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The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the forma-
tion of an apical and a basolateral domain, which are separated by tight junctions. The generation and maintenance 
of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo 
molecules. This dynamic process involves the interaction of sorting signals with sorting machineries and the forma-
tion of transport carriers. Here we review the recent advances in the field of polarized sorting in epithelial cells. We 
especially highlight the role of lipid rafts in apical sorting.
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Introduction

Throughout the body, polarized epithelial cells are 
organized into sheets that line the surfaces and cavities 
of organs (for example, in the respiratory, urinary and 
digestive systems) to perform multiple physiological 
functions. The most important functions of these epithe-
lia are protection and the maintenance of homeostasis by 
regulated exchange between the exterior and the interior 
milieus, as well as the build-up of most organs in the 
body. Exchange by vectorial transport for uptake and se-
cretion is managed by a large array of transporters, chan-
nels and receptors that are distributed in distinct plasma 
membrane domains [1]. The plasma membrane of a po-
larized epithelial cell is subdivided into an apical and a 
basolateral domain by tight junctions [2, 3]. The basolat-
eral domain comprising spot desmosomes, gap junctions 
and adherent junction contacts with the basement mem-
brane and neighboring cells mediates cell to cell contacts 
and communication. The apical domain confronts the 
external milieu and consists of planar regions and pro-
trusions (microvilli and the primary cilium), mediating 
an exchange with the external environment. The apical 
surface has to be constructed such that it can withstand 
the threats from the outside. For instance, in the digestive 

tract, the secreted bile salts act as detergents and could 
potentially solubilize the apical membrane. Here, the 
asymmetric lipid composition of the apical and the baso-
lateral plasma membrane domains comes into play. The 
apical membrane is enriched in sphingolipids, which to-
gether with cholesterol have the potential to form tightly 
packed membrane microdomains (lipid rafts) that help to 
form a robust bilayer [4].

Establishment and maintenance of epithelial polarity 
are necessary for the normal physiological function of an 
epithelial cell. This requires complex sorting machineries 
that deliver proteins and lipids to their proper membrane 
domains. This review will describe the molecular mecha-
nisms of polarized sorting by which epithelial surface 
polarity is established and maintained, mostly using 
Madin–Darby canine kidney (MDCK) cells as an experi-
mental model system, focusing on the biogenesis of the 
apical membrane.

Establishment of epithelial polarity

Most eukaryotic cells are polarized. Some are polar-
ized transiently, such as migrating fibroblasts, and others 
such as epithelial cells show a stably polarized pheno-
type. The polarization machinery has common features 
involving polarity protein complexes such as the Par 
proteins and the actin and tubulin dynamic networks [5]. 
Polarizing epithelial cells often use external cues to start 
the process, involving the extracellular matrix and integ-
rins that define the basal pole [6]. In unpolarized MDCK 
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cells, the microtubules are nucleated by the centrosome, 
like in fibroblasts, but upon polarization the microtubular 
network is re-organized, so that in the fully polarized 
state the bulk of the microtubules runs parallel to the api-
co-basal polarity axis with their minus ends underneath 
the apical surface [7]. There is also a horizontal network 
underlying the apical surface, where the actin organizes 
to form apical microvilli and an apical terminal web, in-
volving villins and ezrins [8]. Along the lateral cell sur-
face, actin has a different arrangement with E-cadherin 
playing a role as organizer [9].

Three polarity complexes guide the polarization pro-
cess: Crumbs, Par and Scribble [5]. Crumbs and Par 
collaborate to mark the apical domain, while Scribble 
defines the basolateral plasma membrane domain. It is 
not known as to how this is done exactly, but as soon as 
the domain markers are in place they exclude each other, 
so that the apical polarity proteins cannot enter the baso-
lateral domain and vice versa [5].

An important event [10] in establishing epithelial po-
larity is the introduction of the junctional complexes [11]. 
The polarity proteins are involved in facilitating the as-
sembly of the tight junctions that function both as a gate 
to regulate paracellular transport and as a fence to block 
the mixing of apical and basolateral proteins by lateral 
diffusion [12]. The tight junctions also act as a barrier for 
lipid diffusion but only in the extracellular bilayer leaflet 
[13].

