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Discrete Region Competition for Unknown
Numbers of Connected Regions
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Abstract— We present a discrete unsupervised multiregion-
competition algorithm for image segmentation over different
energy functionals. The number of regions present in an image
does not need to be known a priori, nor their photometric proper-
ties. The algorithm jointly estimates the number of regions, their
photometries, and their contours. The required regularization
is provided by defining a region as a connected set of pixels.
The evolving contours in the image are represented by computa-
tional particles that move as driven by an energy-minimization
algorithm. We present an efficient discrete algorithm that allows
minimizing a range of well-known energy functionals under the
topological constraint of regions being connected components.
The presented framework and algorithms are implemented in
the open-source Insight Toolkit image-processing library.

Index Terms— Connected component, deconvolution, digital

topology, discrete level set, energy-based segmentation,
multiregion segmentation, region competition, topological
constraint.

I. INTRODUCTION

ULTIREGION image segmentation partitions a digital

image domain Q C N¢ (here the dimension d = 2 or

3) into a background (BG) region Xg and (M —1) > 0 disjoint
foreground (FG) regions X;, i = 1,..., M — 1, bounded by
contours or surfaces! I}, i =1,...,M — 1. A large class of
segmentation algorithms can be interpreted as (local) minimiz-
ers of certain energy functionals. Energy-based segmentation
allows accounting for prior knowledge about the imaged
objects and about the image-formation process, including
knowledge about the topology of objects [1] or their shapes.
A prominent and well-studied example of a segmentation
energy is the functional proposed by Mumford and Shah (MS)
[2]. For binary images and images containing two regions
(FG and BG) of constant intensities, this functional is notably
known from the works of Chan and Vese (CV) [3]. In the CV
case, optimal solutions can be found using graph-cut (GC)

Manuscript received June 10, 2011; revised March 10, 2012; accepted
March 11, 2012. Date of publication April 3, 2012; date of current version
July 18, 2012. This work was supported in part by the Swiss Federal
Commission for Technology and Innovation (to IFS in collaboration with
Bitplane, Inc.,) under Grant 9325.2-PFLS-LS, and the Swiss SystemsX.ch
Initiative, under Grant LipidX and Grant WingX, to IFS. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Sina Farsiu.

The authors are with the MOSAIC Group, ETH Zurich, Zurich 8092,
Switzerland, and also with the Swiss Institute of Bioinformatics, Zurich 8092,
Switzerland (e-mail: janickc@inf.ethz.ch; grpaul@inf.ethz.ch; ivos@ethz.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2012.2192129

IThe term “contour” is used throughout this paper to mean either “outline”
(2-D) or “surface” (3-D). Similarly, we use “pixel” to mean either “pixel”
(2-D) or “voxel” (3-D).

algorithms [4], [5]. For images containing a number of
constant-intensity regions known a priori, the MS energy
can be convexified allowing globally optimal solutions to be
computed efficiently [6], [7].

Regions in an image are usually defined through their
intensities or other photometric or texture features. Multiregion
segmentation then amounts to grouping pixels according to
their features. Regions may hence comprise several discon-
nected sets of pixels, and the number of regions (i.e., the
number of feature groups) frequently needs to be imposed,
penalized, or learned a priori. Here we introduce the constraint
that an FG region has to consist of a connected set of pixels.
This is motivated by the observation that, frequently, discrete
physical objects are represented in an image. Moreover, topo-
logical constraints can be evaluated using local information
only, whereas region-number priors require global information.
The present definition of a region regularizes the problem of
estimating the number of regions jointly with their photometric
features and contours. We extend concepts from digital topol-
ogy to enforce the topological region definition, and we present
an efficient discrete energy minimization algorithm that can
locally minimize a range of well-known energy functionals
under this hard constraint.

We focus on images that contain unknown numbers of
regions of not necessarily homogeneous intensities. The
corresponding energy functionals are often nonconvex, as
for example the piecewise-smooth (PS) MS energy [2], [8]
or a deconvolving energy [9]. Segmentations are found as
regularized local minimizers, formalized in the framework
of deformable models. Deformable models entail an evolv-
able (deformable) continuous or discrete representation of
the contours I;. Local optimization is done by iterated per-
turbation of an initial contour such as to locally minimize
the energy.

In unsupervised multiregion segmentation the number of
regions, their photometric features, and their contours are to
be jointly estimated from the image. This requires additional
regularization on top of the usual smoothness priors. Most
multiregion methods use region-number priors (e.g., [10],
[11]). Alternatively, a length/area balancing term can be used
[12]. Brox and Weickert proposed recursive splitting of regions
into pairs of subregions such as to minimize an energy that
includes a region-number penalty [10]. A separate level set
is evolved for each region. In order to prevent regions from
overlapping, an additional penalization term is introduced into
the energy functional. The number of level functions that need
to be evolved can be reduced to one [13]. A representation
with only one level function, however, cannot capture multiple

1057-7149/$31.00 © 2012 IEEE
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Motivation for defining FG regions as connected components. The image shows a collection of cell nuclei, which are distinct real-world objects

(image: Dr. P. Liberali, University of Zurich). (a) Segmentation (black outlines) using GC [4] to minimize the two-region CV energy. Due to their different
intensities, not all nuclei are correctly delineated (e.g., arrow A). (b) GC segmentation minimizing a 10-region piecewise-constant (PC) energy. It is not clear
what number of regions to choose in order to avoid oversegmentation and fusion of objects (see arrows B). (c) Segmentation using the present algorithm
constraining FG regions to be connected components. The algorithm finds 39 connected FG regions, corresponding to the 39 nuclei in the image.

contours touching in one point. Other multiregion segmenta-
tion methods impose a fixed number of regions (or an upper
bound on it) that is often learned prior to contour evolution
using, e.g., pixel-feature clustering or model selection. This is,
for example, the case in multiphase level sets, which evolve
log, M level functions in order to segment a fixed number
of M regions [14]. Besides the increased computational cost
of evolving multiple level functions, undefined statistics from
empty regions may hamper the evolution [10]. Mansouri
et al. [15] presented a multiregion-competition [16] imple-
mentation where the contours are implicitly represented by
multiple level functions. Lie ef al. represented multiple regions
using a single level function that converges to a piecewise
constant (PC) function indicating the different regions [17].
Homeomorphic level sets prevent topological changes during
energy minimization [18].

Discrete implicit methods directly operate on the discrete
constituents of a digital image, such as pixels or voxels. They
switch the region labels of pixels in order to minimize an
energy functional. Song and Chan introduced a fast discrete
level-set method for the two-region PC CV model [19]. He and
Osher generalized this method to an arbitrary but previously
known number of PC regions [20] and related the approach to
topological derivatives [21]. Yu et al. optimized a two-region
PS image energy using a discrete level function on a lattice
[22]. Fast discrete level-set methods have been used for real-
time tracking of a known fixed number of regions [23] and
for fast approximate surface evolution [24]. Graph min-cut
algorithms [4] are efficient combinatorial optimizers for dis-
crete problems with theoretical performance guarantees, both
for previously known numbers of regions [4] and for unknown
numbers of regions using a region-number penalty [11].

Here we replace the prior or penalization on the region
number (or its upper bound) by the topological constraint that
FG regions have to be connected components. Together with
an efficient discrete contour evolution algorithm that accounts
for this constraint, this constitutes the main contribution of this
paper. We present an implementation of a versatile discrete-
contour multiregion-competition algorithm in 2- and 3-D,
inspired by discrete level sets [23]. The algorithm is based

on the idea of using computational particles to represent
the evolving contour and is able to segment an arbitrary
number of connected regions known a priori. Regions are
dynamically fused and split during energy minimization. This
enables jointly estimating the number of connected regions in
an image, their photometric features, and their contours. We
use digital topology to provide optional control over region
splits and merges during contour evolution. The topological
constraint for FG regions to be connected components, how-
ever, is always present.

