a standard method that has been used before. How-
ever, the convergence of the iterative scheme to the steady
state solution depends on how the differential operators are
discretized.

4. Numerical experiments

We explore the robustness of the solution when using DC PSE
and MLS. First, we assess our method in terms of accuracy and va-
lidity by using two well-established benchmark problems: the lid-
driven cavity flow, and the backward-facing step. Second, we ex-
plore the stability of the numerical scheme in complex geometries
in four flow problems: flow behind a cylinder, single and multiple
stenosed arteries, and a bifurcating artery.

The lid-driven cavity flow and the backward-facing step are
standard test problems with extensive reference data available in
the literature. They are frequently used to assess numerical meth-
ods for flow problems [2,24,25,27,34,64]. We present both qualita-
tive, through figures, and quantitative solution values, through ta-
bles, in order to assess the method’s accuracy and as a reference
for comparison with previous works. In all cases we check the va-
lidity of the computed solutions by comparing with benchmark
data from established methods. Furthermore, we perform grid-
convergence studies for all problems to obtain grid-independent
solutions with respect to these benchmark solutions.

A key issue in the application of meshless methods, especially
for strong-form collocation methods, is their lack of numerical ro-
bustness in complex geometries [14,31,33,40,50,60,65]. Lack of con-
vergence of the iterative solver, has been associated with node
distributions with high condition numbers of the moment matri-
ces [14,31,40], or with certain asymmetries [60]. Here, we use four
flow problems in complex geometries to test our method’s numeri-
cal stability and assess its robustness against node rearrangements.
We validate the accuracy of the solutions by comparison with the
established solvers from COMSOL and the same meshless scheme
[14] using MLS, instead of DC PSE to discretize the differential op-
erators. We use the MLS meshless scheme as a stability bench-
mark for the different geometries. For every problem we provide
the maximum condition number of the moment matrix for the
MLS operators and its equivalent for DC PSE, the maximum ab-
solute difference of the solution, and whether either scheme had
issues regarding convergence. Although the comparison of the ab-
solute value of the condition numbers across the MLS and DC PSE
methods is not meaningful, due to different prefactors, the relative
variation of the condition numbers for each method by itself across
node distributions does provide an indication of the sensitivity of
the operator to node rearrangement. The robustness of the over-
all solution is also reflected in the condition number of the global
linear system for the Poisson-type equations. While the condition
number of the global linear system depends on the condition num-
bers of the local (i.e., moment matrix) systems, it also depends on
many other factors that are problem dependent. Therefore, we re-
strict our discussion of robustness to the local linear systems. Fur-
ther, we do not provide a computational cost study for the method
here, as the numerical procedure of computing the DC PSE opera-
tors is identical to that when using other strong-form collocation
methods, such as MLS or FCM. The computational cost is indepen-
dent of the choice of operator discretization and simply reflects the

= Tinf

10 1 ‘2 3
10 10 10

N

Fig. 1. Lid-driven cavity flow: Convergence for Re = 400 for increasing resolution:
21 x 21,41 x 41, 81 x 81, 121 x 121, and 161 x 161. The absolute L, and L., error
norms over all nodes are calculated with respect to a solution computed with 201
x 201 nodes, as in [27]. N x N is the total number of nodes used in the simulation,
and N the number of nodes in each direction.

cost of the Eulerian solver [12]. Here we are interested in whether
solutions can be obtained at all and how robust they are across
different node configurations.

4.1. Lid-driven cavity flow

We first test our method on the lid-driven flow in a square
cavity, for the domain x € [0, 1] and y € [0, 1]. Lid-driven flow
is a computationally demanding problem due to the multiple re-
circulation zones at the corners, especially for moderate and high
Reynolds numbers. The problem has been intensively studied over
the years, and numerical studies for Re < 1000 produce consistent
results across methods. Here we present numerical solutions from
our method for Reynolds numbers up to 10,000, for which the flow
regime is considered to be laminar and the solution stable.

For the flow boundary conditions, we apply no slip at all cavity
walls, except the top, which moves with unit velocity to drive the
flow. For the DC PSE operators, r = 2 for first-order derivatives, and
r=1 for second-order derivatives. The support cutoff radius r. of
the kernel is set to 2.5h for interior nodes and 3.5h for boundary
nodes, where h (h = 21@) is the inter-node spacing. To assess the
convergence of our method in a mesh-refinement sense, we com-
pute the solution with progressively higher resolution at constant
Re = 400, reporting norms relative to the highest resolution used
(201 x 201). We use regular Cartesian node distributions for this
test. The resulting convergence curve is shown in Fig. 1, demon-
strating that the scheme converges at a rate between 1.5 and 2.5.