The primary cilium is a specialized part of the api-
cal plasma membrane, having a unique lipid and protein 
composition. The ciliary membrane thus constitutes a 
separate domain in the apical membrane with a septin 
barrier that prevents the mixing of components [14]. 
Several proteins and protein complexes have been im-
plicated in ciliogenesis. FAPP2, a phosphatidylinositol 
4-phosphate adaptor protein, is involved in apical traf-
ficking and its knockdown strongly delays ciliogenesis 
[15]. Annexin 13, syntaxin 3 [16] and the polarity com-
plex comprising PDZ domain-containing proteins Par3, 
Par6 and atypical protein kinase C [17, 18], all have been 
implicated in the establishment of the apical membrane 
during cell polarization and the biogenesis of the cilium. 
The same is true for the exocyst [19, 20], an octameric 
protein complex involved in the vesicle tethering be-
fore its fusion with the plasma membrane. Experiments 
showed that transport to the cilium requires the BBSome, 
a multiprotein complex of Bardet–Biedl Syndrome pro-
teins, and functional Rab8 [21-23]. Recent research in-
dicated that the BBSome constitutes a coat complex that 
sorts membrane proteins to primary cilia [24].

Lipid analysis of the changes occurring during polar-
ization of the MDCK cells provided an additional insight 

into this highly dynamic process [25]. The most striking 
changes were that the sphingolipids became longer, more 
hydroxylated and more glycosylated when compared 
with their counterparts in the not yet polarized epithe-
lium. In parallel, the glycerophospholipids acquired lon-
ger and more unsaturated fatty acids. Most importantly, 
the Forssman glycosphingolipid, practically absent in the 
unpolarized MDCK cells, became the major sphingolipid 
in the fully polarized epithelium. Analogously, when 
the MDCK cells depolarized towards the mesenchymal 
state, the lipids changed back to that of the contact-naïve 
cells [25]. Observed changes in lipidomes of polar-
izing MDCK cells are in line with the composition of 
their purified apical membranes [26]. These changes are 
what one would expect when a lipid raft-enriched apical 
plasma membrane domain is introduced into the epithe-
lial cell surface to form a robust and impermeable barrier 
facing the outer environment.

Trafficking routes in epithelial cells

To generate the asymmetric cell surface that char-
acterizes epithelial cells, the apical and the basolateral 
proteins and lipids have to be transported from their site 
of synthesis to the correct final destination. In polarized 
epithelial cells, the trans-Golgi network (TGN) is consid-
ered to be the main sorting station for newly synthesized 
proteins and lipids destined for the cell surface [27]. Sup-
port for this hypothesis came from early biochemical and 
morphological studies that demonstrated that apically 
delivered influenza virus and basolaterally delivered 
vesicular stomatitis virus glycoproteins are still together 
at the trans-side of the Golgi complex and they separate 
just afterwards [28-30]. Live cell-imaging studies [31-33] 
confirmed that distinct cargo-containing carriers were 
formed at the TGN and delivered to the plasma mem-
brane without apparent detouring via endosomes. More 
experiments broadened the view and suggested that pro-
tein sorting is not confined to the TGN only but may oc-
cur at other locations along the biosynthetic pathway [34-
38]. In epithelial cells, besides the TGN-sorting station, 
there are two distinct classes of early endosomes [39]: 
apical early endosomes and basolateral early endosomes 
(BEE) and at least two functionally distinct recycling 
endosomes [37]: apical recycling endosomes (ARE) and 
common recycling endosomes (CRE). Internalized trans-
membrane proteins that enter these compartments can be 
sorted for recycling to the cell surface, for transport to 
the lysosome, for transcytosis or for retrograde transport 
to the TGN. The complex trafficking routes connecting 
these sorting stations and the trafficking machineries in-
volved were described in excellent reviews [1, 40].
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In contrast to the direct delivery to the apical plasma 
membrane domain, some apically targeted cargoes are 
transported via the transcytotic pathway and reach their 
destination only after a detour to the basolateral mem-
brane. One of the best-studied example of transcytosis in 
MDCK cells is the transport of polymeric immunoglobu-
lins by the polymeric immunoglobulin receptor (pIgR) 
[41], the cytoplasmic domain, which contains basolateral 
and endocytic sorting signals. Guided by the basolateral 
sorting signal, newly synthesized pIgR arrives at the 
basolateral membrane directly from the TGN or via the 
BEE [42], where it can bind polymeric immunoglobu-
lins. The complex is then internalized via clathrin-medi-
ated endocytosis and traverses the CRE and ARE before 
arriving at the apical surface [43], directed by specific 
transcytosis signals [44]. Transcytosis is stimulated by 
ligand binding and consequent signaling events [45].