We demonstrate the applicability of this method to three
well-known segmentation energy functionals. The first energy
describes images containing an unknown number of regions
where each region has a different, but constant, (homoge-
neous) intensity. The energy is regularized using a penalty on
the approximated length of the overall contour. The second
energy extends this model to account for regions containing
PS intensity distributions. The third energy extends explicit
deconvolving active contours [9] to handle topological changes
during energy minimization and to arbitrary dimensions. This
renders the method less sensitive to the topology of the initial
segmentation.

The computational cost of this algorithm mainly depends on
the energy functional to be minimized. For PC and PS image
models, it scales linearly with the number of particles used
to represent the contour and is independent of the size of the
image. The present algorithm is implemented as an image filter
in the Insight Toolkit (ITK) image-processing library [25] and
is available as open source from the web page of the authors.

The remainder of this paper is organized as follows.
In Section II, we motivate the proposed definition of
FG regions and present an extension of digital topology to
multiple regions. In Section III, we present an efficient discrete
algorithm for region-competition energy minimization under
hard topological constraints. Section IV presents the applica-
bility of the present framework to three well-known image
models on both synthetic and real-world images in 2- and
3-D, and compares its performance with that of a multilabel
GC minimizer [11]. Section V summarizes and discusses the
results.
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Fig. 2. TIllustration of the dependence between the number of regions and

the length-regularization coefficient 4 in a PC image. (a) Raw image I (left)
and initialization for the present algorithm (right). (b) and (c) Resulting
reconstructed images using GC [4] with M = 2 and M = 8 regions,
respectively. The lowest intensity that is detected depends on both M and
A. (d) Present reconstruction when defining an FG region as a connected
component. The result corresponds to the GC result with the ground-truth
number of M = 8 regions. The lowest intensity detected depends only on A.

II. DIGITAL GEOMETRY REPRESENTATION

In order to jointly estimate the number of regions, their pho-
tometric properties, and their contours, unsupervised multire-
gion segmentation energies typically include a region-number
penalty [10], [11], [13] or a length/area regularizer [12]. Here
we, instead, define an FG region as a connected set of pixels in
a certain digital geometry representation, amounting to a topo-
logical constraint. This definition is motivated threefold: 1)
we wish that regions determined by a segmentation algorithm
delineate different physical objects represented in an image
(see Fig. 1). This frequently requires choosing an appropriate
number of regions so as to avoid over- and undersegmentation
[see arrows A and B in Fig. 1(b)]; 2) it resolves the dependence
between the number of regions and the regularization constant
in the energy (see Fig. 2); and 3) it can be evaluated using only
local information, whereas region-number penalties require
global information (see Section II-B).

We first present the digital geometry representation used
here and then provide an extension of digital topology to
multiple regions.

A. Digital Geometry Representation

1) Connectivity of Regions: We constrain FG regions in the
image to be represented by connected pixels. All void space
between FG regions is represented by one and the same BG
region. Regions that can be captured by this representation
must be larger than a single pixel. Consequently, regions
cannot be connected via edges or corners of the pixel lattice.
The FG regions are hence defined as face-connected neigh-
borhoods, i.e., 4-connected in 2-D and 6-connected in 3-D. In
the following, we refer to this type of connectivity as the FG
connectivity. According to Jordan’s theorem, the BG region
then needs to be 8-connected in 2-D and 18 or 26-connected
in 3-D [26]. Here we choose the (FG, BG)-connectivity pairs
(4, 8) and (6, 26) for 2- and 3-D, respectively.

2) Contour: The discrete contour I; around FG region X;,
i=1,...,M —1, is defined by all pixels with at least one
FG-connected neighbor belonging to a different region X; #
Xi, j=0,...,M — 1. These contour points are part of the
corresponding FG region, i.e., I; C X;, making all FG regions
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closed connected subsets of Q. The BG region is the open
complement set Xg = Q\ Uf‘i{l X;.

B. Multiregion Digital Topology

For images with one FG and one BG region, the concept of
digital topology allows detecting whether changing the region
label of a point (pixel) changes the genus of either the FG or
the BG region [1], [26]-[28].

We briefly introduce the notions of connectivity, geodesic
neighborhoods, and topological numbers. For more details on
these topics, we refer the reader to [1], [27] and [28]. We then
extend these concepts to multiple FG regions.

We adopt the notation and definitions from [26], [27], and
[29]. Digital topology is a binary concept that defines the FG
X as a set of discrete points x and the BG as its complement
X, such that X N X = ¥ and X UX = Q. Both FG
and BG have a certain connectivity. In 2-D, two points are
4-connected if they share an edge, and 8-connected if they
share a corner. In 3-D, two points are 6-connected if they
share a face, 18-connected if they share an edge, and
26-connected if they share a corner. In order to avoid topologi-
cal paradoxes, only the following combinations of FG and BG
connectivities are admissible according to Jordan’s theorem:
(n,n) € {(4,8), (8,4), (6,26), (26, 6), (6, 18), (18, 6)}.

The n-neighborhood N, (x) is the set of n-connected points
adjacent to point x.

Definition 1: Let X C Q. The geodesic neighborhood of
order k of a point x € X is the set N,’{ (x, X) defined
recursively by

NI(x, X) = {N,(x)\x} N X
NE(x, X) = NL(x, X) N UIN. (), ¥ € N1 (x, X))

with m = 8 in 2-D and m = 26 in 3-D.

Intuitively, the geodesic neighborhood N,’f (x, X) comprises
all points y € an1 (x, X)\x that are n-connected to x along a
path that is not longer than &k [27].

From this, a topological number can be defined as the
number of n-connected components #C,, (-) within a geodesic
neighborhood.

Definition 2: The topological numbers 7, (x, X) relative to
the point x and the set X are

Ty (x, X) = #Cs (Nf (x, X))

Ty (x, X) = #Cs (Ngl (x, X))

To (x, X) = #Co (N (x, X))
Te+ (x, X) = #Cs (Ng (x, X))
Tig (x, X) = #Cis (Vs (x, X))

Tao (x, X) = #Cas (NJg (x, X)).
The notation n = 67 indicates that the dual connectivity 7
is 18, whereas the dual connectivity for n = 6 is 26.
Topological numbers are an efficient tool to characterize
points in binary images. They can be computed from local
information. For example, if T, (x, X) = T;(x, X) = 1, we
know that changing the region label of point x does not change
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the genus of neither the FG nor the BG. All points for which
this is true are called simple points.

We use topological numbers to classify points also in the
present multiregion framework by splitting the FG X =
Ulﬂi Tl X; into multiple disjoint subregions X;. The BG region
remains a single set X = Xo.

Definition 3: A point x is FG-simple iff T,(x, X;) =
Ti(x,X;)=1foralli > 0.

Intuitively, T, (x, X;) is the topological number when con-
sidering all other regions X;, j # i, to be part of the BG.
Changing the region label of an FG-simple point does not
change the genus of any FG region. For example, all contour
points except (b, 5), (c, 5), and (d, 4) in Fig. 3 are FG-simple.

This extended definition of FG simplicity allows distin-
guishing different topological events on the FG regions. In this
framework, the topological constraint that FG regions have to
be connected components can be interpreted as a hard penalty
in the segmentation energy.

III. ENERGY MINIMIZATION ALGORITHM

We introduce a versatile region-competition mechanism
inspired by discrete level set methods. In the present frame-
work, minimization of an energy £ uses a rank-based discrete
optimizer that does not require information about the gradient
of the energy functional. This is beneficial, e.g., since the hard
penalty introduced by the topological constraint on regions is
not differentiable. We start by introducing the data structures
and then describe the minimization algorithm used to perform
topologically consistent contour evolution. The algorithm is
designed with data locality and parallelism in mind.