For Re = 1000 and Re = 2000 we use a uniform node dis-
tribution of 261 x 261 nodes with a total of 68,121 nodes. For
Re = 10,000 we use a uniform grid of 361 x 361 nodes. We
assess the numerical solution of our method through both quan-
titative and qualitative comparisons with benchmark numerical
results from the literature [24]. For qualitative evaluation of the
solution, stream-lines (computed as in [24]) of the flow field are
presented for Re = 1000 in Fig. 2, for Re = 2500 in Fig. 3, and
for Re = 10,000 in Fig. 4. These figures show the formation of the
counter-rotating secondary vortices that appear as the Reynolds
number increases. For quantitative comparison, we present veloc-
ity values along the vertical center line for u in Table 1, and for
v in Table 2, for both Re = 1000 and Re = 2500 alongside the
numerical results form [24].
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Fig. 2. Lid-driven cavity flow: Streamline patterns of primary and secondary vortices (computed as in [24]) obtained for Re = 1000. (a) The full domain; (b) close-up on the
eddies BL1 and BL2; (c) close-up on BR1 and BR2. BL1, BL2, BR1 and BR2 are defined as in [24].

Assessing the numerical robustness of the scheme relative to
MLS, we find the maximum condition number of the moment
matrix for MLS and DC PSE operators on the same 261 x 261
node distribution to be 167 for DC PSE and 2.74 x 10'3 for MLS.
When comparing the solutions using MLS and DC PSE as oper-
ator discretization, the maximum absolute differences for the u
and v velocity components are 5.54 x 10~2 and 5.06 x 102 for
Re = 1000, and 5.96 x 102 and 5.34 x 10~2 for Re = 2500, re-
spectively. Therefore, we find that the DC PSE scheme reproduces
previous results for the lid-driven cavity flow benchmark problem
in this simple geometry.

4.2. Backward-facing step

As a second benchmark problem, we consider the backward-
facing step (BFS) [2]. The backward-facing step involves a chan-
nel of width H (H = 1) and length L (L = 30H), with a backward-
facing step (of height H/2) placed at the left-most edge of the
inlet (x = 0) where flow is assumed to be fully developed. This
flow is set to have a parabolic inflow velocity profile given by

u = (12y —24y%,0) for y > 0.5. Fully developed flow is also as-
sumed at the outlet (right edge), with the velocity profile given
by u=(0.75-3y%,0) for 0 <y < 1.

The BFS is considered a demanding benchmark flow problem
due to the vortices formed after the step. The BFS has been stud-
ied both experimentally [2] and numerically [2,25,34,64]. The flow
has been found to be stable and two-dimensional for Re < 400,
allowing the flow to be numerically modeled in 2D and compared
directly with experiments [2]. Beyond this Reynolds number, the
flow is 3D and the 2D approximation is no longer valid. How-
ever, numerical results for the 2D problem for Re > 400 are still
given in the literature as a purely numerical benchmark problem
[25].

Here, we present numerical results for our method for Re=200,
for comparison with both experimental and numerical results such
as [2], and Re = 800 for comparison with the purely numerical
benchmarks given in [25,34,64]. For the DC PSE operators, r =2
for first-order derivatives, and r =1 for second-order derivatives.
The cut-off radius r. of the kernel function is set to 2.5h for
interior nodes and 3.5h for boundary nodes, with h being the
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Fig. 3. Lid-driven cavity flow: Streamline patterns of primary and secondary vortices (computed as in [24]) obtained for Re = 2500. (a) The full domain; (b) close-up on the
eddies BL1 and BL2; (c) close-up on BR1 and BR2. BL1, BL2, BR1 and BR2 are defined as in [24].

Table 1
Lid-driven cavity flow: u velocity component along the vertical line passing through
the center of the cavity at Re = 1000 and Re = 2500 compared with [24].

Re = 1000 Re = 2500
y DC PSE Ref. [24] DC PSE Ref. [24]
1 1 1 1 1
0.99 0.8436 0.8486 0.7585 0.7704
0.98 0.6976 0.7065 0.5712 0.5924
0.97 0.5799 0.5917 0.4688 0.4971
0.96 0.4958 0.5102 0.4283 0.4607
0.95 0.4418 0.4582 0.417 0.4506
0.94 0.4098 0.4276 0.414 0.447
0.93 0.3916 0.4101 0.4107 0.4424
0.92 0.3807 0.3993 0.4052 0.4353
0.91 0.373 0.3913 0.3973 0.4256
0.9 0.3661 0.3838 0.3874 0.4141
0.5 ~0.0591 ~0.062 -0.0369 -0.0403
0.2 ~0.3612 ~0.3756 ~0.3036 ~0.3228
0.8 ~0.3701 ~0.3869 —0.3244 ~0.3439
0.16 ~0.3666 —0.3854 ~0.3487 ~0.3688
0.14 ~0.349 ~0.369 —0.3747 ~0.3965
0.12 ~0.3183 ~0.3381 ~0.3944 ~0.42
0.1 ~0.2778 ~0.296 ~0.3948 ~0.425
0.08 ~0.2316 ~0.2472 ~0.3652 -0.3979
0.06 —0.1825 ~0.1951 ~0.3069 ~0.3372
0.04 ~0.1299 ~0.1392 -0.2307 —0.2547
0.02 ~0.0702 ~0.0757 ~0.1362 ~0.1517
0 0 0 0 0

inter-node spacing; h=0.05 and h=0.025 for Re = 200 and
Re = 800, respectively. The kernel width € is set to be equal to
h. To ensure a resolution-independent numerical solution, several
node configurations are tested, specifically 301 x 11, 601 x 21, 901
x 31, and 1201 x 41. This shows convergence in a mesh-refinement
sense of the solution to the required precision. For Re = 200 and
Re = 800, regular grid distributions of 12,621 (601 x 21) and
49, 241(1201 x 41) nodes are used, respectively.