Another route to the apical membrane is dependent on 
a luminal clustering agent. Galectin-3 was identified to 
interact directly with the apical cargo lactase-phlorizin 
hydrolase (LPH) in a glycan-dependent manner [46]. 
Depletion of galectin-3 from MDCK cells resulted in 
missorting of apical membrane proteins, such as LPH 
and P75, to the basolateral domain. Intriguingly, high 
molecular weight clusters of apical glycoproteins were 
observed only in the presence of galectin-3, suggesting a 
role for the lectin in cluster formation. This cluster was 
found to be carbohydrate-dependent, because its forma-
tion and apical sorting were perturbed in glycosylation-
deficient MDCK cells [47]. The cargo proteins that were 
shown to be dependent on galectin-3 were not detergent-
resistant and thus this pathway was considered to be 
raft-independent. Taken together, these data support the 
model that binding of galectin-3 cross-links apical glyco-
proteins and/or glycolipids into clusters that can then be 
sorted into specific apical transport carriers. Interestingly, 
galectin-4, another member of the family, associates with 
sulfatides to form another type of sorting platform for 
the delivery of proteins to the apical domain in intestinal 
HT29 cells [48, 49].

Most recently, interaction of galectin-9 with Forss-
man glycosphingolipid was shown to be necessary for 
the maintenance of MDCK polarity [50]. The loss of 
epithelial polarity caused by galectin-9 knockdown could 
be rescued by the addition of recombinant galectin-9. 
The Forssman sphingolipid was identified as the surface 
receptor that mediates the cycling of galectin-9 between 
the Golgi apparatus and the apical domain in polarized 
MDCK cells. The identification of galectin-9 in apical 
membrane biogenesis has provided a missing link that 
could function as a clustering agent in apical raft sorting 
and could be a key to understanding the mechanism of 

protein and lipid sorting in the TGN of MDCK cells.
Additionally, several other proteins have been impli-

cated in the apical sorting processes. Annexin 2 and an-
nexin 13b are involved in apical transport in MDCK cells 
[51-53], and annexins, including annexin 2, have been 
shown to form two-dimensional arrays [54, 55]. Also 
myelin and lymphocyte (VIP17/MAL) proteolipids are 
membrane proteins having a role in the apical transport 
[55, 56]. VIP17/MAL can form clusters that show lateral 
concentration of sphingolipid markers and exclusion of 
a fluorescent analogue of unsaturated phosphatidyle-
thanolamine, making VIP17/MAL an interesting player 
in the organization of membrane domains and sorting 
platforms [57]. Interestingly, MAL2, like VIP17/MAL, 
is involved in apical transport and while the latter protein 
regulates direct apical transport from the TGN, MAL2 is 
a part of the transcytosis machinery [58].

Why are there so many pathways and components in-
volved in the polarized sorting in epithelial cells? What 
is their physiological significance? Multiple and highly 
regulated pathways are most likely required for elicit-
ing specific cellular responses to extracellular signals. 
Signaling and sorting are highly interconnected. In ad-
dition, multiple pathways might enhance the fidelity of 
sorting. Moreover, the existence of many traffic routes to 
different destinations makes the trafficking systems more 
robust compared with one single route.