A. Data Structures

This method relies on three main data structures.

1) Regions are identified using a label function (or label
image) L: Q +— N that maps a discrete space coor-
dinate x to the region label currently assigned to that
pixel. Contour pixels are assigned the negative label of
the region they bound. This allows identifying contour
points directly from the label image. The label of the
BG region is fixed to O.

2) All points belonging to a contour are stored as computa-
tional particles. Each particle p is defined by its location
Xp, i.€., the integer pixel coordinates of the correspond-
ing contour point, and its properties. These properties
are used to propagate the contour and are stored in a
particle data structure containing the following.

a) The currently assigned label L(x,) to avoid expen-
sive lookups in the label image.

b) The candidate label [’ as the label that minimizes
A€, among all other candidate labels.

c) The change in energy AE, when changing the
current label [ to the candidate label I’.

d) Lists with the particle indices of the parent and
child points of p. Parents are all FG-connected
points that belong to a different FG region. They
are responsible for expanding the FG region they
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Algorithm 1 Discrete Region Competition

1: Initialization: Set up L and C.

2: repeat

3 M=C

4:  Optimization: see Algorithm 2

5. Contour propagation: see Algorithm 3
6: Topology processing: see Algorithm 4
7: until convergence

belong to. Children are all FG-connected points
that belong to a different region, including the BG.
e) The count r of parents with label I’
3) We use a hash map Q > C as an efficient data structure
to iterate over the particles and to map space coordinates
x to particle indices p. The hash map allows particle
lookups in O(1).

B. Algorithm

We describe an algorithm that iteratively propagates the
contour points (viz., the particles) of multiple regions over
the image such as to locally minimize an energy functional
under topological constraints on the FG regions. After initial-
ization, the algorithm proceeds in iterations (see Algorithm 1),
each of which comprising three steps: optimization, contour
propagation, and topology processing.

Application-specific segmentation methods can be derived
from the present algorithm by specifying a particular energy
functional and a set of topological constraints. The former
allows including prior knowledge about the image-formation
process [e.g., the point-spread function (PSF) of a microscope
in deconvolving active contours [9]] and the morphology of the
imaged objects. The latter allows including prior knowledge
about whether FG regions are allowed to fuse or split (or
both or none) during the energy minimization process [1],
[27], [28]. Regardless of additional topological constraints on
contour evolution, however, an FG region is always defined as
an FG-connected component.

The input arguments to the algorithm are an energy func-
tional &, the image data I, and, since it is an iterative process,
an initial segmentation L¢. Pixels in Lo that have a special
label f can be used to indicate forbidden regions. These
regions are treated as boundaries that are never penetrated by
any contour, nor do they have an active contour themselves.
In order to avoid boundary-checking at the border of the image
domain Q, we initially pad the entire image by a layer of pixels
with label f.

1) Initialization (Line 1 in Algorithm 1): All FG pixels with
a neighbor of a different label are marked as contour points.
For each contour point, a particle is generated and added to
the hash map C, where the corresponding space coordinate is
the key of the map and the particle its value.

2) Optimization: In the main loop (line 2 in Algorithm 1),
we first copy the current set of particles C to M. M is the
candidate list containing all particles we consider moving to
another region. We first attempt moving them to the BG by
setting all candidate labels /" in M to O (line 2 in Algorithm 2).
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Algorithm 2 Optimization

Algorithm 3 Contour Propagation

1: for all p e M do
2:  set parent flag; l;, =0; A&, = AE(xp, 1 — 0).
3 forall {g: x, € (N (xp,L #1)}1, # f} do

4 set child flag of g; register p in ¢g’s parent list; register
q in p’s daugther list

5: if g ¢ M then

6: add g to M; Setl; = 0; ry = 1; l; =1p; A&, =
AE(xq, 0 — 1)

7: else

8: if 1, =, then

9: rg =rq+1

10: else if AE(xy,ly — 1) > AE(xy,1l; — 1p) then

11: l,=1p

12: construct G from M
13: M =M\{p:AE, =0}

Fig. 3. Illustration of three adjacent FG regions A (light gray), B (dark
gray), and C (gray) in 2-D. Points in the BG region are white. Particles
are shown as crosses. Points without a particle are interior points; they are
not FG-connected to any other region. The arrows point from parents to the
corresponding children. The circles indicate non-FG-simple contour points.

We then calculate for each particle p the energy difference
AE, = Al (xp,l — 0) =E(xp,0) — E(xp, ).

In the next step, we attempt growing the FG regions. To
do so, all particles p € M perform the following steps. All
neighboring points that belong to a different region (including
the BG) register p as a parent (line 4). Particles for contour
points that do not yet exist (since their current label is 0) are
created and added to M (line 6). All particles now know the
set of pixels they could potentially move to, and the set of
pixels they are attacked from.

The candidate label l; of g is set to the label of p if this
is favorable in energy (lines 8—11). This means that if the
candidate label of ¢ is different from the label of p (else
we increase the parent count r since this candidate label is
supported by two or more parents, line 9), we set / ; to the label
Ip of the parent if AE(xq,ly — 1p) < AE(xg,lg — 1}). In
addition, we remove particles with A€ > 0 from the candidate
list (line 13).

While each individual move in M is guaranteed to decrease
the overall energy, this may not be true for several moves
performed simultaneously. This property is inherent to dis-
crete contour-propagation methods and can cause contour and
energy oscillations. We therefore monitor the history of the

1: find maximal-connected subgraphs Gy of G.
2: for all Gy = {Vi, Ei} do
3:  sort Vi according to AE

4: for all p € Vi with A, <0 do

5: if conditions C1, C2, and C3 are true then
6: V children g with I;, =1, 1 rg =rg — L.
7: else

8: M= M\p

contours and halve the percentage of accepted moves whenever
the contours do not propagate anymore. This amounts to
reducing the step size in a rank-based optimization scheme.
Unless the algorithm has already converged, the step size
eventually reduces to 1, i.e., only a single move from M
is executed in each iteration. This guarantees that the energy
can only decrease from then onward, and the algorithm hence
converges to a local minimum of £.

3) Contour Propagation: The set of moves that will be
executed simultaneously needs to be selected according to
the topological and causal constraints. Simply executing all
minimum-energy moves determined in the optimization step
could lead to violations of the topological constraints. Only
contour points that are not FG-simple are allowed to cause a
topological change in any FG region.

Topological violations can arise from the fact that moves at
iteration ¢ may depend on moves at iteration ¢ + 1. This is
illustrated in Fig. 3 for the points (d,2) and (c,3). Whether
region A is allowed to propagate to pixel (d,2) without
disconnecting depends on the label of pixel (c,2) at iteration
t + 1. The move at iteration ¢ is valid only if pixel (c,2)
will still belong to region A at iteration ¢ + 1. But (c,2)
has a parent at (c,3), proposing it to join region B. This
point at (c,3) in turn is a candidate for label C through the
parent at (d,3). Situations like this can induce topological
dependence chains of arbitrary length. We identify the set
of moves that are topologically dependent by constructing an
undirected graph G = {V, E} (line 12 in Algorithm 2). The
vertices V correspond to particles and the undirected edges E
to parent—child relationships. Topologically dependent sets are
then given by the maximal-connected subgraphs G of G. The
maximal-connected subgraph in the example of Fig. 3 contains
the vertices {(c, 2), (c, 3), (d, 2), (d, 3)}.

