
Diss. ETH No. 21026

Unsupervised segmentation and shape

posterior estimation under Bayesian image

models

A dissertation submitted to

ETH Zurich

for the degree of

Doctor of Sciences

presented by

Janick Oliver Cardinale

MSc ETH in Computer Science

born on April 21th, 1983

citizen of Berne, Switzerland

accepted on the recommendation of

Prof. Dr. Ivo F. Sbalzarini

Prof. Dr. Gábor Székely
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Abstract

Automated image analysis is concerned with extracting quanti-
tative information from images. In this process, image segmentation
is a key step. Unsupervised image segmentation partitions an image
into a priorly unknown number of “meaningful” regions that are usu-
ally intended to correspond to individual objects represented in the
image. Because information is lost during image acquisition, multi-
ple solutions are usually possible. Image segmentation hence consti-
tutes an ill-posed problem that requires regularization. Bayesian im-
age models regularize the segmentation problem by including prior
knowledge and assigning posterior probabilities to segmentations. In
addition, the probability density function of the posterior provides
information about the uncertainty or robustness of a particular seg-
mentation.

In this thesis we consider Bayesian image segmentation and un-
certainty quantification and provide novel optimization and sam-
pling algorithms for it. We first present a discrete multi-region
algorithm to locally optimize the posterior with respect to possi-
ble segmentations. In order to jointly estimate the number of re-
gions, we constrain foreground regions to be connected components,
amounting to an intuitive topological prior. We present a multi-
region competition optimizer over discrete contours for which the
posterior is a black-box function. We apply the algorithm to vari-
ous image models with a focus on images acquired by fluorescence
microscopy. We present local and global shape priors to regularize
the geometric estimation problem. We consider piecewise smooth
and piecewise constant image models with Gaussian and Poisson
noise. Furthermore, we jointly segment and deconvolve images by
including a blurring kernel in the image-formation model. Due to
the local character of the topological prior, the algorithm is compet-
itive, especially for large numbers of regions and in 3D images.

In order to assess and improve the segmentation robustness, we
also introduce a novel algorithm to sample from the posterior prob-
ability in time and space. This provides a measure of segmentation
uncertainty or, more specifically, solution robustness. We present
two Markov chain Monte Carlo methods for both discrete and contin-
uous contour representations. The resulting methods approximate
the posterior probability density over the high-dimensional space of
segmentations. This allows extracting sub-pixel segmentations at
specified confidence levels. The present sampling approaches can
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also improve solution quality, as they may overcome local optima in
the posterior.
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Zusammenfassung

Automatisierte Bildanalyse befasst sich mit der Extraktion von
quantitativen Informationen aus Bildern. Dabei spielt Bildsegmen-
tierung eine Schlüsselrolle. Bildsegmentierung partitioniert ein Bild
in eine vorher unbekannte Anzahl “sinvolle” Regionen, welche mit
Objekten im Blid übereinstimmen sollen. Weil während der Bild-
gebung Information verloren geht, sind oft mehrere Partitionierun-
gen möglich. Bildsegmentierung ist desshalb ein schlecht gestelltes
Problem und bedarf Regularisierung. Bayessche Bildmodelle regula-
risieren das Problem mit einer A-priori-Wahrscheinlichkeit. Zudem
ordnen sie Segmentierungen eine A-Posteriori-Wahrscheinlichkeit zu.
Diese kann zur Abschätzung der Unsicherheit oder Robustheit einer
Lösung verwendet werden.

Diese Arbeit befasst sich mit Segmentierungen und derer Un-
sicherheitsschätzungen unter Verwendung Bayesscher Bildmodelle.
Dazu werden neue Wahrscheinlichkeitsoptimierungs- und Abtastver-
fahren vorgestellt. Ein neuartiger Optimierungsalgorithmus findet
Segmentierungen so, dass die A-Posteriori-Wahrscheinlichkeit lokal
maximiert wird. Um gleichzeitig die Anzahl der Regionen der Partiti-
nierung zu ermitteln, werden Regionen an die Bedingung gebunden,
dass sie zusammenhängend sind. Dies entspricht einer intuitiven to-
pologischen Annahme. Das Optimierungsverfahren ist gradienten-
frei. So können beliebige A-Priori-Wahrscheinlichkeiten, wie zum
Beispiel Annahmen über die lokale und globale Gestalt der zu seg-
mentierenden Objekte, als Regularisierung miteinbezogen werden.

Wir betrachten Bildmodelle für stückweise konstante und stück-
weise glatte Bildsignale sowie Gaussches- und Poissonrauschen. Des-
weiteren werden Bildfaltungsprozesse in der Bildgebung im Bildmo-
dell berücksichtigt. Der vorgestellte Algorithmus ist insbesondere
leistungsstark, wenn das Bild eine grosse Anzahl Regionen enthält.
Wir benutzen diese Multiregionssegmentierung vorallem für zwei-
und dreidimensionale Bilder aus der Fluoreszenzmikroskopie.

Um die Robustheit einer Segmentierung abzuschätzen und zu ver-
bessern, werden zwei Algorithmen vorgestellt, welche die A-Poster-
iori-Wahrscheinichkeit mit Segmentierungsvorschlägen in Raum und
Zeit derart abtastet, dass zumindest lokal die Wahrscheinlichkeits-
funktion beschreiben und charakterisiert werden kann. Wir stellen
zwei Markov-chain Monte Carlo Algorithmen vor, um einerseits kon-
tinuierlich und andereseits diskret representierte Objekte im hoch-
dimensionalen Segmentierungsraum abzutasten. Weil mit solchen
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stochastischen Methoden, im Vergleich zu lokalen Optimierungen,
lokale Maxima überwunden werden können, kann zusätzlich die Seg-
mentierungsgüte im Sinne von höheren A-Posteriori-Wahrscheinlich-
keiten verbessert werden.
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CHAPTER

ONE

Introduction

Automated image analysis is a key information source in many disciplines,
including biology, medicine, robotics, material sciences, and astronomy.
Image analysis is concerned with extracting information from an image.
Depending on the nature of this information, image analysis relies on
methods covering low-level image-processing tasks, such as denoising, de-
blurring, inpainting, or zooming, and more high-level tasks, such as image
segmentation. Often, image segmentation is a key step in image analysis.

Image segmentation aims at partitioning an image I into “meaningful”
regions. Regions in an image are usually defined through their photometric
or texture features. Multi-region segmentation then amounts to grouping
pixels according to their features. Regions may hence comprise several
disconnected sets of pixels, and the number of regions (i.e., the number
of feature groups) frequently needs to be imposed, penalized, or learned a
priori.

Multi-region image segmentation partitions a digital image domain Ω ⊂ Rd
(here the dimension d = 2 or 3) into a background (BG) region Ω0 and
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CHAPTER 1. INTRODUCTION

(M−1) > 0 disjoint foreground (FG) regions Ωi, i = 1, . . . ,M−1, bounded
by contours or surfaces1 Γi, i = 1, . . . ,M − 1. In unsupervised image
segmentation, the number of regions M is not priorly known2.