This latter aspect constitutes a challenge for investiga-
tors studying these complex delivery routes to the differ-
ent cell-surface domains. The fact that they are intercon-
nected means that they are often redundant. Therefore, 
interference with one machinery protein may not give 
raise to any phenotype in response to the change, be-
cause the cargo can also take another route [59]. In other 
cases, some specific phenotypes may be hard to interpret. 
For example, the outgrowth of the cilium represents the 
final stage in epithelial morphogenesis [7], but is easily 
perturbed [16]. Therefore, it can be difficult to specify 
the exact reason for impaired ciliogenesis and to pinpoint 
the responsible pathways and mechanisms.

Apical sorting mechanisms

Apical sorting signals
Apical sorting signals are required to direct the trans-

port of newly synthesized proteins to the apical cell 
surface. Remarkably, sorting signals have been localized 
to all the portions of apical proteins: extracellular, trans-
membrane and cytoplasmic domains [8, 60].

A well-studied apical sorting signal is the glyco-
sylphosphatidylinositol (GPI) anchor. GPI-anchored 
proteins (GPI-APs) are preferentially localized to the 
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apical membrane of epithelial cells [61]. Supporting evi-
dence for the role of GPI anchors in apical localization 
comes from the fact that not only endogenous GPI-APs 
but also chimeric GPI-APs [62-64] in polarized MDCK 
cells localize apically. However, the relative strength of 
this sorting signal and what determines in detail whether 
a GPI-AP will be routed to the apical membrane re-
main not completely understood. For example, the GPI-
anchored prion protein was shown to localize basolater-
ally in MDCK cells [65], and GPI-APs are preferentially 
targeted to the basolateral surface in Fischer rat thyroid 
epithelial cells [66]. Importantly, clustering of GPI-AP is 
necessary for efficient apical targeting [67, 68]. Further-
more, the GPI-attachment sequences [69] and the remod-
eling of the fatty-acid chains [70] seem to play important 
roles in membrane targeting [8].

N- and O-linked protein glycosylation are other apical 
sorting signals [8, 71, 72]. Glycan structures are extraor-
dinarily diverse, thus having considerable information 
potential, nevertheless the molecular mechanism for 
apical sorting of glycosylated proteins has not been de-
termined yet [73], although their functional interactions 
with lectins during sorting at the TGN were postulated 
[72]. The sequential addition of one to five N-glycans 
to the basolaterally located Na+/K+-ATPase β1-subunit 
caused a gradual redirection of this subunit to the apical 
domain in HGT-1 cells [74]. Similarly, the O-glycosylat-
ed stalk domain in neurotrophin receptor p75 (p75NTR) 
is necessary for its apical targeting. An internal deletion 
of 50 amino acids that removes this stalk domain from 
p75NTR causes this protein to be sorted to the basolat-
eral plasma membrane [71]. Oligomerization and apical 
sorting of glycosylated GPI-APs may not involve N- 
and O-glycans directly, but may depend on a lipid raft-
associated glycosylated interactor [75].

Also, proteoglycan-sorting determinants have been 
identified [76]. Proteoglycans with chondroitin sulfate 
are preferentially sorted to the apical membrane, while 
those carrying heparan sulfate are routed basolaterally.

Transmembrane apical sorting signals have been 
identified in influenza virus hemagglutinin (HA) and 
neuraminidase, but so far little work has been done to 
uncover the underlying sorting principles [77, 78].

Other apical sorting signals have been found, e.g., in 
rhodopsin [79], megalin [80], M2 muscarinic acetylcho-
line receptor [81], the copper transporting P-type ATPase 
(ATP7B) [82] and the Na-K-Cl cotransporter (NKCC2) 
[83], and they ranged from short motifs of a few amino 
acids to up to 30 amino acids long stretches.

The diversity of apical sorting determinants implies 
that several different mechanisms are employed to route 
the apical proteins to their destination. One such mecha-

nism in MDCK cells involves lipid rafts as apical sorting 
platform in the Golgi complex [84].