The contour is then propagated by selecting all compatible
moves in Gi so as to minimize the sum of their energy
differences. This is done independently for each subgraph Gy.
In order to avoid enumerating all compatible moves, we use
a suboptimal heuristic (Algorithm 3). This starts by sorting
the vertices Vi of each subgraph by ascending AE (line 3
in Algorithm 3) and purging all invalid moves from M in
this order. Moving particle p is valid if it fulfills all of the
following conditions (line 5):

C1: if p is a child, its parent count is r, > 1;

C2: if p is a parent, all of its children g that have already
been accepted as a move have ry > 1;

C3: if p is a parent, at least one of its children is not yet
accepted or has a candidate label l; #lp.
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Algorithm 4 Topology Processing

Algorithm 5 Data-Structure Update

1: change = true

2: while change do

3: change = false

4. for all p e M do

5: if x, is FG-simple then

6 Update data structures: Algorithm 5(x )

7 change = true

8: for all p € M do

9: if holes are disallowed AND (7, (xp, L = 1) =2
OR T;(xp, L #14) > 2) then

10: next p

1. if T, (xp, L =1,) > 2 then

12: next p if splits are disallowed

13: store the seed set S = {N|) (xp, L =1)}.

14: Update data structures: Algorithm 5(x)

s:forall X; ~X;,i,j=1,...,M—1, do

16: if fusions are allowed AND region merging criterion is
true then

17: merge regions X; and X; and add seed to S

18: Recompute L using flood fill from seeds &

—_

C1 ascertains that the particle is connected to the propagating
region. C2 ensures that no child of this particle would lose
connection to the propagating region if this parent changed its
label. C3 prohibits moves of interior points. Valid moves for
a parent p reduce the parent counts of all its children g with
l; =1, (line 6).

4) Topology Processing: We detect and account for topo-
logical changes in the FG regions using concepts from digital
topology [1], [23], [26]-[28]. The BG region is allowed to
change its topology arbitrarily. A genus change in an FG
region can be a split of the region into several regions, a fusion
of two or more regions into one, or the introduction of a hole
into a region.

Splits and the introduction of holes are detected using the
FG topological number. If T,(xp,{y : L(y) = l;,}) > 2
or Ti(xp,{y : L(y) # l4}) > 2, changing the label of
particle p to l;, introduces a hole in the children of region
Iy (line 9 in Algorithm 4). Similarly, if the FG topological
number for the label [/, is larger than 1, the correspond-
ing region splits, unless splits are disallowed by the user
(lines 11 and 12).

If region fusions are allowed, all competing pairs of regions
(indicated by ~ in line 15) undergo a region-merge check
(line 16). In principle, this check depends on the energy
functional £. Different energy-independent merging criteria,
however, have been introduced based on region statistics [16],
[30], [31]. Here we use the symmetric Kullback—Leibler merg-
ing criterion [30] based on measuring the similarity between
the empirical intensity distributions Px; and Px; of the two
regions X; and X, i, j > 0. The regions fuse if

Dxv (Px;|Px;ux;) + DkL (Px;||Px;ux;) <0 (1)

where Dkp (||-) is the Kullback-Leibler divergence between
the two distributions in the argument. The merging threshold

1: L(xp) = l;.

2: if I, # 0 then

3 Add x' € N} (xp,1,) t0 C; L(x") = —l,y

4:if [,y # 0 then

5:  Remove all interior points in x’ € N (x,, I},) Ux, from
C and set L(x') = |l;,|.

6: else

7. C= C\xp

6 is a free parameter of the method. For 8 < 0, regions are
prevented from fusing.

Whenever region labels change as a result of splits or
fusions, a seeded flood fill in L is performed to identify
the new connected components. For fusions, the seed point
is one of the pixels where the regions touch. For splits, all
FG points neighboring points where the regions were last
in contact are seeds. The points of last contact are easily
found as those that are not FG-simple (line 13). If a seed
point moves to a different region in line 14, another point
in its geodesic neighborhood of order 1 becomes the new
seed. The flood fill (line 18) then reconstructs the label
image L.

5) Data-Structure Update: During topology processing,
moves that do not induce topological violations are exe-
cuted and the data structures updated (Algorithm 5 called
from lines 6 and 14 of Algorithm 4). The labels of the
corresponding points are changed to the respective candidate
labels, and the label image is updated accordingly (line 1
in Algorithm 5). These changes may cause the creation of
new contour points, the particles of which are added to
the hash map C (line 3). Similarly, the particles from pix-
els that newly became interior points are removed from C
(lines 5 and 7).

IV. BENCHMARKS AND APPLICATIONS

We demonstrate the capabilities and limitations of the
proposed topological region prior and minimizer by applying
them to synthetic benchmark images with three different
energy models. In each case, we also illustrate the practical
applicability of the method to real-world images and
provide computational timings. All times reported have
been measured on a single 2.67 GHz Intel i7 core with 4
GB RAM using the Intel C++ compiler (v. 12.0.2). All
test cases and results are summarized in Table I. As a
benchmark, we compare with iterated extended a-expansions
with label costs as a region-number penalty [11]. We use
an 8-neighborhood in 2-D and a 26-neighborhood in 3-D
with edge weights following the Cauchy—Crofton formula
[5]. The a-expansions are iterated in a PEARL-like manner
in order to solve the joint estimation problem of region
numbers, intensities, and contours [32]. We choose this
GC-based benchmark algorithm, referred to as GC below,
since it is also discrete and provides theoretical performance
guarantees. The corresponding source code was obtained from
http://vision.csd.uwo.ca/code/.
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TEST CASES BENCHMARKING THE PRESENT OPTIMIZER (PRESENT) AGAINST MULTILABEL GC FOR DIFFERENT ENERGY FUNCTIONALS (PC; PS;