Fig. 5 shows the streamlines and vorticity contours for
Re = 200. The flow separates at the step corner and a vortex
is formed downstream. For Re = 200 the reattachment length of
the vortex is L = 2.55. Table 3 lists the reattachment length val-
ues obtained using Radial Basis Functions and the Finite Element
Method from [12] along with those from our DC PSE method. The
DC PSE reattachment lengths are consistent with those of estab-
lished methods. Fig. 6 shows the streamlines and vorticity con-
tours for Re=800. After reattachment of the upper wall eddy, the
flow slowly recovers towards a fully developed Poiseuille flow. For
our method, the measured separation and reattachment points at
Re = 800 are L,y ~ 6.1 for the lower wall separation zone, Lypper
~ 5.11 for the upper separation zone, and separation begins at
X ~ 5.19. Comparison of the present scheme with other numer-
ical methods for 2D computations shows good agreement, espe-
cially with respect to the lower wall separation zone. In [64] the
authors used a finite difference method and predicted separation
lengths of Ligyer ~ 6.0 and Lypper ~ 5.75, while [64] using the FI-
DAP code predicted Loy, ~ 5.8 and the upper Lypper ~ 4.7. In
order to validate our method, cross-channel profiles of a variety
of quantities, and the equivalent data form [25], are provided at
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Fig. 4. Lid-driven cavity flow: Streamline patterns of primary and secondary vortices (computed as in [24]) obtained for Re = 10,000. (a) The full domain; (b) close-up on
the eddies in bottom left corner; (c) close-up on eddies in bottom right corner, and (d) close up on eddies in top left.

x =7 in Table 4, and at x = 15 in Table 5. These cross-channel pro-
files and solution comparisons for Re = 800 are shown in Fig. 7,
providing an example of the convergence studies performed for all
test cases.

Assessing the relative numerical robustness of the DC PSE
scheme, we find the maximum condition number for DC PSE to
be 167 and for MLS 1.01 x 10° for the same node distributions.
Further, when the solution is compared to that with MLS oper-
ators, the maximum absolute differences for the u and v veloc-
ity components are 3.11 x 1072 and 6.65 x 10~2 for Re = 800,
and 2.1 x 102 and 9.1 x 1072 for Re = 200, respectively. In sum-
mary, the numerical results obtained here show good agreement
with the established benchmarks for the backward-facing step flow
problem.

4.3. Flow past a cylinder

We consider flow in a 2D rectangular duct with a circular oc-
clusion. This problem showcases a regular geometry with an inter-
nal obstacle. The spatial domain is £ = [0,0.1] x [0, 0.01] (m) with
a cylinder of radius r=0.0015 (m) located at B, = (0.02,0.005)
(m). We set the kinematic viscosity v = £ = %mTZ. For the flow
boundary conditions we set no-slip conditions, u = (u, v) = (0, 0),
for the upper and lower walls of the duct and also along the
perimeter of the cylinder. For the inlet (left edge), a uniform
velocity of u(0,y) = (0.01,0)% is enforced, while at the outlet
(right edge), a do-nothing outflow boundary condition is applied:
vg—,‘; — pn =0, where n denotes the outward unit normal.

We present results for Re = 30. A total number of 25,405
nodes is used, with 45 nodes distributed on the cylinder perime-
ter to enforce the boundary condition there. For the DC PSE oper-
ators, r = 2 for first-order derivatives, and r =1 for second-order
derivatives. The cut-off radius r. of the kernel function is 2.5h for
interior nodes and 3.5h for boundary nodes, where h (h = 0.02) is
the inter-node spacing.

Contour plots for the velocity components and streamlines are
shown in Fig. 8. Two symmetric vortices with opposite rotation di-
rections are formed behind the cylinder. These vortices have a re-
circulation length of L = 0.00144 m from the center of the cylinder.
For solution validation, the same problem is solved using COM-
SOL with a total number of 72,466 degrees of freedom. The COM-
SOL solution is interpolated to the DC PSE node locations for di-
rect comparison. The COMSOL solution shows similar flow profiles
with a recirculation length of L = 0.00142 m. The maximum abso-
lute differences in the u and v velocity components of the COMSOL
and DC PSE solutions are 1.67 x 1072 and 9.31 x 103, respectively.