General-purpose image segmentation remains challenging. The human
visual system outperforms computer vision in most image-segmentation
tasks to this day. There are meany reasons for this. A main reason is
that the human brain associates any incoming visual signal with previous
visual experiences (Danuser, 2011). Such priors include object’s typical or
expected shape, size, color, texture, irradiance, shading, elasticity, etc. All
of these expectations are processed together with the perceived signal and
its context. Mimicking this, segmentation algorithms are equipped with
prior information about how an image has been recorded and about the
expected objects in the image.

Methodology Model-based Bayesian image segmentation is well suited
for incorporating prior knowledge. For example, one can provide a simu-
lation model of the image-acquisition process. This model describes the
mapping from a real-world scene to a digital image. We call this the
image-formation model. Image segmentation then amounts to undoing
this mapping and recovering the geometry of the objects in the imaged
scene. Image segmentation therefore constitutes an inverse problem. This
inverse problem is often numerically unstable and usually does not have a
unique solution. The problem is then ill-posed.

Using a Bayesian formulation allows including prior knowledge into the
segmentation process. This regularizes the problem in a principled way
and possibly renders it well-posed. The Bayesian approach assigns each
possible segmentation a posterior probability of being correct. The seg-
mentation task then amounts to maximizing this probability, yielding a
maximum-a-posteriori estimate of the imaged scene.

1The term “contour” is used throughout this thesis to mean either “outline” (2D) or
“surface” (3D). Similarly, we use “pixel” to mean either “pixel” (2D) or “voxel” (3D).

2This is not to be confused with image segmentation using unsupervised machine-
learning methods.
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Focus In this thesis, we focus on images acquired with imaging systems
for which we can model the image-formation process. The present algo-
rithms are motivated by and specialized for images acquired by fluores-
cence microscopy. Fluorescence microscopy is a key information source in
biological research. Large amounts of 2D images, 3D images, and time-
lapse image sequences are acquired every day. Clearly, automated analysis
is needed for processing speed and reproducibility. The algorithms pre-
sented in this thesis can be applied to a wide range of 2D and 3D images,
also beyond fluorescence microscopy.

We consider the posterior probability to be a black-box function. Nev-
ertheless, we introduce in chapter 3 some formulas for commonly used
Bayesian models. This involves likelihoods considering piecewise constant
and piecewise smooth images models. We also consider the transfer func-
tion (impulse-response function) of the image-formation process and dis-
cuss energies tailored to images corrupted by Gaussian and Poisson noise.
We further show how to include local shape priors, such as the usual
contour-length penalizing term, and moment-based global shape priors.

Contributions In unsupervised image segmentation, a fundamental pro-
blem is to determine the number of regions M . Many algorithms require
M to be fixed or upper-bounded. Strategies for region-number regular-
ization involve region penalization and statistical tests based on region
features. The number of regions in the image model hence enters the prior.
In order to jointly estimate the number of regions, their photometry, and
their geometry, we propose to exploit the intuitive physical property that
objects are connected. This amounts to a topological prior. We evolve
deformable models such as to locally optimize the posterior density. In or-
der to fulfill topological priors, the topology of the evolving objects needs
to be tracked during this optimization procedure. We use concepts from
digital topology to characterize topological events in discrete object repre-
sentations (chapter 2). In chapter 4, we present a discrete multi-region
competition segmentation algorithm that optimizes posteriors under the
topological constraint that regions are connected components. The devel-
opment of this algorithm, called Region Competition (RC), is the main
contribution of chapter 4. RC optimizes a wide range of energies intro-
duced in chapter 3 under the above stated topological prior. For example,

3



CHAPTER 1. INTRODUCTION

we present several multi-region segmentations using a piecewise constant
deconvolving model. This constitutes an extension to previous work on
deconvolving active contours (Helmuth and Sbalzarini, 2009). We also
present how to efficiently compute Sobolev-gradient approximations using
particle–particle interactions, constituting the second contribution of this
chapter. The resulting algorithm is particularly competitive for computa-
tionally expensive posteriors and for large numbers of regions.

The user of an image-segmentation algorithm remains largely unaware of
the quality and robustness of the found solution. While some algorithms
provide guarantees or bounds on the final energy of a solution, these are
not directly interpretable in terms segmentation quality. Other algorithms
use convex relaxations to report globally optimal solutions w.r.t. the objec-
tive function. However, such algorithms are only available for a restricted
set of image-formation models. We therefore transform the proposed poste-
rior optimizer into a posterior sampler. We evolve the discrete deformable
model such that the sampled segmentations approximate the posterior dis-
tribution. This allows assessing segmentation robustness. In chapter 5,
we present a novel, efficient, particle-based Metropolis-Hastings algorithm,
called discrete region sampler (DRS). We prove that the algorithm con-
verges to the correct posterior distribution. Moreover, the algorithm is
tunable via biasing the discrete proposal distribution. We demonstrate
that the algorithm is unbiased and outperforms a state-of-the-art algo-
rithm by Chang and Fisher (2012) in terms of solution quality, while being
competitive w.r.t. computation time.

A discrete explicit representation is not able to represent contour variations
smaller than the pixel size. In chapter 6 we therefore use a continuous ex-
plicit representation to sample the spatial coordinates and photometries
of subcellular structures in time-lapse movies. We use a Bayesian recur-
sive filter, i.e. a particle filter, to track the posterior in this sequential
setting. The likelihood of small objects strongly depends on the noise re-
alization. This frequently leads to bad particle-based representations of
the posterior. We address these particle-weight degeneracy and sample im-
poverishment issues with an adaptive Metropolis-Hastings method. The
novel adaptation scheme is inspired by the rank-µ update used in the co-
variance matrix adaptation evolution strategy introduced by Hansen and
Ostermeier (1996). We validate the resulting framework using synthetic
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data and apply it to microtubule-length tracking in mitotic yeast cells.
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CHAPTER

TWO

Preliminaries

The first part of this chapter briefly discusses different forms of shape and
contour representations. In the second part we introduce the concept of
digital topology (DT), which was originally designed for binary labels. We
introduce a specialized form of DT that allows multiple foreground regions.

2.1 Geometry representations

Geometry (shape, object, contour) representation is crucial in automated
image segmentation. Segmentation methods and object representations
are closely linked through various aspects: First, segmentation algorithms
can make use of quantities that are also provided by the respective repre-
sentation, for example contour curvature. Second, if the representation is
limited to shapes of a certain topology, the solution space of the a segmen-
tation algorithm is constrained as well. Third, segmentation algorithms
can only generalize to higher dimensions if the geometry representation
allows.
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An overview of geometry representations can be found in Montagnat et al.
(2001). Here, we focus on deformable models. Deformable models have
extensively been used for image segmentation since the introduction of
active contours (Kass et al., 1988).

2.1.1 Deformable models

Deformable models are characterized by a geometry representation and
an evolution law (Montagnat et al., 2001). The evolution law acts on
the degrees of freedom of the geometric description. This is frequently
done such as to optimize an objective function or energy function, see
Sec. 3. Deformable models can also be used to represent shape evolution,
for example in tracking applications. Thorough reviews on deformable
models can be found in (Zhang and Lu, 2004; Montagnat et al., 2001).