DEC: DECONVOLVING) AND IMAGES. £gT IS THE ENERGY OF THE GROUND-TRUTH SEGMENTATION FOR THE SYNTHETIC TEST CASES

Optimizer Initialization | Optimizer parameters | Edata | Energy parameters Final £ | (€ — &c1)/EcT | Iterations | CPU time
Icecream PC 2-D, 130 x 130, Fig. 4
present 6 x 6 bubbles 0=02,R. =4 PC 2 =0.04 71.42 4e-5 64 0.39s
GC M =12 labelcost = 5 PC A=0.04 71.28 —1e-3 3 0.28s
GC M=6 labelcost = 0 PC A=0.04 75.85 0.06 3 0.09s
Icecream PC 2-D, 410 x 410
present 8 x 8 bubbles 0=02,R, =8 PC 2 =0.04 467.2 5.2e-3 110 7.34s
GC M=12 labelcost = 5 PC A=0.04 464.3 —1.0e-3 5 8.18s
GC M=6 labelcost = 0 PC A =0.04 760.8 0.63 3 1.3s
Icecream PC 3-D, 100 x 100 x 100
present 5 x 5 x 5 bubbles 0=02,R. =4 PC A =0.04 1863 5.5e-3 62 57s
GC M=12 labelcost = 5 PC A=0.04 1844 —4.4e-3 5 76.9s
GC M=6 labelcost = 0 PC A=0.04 1880 0.014 5 38.5s
Zebrafish embryo nuclei 3-D, 512 x 512 x 39, Fig. 6
present | local maxima | 0=0,R. =2 | PC | A =0.04 * - 44 7.3m
Bird, 481 x 32, 5(a) and (b)
present 18 x 12 bubbles 0=05R, =38 PC 2 * - 83 4.06s
GC M=5 labelcost = 50 PC 0.2 * - 9 8.81s
Icecream PS 2-D, 130 x 130, Fig. 7
present 5 x 5 bubbles 0=02,R. =4 PS A=0.04,=0.05R=38 87.94 8.5e-4 71 0.49s
GC 5 x 5 bubbles labelcost = 20.5 PS A=0.04,=0.05R=38 87.87 —5.3e-5 9 10.2s
GC 3 x 3 bubbles labelcost = 40 PS A=0.04,=0.05R=38 87.87 —5.3e-5 8 3.47s
Icecream PS 3-D, 100 x 100 x 100
present 3 x 3 x 3 bubbles 0=03,R. =4 PS A=0.04,8=005R=38 4618 6.7e-4 77 4m
GC M=3 labelcost = 20.5 PS A=0.04,8=005R=38 4615 —2.7e-6 4 12m
Zebrafish embryo germ cells 3-D, 188 x 165 x 30, voxel size = (506 x 506 x 1500nm), Fig. 8
present bounding box | Re =0.04 | PS | 2=0.08,8=0.005R=45um * - 207 5.3m
Cloud 2-D, 481 x 32, 9(a) and (b)
present 18 x 12 bubbles 0=02,R, =8 PS A=02,=0.1,R =30 * - 157 57.77s
GC 3 x 5 bubbles labelcost = 175 PS A=02,=0.1,R=30 * - 16 12.3m
Elephants 2-D, 130 x 130, 5(c), (d) and 9(c), (d)
present 18 x 12 bubbles 0=05R, =8 PC A=02 * - 163 11.26s
GC M=5 labelcost = 50 PC A=02 * - 13 42.57s
present 18 x 12 bubbles 0=02,R, =8 PS A=02,8=0.05R =30 * - 385 25.57s
GC 3 x 5 bubbles label cost = 175 PS A=02,8=0.05R =30 * - 17 13.2m
Convolved artificial image 2-D, 49 x 72, Fig. 10
present | boundingbox | 6=02,R.=4 | DEC | ) =0.04 [ 2713 ] —5e-2 53 2.3s
Endosomes 2-D, 512 x 386, Fig. 11
present | local maxima | 60=0.1,R. =2 | DEC | A =0.04 | * | - 41 32s

* Final energy not comparable because of different definitions of a region.

The first two benchmarks consider discrete versions of the
MS energy [2]

Ew,I; n, 1)
M—1
= > | D @) = 1)+ D> |Vul* + AL
i=0 \xeX; xXeX;

where # and A are regularization parameters, V is a discrete
Nabla operator, and I'90 = ¢. Minimizing this functional
amounts to finding a regularized PS approximation u to the
original image I, such that the total edge set |I'| = > ; |T;| is
minimized.

The terms in £ generally fall into two categories: external
and internal energy terms. External energy terms are respon-
sible for data fidelity. They measure how likely it is that

the current segmentation has produced the given image I.
In the MS energy, the first sum over x represents the external
energy. Internal energy terms are independent of the image 1.
They provide regularization and are often used to model prior
knowledge about the noise magnitude and the properties of
the imaged objects, such as their shape, size, smoothness, or
topology.
In the following benchmarks we use the energy

€ = Egata + iglength + agmerge . (2)

The internal energies Elength and Eperge are described in the
next subsection. They include regularization for the discrete
contour length and a prior for region merging. All benchmarks
use these same internal energies, but different external ener-
gies. For the external energy Egata, we first consider the MS
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energy with # — oo, resulting in a PC approximation of 1.
While we consider arbitrary numbers of FG regions, the binary
case with two regions would correspond to the CV model
[3]. The second benchmark considers a PS approximation
with an arbitrary number of regions. In the third benchmark
we extend deconvolving active contours [9] to not previously
known numbers of regions. This is done by augmenting the PC
multiregion energy by a convolution operation in the image-
formation model.

A. Internal Energy

1) Contour Length Regularization: The contour length
energy is given by Elengtn = |T'|. In continuous active contour
representations, such as level-set methods, the contour length
can easily be computed. In discrete methods, however, it needs
to be approximated from the discrete contour pixels using
concepts from digital geometry.

Zhu and Yuille argued [16] that blurring an image with
a Gaussian filter has similar effects as including a length-
regularization term in the energy functional. One problem
with this approach, however, is that edges get smoothed. Also,
spurious intensity fluxes across close regions can be a problem
since they change the mean intensities of these regions.

Another approximation used in [19] and [22], and in
techniques based on the Ising model, counts the number of
region changes on the pixel grid. While this approach is
computationally very efficient, it causes the regions to tend to
polygonal shapes instead of developing smooth contours [33],
[22]. Also, the contour generally does not evolve smoothly
because of the discrete objective function. Shi and Karl [23]
therefore smoothed the contour of a discretized level function
using a Gaussian kernel, followed by a rediscretization step.
A drawback of this approach is that the smoothing is not
represented in the energy functional. The resulting tradeoff
between regularity and data fidelity is therefore difficult to
assess [33].

This has been addressed by Kybic and Kratky [33], who
proposed a regularizing flow for discrete level-set methods that
approximates the local curvature x as

IS¢ N Xzl 1
k(x)=0C SR | >
with Sf * a hypersphere of radius R, centered at x and |S%x|
its volume. C is a constant that depends on the dimension d
and on R,. Here we adopt this approach, exploiting the fact
that curvature regularization is equivalent to contour-length
regulalrization.2 Unless otherwise stated, we use R, = 4,
which is found to provide a good tradeoff between regularity
and resolution. We directly add the curvature-regularizing flow
to the AE of the particles. The direction of the flow is given by
the outward normal on the contour. We adapt the sign of x to
account for the direction of the flow: for expanding regions, x
is subtracted from the energy difference; for shrinking regions
it is added to it.

2This is seen by applying variational calculus to > o AlX;| =

220 fﬂds'
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Fig. 4. Synthetic example using the energy £PC ) PC ground-truth image.
(b) Ground-truth image corrupted with Poisson noise. The five FG regions
correspond to peak signal-to-noise ratios (SNR) of 4, 5.25, 6.5, 7.75, and 9,
respectively. (c) Final result from GC when initialized with the ground-truth
number of M = 6 regions. The GC algorithm fails as a result of inaccurate
estimates of the region intensities. (d) Correct GC result with six final regions
when initializing with M = 12 regions. (e)—(h) Contour evolution at iterations
0, 15, 25, and 64 of the present algorithm with contour points shown in
white. The correct number of five connected FG regions is found. (i) Energy
evolution for both algorithms. For the present algorithm, we show Elength
(dash-dotted), Egga (dashed), and the total energy (solid). Circles mark region-
fusion events. The red line with crosses shows the GC energy evolution for
an initial M = 12; crosses mark iterations. The residual energy of the ground-
truth image is indicated by the horizontal dashed blue line.

2) Region-Merging Prior: Since we define regions as con-
nected components, they can naturally split during the energy-
minimization process, provided these topological changes are
permitted by the user. The criterion for regions to merge as
introduced in (1) can be formulated as a hard region-merging
penalty in the energy functional

2

(l',j)>0:X,"\*Xj

gmerge = H[DKL (PX,'HPX;UX_/-)

+Dkw (Px;||Px,ux;) —0]. )

H (-) is the Heaviside distribution and X; ~ X ; indicates that
X; and X; are FG-connected competing regions. Two regions
merge if this is favorable for the overall energy. In order to
reflect the discrete-event character of topological changes, the
weight a of this contribution to the total energy in (2) is
set to oo.
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Fig. 5. Visual comparison on natural-scene images using EPC. (a) and (¢
Segmentation result using the present algorithm; (b) and (d) using GC. GC
finds three regions in (b) and four in (d). The present algorithm finds three
connected FG regions in (a) and nine in (c).

B. Multiregion PC Image Model

We first consider images comprising an unknown and
arbitrary number of connected FG regions, with each region
having a potentially different, but constant, mean intensity.