Lipid rafts in apical sorting
A role of lipid rafts in polarized epithelial sorting was 

suggested long ago. This was the origin of the lipid raft 
concept: apical proteins were postulated to be sorted 
through their affinity for microdomains of glycosphingo-
lipids and cholesterol, assembled in the Golgi complex 
to form apical transport carriers [4, 84]. The concept was 
generalized into a dynamic sub-compartmentalization 
principle, making use of sphingolipids and sterols to 
form small fluid membrane entities (lipid rafts) with 
specific proteins included. Lipid rafts are now defined as 
dynamic, nanometer-sized, sterol-sphingolipid-enriched, 
tightly packed lipid–protein assemblies that fluctuate on 
a sub-second time scale [85-89]. These assemblies can be 
induced to cluster to form more stable, specific ordered 
lipid raft platforms, which exert functions in membrane 
trafficking, cell polarization, signaling and other mem-
brane processes [88, 89].

The best studied apical cargo that employs lipid rafts 
to be delivered to the apical membrane is the influenza 
virus HA. HA becomes detergent-resistant after enter-
ing the Golgi complex [90-92]. Obviously, detergent-
resistant membranes (DRMs) cannot be directly equated 
with lipid rafts, as has often been the case [93, 94], 
though DRM analysis is a useful method to determine a 
protein’s raft association potential when changes in DRM 
composition are induced by biochemically/physiologi-
cally meaningful events [94, 95]. However, HA lipid raft 
association was also demonstrated by several other stud-
ies involving different methods. First, depletion of raft 
lipids, such as cholesterol and sphingolipids, resulted in 
the missorting of HA on its way to the apical domain of 
MDCK cells [96-98]. Second, antibody-mediated cross-
linking of HA, GPI-proteins or non-raft proteins led 
to cholesterol-dependent co-patching of HA with GPI-
proteins, while excluding non-raft proteins [99]. Third, 
photonic force microscopy demonstrated that HA was 
moving as a cholesterol-dependent assembly with a size 
of 50 nm in the plasma membrane [100]. In these experi-
ments, beads containing antibodies that bound the HA 
protein were immobilized by an optical trap. Although 
binding to more than one HA protein was prevented, the 
force field applied to the cell and the immobilization of 
the protein by the trap could have altered the lifetime of 
the nanoscale HA-protein assemblies and caused them 
to grow larger than in the resting state. Nevertheless, this 
was clear demonstration that the HA protein was associ-
ated with lipids. Fourth, studies employing quantitative 
electron microscopy and fluorescence spectroscopy also 
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showed that HA was present in microdomains of differ-
ent sizes, which could be modulated by cholesterol and 
sphingolipid depletion [101, 102]. Fifth, fluorescence 
photoactivation localization microscopy demonstrated 
that HA was present in nanoscale domains of different 
sizes [103]. And finally sixth, FRET microscopy showed 
that HA clustered with GPI-proteins on the cell surface in 
a cholesterol-dependent manner [104]. Altogether, these 
various experiments demonstrated that the HA protein 
is present in dynamic cholesterol-dependent assemblies, 
which is in the agreement with the lipid raft concept.

What is still missing from showing that rafts are di-
rectly involved in transport from the TGN to the apical 
membrane is the demonstration that the apical transport 
carriers are enriched in raft lipids as predicted by the 
concept. In yeast, Klemm et al. [105] used a lipid raft-
associated plasma membrane protein as bait to isolate 
TGN-derived vesicles and subsequently characterized 
their lipid composition by mass spectrometry. Their re-
sults showed that yeast sphingolipids and ergosterol (the 
equivalent to cholesterol in animal cells) are sorted at the 
TGN and transported in specific secretory vesicles to the 
cell surface. This was the first time that a transport car-
rier involved in a lipid raft-dependent pathway has been 
isolated and characterized. The finding that raft lipids are 
enriched in these carriers brought convincing support to 
the raft concept as originally postulated. Further experi-
ments with additional yeast plasma membrane proteins 
as baits showed that sorting of raft lipids is a generic fea-
ture of vesicles carrying transmembrane and GPI-protein 
cargoes to the plasma membrane [106].