Deformable models can be continuous or discrete. In either case they can
be implicit (also called geometric models) or explicit (also called para-
metric models) representations. Energetic relations between explicit and
implicit representations have been studied by Xu et al. (2000).

2.1.1.1 Continuous deformable models

Continuous deformable models provide direct access to differential quanti-
ties such as contour normals, curvature, or higher-order derivatives.

Explicit continuous models Explicit continuous representations are
usually parametrized as Γ = s(t), t ∈ [0, 1[. Γ is hence the range of a
function s : R → Rd. The function s is often not known analytically and
is approximated using interpolation, frequently with splines. This allows
representing open and closed contours. Explicit continuous representations
are usually not used for unknown object topologies, as they cannot natu-
rally change the their topology during evolution. A related issue is that
contour self-intersections need to be explicitly prevented. Also, generaliza-
tion to higher dimensions is non trivial.
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In order to evolve the contour, spline nodes are moved in direction of the
negative energy gradient w.r.t. to the node positions.

Implicit continuous models Implicit continuous representations avoid
these issues. They are usually implemented as level sets. In level-set meth-
ods (Osher and Sethian, 1988), the level-set function φ : Rd → R rep-
resents the contour Γ as its zero-level set Γ = {x|φ(x) = 0}. Γ is then
referred to as interface. The FG region is defined as the set {φ(x) < 0},
whereas the set {φ(x) > 0} is the BG region. Level-set methods allow
efficiently querying spatial coordinates for region information. The con-
tour naturally changes topology as it evolves, and the method generalizes
to higher dimensions. However, level-set methods are limited to binary
segmentations of closed curves. Multi-region extensions have nevertheless
been proposed and are discussed in Sec. 4.4. Also, since Γ is embedded in
a higher-dimensional space, the method is computationally involved. In
order to relax this computational overhead, narrow-banded versions have
been proposed (Adalsteinsson, 1994).

In order to evolve the interface, a partial differential equation (PDE) is
numerically integrated. This PDE is usually obtained from the Euler-
Lagrange equation w.r.t. φ of the energy E(H(φ)). The interface hence
evolves so as to follow the direction of the energy’s steepest descent. Such
minimization using variational calculus is often used for explicit continuous
representations as well. The implicit formulation, however, benefits from
more stable numerical integration.

Soft membership functions are related implicit continuous representations.
They are used in convex formulations of the binary partitioning problem.
It has been shown that for certain energy functionals, thresholding of the
membership function yields a global minimum of the original, binary min-
imization problem (Chan and Esedoglu, 2005). Γ is then implicitly given
as Γ = {x|M(x) = t}, with M and t being the soft-membership function
the threshold, respectively. Since Γ is represented as an iso-surface of M ,
M is a level-set function. However, the term “level-set method” is usually
not used in the context of soft membership functions.
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2.1.1.2 Discrete deformable models

Discrete deformable models are mostly implemented using grids. On the
one hand, geometric information is then only available at grid nodes.
Therefore, representation accuracy is usually limited to pixel resolution.
Furthermore, methods using such representations usually suffer from a
lack of differentiability. On the other hand, the discrete representation
enables using efficient combinatorial optimization methods, such as graph-
cuts (Greig et al., 1989; Boykov et al., 2001). Moreover, the representation
allows efficient spatial region querying. The contour, however, is not di-
rectly accessible from the grid. Discrete representations thus usually use
additional data structures, such as linked lists, to store Γ (Shi and Karl,
2008; Malcolm et al., 2008; Cardinale et al., 2012). A striking feature of
discrete deformable models is the possibility for efficient topological con-
trol during contour evolution. This is achieved using DT as discussed in
the following section.

Explicit discrete models Explicit discrete representations directly store
region labels at grid nodes. Grid nodes usually coincide with the pixels.
Such representations allow encoding multiple regions effortlessly. Further-
more they allow efficiently querying spatial coordinates for region informa-
tion. However, this representation does not provide direct access to the
contour.

In order to evolve the contour, grid nodes change their label such as to
decrease the energy.

Implicit discrete models Discretized versions of the implicit level-set
method have been proposed by Shi and Karl (2008) in order to accelerate
the method. They proposed to quantize the level-set function to a finite set
of values and use linked lists for fast access to the interface. Using these
data structures they performed real-time tracking using implicit shape
representations.

Before evolving the contour, the energy gradient is sampled at pixels on
both sides of the interface. The level-set function then changes sign at
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pixels with negative energy gradient.

2.2 Digital topology

“Topology is a major area of mathematics concerned with the most basic
properties of space, such as connectedness”1. Digital topology (or discrete
topology) is concerned with topological properties of discrete spaces, in
particular of grids. For binary images, i.e., images with one FG and one
BG region, the concept of digital topology allows characterizing topological
properties of discrete points. These characteristics enable detecting region
genus changes when changing the label of a discrete point (Bertrand, 1994;
Lamy, 2007; Han et al., 2003; Ségonne, 2005).

We first briefly introduce the notions of connectivity, geodesic neighbor-
hoods, and topological numbers. For more details on these topics we refer
to Bertrand (1994); Lamy (2007); Han et al. (2003). We adopt the nota-
tion and definitions from Bertrand (1994); Bertrand et al. (1997); Ségonne
(2005). We then extend these concepts to multiple FG regions.

2.2.1 Connectivity

Jordan’s curve theorem states a fundamental property of closed curves in
an embedding space. We define regions in a discrete space such as to satisfy
this property. The theorem states that a simple closed curve (without self-
intersections) partitions the space into two connected components. The
theorem has been proven by Jordan (1887) in 2D and has been generalized
to higher dimensions by Lebesque and Brouwer in 1911. Their work is
spread over different papers, an overview can be found in (Dieudonné,
2009), from which we adapt the theorem:

Theorem 1 (Jordan-Brouwer Theorem). Given a subset Γ of Rd homeo-
morphic to the boundary of a topological n-ball (viz. homeomorphic to an
(n− 1)-sphere), then

1from http://en.wikipedia.org/wiki/Topology, 18.01.2013
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(a) (b)

Figure 2.1: Examples of topological paradoxes in 2D. (a) If the FG and
BG regions both have connectivity n = 4, a simple closed curve (dark gray)
partitions the space into 3 connected components. (b) If both regions have
a connectivity of n = 8, the closed curve does not partition the space at
all.

• the complement Rd − Γ has exactly two connected components.

• Γ is the boundary of every connected component of Rd − Γ.

We consider discrete spaces that respect the above theorem. Let the FG X
be a set of discrete points x and the BG its complement X̄, such that X ∩
X̄ = ∅ and X ∪ X̄ = Ω. Both FG and BG have a certain connectivity type.
In 2D, two points are 4-connected if they share an edge and 8-connected if
they share a corner. In 3D, two points are 6-connected if they share a face,
18-connected if they share an edge, and 26-connected if they share a corner.
In order to avoid topological paradoxes, only the following combinations
of FG (n) and BG (n̄) connectivities are admissible according to Jordan’s
theorem: (n, n̄) ∈ {(4, 8), (8, 4), (6, 26), (26, 6), (6, 18), (18, 6)}. Figure 2.1
shows two examples of a topological paradox when using incompatible
connectivity pairs in 2D.