Checking the relative numerical robustness of the solution, the
maximum condition numbers are 179 for DC PSE operators and
2.496 x 10" for MLS. When computing the solution with MLS, the
node arrangement needed to be manually refined with nodes close
to degeneracy having to be redistributed for the method to con-
verge. This manual refinement was not required when using the
DC PSE operators. The maximum absolute difference between the
DC PSE and MLS solutions are 4.88 x 10~4 and 5.47 x 10~ for the
u and v velocity components, respectively. In summary, we have
shown that DC PSE produces consistent solutions for flow past a
cylinder, and shows improved robustness with regard to node dis-
tribution than when using MLS operators.
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Table 2

Lid-driven cavity flow: v velocity component along the vertical
line passing through the center of the cavity at Re = 1000 and
Re = 2500 compared with [24].

Re = 1000 Re = 2500
y DC PSE Ref. [24]  DC PSE Ref. [24]
1 0 0 0 0
0.985 ~0.0916  —0.0973 ~0.151 ~0.1675
0.97 ~02046  —02173 ~0.3382  —03725
0.955 -0.3208 034 ~04786  —0.5192
0.94 —04183  —0.4417 ~0.5254  —0.5603
0.925 —04811  —0.5052 —0.4995  —0.5268
0.91 ~0.5041  —0.5263 ~04499  —04741
0.895 -04942  —0.5132 ~04078  —0.4321
0.88 —0464  —0.4803 —03794  —0.4042
0.865 —04262  —0.4407 ~0.3596  —0.3843
0.85 ~0.3891  —0.4028 -03432  -0.3671
0.5 0.0264 0.0258 0.0165 0.016
015 03558 0.3756 0368 03918
0.135 0.3498 0.3705 03814 0.4078
0.12 0.3394 0.3605 0.3894 0.4187
0.105 0.3249 0346 03895 04217
0.09 0.3066 03273 038 0.4142
0.075 0.2842 0.3041 0.3602 0.395
0.06 0.2558 0.2746 03311 03649
0.045 02178 0.2349 0.2923 03238
0.03 01652 01792 0.2355 0.2633
0.015 0.0933 0.1019 0.1418 0.1607
0 0 0 0 0

4.4. Flow in stenosed arteries

As a first test case with complex geometry, we simulate fluid
flow in a stenosed, or contracted, artery. We present results for
two cases: a duct with an asymmetric stenosis, and a more general
case with several irregular stenoses. In both problems, the length
and width of the unconstrained channel is L =10 and H =1, re-
spectively. At the inlet, the flow is assumed to be fully developed
with the velocity having a parabolic profile. On the lower and up-
per walls, no-slip boundary conditions are imposed. Hence:

Inflow: x=0,0<y<1)
(u=4y-4y>v=0)
Outflow: x=10,0<y<1)
ou
(8 :O,v:O)
Walls: y=yx),0<x<10)

(u=0,v=0). (27)

These flow problems showcase the performance of our method on
increasingly irregular geometries and node distributions. Therefore,
we test both regular and irregular node distributions. The irregu-
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lar distributions are generated by extracting the vertex positions,
and ignoring the mesh neighbor properties, produced by the COM-
SOL mesh generator. While this is not how one would place nodes
in practice, it serves as a reproducible benchmark for comparison
between the MLS and DC PSE operators.

4.4.1. Single stenosis
The computational domain has a single stenosis of asymmetric
shape:

Yiower = A1sech(By (x — 7)), 0<x<10 (28)

Yupper = 1 — Azsech(Ba(x — x2)), 0<x<10 (29)

where sech is the hyperbolic secant function. The positive con-
stants A;, A, control the degree of constriction of the channel,
while By, B, control the length of the constricted area. The steno-
sis location is controlled by the constants x; and x, for the lower
and upper channel walls, respectively. We use A; = 0.5, A, = 0.4,
By =6, and B, =4, with the stenosis positioned at x; =3, x; = 4.
We present results for the flow problem at Re = 200. A grid-
independent solution was obtained by a convergence study using
successively finer node distributions. For the uniform node dis-
tribution, we use a total number of 61,073 nodes with 1760 of
them representing the boundary. For the irregular node distribu-
tion, 12,061 nodes are used. For the DC PSE operators, r =2 for
first-order derivatives, and r =1 for second-order derivatives. The
cutoff rc of the kernel function is 2.5h for interior nodes and 4.5h
for boundary nodes, where h is the average inter-node distance
(h =0.0125).