For a long time, a disturbing issue in the field has been 
the lack of genetic evidence for the lipid raft-sorting 
model in the generation and maintenance of the apical 
membrane. Why has all the work on different model 
organisms failed to identify lipid raft elements in the ge-
netic screens of mutations affecting epithelial polarity? 
However, this gap has been closed recently. Through a 
combination of genetic screens, lipid analysis and imag-
ing methods, it was established that glycosphingolipids 
indeed play a role in mediating apical sorting in the gut 
of Caenorhabditis elegans [107].

Generation of apical transport carriers
After sorting in the plane of the membrane, cargo 

must be selectively incorporated into specific transport 
carriers. Membrane curvature has to be generated to form 
cargo-containing membrane buds or tubules, followed by 
subsequent scission to release the transport carrier from 
the donor membrane.

Since the advent of the lipid raft concept, raft cluster-
ing was postulated as a major driving force in the genera-

tion of transport carriers. In cellular membranes, nano-
scale rafts are usually dispersed in a continuous non-raft 
phase [108, 109]. In model membranes, coexistence of 
liquid-ordered and liquid-disordered phases results in 
line tension at the phase boundary, which arises from the 
immiscibility of membrane components that prefer dif-
ferent phases [110]. Clustering of small rafts into larger 
domains further increases the line tension, which in three 
dimensional system can be relieved by domain budding 
from the donor membrane, followed by fission at the 
phase boundaries, resulting in the generation of vesicles 
enriched in raft components [60] (Figure 1). The grow-
ing curvature of a membrane close to the demixing point 
(phase separation) further induces lipid sorting based 
solely on their underlying connectivity, which is greatly 
amplified by their clustering [111]. Since curvature of a 
membrane can also drive protein sorting, a growing bud 
can generate a feedback system whereby curvature-pre-
ferring proteins would be recruited to a growing lipid raft 
platform, further increasing the propensity to generate 
curvature [112-115]. Once a curved membrane is gener-
ated, phase separation in membrane tubes can trigger 
membrane fission arising from the difference in elastic 
constants between the domains [115, 116].

Supporting this domain-budding hypothesis, it was 
shown that the interaction of the B-subunit of Shiga toxin 
with the plasma membrane glycosphingolipid Gb3 is suf-
ficient for clustering, which increases the bilayer order 
in these regions [117]. This, together with an asymmetric 
membrane stress imposed by the toxin, results in nega-
tive curvature of the membrane and induced tubule for-
mation. Similarly, membrane invaginations are induced 
by Simian virus 40 binding to GM1 gangliosides [118]. 
Therefore, multivalent binding of specific lipids and 
clustering can result in membrane tube formation and a 
similar mechanism might be at work at the TGN.

Galectins, annexins and VIP17/MAL proteins, in-
volved in apical trafficking and with a potential to cluster 
or array, are possible mediators of lipid clustering upon 
the exit from the TGN. For the raft-mediated pathway in 
MDCK cells, galectin-9 is the strongest candidate for a 
clustering function [64] due to its binding to the Forss-
man glycolipid [50].

The process of carrier generation probably does not 
rely solely on the lipid clustering. Bending proteins are 
likely to be essential for successful transport carrier for-
mation (Figure 1). There are two principal mechanisms 
of protein-induced membrane curvature. BAR domain–
containing proteins are ‘banana-shaped’ and thus confer 
curvature by direct membrane scaffolding [119, 120]. 
They bind to membranes by their positively charged 
concave face and therefore are able to sense, stabilize, 
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and generate membrane curvature. Recently, Willen-
borg et al. reported that the sorting nexin 18 (SNX-18), 
a BAR domain-containing protein, together with the 
Rab11 GTPase-binding protein FIP5, which enhances 
its tubulation potential, is involved in the formation of 

podocalyxin-containing apical carriers [121]. The other 
mechanism relies on the insertion of a small amphipathic 
or hydrophobic wedge to induce membrane asymmetry 
resulting in curvature [122]. Recently, the FAPP2 pro-
tein, involved in the transport of apical cargo in polarized 