2.2.2 Topological numbers

Based on the chosen connectivity we can define discrete geodesic neigh-
borhoods. The n-neighborhood Nn(x) is the set of n-connected points
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adjacent to point x.

Definition 1. Let X ⊂ Ω. The geodesic neighborhood of order k of a point
x ∈ X is the set Nk

n(x,X) defined recursively by:{
N1
n(x,X) = {Nn(x)\x} ∩X

Nk
n(x,X) = N1

m(x,X) ∩
⋃
{Nn(y), y ∈ Nk−1

n (x,X)}

with m = 8 in 2D and m = 26 in 3D.

Intuitively, the geodesic neighborhood Nk
n(x,X) comprises all points y ∈

N1
m(x,X)\x that are n-connected to x along a path that is not longer than

k (Bertrand, 1994).

From this, a topological number can be defined as the number of n-connected
components #Cn(·) within a geodesic neighborhood:

Definition 2. The topological numbers Tn(x,X) relative to the point x
and the set X are:

T4(x,X) = #C4(N2
4 (x,X))

T8(x,X) = #C8(N1
8 (x,X))

T6(x,X) = #C6(N2
6 (x,X))

T6+(x,X) = #C6(N3
6 (x,X))

T18(x,X) = #C18(N2
18(x,X))

T26(x,X) = #C26(N1
26(x,X)) .

The notation n = 6+ indicates that the dual connectivity n̄ is 18, whereas
the dual connectivity for n = 6 is 26.

Topological numbers are an efficient tool to characterize points in binary
images. They can be computed from purely local information. For ex-
ample, if Tn(x,X) = Tn̄(x, X̄) = 1, we know that changing the region
label of point x does not change the genus of neither the FG, nor the BG.
All points for which this is true are called simple points. Figure 2.2 and
Tab. 2.1 visualize and summarize the topological characteristics of points
that can distinguished using these topological numbers.
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simple point

surface point

simple point

curve point

curve junction

interior pointcurve-surface junction

surface junction

isolated point

Figure 2.2: A 3D space partitioned into FG (blue) and BG (white).
The figure illustrates topological characteristics of different discrete points
(red).

Tn(x,X) Tn̄(x, X̄) Topological type of x

0 1 isolated point

1 0 interior point

1 1 simple point

2 1 curve point

> 2 1 curve junction

1 2 surface point

1 > 2 surface junction

> 1 > 1 curve surface junction

Table 2.1: Topological characterization based on topological numbers. Fig-
ure 2.2 illustrates the different point types.
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X1 X2 X3

X0

Figure 2.3: Illustration of FG-simple points in 2D. X1, X2, and X3 are
FG regions (gray) with connectivity type n = 4. X0 is the BG region
(white). Marked points are FG simple.

2.2.3 Multi-region extension

The concept of digital topology is limited to binary images. This follows
from Jordan’s theorem. If three regions share the embedded space, two of
them need to be of the same connectivity type. Consequently, topological
paradoxes as illustrated in Fig. 2.1 might arise.

Nevertheless, topological numbers can be used to classify points also in a
multi-region framework by splitting the FG X =

⋃M−1
i=1 Xi into multiple

disjoint sub-regions Xi. The BG region remains a single set X̄ = X0.
We therefore introduce the multi-region extension of a simple point in a
straightforward manner:

Definition 3. A point x is foreground simple (FG-simple) iff Tn(x,Xi) =
Tn̄(x, X̄i) = 1 for all i > 0.

Intuitively, Tn(x,Xi) is the topological number when considering all other
regions Xj , j 6= i to be part of the BG. Changing the region label of a
FG-simple point does not change the genus of any FG region. Figure 2.3
illustrates FG-simple points in 2D.

This extended definition of FG simplicity allows distinguishing different
topological events on the FG regions. We use it to explicitly avoid topo-
logical paradoxes. The methods presented in Secs. 4 and 5 therefore use

15



CHAPTER 2. PRELIMINARIES

of this notion of foreground-simple points.

16



CHAPTER

THREE

Bayesian image models

In image segmentation, a Bayesian model is determined by a likelihood
p(I|Γ,θ) and a prior p(Γ), where I is the image data and Γ the segmenta-
tion contour. θ contains photometric parameters such as region intensities.
The posterior pdf is obtained using Bayes’ formula

p(Γ,θ|I) =
p(I|Γ,θ) · p(Γ,θ)

p(I)
. (3.1)

The likelihood expresses how likely it is to observe the measured image I
given a certain segmentation Γ and parameters θ. The likelihood there-
fore formalizes the image formation model. The image-formation model
describes the mapping between a ground-truth object state (ΓGT,θ) and
an expected image J conditioned on that state. For many image-formation
models, also for all the models discussed in this work, θ is determined by
the model and I. For example, in many popular models the image inten-
sity of a region i is equal to the mean intensity of the area enclosed by Γi
in I. We therefore mostly omit θ throughout this work.

17



CHAPTER 3. BAYESIAN IMAGE MODELS

Generating J from Γ is called the forward problem. Solving the forward
problem is usually straightforward. In microscopy, for example, the for-
ward model is often linear (see Sec. 3.1.2). The image-formation models
considered in this work are of the form

I = (sθ(Γ) ∗K)︸ ︷︷ ︸
J

�W. (3.2)

K is the impulse-response function of the imaging equipment and ∗ is the
convolution operator. The function sθ is called the image generating func-
tion. It assigns an intensity to each pixel according to the image-formation
model. W ∈ Ω is the noise image of independently distributed random vari-
ables, and � denotes either an element-wise addition or an element-wise
multiplication for additive or multiplicative noise, respectively. Finding
the contour Γ and the associated photometric values θ from given I,K,
and sθ constitutes an inverse problem.

Prior terms measure how likely a certain segmentation Γ is. The most
popular prior term, proposed by Mumford and Shah (1989), penalizes the
Euclidean contour length |Γ|, leading to smooth region boundaries. Other
priors may include global shape characteristics and penalize deviations of
the segmented shape from a template shape.

Energy differences

In this work, two particular applications of Bayesian models are investi-
gated: image segmentation (chapter 4) and shape sampling (chapters 5, 6).

In model-based image segmentation, the optimization problem is often
formulated as a maximum-a-posteriori (MAP) problem

max
Γ

p(Γ|I) (3.3)

for Γ given an image I. In order to find Γ, the anti-logarithm of the pos-
terior, called the energy function E , is minimized. The logarithm changes
the product of the likelihood and the prior to a sum of energy terms. The
energies corresponding to the likelihood and the prior are called external
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and internal energy, respectively. Plenty of minimization methods for the
total energy E have been presented in the literature. The method of choice
depends on the characteristics of E . Gradient-based local optimization of
E is a popular approach for non-convex E . In a discrete setting, the energy
gradient becomes an energy difference ∆E .