Fig. 9 shows the solution’s stream function isocontours (a) and
vorticity isocontours (b) for Re = 200. Two vortices of opposite
sign form downstream of the stenosis, the first clock-wise and the
second counter-clock-wise. For future validation, cross-channel ve-
locity profiles at x = 3.5 and x = 5 (where the vortices are) are tab-
ulated in Tables 6 and 7, respectively. The results are compared
with a solution obtained using COMSOL. The maximum absolute
error between the DC PSE and COMSOL solution are 0.14 and 0.022
and the L2 norms are 0.04494 and 0.00962 for the u and v ve-
locity components, respectively. To assess the robustness of our
method against variations in the node distribution, we interpo-
lated the solution from the irregular nodes to the regular nodes.
The maximum absolute difference between the two solutions is
1.234 x 1072,

For the regular node distribution, the DC PSE operators had
a maximum condition number of 2.64 x 103, whereas MLS had
1.28 x 10'°, For the irregular node distribution, the DC PSE op-
erators had a maximum condition number of 2.5 x 102, MLS of
3.5 x 10'3. The solver using the MLS operators on the irregular
node distribution did not converge unless further node refinement
was done manually. The maximum absolute differences between
the MLS and DC PSE solutions for the u and v velocity components
is 3.25 x 102 and 5.64 x 1072,
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Fig. 5. Backward-facing step:

(a) Stream function contours for Re = 200 and (b) vorticity isocontours.

Stream function computed as in [25].
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Table 3

Backward-facing step: Primary vortex strength and location, length of recirculation region,
and comparison with RBF and FEM solutions from [12] for Re = 200.

DC PSE RBF FEM
Length of recirculation 2.55 2.72 2.67
Winin -0.0321 -0.0315 —0.0331

W in location
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Fig. 6. Backward-facing step: (a) Stream function contours for Re = 800 and (b) vorticity isocontours. Stream function computed as in [25].

Table 4

Backward-facing step: Cross-channel profiles for the two velocity components u, v and the
vorticity w at x = 7 compared with the FEM solution from Ref. [25].

u v(x1072) w
y DC PSE FEM DC PSE FEM DC PSE FEM
0.5 0 0 0 0 —0.992 —1.034
0.45 -0.037 —0.038 —0.026 -0.027 —0.462 -0.493
04 —0.047 —0.049 —0.086 —0.086 0.083 0.061
0.35 —0.028 —0.032 -0.16 —0.147 0.651 0.635
0.3 0.019 0.015 —0.238 -0.193 1.256 1.237
0.25 0.097 0.092 -0.33 —0.225 1.916 1.888
0.2 0.21 0.204 —0.466 —0.268 2.622 2.588
0.15 0.357 0.349 —0.689 -0.362 3.291 3.267
0.1 0.532 0.522 -1.03 —0.544 3.746 3.751
0.05 0.719 0.709 —1.478 -0.823 3.777 3.821
0 0.893 0.885 —-1.973 —1.165 3.269 3.345
—0.05 1.029 1.024 —2.427 —1.507 2.27 2.362
-0.1 1.105 1.105 —2.753 —-1.778 0.958 1.046
-0.15 1.113 1.118 -2.89 —-1.925 —0.445 -0.374
-0.2 1.053 1.062 —2.811 -1.917 -1.728 —1.684
-0.25 0.936 0.948 —2.522 —1.748 —-2.733 —-2.719
-0.3 0.778 0.792 —2.054 —1.423 —-3.38 -3.392
-0.35 0.598 0.613 —1.447 -1 —3.632 —3.658
-04 0.415 0.428 —0.766 —-0.504 -3.625 3.687
-0.45 0.226 0.232 —0.202 -0.118 —-4.014 —4.132
-0.5 0 0 0 0 —5.087 5.14

4.4.2. Multiple stenoses

As a more complex case, we simulate flow past multiple
stenoses in the same duct. First, the channel narrows with a
symmetric stenosis close to the inlet, then recovers its width
downstream. A second, more severe asymmetric stenosis follows
halfway through the channel. After full recovery from this second
stenosis, the channel slowly narrows towards the exit, which has a
smaller diameter than the inlet. The lower and upper walls of the
channel are defined by the equations:

Yiower =Gt (1 — COoS (Zﬂ(szx?(X)))>’

2w (x—D
Yupper = 1 — G (X) <] — cos (n(XE(X)(X))>)7

0<x<10 (30)

0<x<10

(31)

where C; is a positive constant taken as C; =0.075 and the
piecewise-constant functions C,(x), D(x), and E(x) are defined as:

0.075 x <32
0225 32>x>58
0.075 x>5.8,

32 0<x<32

26 32>x>58
72 x>538,

0 0<x<32

26 32>x>58
72 x>58.

GEx) =

Ex) =

D(x) =
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Table 5

Backward-facing step: Cross-channel profiles for the two velocity components
u, v and the vorticity w at x = 15 compared with the FEM solution from Ref.
[25].