Figure 1 A scheme for apical transport carrier formation by domain-induced budding. (A) Nanoscale dynamic rafts sur-
rounded by non-raft membrane. (B) Growing rafts are selectively induced by galectin–glycolipid–glycoprotein interactions into 
a budding domain, while non-raft components are excluded. Raft clustering results in increased line tension. (C) Insertion of 
hydrophobic or amphipathic protein domains (red) promotes membrane bending. FAPP2 could play this role for membrane 
deformation. (D) Fission at the domain boundary (possibly aided by fission proteins) results in the release of an apical trans-
port carrier. For simplicity GPI-APs, cholesterol and other (e.g., palmitoylated proteins) proteins are not shown and cytoskel-
etal elements are omitted as well.
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MDCK cells, was shown to possess phosphatidylinosi-
tol 4-P-dependent membrane tubulation activity, which 
could be attributed to a hydrophobic wedge in its PH 
domain [123, 124].

Proteins secreted apically have been shown to depend 
on N-glycans to be sorted correctly [125]. Galectin-3 
seems not to be involved in this pathway [126]. Whether 
other galectins such as galectin-9 in MDCK cells plays a 
role in transporting secretory proteins to the apical side 
of the epithelium remains to be analyzed. Also in the ba-
solateral direction, binding proteins or sorting receptors 
would be needed. However, little is so far known about 
how this is accomplished. Probably, each basolaterally 
secreted protein will need its own receptor because so far 
no general sorting signals have been identified. However, 
for basolateral transmembrane proteins specific cytoplas-
mic sorting signals have been identified.

Basolateral sorting

Basolateral sorting signals
Basolateral sorting signals are indeed relatively well 

defined when compared with apical sorting signals. 
Mellman and co-workers [127] reported the existence of 
basolateral signals in the cytoplasmic domain of the low-
density lipoprotein receptor and subsequently showed 
that these signals were also transplantable. Basolateral 
signals are usually located in the cytoplasmic tail of 
cargo proteins. They include tyrosine-based YXXØ, 
NPXY motifs (where X can be any amino acid and Ø is 
a bulky hydrophobic residue) and di-hydrophobic-based 
sorting signals [40, 128-130]. Recently, Weise et al. [131] 
identified two basolateral targeting signals in the surface 
glycoproteins of the Nipah virus, involving tyrosine 525 
in the F protein and a di-tyrosine motif at position 28/29 
in the G protein. There are also basolateral signals con-
stituted of a single leucine patch as in CD147 [132] or 
other sequences as identified in neural cell adhesion mol-
ecule [133], pIgR [134], epidermal growth-factor recep-
tor [135], epidermal growth-factor receptor 2 [136] and 
transforming growth factor β [137]. Recently, a 25-resi-
due region within the C-terminal tail of the P2Y(1) re-
ceptor was identified, where the total number of charged 
residues was found to be crucial for basolateral targeting 
[138].

Basolateral sorting of syntaxin 4 depends on its N-ter-
minal domain and the AP1B clathrin adaptor [139]. Here, 
a short stretch between residues 24 and 29 (ALVVHP) 
was identified as the sorting determinant.

Most likely other basolateral sorting signals remain to 
be identified and characterized.

Basolateral sorting mechanisms
How do basolateral sorting signals specify the desti-

nation? The fact that many basolateral proteins contain 
the di-hydrophobic-based or the tyrosine-based sorting 
signals resembling the clathrin-dependent endocytosis 
motifs has long suggested that adaptor protein (AP)–
clathrin complexes play an important role in basolateral 
sorting. Five AP complexes (AP-1, AP-2, AP-3, AP-4 
and recently discovered AP-5) [140] have been identified 
to localize along the exocytic and endocytic routes and 
function in recognizing cargo and mediating vesicle for-
mation [129, 141].

AP-1B is the only clathrin-associated AP adaptor with 
a well-characterized role in basolateral sorting [142] and 
differs from the ubiquitous adaptor AP-1A by a differ-
ent medium subunit mu1B [143]. AP-1B is expressed in 
various polarized epithelial cell lines, including MDCK, 
Caco-2, HT-29, Hec-1-A and RL95-2 cells. Lack of the 
mu1B subunit in the kidney epithelial cell line LLC-PK1 
results in missorting of many basolateral proteins to the 
apical surface, but proper basolateral trafficking can be 
restored by stable expression of mu1B. Also AP-4 is in-
volved in basolateral sorting, but the detailed mechanism 
remains to be defined [144].