In shape-sampling applications, we are interested in characteristics of the
posterior probability distribution p(Γ|I) from which we might, for exam-
ple, assess the robustness of a particular segmentation. From Markov
chain theory (see chapter 5.1.2) we know that, in order to reconstruct this
probability density, we (only) need to be able to evaluate posterior ratios
p(Γ′|I)
p(Γ|I) = exp(−∆E) for two given contours Γ and Γ′.

In both applications, the quantity of interest is the energy difference ∆E
when deforming Γ to Γ′. In our case of discrete geometry models, the
smallest perturbation to Γ is a flip of a discrete point from one region
to another. This chapter introduces various external and internal energy
functions with a focus on efficient discrete energy-difference evaluations.
We assume the noise to be realized independently for each pixel. Using
Bayes’ formula (3.1) we decompose ∆E as

∆E = − log

(
p(Γ′|I)

p(Γ|I)

)
= −

M−1∑
i=0

log
∏
x∈Ω′i

p (I(x)|J ′(x)) · p(Γ′)

− log
∏
x∈Ωi

p (I(x)|J(x)) · p(Γ)

)
,

(3.4)

where the images J and J ′ are computed images using Eq. (3.2). Ωi and Ω′i
are the regions enclosed by Γi and Γ′i, respectively. M is the total number
of regions.

This chapter is organized in two sections. The first one considers various
likelihood terms and the associated external energies. In the second sec-
tion we discuss prior terms and the associated internal energies. We also
present how to compute discrete energy differences for local and global
shape features.
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3.1 Likelihood terms

The likelihood p(I|J) evaluates how likely it is to observe I given a model
image J . The corresponding external energy hence measures data fidelity.
Data fidelity is often measured using a certain norm. This norm depends
on the underlying statistical noise assumption. A well-known example is
that a Gaussian noise model leads to a L2-norm-based energy (Brox and
Cremers, 2007). However, energy functions without an explicit link to an
underlying statistical model have also been introduced in the literature
(Kass et al., 1988; Caselles et al., 1997).

In the following, we discuss the main ingredients of the likelihood terms
w.r.t. the image formation model in Eq. (3.2).

Photometric region model Mumford and Shah (1989) argued that,
following some basic observations in 2D photography, “the segmentation
problem in computer vision consists in computing a decomposition [. . . ] of
the image domain such that (a) the image varies smoothly and/or slowly
within each region, and (b) the image varies discontinuously and/or rapidly
across most of the boundary Γ between different regions.”. The segmenta-
tion task is thus formalized as finding piecewise smooth function J , differ-
entiable within regions, that optimally approximates the image I. This
formulation leads to the well-studied Mumford-Shah (MS) energy func-
tional

E(J,Γ) =

∫
Ω

(J − I)2dΩ + ν

∫
Ω−Γ

‖∇J‖2dΩ + λ|Γ| (3.5)

The first term is the external energy which is responsible for data fidelity.
The third term is the prior and will be discussed in Sec. 3.2. The second
term penalizes variations in J within regions and determines the smooth-
ness of J . With ν → ∞ the model degenerates to the piecewise constant
limit (often referred to as the cartoon limit). This functional is notori-
ously difficult to globally minimize (Ambrosio and Tortorelli, 1990; Pock
et al., 2009). Simplified functionals are therefore often more appropriate
in practice. We distinguish between piecewise smooth (PS) and piecewise
constant (PC) models. Although PC models are a limit case of PS models,
it is useful to treat them separately because the PC assumptions greatly
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simplifies and accelerates energy computation.

Noise We focus on likelihood functions for which the underlying statis-
tical noise models is from the exponential family. A systematic overview
of likelihoods of this type, together with an information theoretic inter-
pretation based on Bregman distances, is given by Paul et al. (2013). In
this work, we focus on Gaussian and Poisson noise. Gaussian noise is a
generic and popular model. The MS functional for example assumes Gaus-
sian noise with fixed variance. Gaussian noise sources are for example
electron-multiplying cameras used in low-light microscopy (see chapter 6).
Poisson noise is often found in low-intensity applications when photon-shot
noise is the dominant noise source. Important applications include light
microscopy, emission tomography, or single-photon emission computed to-
mography.

Blur The process of image acquisition maps the light irradiance of a
real-world scene to a scalar field in Ω. This mapping is often modeled
by its impulse-response function, the point-spread function (PSF). For mi-
croscopes and telescopes, this mapping is almost perfectly linear. This
is because light corresponding to high spatial frequencies of the aperture
misses the objective lens. The acquisition system is hence a low-pass filter.
A detailed description of image formation in confocal microscopes can be
found in Helmuth (2010). Image formation in these cases can be modeled
as a convolution of the real-world scene with the PSF. The convolution op-
eration in Eq. (3.2) with point-spread function K hence models blurring
processes during image acquisition.

Frequently, one is interested in reconstructing the shapes of the imaged real-
world objects from the observed image, attempting to undo the PSF blur.
In the presence of noise, this inverse problem cannot be solved directly.
The process of solving a regularized version of this inverse problem is
often referred to as deconvolution, and multiple regularization methods are
available (Vogel, 2002; Sibarita, 2005; Hansen et al., 2006). In deconvolving
active contours (Helmuth and Sbalzarini, 2009) the actual inverse problem
never needs to be computed. Forward simulations of image formation
are used to evaluate the model. This has enabled highly accurate and
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robust reconstructions of small, diffraction-limited objects in biological
cells using fluorescence microscopy (Helmuth et al., 2009). Here we extend
the concept of deconvolving active contours to higher-dimensional images
and to multiple regions.

3.1.1 piecewise constant models

We discuss mathematical and implementation details of the calculation of
∆E for various combinations noise models and the region-intensity models
with and without a convolution operation.

3.1.1.1 piecewise constant Gaussian-noise model

The piecewise constant model with Gaussian noise leads to a model image
J with intensities equal to the region intensity means (Mumford and Shah,
1989). Using the Gaussian probability density in Eq. (3.4). The energy
difference simplifies to

∆EPC
Gauss = −

M−1∑
i=0

(
N ′i log

1√
2πσ′i

−Ni log
1√

2πσi
− N ′i

2
+
Ni
2

)
. (3.6)

Ni is the number of pixels in region i and σi the standard deviation of
the intensities in region i. The PC assumption leads to an expression that
only depends on region variances and sizes.

Fixed Variance The popular energy functional of Chan and Vese (2001)
is a special case the above model when fixing the standard deviations to

σi =
√

1
2 . Doing so, the first and second terms in Eq. (3.6) vanish, as they

sum to 0. For a piecewise constant fixed-variance Gaussian noise model,
Eq. (3.4) simplifies to

∆EPC
LS = −

M−1∑
i=0

∑
x∈Ωi

(I(x)− µi)2 −
∑
x∈Ω′i

(I(x)− µ′i)2

 , (3.7)
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where µi is the mean intensity in region i. When only slightly perturbing
Γ, most of the terms vanish. If only one pixel at position x is changing
from region i to region j, Eq. (3.7) further simplifies to (I(x) − µ′i)

2 −
(I(x)− µi)2 + (I(x)− µ′j)2 − (I(x)− µj)2.