1) External Energy: The external energy in this case is
given by the MS energy for # — oo. This results in a PC
approximation of /. The resulting external energy term is

M—1
Eha= 2 [ D i —1)?]. “)
i=0 xeX;

M dynamically counts the number of regions during energy
minimization. The scalar ¢; is the estimated mean intensity in
region X;.

2) Implementation: The intensity estimates c; are taken
to be the mean intensities u; of the corresponding region
[2]. They are updated on the fly whenever a pixel enters or
leaves a region. This allows evaluating A&yaa from the data
structures presented in Section III-A without ever computing
the absolute energy. The overall algorithmic complexity thus is
in 0(|1"|Rfc’), where |I'| is the number of particles and O(Rfc’)
results from the memory lookups in the label image that are
needed to evaluate A&ength.

3) Benchmarks on Synthetic Data: Fig. 4 illustrates the
behavior of the present algorithm and of GC using the above
energy functional on a synthetic image. The image contains six
regions, each of which having a different, but constant mean
intensity. The present algorithm is started with an initial seg-
mentation far from the correct result and with a wrong number
of initial regions [Fig. 4(e)]. This demonstrates the capability
of the algorithm to merge regions and to correctly delineate
boundaries between touching regions. The total computational
time used for this example is 0.39 s, despite the unfavorable
choice of initial contours.

The evolution of the total, external, and internal energies
for this case is shown in Fig. 4(i). The present algorithm
converges after 64 iterations. The circle symbols mark the
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time points at which fusions between two or more regions
occurred. GC rapidly finds a solution with a slightly lower
energy than the ground truth. This can be explained by the
noise introducing spurious minima in the energy landscape.
The CPU times until convergence are comparable for the two
algorithms. In order to test how the results scale with image
size, we also consider the same problem with the image
zoomed (not padded) to 410 x 410 pixels, and with a 3-D
version of the image (see Table I). In all cases, GC is sensitive
to the initial number of regions [Fig. 4(c) and (d)] when using
uniformly distributed initial region intensity estimates. With
an initial number of M = 12 regions, GC solves the problem
with a CPU time comparable to the present algorithm; for
M = 6, GC fails to find the correct segmentation. The GC
implementation requires ~1.76 GB of main memory for this
3-D case; the present code uses ~125 MB.

4) Application to Real Data: We assess the real-world
applicability of the present algorithm by applying it to
2-D natural-scene images from the Berkeley database [34] and
to a 3-D confocal fluorescence microscopy image of stained
nuclei in a zebrafish embryo. The results are shown in Figs. 5
and 6. In Fig. 5, we visually compare with GC results; the
energies, however, cannot be compared because of the different
definitions of what constitutes a region. The nuclei in Fig. 6
are small enough to justify the model of constant intensity
within each nucleus. Different nuclei, however, have different
intensities, e.g., arrows A and B in Fig. 6(a), benefiting from a
multiregion segmentation approach. The final label image after
44 iterations is shown in Fig. 6(b). For better visualization,
the gray scales are the region labels rather than the estimated
intensities. An overlay of the original image and the final
contours is shown in Fig. 6(c) for the region highlighted by
the yellow area in Fig. 6(b). Fig. 6(d) shows the result when
allowing region fusions, illustrating the effect of topological
control during contour evolution.

C. Multiregion PS Image Model

1) External Energy: Larger objects in images frequently
have an inhomogeneous intensity distribution. This requires
a model that allows for PS representations of the image, such
as the MS functional. Brox and Cremers have shown [35] that
the MS functional is a first-order approximation to a Bayesian
posterior maximizer where the likelihood considers region
statistics over local windows. We therefore approximate the
PS MS model by overlapping PC patches within each region.
We use spherical patches centered at each particle. Patches at
interior pixels are not required. All statistics of the propagating
regions are then computed locally per patch. This leads to the
external energy

PS = 1(y)
Eoa= D, 2, zTﬁ@TW) )

i=0 xeX; \yeSRknX;

with R the radius of the spherical patches and SR the hyper-
sphere of radius R centered at x. Within each patch SX,
the intensity is constant. Smaller R therefore lead to better
representation of intensity gradients within regions, at the cost
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Fig. 6. Real-world application using EPC 1o segment nuclei in a zebrafish
embryo imaged by confocal fluorescence microscopy. (a) Visualization of the
nuclei in the raw 3-D data (image: Dr. A. Oates and B. Rajasekaran, MPI-CBG
Dresden). (b) Maximum-intensity projection of the final label image L. The
algorithm is initialized with small FG regions placed at all local intensity max-
ima after Gaussian (ox = 5 px, oy = 5 px, 6; = 2 px) blurring. The topology
is fixed to the initial topology, with the exception that regions are allowed to
vanish. On average, 1.03 - 10° candidate particles are processed per iteration.
Of the particles, 99.99% stop moving after 25 iterations. The algorithms
converges after 44 iterations finding 3218 connected FG regions. Since every
connected component is a separate region with its own intensity estimate,
nuclei of different brightnesses (e.g., arrows A and B) are correctly segmented.
(c) Magnified z-plane showing an overlay of the original image with the
final contours (black) in the region highlighted by the yellow rectangle in (b)
(intensities inverted for display purposes only). Touching nuclei are not fused
if region merges are disallowed during contour evolution. (d) Allowing regions
to merge, touching nuclei of similar intensities are assigned to the same region
(e.g., arrow C) and the final number of connected FG regions is 1452. The
visualizations in (a) and (b) were done using Imaris by Bitplane, Inc.

of reduced minimization robustness. The smaller the R, the
closer the initial segmentation needs to be to the final result.

We add to the external energy the data-dependent balloon
energy

Evalloon = 1 - H(_L + 1) . (6)
This generates an outward flow whose strength depends on
the image intensity. This flow counteracts the curvature-
regularization flow in a data-dependent manner. The external
energy for the PS case hence is Sgasta ~+ B Eballoon-

We also adapt the region-merging criterion to only rely on
local statistics: the empirical distributions Px; and Px; in (3)
are computed only over the spherical mask SX, as Px. sk
and Py ~gr. This prevents merging regions that are separatexd

J X,
by a large intensity gradient, even though they globally share
similar empirical distributions [see Fig. 7(d)]. For efficiency,
P can be computed along with Aé’gasm.

2) Implementation: A neighborhood of size O(R?) needs
to be read from the images / and L for every evaluation of the
energy functional. Double lookups are avoided by computing
the statistics in S along with the curvature flow. This results
in an overall computational complexity in O(|T'|R?) per
iteration.
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Fig. 7. Synthetic example using the energy EPS Two overlapping linearly
shaded circles on a linearly shaded BG corrupted with Poisson noise. The
brighter parts of the circles (top right) approximately correspond to a peak
SNR of 8.7, while the low-intensity parts (bottom left) have SNR =~ 3.2.
(a)—(d) Contour evolution at iterations 0, 5, 15, and 70 of the present algorithm.
The correct number of two connected FG regions is found. (e)—(h) Evolving
contour at iterations 0, 1, 4, and 9 of the GC algorithm, also finding the
correct number of regions. (i) Energy evolution for the two algorithms. For
the present algorithms, we show the evolution of 5‘1;3 (dashed), Ejength (dash-
dotted), Epalivon (dotted), and of the total energy EFS (solid). Circles mark
region-fusion events. The red line with crosses shows the energy for GC;
crosses mark iterations. The residual energy of the ground-truth image is
indicated by the horizontal dashed blue line.

3) Benchmarks on Synthetic Data: Fig. 7 illustrates the
behavior of the present algorithm [Fig. 7(a)-(d)] on an image
with linearly shaded FG and BG and compares it to GC
[Fig. 7(e)—(h)]. In the high-SNR areas, the data term of the
energy dominates the evolution, and the contours immediately
stick to intensity edges. Within the shaded FG circles, the
regions expand as driven by the balloon force. After five
iterations, regions that are not separated by large intensity
gradients begin to merge.