u v(x1072) w

y DCPSE FEM  DCPSE FEM DC PSE  FEM

05 0 0 0 0 2.027 2.027

045 0101 0.101 0.021 0.021 2,011 2,013

04 0202 0.202 0.072 0.072 2.019 2.023

035 0303 0.304 0.14 0.14 2.051 2.058

03 0407 0.408 0.209 0.207 2.08 2.09

025 0511 0.512 0.263 0.26 2.063 2.075

02 0611 0.613 0.292 0.288 1.947 1.959

015  0.703 0.704 0.288 0.283 1.694 1.703

0.1 0.778 0.779 0.252 0.245 1.292 1.298

0.05 083 0.831 0.186 0.18 0.761 0.761

0 0.853 0.853 0.102 0.095 0.146 0.141
—005 0844 0.844 0.01 0.003 049  —05
-01 0.804 0.804  —0.075 -0.081 -1.083 —1.096
—-015  0.737 0.737  -0.143 -0147  -1575 -1.588
-02 0649 0.649  —0.183 -0185  -1929 —-1.939
-025  0.547 0.547  —0.19 -0191  -2134 2139
-03 0438 0438 -0167 —166 —2211 2213
-035 0328 0328 —0.12 -0119 2211 221
-04 0218 0218  —0.065 -0.065 —2186  —2.1 84
-045 0109 0109  —0.019 —-0.019 -2174 2174
-05 0 0 0 0 2183 2185
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Fig. 7. Backward-facing step: (a) Horizontal velocity u profile at x =7 and x = 15

for Re=800 compared to [25] and (b) grid convergence study for successfully higher
numbers of y-direction nodes Ny; u-velocity profile at x = 7, compared against [25].

Table 6

Single stenosis: Cross-channel velocity profiles for the ve-
locity components u and v, the vorticity w, and the stream
function ¥ at x = 3.5 for Re = 200.

y u v w W

0.1 —0.1288 0.0513 1.9604 —0.0035
015  -0.1728 0.0881 0.0526  —0.0114
0.2 —0.1377 0.0914 —1.7952 —0.0194
0.25 —0.0362 0.0514 —3.5642 —0.024
0.3 0.1339 —0.0378 —5.7624 —0.0219
0.35 0.406 —0.1844 —8.8686 —0.0088
0.4 0.8113 —0.3842 —11.7023 0.0211
0.45 1.2787 —0.5858 —10.8888 0.0734
0.5 1.6183 —0.7093 —6.0149 0.1467
0.55 1.7404 —0.7408 -1.8799 0.2314
0.6 1.7289 —0.7265 -0.14 0.3185
0.65 1.6577  —0.6931 0.8637 0.4033
0.7 1.5362 —0.6404 2.2517 0.4834
0.75 1.3374 —0.5542 4.7004 0.5556
0.8 1.0153 —0.4161 8.2573 0.615
0.85 0.5404 —0.2198 12.2121 0.6545

The flow is simulated at both Re = 200 and Re = 400. For the
uniform node distribution a total of 51,794 nodes are used with
1737 nodes representing the boundary. For the irregular distribu-
tion, 88164 nodes are used. For the DC PSE operators, r =2 for
first-order derivatives, and r =1 for second-order derivatives. The
cutoff radius r. of the kernel is 2.5h for interior nodes and 4.5h
for boundary nodes, with h being the average inter-node spacing
(h =0.0125).

We present the solution’s velocity stream function and vortic-
ity isocontours in Fig. 10 for both Re = 200 and Re = 400. A
grid-independent solution was obtained in a convergence study
using successively finer node distributions. For future validation,
cross-channel velocity profiles are provided in Table 8 (x = 3) and
Table 9 (x =6) at the locations of the vortices. The results are
compared with a solution obtained using COMSOL. The maximum
absolute error between the DC PSE and COMSOL solutions for
Re=200 is 0.16 and 0.044 and the L2 norms 0.0174 and 0.0027
for the u and v velocity components, respectively. For Re = 400
the maximum absolute errors are 0.17 and 0.042 and the L2 norms
0.0182 and 0.0029 for the u and v velocity components, respec-
tively.

For the regular node distribution, the DC PSE operators had a
maximum condition number of 2.51 x 103 (7.31 x 108 for MLS).
For the irregular node distribution, the DC PSE operators had a
maximum condition number of 2.5 x 10% (2.7 x 103 for MLS).
The solution using the MLS operators on the irregular node distri-
bution did not converge without manual node curation. The maxi-
mum absolute differences in the u and v velocity components be-
tween the MLS and DC PSE solutions on the regular node distribu-
tion is 4.5 x 102 and 2.6 x 10~2 for Re=200, and 3.4 x 10~2 and
2.3 x 102 for Re=400. In summary, we find that DC PSE produces
robust solutions across increasingly complex geometries without
requiring manual curation on irregularly distributed nodes.

4.5. Flow in a bifurcation

As a final complex-geometry test case, we consider flow in
an irregular bifurcating channel. This case models a 2D stenosed
artery with a bifurcation. As boundary conditions, a uniform ve-
locity of u=0.001% and v=0 is imposed at the inlet of the do-
main, while at both outlets we assume fully developed flow with
g—ﬁ = 0. For the remaining walls, no-slip boundary conditions are
applied (u =v =0). The kinematic viscosity of the fluid is set to
v =%%1m2s-1. We again test both uniform and irregular node
distributions.
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Fig. 8. Flow past a cylinder: (a) u velocity, (b) v velocity, and (c) streamlines of the flow for Re = 30. (d) Close-up of the streamlines in the recirculation zone behind the

cylinder.