The energy differences in Eqs. (3.6) and (3.7) can be computed in constant
time when the sum of intensity squares

∑
x∈Ωi

I(x)2, the sum of intensities∑
x∈Ωi

I(x), and the number of points per region are stored.

3.1.1.2 piecewise constant Poisson-noise model

The Poisson distribution has one parameter λ̃ equal to the distribution’s
mean. We therefore set the parameter for each region equal to its intensity
mean, i.e., λ̃ = µi. The pixel-wise likelihood for location x to belong to
region i is then the Poisson pdf value for I(x) with λ̃ = J(x). If only one
discrete point changes its region label, only two regions are affected. The
external-energy difference for a one-point change from region i to j using
a PC model with Poisson noise is:

∆EPC
Poisson(x) = −

∑
k={i,j}

logµ′k
∑
y∈Ω′k

I(y)−N ′kµ′k

− logµk
∑
y∈Ωk

I(y) +Nkµk

 .

(3.8)

As in the Gaussian case, energy differences can efficiently be computed if
the sum of intensities

∑
x∈Ωi

I(x) and the number of points are stored for
each region.

3.1.2 piecewise constant deconvolution model

Regardless of the noise model, region-wise constant photometric parame-
ters are not equal to the region intensity means anymore when including
a convolution (compare sections 3.1.1.2, 3.1.1.1). This is due to the inten-
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sity flux across region boundaries caused by the convolution. The region
intensity values c = {ci}, i = 0 · · · (M − 1), hence need to be estimated
separately. In the following we assume c to be known and we show the
intensity estimation in Sec. 3.1.2.3.

If the PSF has finite support and only one discrete point changes region,
a näıve evaluation of the energy difference requires two local convolutions
around x. This can be avoided by explicitly storing the model image

J = c0 +

(
M−1∑
i=1

ciOi

)
∗K. (3.9)

J is re-computed using a fast Fourier transform (FFT) whenever the pho-
tometric parameters are updated. When a particle at position x changes
from region i to region j, the binary indicator Oi is updated to Oi − δx
and Oj becomes Oj + δx, where δx is the Kronecker delta (discrete unit
impulse) at x. Due to the linearity of the convolution operator, we have:(

M−1∑
k=1

Okck + δxcj − δxci

)
∗K

=

(
M−1∑
k=1

Okck

)
∗K︸ ︷︷ ︸

J−c0

+ (δxcj − δxci) ∗K.
(3.10)

The first term on the right-hand side corresponds to the pre-computed
model image J without the background intensity. The second term is
a scaled, discretized PSF mask. The model image J is then updated
as J ′ = J + δx ∗K · cjci . Hence, Eq. 3.10 allows computing ∆Edec as a
local operation: We iterate through a spherical local window (centered at
x) with a radius ρ equal to the radius of PSF support Sρ(x). At each
pixel y in the window we calculate J ′(y). Also, we fix the photometric
parameters c when computing the energy difference for one discrete point;
see Sec. 3.1.2.4 for further discussion.
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3.1.2.1 Gaussian noise

With the convolution in Eq. (3.2) two complications arise: First, the con-
volution changes the likelihood for all pixels within the PSF support. This
alters the region statistics for all regions in the support of the PSF. Second,
the noise acts on J(x), rather than on the region intensity means. This
renders the photometric problem more difficult. The region-wise noise
variance, however, remains constant within each region:

σ2
i =

1

Ni − 1

∑
x∈Ωi

(I(x)− J(x))2. (3.11)

From Eq. (3.4) we derive the energy difference for a region change of point
x:

∆EPC,dec
Gauss (x) =−

M−1∑
i=0

[
N ′i log

1√
2πσ′i

−Ni log
1√

2πσi

+
∑

y∈Sρx∩Ωi

(
(I(y)− J ′(y))2

2σ′2i
− (I(y)− J(y))2

2σ2
i

) . (3.12)

We first iterate I, J , and L within the PSF support and compute the region-
wise squared residuals ri = (I(y)−J(y))2|L=i and r′i = (I(y)−J ′(y))2|L=i.
In order to efficiently evaluate the energy differences using local operations,
we also store σ2

i .

The σi need to be recomputed from scratch whenever the model image J
is regenerated, which is usually the case after intensity re-estimating c as
discussed in Sec. 3.1.2.3.

Fixed variance When fixing the variance to σ2 = 0.5, we obtain a
multi-region deconvolving Chan-Vese energy. The corresponding energy
difference reads:

∆EPC,dec
LS (x) = −

∑
y∈Sρx

(
(I(y)− J(y))2 − (I(y)− J ′(y))2

)
(3.13)
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Compared to the version without deconvolution, the computational do-
main extends to the support of the PSF.

3.1.2.2 Poisson noise

As was the case for Gaussian case, the likelihood has to be re-evaluated
within the PSF support. For each pixel, we set the distribution parameter
λ̃ to the expectation value which depends on space, i.e. λ̃(x) = J(x).
Using the Poisson pdf with λ̃(x) = J(x) in Eq. (3.4) leads to

∆EPC,dec
Poisson(x) = −

∑
y∈Sρx

(I(y) log J ′(y)− J ′(y)− I(y) log J(y) + J(y)) .

(3.14)
Since the Poisson distribution has only one free parameter, energy-difference
computation is significantly easier than in the Gaussian case.

3.1.2.3 Intensity estimation

Estimating the region intensities c requires special attention in decon-
volving image model, especially for objects that are small compared to
the width of the PSF. Intensity estimation with asymptotic confidence
intervals for two piecewise constant regions has been done using Fisher
scoring (Paul et al., 2013). Here, we estimate c by fitting the model im-
age J to the data image I. This has the advantage that it can be done
for any number of region and potentially also for piecewise smooth mod-
els. We do this by formulating the problem as a 2D linear regression
for each FG region. Considering the pixels within a region i as the data
points, we find an affine transform of the set Ai = {I(x) : |L(x)| = i}
to the set Bi = {J(x) : |L(x)| = i}. Figure 3.1 illustrates region-
wise intensity correction in a one-dimensional example. We minimize∑M−1

i=0 (w · [1, Ai]T − Bi)2 with respect to w. The regression coefficient
w0 then serves as an estimate for the BG intensity, while w1 is used as a
correction factor for the FG intensity of the corresponding region, hence
ci ← w1ci.
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B = c0

0

c1 +B

c2 +B

Intensity

Ω1 Ω2

x

Ω0 Ω0

J

I

A2

B2

c2 ∗ w2 +B

c1 ∗ w1 +B

B1

w0

A1

Figure 3.1: 1D example illustrating the region intensity estimation. The
geometry is fixed, and, the domain contains 3 regions, 2 of which are
foreground regions. In this example, the inital estimates c0, c1, and c2
are too low. Based on the region-wise linear correlation between the model
image J and the data image I, the individual correction factors wi are
estimated using regression.
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In confocal microscopy images the background region is often very large
and its intensity I0 can therefore be estimated separately. The stability
of the intensity estimates of small regions can be increased by exploiting
robust estimate of the background intensity. We find that a more robust
heuristic alternative to linear regression is to estimate the correction fac-
tors wi by the mean or median of the set {(Ai(x)− I0)/(Bi(x)− I0)}.
Figures 3.2 and 3.3 show the relative intensity estimation errors for multi-
variate linear regression and for this heuristic. Experiments are performed
for SNRs between 3 and 20. For each SNR we assess the `1 estimation er-
ror for an increasing number of wrongly segmented pixels. For Fig. 3.2 we
convolve an object of size 10 pixel with a Gaussian PSF of width σPSF = 2.
The background intensity is known exactly. In Fig. 3.3 we use the same
PSF, but the foreground region only contains 4 pixels. Moreover, we pro-
vide an initial background intensity that is 20% too high. In both cases
the heuristic using the median gives the best estimates for any Γ-SNR
combination. The estimation breaks down when more than half of the
foreground region are assigned to the background region. Moreover, the
heuristic shows to be robust w.r.t. inaccurately estimated background in-
tensties.