The present algorithm is robust with respect to different
choices of the patch radius R. However, R should be chosen
smaller than the length scale of intensity variations and large
enough so that |SR| constitutes a representative sample to
construct the local intensity histograms P.

Fig. 7(i) shows the evolution of all energy terms for the
present example. When initialized with 25 bubbles as shown,
GC is about 20 times slower than the present algorithm since
it evaluates the energy everywhere in the image, whereas
the present algorithm evaluates it only on the particles. Both
methods find solutions close to ground truth and correctly
estimate the number of regions.
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Fig. 8. Real-world application using EPS 10 segment primordial germ cells in a zebrafish embryo. (a) Raw 3-D confocal image showing three cells with a
fluorescent membrane stain (image: M. Goudarzi, University of Miinster). Intensities are inverted for display g)urposes only. (b) Intensity isocontour illustrating

the inhomogeneity of the objects (bottom view). (c) Final segmentation using the present algorithm with £ P

(bottom view). The algorithm is initialized with

a single box-shaped contour encompassing all objects and ultimately finds three connected FG regions. Visualizations were done using Imaris by Bitplane, Inc.

© (d)

Fig. 9. Visual comparison on natural-scene images using & P,
(a) and (c) Segmentation result using the present algorithm; (b) and (d) using
GC. GC finds six regions in (b) and nine in (d). The present algorithm finds
17 connected FG regions in (a) and 14 in (c).

The results for a 3-D version of the image in Fig. 7 are given
in Table I. In the 3-D case, GC is initialized with the ground-
truth number of regions and an initial contour close to the
ground-truth solution in order to keep CPU times reasonable.
The present algorithm is again initialized with bubbles.

4) Application to Real Data: Real-world applications of the
present image model are shown in Figs. 8 and 9. The data
consist of a 3-D confocal image of primordial germ cells in
a zebrafish embryo [Fig. 8(a)] and 2-D natural-scene images
from the Berkeley database (Fig. 9) [34]. The difficulty in
segmenting these images is that the intensity is inhomogeneous
within each object, as illustrated in Fig. 8(b). Also, the BG is
heavily inhomogeneous in all images, requiring a PS model.
The final segmentations obtained with the present algorithm
are shown in Figs. 8(c), 9(a), and 9(c). The segmentations
using GC are shown in Fig. 9(b) and (d). Comparing Fig. 9(c)
and (d) with Fig. 5(c) and (d) illustrates the difference between
a PC and a PS image model.

D. Multiregion Deconvolving Image Model

1) External Energy: The process of image acquisition maps
the light irradiance of a real-world scene to a scalar field in
Q. This mapping is often modeled by its impulse-response

function, i.e., the PSF. Most notably in microscopes and tele-
scopes, the mapping is largely linear, with nonlinear imaging
effects playing a subordinate role. Image formation in these
cases can therefore be modeled as a (discrete) convolution of
the real-world scene with the PSF. The result is corrupted by a
pixel-wise noise process [8], [9]. Frequently, one is interested
in reconstructing the shapes of the imaged real-world objects
from the observed image, attempting to undo the PSF map-
ping. This is an inverse problem and the presence of noise
renders its direct solution infeasible. The process of solving
a regularized version of this inverse problem is often referred
to as deconvolution, and multiple regularization methods are
available, e.g., [36]-[38]. In deconvolving active contours [9],
the image model and the evolution of the contour serve as
a natural regularization for the deconvolution. Moreover, the
actual inverse problem never needs to be computed, since
forward convolution is sufficient to evaluate the model energy.
This has enabled highly accurate and robust reconstructions
of small diffraction limited objects in biological cells using
fluorescence microscopy [39]. Here we extend the concept of
deconvolving active contours to higher dimensional images
and to multiple regions, the number of which does not need
to be known a priori.

Assuming that the noise process in the image-formation
model follows a Gaussian distribution, the maximum-
likelihood solution of the deconvolution problem is found by
minimizing the energy functional

2

M—1
Ems =D (co + (Z ¢i0i(x) | *PSE(x) — I (x) ) (7)
xeQ i=1
where c; is the difference between the estimated intensity in
FG region i and the BG intensity cp, O; the indicator function
of region i, PSF the PSF of the imaging device, and I the
observed image. This model assumes that the intensities c¢;
are constant within regions.
2) Implementation: Naive evaluation of the energy differ-
ence at a particle p requires two local convolutions around
xp. This can be avoided by introducing the model image J =

co + (Zlni Tl ci 0,-) # PSF. This model image is precomputed
using fast Fourier transform at the beginning of each iteration.
When a particle at position x changes from region i to
region j, the binary indicator O; is updated to O; — Jx
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Fig. 10. Synthetic example using the energy £PEC. (a) Ground-truth image.
(b) Image convolved with a Gaussian PSF with ¢ = 1.75 px, modeling a
confocal fluorescence microscope. (c) Blurred image after addition of Poisson
noise. The intensity of the U-shaped object corresponds to a peak SNR of
3, that of the circular region to an SNR of 4. (d) Reconstructed image using
the deconvolving model. (e) Reconstructed image using a PC model with
A =0.1,0 = 0.8. (f)—(j) Contour after 1, 10, 20, 35, and 53 iterations, finding
the correct number of two connected FG regions. (k) Energy evolution for the
deconvolving model. The solid line represents the total energy, the dashed line
EPEC, and the dash-dotted line Elengty- The circle symbol indicates a region-
merging event. The residual energy of the ground-truth image is indicated by
the horizontal dashed blue line.

and O; becomes O; + Jy, where J, is the Kronecker delta
(unit impulse) at x. Due to the linearity of the convolution
operator

M-1 M—1

> Oer +dccj —deci | x PSF=| D" Oer | PSF

k=1 k=1

J—co

+ (dxcj — dxci) = PSF. 8)

The first term on the right-hand side corresponds to the
precomputed model image J without the BG. The second
term is a scaled and discretized PSF mask. The model image
J is then updated as Jy = J + d; * PSF - (c;/c;). Hence, (8)
allows computing AEYYC as a local operation. We iterate
through a local window (centered at x,) with a radius p
equal to the PSF support. At each pixel y in the window, we
calculate Jy,(y) and sum the quadratic differences to form
AR () = X, (1) =T, ()" = X, 1 6) = TG

After updating ¢;, the entire model image J is recomputed
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Fig. 11.  Real-world application of the deconvolving model to fluores-
cently labeled endosomes in live HER911 cells. (a) Confocal fluorescence
microscopy image after BG subtraction using a rolling-ball algorithm (image:
Prof. U. Greber, University of Zurich, and Dr. C. Burckhardt, Harvard
University). (b) Final reconstructed image in the inset window shown in
(a). (c) Final contours (black pixels) overlaid onto the original image data.
Starting from 1541 spherical FG regions centered at local intensity maxima,
the algorithm finds 72 connected FG regions. We approximate the PSF by a
Gaussian with o = 1.011 px, found by fitting to signals of point-like structures
in the image. Intensities are inverted for display purposes only.

from its definition. The computational complexity of the over-
all algorithm is therefore O(|Q|log |Q|+ |F|pd), where |Q] is
the total number of pixels in the image. Unlike for the previous
energy functionals, the computational cost here depends on the
size of the image, because of the convolution for computing J.