In polarized epithelial cells, only recent functional ex-
periments provided the evidence that clathrin is required 
for basolateral plasma-membrane protein sorting [145, 
146]. Knockdown of the clathrin heavy chain in MDCK 
cells depolarized most basolateral proteins, by interfer-
ing with their biosynthetic delivery and recycling, but 
did not affect the polarity of apical proteins. Quantitative 
live imaging showed that clathrin knockdown selectively 
slowed down the exit of basolateral proteins from the 
Golgi complex and promoted their missorting into apical 
carrier vesicles. However, so far it is not known exactly 
at which step in basolateral sorting clathrin comes into 
play.

Membrane trafficking to the polarized cell surface

The release of transport vesicles carrying apical car-
goes or basolateral cargoes from the TGN or recycling 
endosomes must be coordinated with vesicle trafficking, 
docking and fusion with target membranes during the 
establishment and maintenance of epithelial cell polarity. 
Both microtubules and actin play an important role in 
these processes [8].

Vesicle transport along microtubules in polarized epi-
thelial cells is driven by motor proteins. It was shown 
that the minus-end kinesin KIFC3 delivers influenza HA 
and annexin 13b to the apical domain [147]. KIF5B and 
KIF17, plus-end microtubule motors, are involved in 
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apical targeting of P75 [148, 149]. Dynein has a role in 
rhodopsin transport to the apical membrane [150]. Traf-
ficking of transport carriers destined for the basolateral 
domain is driven by different microtubule motors [130, 
151].

The actin network not only provides the epithelial cell 
with structure and shape but also is thought to contribute 
to vesicle trafficking in several other ways, including 
vesicle formation, scission and fusion and vesicle trans-
port [8, 152-154]. Also myosins have been implied in 
apical trafficking [155], and myosin 5B was shown to be 
required for apical polarization [156]. It interacts with 
Rab11 and Rab8 [156], and the latter one seems to play 
a role in both apical and basolateral delivery, but how 
this is regulated is not known [157, 158]. Myosins, for 
instance myosin VI, are also involved in basolateral traf-
ficking [159]. When and how actin and myosin mecha-
nistically carry out their functions are not yet understood.

The cargo carriers also have to include many of the 
proteins that are required for specific delivery to the api-
cal or basolateral plasma membrane domains. These in-
clude SNAREs and Rab proteins [160, 161]. The exocyst, 
a tethering complex at the plasma membrane, not only 
plays an important role in tethering and spatial targeting 
of post-Golgi vesicles to the basolateral membrane prior 
to vesicle fusion [162, 163] but also is involved in the 
formation of basolateral transport vesicles [164]. It has 
been shown that basolateral cargo, such as E-cadherin, 
interacts with the exocyst subunits, AP-1B, and baso-
lateral SNAREs, ensuring that basolateral delivery is a 
coordinated process [165].

These are just glimpses of the dynamic interactions 
that regulate the whole trafficking system and bind it to-
gether. More extensive reviews on basolateral sorting can 
be found elsewhere [130, 166].

Conclusions

Epithelial cells employ an elaborate trafficking sys-
tem to control the distribution of proteins and lipids to 
their apical and basolateral surface domains, which is an 
important determinant of cell polarity. The complex na-
ture of the underlying mechanisms is still far from being 
completely understood. More research is necessary to 
discover how the involved machineries are functioning in 
the Golgi apparatus and endosomal sorting and to gain a 
better understanding of aspects such as transport routes, 
sorting signals, the exact role of lipid rafts and transport 
carrier formation. Also the role of cytoskeletal elements 
and motor proteins has to be included to yield a more 
comprehensive view of epithelial protein sorting. Signal-
ing pathways and their cross-talk with the trafficking ma-

chinery will contribute a further layer of complexity. To 
be able to fully unravel how the machinery for epithelial 
protein and lipid sorting works, it will be necessary to 
embark on biochemical studies that aim at reconstituting 
in vitro the steps that lead to the segregation of apical 
and basolateral cargoes.
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