3.1.2.4 Joint photometric and geometric problem in PC deconvolving
energies

Efficient evaluation ∆EPC,dec relies on using fixed intensities c. The en-
ergy differences in Eqs. (3.12) and (3.14) therefore depend on the frequency
of photometric updates.This amounts to performing alternating minimiza-
tion: For all discrete points we evaluate ∆E after updating of c and J .
Then the active contour moves. In worst case this may lead contour oscil-
lations. It is not clear if this process is guaranteed to converge. We have
the following options:

• We interpret c as a function of Γ, i.e., the photometric parameters
are determined by Γ and I. Hence, we update J and c in every
iteration. This has the advantage that energy-difference calculations
respect the intensity changes of regions when changing the label of
pixel. This solution, however, is computationally expensive. Delayed
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Figure 3.2: Relative `1 error (left row) and standard deviation
(right row) of intensity estimates for perfectly known background in-
tensity and 10 pixel object size. (a),(b) Linear regression results.
(c),(d) Mean-of-{(Ai(x)− I0)/(Bi(x)− I0)} heuristic. (e),(f) Median-of-
{(Ai(x)− I0)/(Bi(x)− I0)} heuristic.
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Figure 3.3: Relative `1 error (left row) and standard deviation
(right row) of intensity estimates for 20% overestimated background
intensity and 4 pixel object size. (a),(b) Linear Regression results.
(c),(d) Mean-of-{(Ai(x)− I0)/(Bi(x)− I0)} heuristic. (e),(f) Median-of-
{(Ai(x)− I0)/(Bi(x)− I0)} heuristic.
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update of J and c after an empirical number of iterations works well
in practice. The approximation error depends on the sensitivity of c
w.r.t. Γ.

• We interpret the PC deconvolution problem as a joint problem of
intensity and geometry estimates. Hence, we extend the state space
with c and consider the joint space.

• We fix c.

Options one and two involve the photometric estimates in the posterior
and are therefore favorable. Here we use option one with delayed updates.

3.1.2.5 Complexity

After updating c, the entire model image J is re-computed from its def-
inition. This involves a FFT, which has computational complexity in
O(|Ω| log |Ω|), where |Ω| is the total number of pixels in the image. Un-
like for non-deconvolving energy functionals, the computational cost here
depends on the size of the image.

3.1.3 piecewise smooth models

PC models may lead to undesired partitioning of regions that smoothly
vary in intensity. Figure 3.4 illustrates segmentations using a PC and a
PS model on an image with a regions with non-zero intensity gradient.
Varying intensities within objects are common in practice.

Equation (3.5) has a global character. Whenever the segmentation locally
changes, the approximation J changes globally. The related optimization
problem is highly non-convex (Mumford and Shah, 1989; Pock et al., 2009).
We argue that local piecewise smooth models are better adapted to opti-
mization algorithms. We use piecewise smooth models based on local
statistics. The local statistics approach has previously been used (Zhu
and Yuille, 1996; Li et al., 2008; Lankton and Tannenbaum, 2008). Brox
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(a) Data (b) PC model (c) PS model

Figure 3.4: Comparison of a segmentation result using a piecewise con-
stant and a piecewise smooth image model. (a) The data image containing
regions with smooth intensity variations. (b) PC model solution. The re-
gions found are oriented perpendicularly to the intensity gradient. The
result in that case is sensitive to the number of initial regions. (c) Result
using the PS model with energy EPS

LS . Both results have been generated
using the algorithm presented in chapter 4.

and Cremers (2007) have shown that the MS functional is a first-order ap-
proximation a Bayesian model where region statistics are computed almost
locally. In the following, we outline this relationship; for details we refer
to Brox and Cremers (2007). Their argumentation is based on a result
by Nielsen et al. (1997), who have shown that filtering I with filter h of

frequencies ĥ = 1/(1 +
∑∞
k αkω

2k) yields a minimizer of

E(J) =

∫
Ωi

(
(J − I)2 +

∞∑
k=1

αk

(
dkJ

dxk

)2
)

dx. (3.15)

We focus on a particular case of h. When parametrizing h with αk = λk

k!

we retrieve a Gaussian filter with standard deviation σ =
√

2λ. Exploit-
ing Eq. (3.15), we minimize E by setting J(x) to a region-wise Gaussian-
weighted mean, i.e.,

J(x) = µi(x) =

∫
Ωi
Nσ (y − x) I(y)dy∫
Ωi
Nσ (y − x) dy

. (3.16)

Nσ is the Gaussian pdf with standard-deviation σ. The integral in
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Eq. (3.15) is over regions Ωi with natural boundary conditions. Neglecting
terms of order k > 1 and fixing the variance of the noise to 0.5 exactly
recovers the MS functional (3.5). If we do not fix the variance, we obtain
a local version of EPC

Gauss with local standard deviation

σi(x) =

∫
Ωi
Nσ (y − x) (I(y)− µi(x))2dy∫

Ωi
Nσ (y − x) dy

. (3.17)

We cut the support of the Gaussian kernel in Eqs. (3.16) and (3.17) in
order to obtain approximations to the weighted means and variances, re-
spectively. This enables evaluating ∆E using local windows. The global
character of the MS functional is lost when cutting the Gaussian kernel
support. Also, for σ → ∞ we recover to the cartoon limit, i.e., ν → ∞
in (3.5). The larger σ, the more expensive an energy-difference evaluation
becomes. In the limit of σ → ∞, we can nevertheless efficiently compute
energy differences as described for PC models.

The energy differences for a fixed-variance PS Gaussian noise model and
a Gaussian noise model are computed similarly to the PC versions pre-
sented in sections 3.1.1.1. The only difference is that J is computed using
statistics in local windows.

3.1.3.1 Gaussian noise

From Brox and Cremers (2007) we know that Eq. (3.7) with the space-
dependent statistics in Eqs. (3.16) and (3.17) corresponds to the Mumford-
Shah functional. Cutting the support of the Gaussian yields a very good
approximation. Let R be the local-statistics-support radius. The compu-
tational complexity for calculating a one-pixel MS approximation energy
difference ∆EMS is O(Rd). Large radii hence become computationally very
expensive.