3) Intensity Estimation: Estimating the region intensities
c; requires special attention in the present image model,
particularly for objects that are small compared to the width
of the PSF. We perform alternate minimization of the energy
functional with respect to the contour shape and the estimated
region intensities. The latter is done for fixed L (and hence O).
We then estimate the intensities ¢; such that the current model
image J minimizes the L>-distance to the data image I. We
do this by formulating the problem as a 2-D linear regression
for each FG region: Considering the pixels within a region
i as the data points, we find an affine transform of the set
A={I(x) : |L(x)| =i}tothe set B={J(x) : |L(x)|=i}.
We therefore minimize Zf‘i 6] (@-[1, A;]T — B;)?* with respect
to w. The regression coefficient wq then serves as an estimate
for the BG intensity, while w; is used as a correction factor
for the current FG intensity estimates, hence ¢; < wic;.

4) Benchmark on Synthetic Data: Fig. 10 illustrates the
behavior of the present algorithm using the deconvolving
energy functional on a synthetic image. The image simulates
a realistic scenario in fluorescence microscopy with a pixel
size of 80 nm and a half-width of the PSF of 120 nm. The
image as blurred by the PSF [Fig. 10(b)] is corrupted with
Poisson noise [Fig. 10(c)] with a peak SNR of 3 and 4 for
the dimmer and brighter object, respectively. The width of the
gap between the objects is equal to the half-width of the PSE.
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TABLE 1T
RELATIVE COMPUTATIONAL COSTS OF THE DIFFERENT STEPS OF THE ALGORITHM FOR THE THREE ENERGY FUNCTIONALS (PC, PS, DEC)

CONSIDERED HERE. ALL TIMES WERE MEASURED USING THE RESPECTIVE BIOLOGICAL EXAMPLE IMAGES

‘ H Evaluating £qaa | Evaluating Ejengnn | Optimization | Contour propagation | Topology processing | Data-structure update

PC 1% 31% 21% 31% 4.5% 11.5%
PS 66% 22% 4% 4% 1% 3%
DEC 97% <1% 2% <1% <1% <1%

Without using the information of how many objects are
represented in the image, we start the segmentation from a
single rectangular initial contour [Fig. 10(f)]. Fig. 10(f)-()
shows the evolution of the contour. Since the area of the circle
is larger than the area of the U-shaped object, the intensity
estimate is initially dominated by the circle. This causes initial
oversegmentation of the U-shaped object. At iteration 19, the
lower region splits into two regions with independent intensity
estimates. This causes the regions segmenting the U-shaped
object to merge again, resulting in a correct detection in the
end. Fig. 10(k) shows the evolution of the energies during this
segmentation process.

We compare the results with those obtained using the PC
energy without deconvolution (4). The corresponding final
reconstruction is shown in Fig. 10(e). The PC model is not
able to separate the two objects. It is moreover necessary to
set A to be 10 times larger than for the deconvolving energy in
order to prevent overfitting the blurry object boundaries with
many small regions.

5) Application to Real Data: The deconvolving energy
functional is particularly useful when segmenting near-
diffraction-limited objects as they occur, e.g., in intracellular
imaging. We illustrate this in Fig. 11 using a single plane of a
3-D confocal image showing endosomes labeled with fluores-
cent Rab5 protein [39]. Endosomes are small membrane-bound
organelles of about 20-200 nm size. Accurately reconstructing
the outlines of the many blurred dense objects in this image
is challenging when not accounting for the microscope PSF.
Here we use a simple Gaussian model PSF whose width is
determined by fitting it to point-like structures in the image.
A separate measurement of the actual PSF of the microscope
was not performed. Initially, we place small circular con-
tours around every local intensity maximum in the image.
These contours then rapidly evolve to concentrate around
the endosomes. The number of regions in the image does
not need to be known when initializing the algorithm. This
is an advantage over explicit deconvolving active contours
[9]. Explicit deconvolving active contours, however, provide
subpixel resolution, whereas the present method is limited
to pixel-level accuracy. This prevents the correct detection
of objects covering less than two pixels. After 73 iterations,
the algorithm converges to the reconstructed model image
shown in Fig. 11(b). The original image overlaid with the
final outlines in the region indicated in Fig. 11(a) is shown in
Fig. 11(c). The two touching objects in the lower-right corner
are properly separated based on their different intensities.

V. CONCLUSION

We have presented a discrete multiregion-competition
framework based on the topological constraint that each FG
region has to correspond to a connected set of pixels in some
discrete geometry representation. An energy-minimization
algorithm that accounts for this topological constraint has
been implemented in both 2-D and 3-D and tested using
three popular energy functionals. The number of regions in
an image does not need to be known a priori, and the initial
segmentation can have a different topology than the final
result. We have presented a novel discrete contour propagation
scheme and adapted concepts from digital topology to multiple
regions in order to enforce the topological region definition
and provide optional control over region merging and splitting
during contour evolution. The contours are represented by
computational particles that evolve as driven by the energy-
minimizing flow. Like discrete level-set methods [23], the
present algorithm requires only evaluations of the energy
functional, but not of its gradient. This is beneficial for the
nondifferentiable topological constraint. Contour oscillations
are suppressed by adaptive step size reduction in the rank-
based minimization algorithm.

We illustrated the algorithm on synthetic images and
demonstrated its applicability to real-world data using three
different energy functionals. We compared with results
obtained using a state-of-the-art discrete energy minimizer
based on multilabel GC [11]. The first energy represented
a PC image intensity model, extending the CV model [3]
to multiple FG regions. The second functional used a PS
image model to allow for inhomogeneous intensity distrib-
utions within regions. This was done using local window
statistics and an additional intensity-scaled balloon flow. The
third energy functional included a convolution kernel to model
the impulse-response function of an imaging device. This
unites image deconvolution and segmentation and extends
explicit deconvolving active contours [9] to handle topo-
logical changes during energy minimization and to higher
dimensional images. The benchmarks demonstrated that the
solution quality and the runtime of the present algorithm
are competitive. Compared with GC, the present algorithm
is particularly beneficial for large numbers of regions and
for costly energy functionals, such as the approximated
PS energy.

Because of the discrete contour representation, the present
method is limited to single-pixel accuracy. Subpixel accurate
segmentations, such as those achieved by explicit deconvolv-
ing active contours [9], would require continuously varying
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particle positions, hampering the efficient solution of the
energy minimization problem and the application of digital
topology. A limitation of the present method compared to
GC is that contours can advance at most one pixel per
iteration. For initial contours far from the final solution,
segmentation may therefore be slow. Nevertheless, the timings
of the present implementation as reported for each test case
are encouraging when compared with GC. The computational
cost of the algorithm depends on the energy functional to be
minimized. In the example of Fig. 8, evaluations of the energy
functional accounted for 88% of the computational time (66%
for XS | 22% for the curvature-regularizing flow), whereas
topology processing took 1%, contour propagation 4%, and
data-structure update 3%. Table II shows this breakdown of
the computational cost for each of the three energy func-
tionals considered. For the PC model, curvature approxima-
tion and contour propagation are the most expensive parts.
This is due to lookups in L and /. For the same reason,
the computational time using the PS model is dominated
by evaluating the data energy. For the deconvolving energy
functional, precomputing the model image J dominates the
processing time. The time complexity of the algorithm with
the PC and PS image models is linear in the total number of
particles, i.e., the total contour length, and is independent of
the image size. For the deconvolving energy functional, how-
ever, the convolution renders the complexity dependent on the
image size.

The computational performance of the present method could
be further improved in a number of ways. Storing the image
data along a space-filling curve is expected to improve cache
efficiency, as points that are close in the image will also be
close in memory. Future work will also explore the possibility
of computing the energy differences of different particles in
parallel, using multithreading or graphics processing units. In
addition, we are currently extending the present framework
to include particle—particle interaction potentials as additional
regularization [40].

The presented algorithm has been implemented as an image
filter in the ITK image-processing library [25] and is available
as open source from the authors.
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