We present results for Re=80. For the uniform distribution,
we use a total number of 25,282 nodes with 1840 nodes dis-
tributed on the boundary. For the irregular distribution, 35,421
nodes are used. For the DC PSE operators, r =2 for first-order
derivatives, and r =1 for second-order derivatives. The cutoff r.
of the kernel is set to 2.5h for interior nodes and 3.5h for
boundary nodes, with h being the average inter-node spacing
(h=5x10"4).

The numerical results for the isocontours of the u-velocity, v-
velocity, and stream function are presented in Fig. 11. For valida-
tion, the results are compared against COMSOL, with the maximum
absolute differences found as 4.7 x 10~2 and 2.64 x 102 for the u
and v velocity components, respectively, interpolated from the uni-
form node distribution.

For the regular node distribution, the DC PSE operators had a
maximum condition number of 2.5 x 10% (4.5 x 10> for MLS). For



G.C. Bourantas et al./Computers and Fluids 136 (2016) 285-300 297

0.6
0.4
0.2

Fig. 9. Single stenosis: (a) Stream function isocontours for Re = 200 and (b) vorticity isocontours.

Table 7

Single stenosis: Cross-channel velocity profiles for the
velocity components u and v, the vorticity w, and the
stream function v at x = 5.0 for Re = 200.

y u v w v

0.1 1.2766 0.0286 -8.8914 0.0698
0.15 1.6384 0.0404 —5.5626 0.1433
0.2 1.8575 0.0475 —2.9395 0.2312
0.25 1.9468 0.0529 —0.2065 0.3269
0.3 1.8903 0.0568 29325 04234
0.35 1.6729 0.0573 6.0851 0.5131
0.4 1.3211 0.0508 8.0499 0.5884
0.45 0.919 0.0358 8.0208 0.6444
0.5 0.5569 0.0152 6.5724 0.681
0.55 0.2782 —0.0053 4.7954 0.7016
0.6 0.0816 —0.0218 3.3005 0.7103
0.65 —0.0504 —0.0323 21739 0.7108
0.7 —0.1338 —0.0367 1.3018 0.7061
0.75 -0.178 —0.0356 0.5733 0.6982
0.8 —-01887  —-0.0301  —0.0669  0.6889
0.85 —0.1697 —0.0219 —0.6303 0.6798
0.9 —0.1249 —0.0128 -1.1123 0.6723

095 -0.0584  -0.0045 —1.5171 0.6677

the irregular node distribution, the DC PSE operators had a max-
imum condition number of 2.5 x 102 (4.5 x 10" for MLS). The
solution using MLS operators did not converge without further
manual node adjustment for both the regular and irregular node
distributions. DC PSE produced consistent results in all cases.
In addition, the DC PSE operators result in numerically robust
schemes for irregular node distributions and geometries, where
standard MLS operators fail to converge due to the large condition
numbers of the moment matrices.

5. Conclusions

We presented for the first time the use of DC PSE operators for
Eulerian meshless collocation schemes in computational fluid me-
chanics. We used a velocity-correction method to numerically solve
incompressible steady-state flow problems in two-dimensional ge-
ometries. We have focused on the method’s robustness in com-
plex geometries and on irregular node distributions, demonstrat-
ing competitiveness and superiority of the DC PSE approach when
compared to MLS.

First, we showed that DC PSE provides accurate results in reg-
ular geometries using the benchmark fluid flow problems of the
lid-driven cavity and the backward-facing step. Both numerical and

Table 8

Single stenosis: Cross-channel velocity profiles for the
velocity components u and v, the vorticity w, and the
stream function i at x = 3.5 for Re = 400.

y u v w v

0.1 0.2698 —0.0211 —3.2656 0.0121
0.15 0.443 —0.0339 —3.5979 0.0299
0.2 0.626 —0.0445 —3.6445 0.0566
0.25 0.8017 —0.0518 —3.3187 0.0923
0.3 09522  -0.0557 -2.6839  0.1363
0.35 1.0659 —0.0566 —1.9003 0.1869
0.4 1.1392 —0.0554 —1.1149 0.2422
0.45 11741 —0.0524 —0.3883 0.3002
0.5 11733 —0.0478 0.3026 0.359
0.55 11374 —0.0414 1.0141 0.4169
0.6 1.0645 —0.0331 1.7742 0.4721
0.65 0.9532 —0.0233 2.5335 0.5227
0.7 0.8068 —0.0131 3.1575 0.5669
0.75 0.6363 —0.004 3.487 0.603
0.8 0.4592 0.0024 34329  0.6304
0.85 0.2945 0.0054 3.0258 0.6491
0.9 0.1573 0.005 2.3812 0.6603
0.95 0.0565 0.0026 1.6252 0.6655

qualitative results were given, with tabular results provided for fu-
ture reference. We then showed the robustness of DC PSE across
four complex-geometry problems. COMSOL was used as a reference
solver for the complex geometries, demonstrating that our method
provides consistent results. To assess the robustness to different
node configurations and relative to established strong-form collo-
cation methods, we repeated all numerical experiments using MLS
to discretize the differential operators instead of DC PSE. Across all
complex geometry problems, we found favorable robustness of the
numerical solutions when DC PSE operators were used. This was
in contrast to the MLS scheme that had convergence issues across
all four complex geometry flow problems, especially when using
irregular node distributions. In the flow past a cylinder, DC PSE
did not require any refinement to the node distribution. This is in
contrast to MLS that required manual removal of near-degenerate
nodes to render the method stable. For the stenosis flow problems,
DC PSE was again observed to be robust for both regular and irreg-
ular node distributions, whereas MLS did not converge for irregu-
lar node distributions. Finally, for flow in a bifurcation only DC PSE
yielded solutions.

The condition numbers of the moment matrices at each node,
or the equivalent matrix in DC PSE (Eq. (14)), has been associated
with the numerical robustness of meshless schemes [14,31,40,60].
For all results we have presented maximum condition numbers
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Fig. 10. Multiple stenoses: Stream function isocontours for Re = 200 (a) and Re = 400 (c), and vorticity isocontours for Re = 200 (c) and Re = 400 (d).

Table 9

Single stenosis: Cross-channel velocity profiles for the
velocity components u and v, the vorticity w, and the
stream function v at x = 6.0 for Re = 400.

y u v w v

0.1 0.5801 —0.0062 —6.7998 0.0271
0.15 0.9428 —0.0081 —7.3475 0.065
0.2 13055 -0.0032 -6.6267 01213
0.25 1.5983 0.0072 —4.5469 0.1943
0.3 1.7669 0.0195 -1.7367 0.279
0.35 1.7902 0.0306 1.2182 0.3685
04 1.6685 0.0387 3.9993 0.4555
0.45 1.4208 0.0417 6.1142 0.5332
0.5 1.0955 0.0379 6.9844 0.5962
0.55 0.7585 0.0276 6.5696 0.6425
0.6 0.4622 0.0139 5.4186 0.6728
0.65 0.228 0.0005 41244 0.6898
0.7 0.0548  —0.0095 29659  0.6966
0.75 —0.065 —0.0148 1.9572 0.6962
0.8 -0.1373 —0.0152 1.0273 0.6909
0.85 —0.1646 —0.0117 0.1312 0.6832
0.9 —0.1484 —0.0062 —0.7253 0.6752
0.95 —0.0915 —0.0013 —1.5138 0.669

for both DC PSE and MLS operators. Although the magnitudes of
the condition numbers across the schemes can not be meaning-
fully compared due to prefactors, the variability and sensitivity of
the condition numbers of either scheme is meaningful. We ob-
served that the maximum condition numbers for MLS operators
varied over seven orders of magnitude, whereas those of DC PSE

showed variations over only one order of magnitude. This shows
that DC PSE operators are more robust. Condition numbers of 10'2
and higher, as found for MLS, render it impossible to numerically
obtain accurate solutions from the matrix.

Our results show that using DC PSE for operator discretization
in meshless Eulerian collocation methods for fluid flow provides
robust and accurate solutions across a range of 2D problems in
both regular and irregular geometries. The robustness to node con-
figuration of the DC PSE scheme was superior to that of MLS as an
operator discretization. However, we have only presented a small
subset of numerical problems with empirical results, Gaussian ker-
nel functions, and a specific strong-form velocity-vorticity correc-
tion method. It is possible that for alternative problem formula-
tions, window functions, and node distributions, the DC PSE and
MLS operators have different performance and robustness proper-
ties. However, the results presented here are an encouraging indi-
cation, but not a final proof. In addition, we have only presented
results for 2D steady-state flow problems, while the most compu-
tationally demanding applications require fluid flow solutions in
complex 3D geometries. While the method presented here is ex-
tendable to transient and 3D cases, this is left for future research.

These limitations indicate that further exploration of the use of
DC PSE operators for the numerical computation of solutions to
systems of partial differential equations in complex geometries is
needed. First steps should include the benchmarking and evalua-
tion of accuracy and stability in both 3D and transient flow prob-
lems. The results also motivate further analytical analysis of the DC
PSE operators and of their relationship to other meshless methods,
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such as MLS and RKPM, and how this relates to their respective
numerical robustness and condition numbers under varying node
configurations. In addition, further research is required in order
to understand how the choice of kernel function and/or window
function affects the numerical robustness under different node dis-
tributions. This would help select optimal operators for different
problems [61].

We believe that DC PSE operators have the potential for pro-
viding a robust paradigm for numerically solving fluid flow prob-
lems in complex geometries. In addition, DC PSE meshless methods
can utilize the infrastructure provided by software libraries like the
parallel particle-mesh library (PPM) [57] along with its domain-
specific language (PPML) [6] to perform scalable parallel simula-
tions. This would enable highly resolved stable numerical simula-
tions of fluid flow problems in complex geometries.
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