However, solving the MS functional is not the primary goal. We are rather
interested in finding an efficient energy model to segment and sample piece-
wise smooth regions. We therefore further approximate Eqs. (3.16) and
(3.17) by discarding the Gaussian weights. This yields approximate statis-
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tics for smaller masks, because low-Gaussian-weight contributions are ne-
glected. The piecewise smoothness is then approximated with piecewise
constant local patches. Let SRx be the hyper-sphere of radius R centered
at x. With the adapted local statistics

µi(x) =
∑

y∈Ωi∩SRx

I(y)

|Ωi ∩ SRx |
, σi(x) =

∑
y∈Ωi∩SRx

(I(y)− µi(x))2

|Ωi ∩ SRx |
, (3.18)

and Ni(x) = |Ωi∩SRx | we can compute the energy difference for a one-pixel
label switch as:

∆EPS
Gauss(x) =−

M−1∑
i=0

(
N ′i(x) log

1√
2πσ′i(x)

−Ni(x) log
1√

2πσi(x)

−N
′
i(x)

2
+
Ni(x)

2

)
.

(3.19)

Fixed variance Using the local-window statistics in Eq. (3.7), the en-
ergy difference for changing the region label of pixel x from i to j is

∆EPS
LS (x) = (I(x)−µ′i(x))2−(I(x)−µi(x))2+(I(x)−µ′j(x))2−(I(x)−µj(x))2.

(3.20)

3.1.3.2 Poisson noise

Even though the relation between the MS energy and space dependent
statistics has only been derived for a Gaussian noise model, we also use
local PC patches to approximate a piecewise smooth Poisson model. The
Poisson distribution parameter λ̃ then becomes local to a patch, and also
we only consider samples from within that patch. We use Eqs. (3.18) and
(3.8) to obtain the energy difference when pixel x switches from region i
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to j for a piecewise smooth model with Poisson noise:

∆EPS
Poisson(x) = −

∑
k={i,j}

logµ′k(x)
∑

y∈Ω′k∩SRx

I(x)−N ′k(x)µ′k(x)

− logµk(x)
∑

y∈Ωk∩SRx

I(x) +Nk(x)µk(x)

 .

(3.21)

3.1.4 Data-dependent balloon potential

Assume we need to decide whether a pixel x with ∇I(x) ≈ 0 belongs to a
foreground or the background region. The MS functional does not provide
an answer, as it does not distinguish between foreground and background
objects. It is rather formulated to find the edge set of an optimal piecewise
smooth approximation J to an image I. Pixel x will not be classified as
belonging to the edge set Γ, since the length term penalizes unjustified
contour. For closed regions, the same argument causes regions to shrink.
For local energy-minimization algorithms, such as active contours, the deci-
sion depends on the initialization. Cohen (1991) hence introduced balloon
forces that create pressure within regions and inflate the closed regions
like a balloon. Xu and Prince (1998) introduced wide-range gradient vec-
tor flows that attract contours to edges with large ‖∇I‖. Using these flows,
local optimization becomes more robust when the contour is far from an
edge. However, in order to be more robust w.r.t. the initializations, the
energy should decide if x belongs to a closed foreground region or to the
background region. We hence suggest using a data-dependent balloon force
that favors high-intensity regions to be in the foreground. Changing the
sign of the coefficient favors the foreground to segment low-intensity re-
gions. Let L ∈ NΩ be a label image that maps pixels to region labels. The
background region has 0. Then, the data-dependent balloon potential is

Eballoon = −I ·H(−|L|+ 1), (3.22)
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where H(·) is the Heaviside distribution. This generates an outward flow
with a strength that depends on the image intensity. This flow counteracts
the curvature flow induced by the length prior in a data-dependent manner.

3.2 Prior terms

We focus on local contour-length priors and global shape priors based
on 1D moments. We implement these priors (see Appendix A) for the
optimization and sampling algorithms introduced in chapters 4 and 5.

|Γ| is one of the most widely used internal energies for active contour
models. Penalizing |Γ| seems intuitive because of its geometric meaning.
The corresponding Gibbs prior probability pdf p = exp(−|Γ|) may seem
rather arbitrary. However, for a discrete contour representation this is the
maximum-entropy distribution. Before we discuss discrete approximations
for |Γ| and global shape priors, we eleaborate this theoretical result.

3.2.1 MRF - Gibbs equivalence

(Hammersley and Clifford, 1968) relates the Gibbs distribution to Markov
Random Fields (MRF). This relation holds for all energies for which the
calculation of ∆E has a finite support. From Geman and Geman (1984)
we reproduce the following two definitions and the following theorem. We
then interpret the result by example.

Let S denote a set of N sites (for example pixels) and G be a neighborhood
system on S (for example the neighborhood relation to compute the local
contour length). In other words, (S,G) is an undirected graph. Further-
more X = {Xs, s ∈ S} is any family of random variables Xs indexed by S
with possible realization ω = {Xs1 = xs1 , . . . , XsN = xsN }.

Definition 4 (MRF). X is a MRF with respect to the neighborhood system
G if

• P (X = ω) > 0 and
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• P (Xs = xs|Xr = xr, r 6= s) = P (Xs = xs|Xr, r ∈ Gs)

for all sites s ∈ S and all ω.

Intuitively, a random variable Xs in a MRF is conditionally independent
from all other random variables in that field, given the values of the random
variables in Xs’s neighborhood.

Definition 5 (Gibbs distribution). A Gibbs distribution relative to (S,G)
is a probability measure π on the possible realizations {ω} of the form

π(ω) =
1

Z
exp

(
− 1

T

∑
c∈C

Vc(ω)

)
.

T is the temperature. Z is a normalizing partition function. The exponent
is the energy. And C is the set of cliques of the graph (S,G), and the
family VC is called the potential. Every clique contributes to the total
energy through VC .

The following theorem by Hammersley and Clifford (1968) specifies the
equivalence between the two objects defined above:

Theorem 2 (Hammerley-Clifford). X is a MRF with respect to G if and
only if π = P (X = ω) is a Gibbs distribution with respect to G.

In order to exploit this equivalence, we interpret an image as being a
realization of a random field of labels. We therefore identify the sites s
with pixels and define G as all pixels involved in computing internal energy
differences.

The label probabilities for pixel x depend on the potentials of all cliques
of the graph (S,G). For a neighborhood as illustrated in Fig. 3.5, only
singletons (cliques of size 1) and doubletons (cliques of size 2) exist. The
former are used to include external potentials, the latter for the prior as
shown in the following example. For a simple Manhattan distance metric
of the contour, we assume G to be edges to the 4 face-connected neighbors
in 2D. Every interior pixel x = (i, j) we have 5 cliques, one singleton and
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4 doubletons. Then, V{i,j} is equal to the external energy. V{(i,j),(i−1,j)},
V{(i,j),(i+1,j)}, V{(i,j),(i,j−1)}, and V{(i,j),(i,j+1)} are equal to 1 if the labels
of the different sites are unequal, 0 else. For binary L, this is the Ising
model.

3.2.2 Length regularization

In continuous active contour representations, such as in level-set methods,
the contour length can easily be computed. In discrete representations,
however, it needs to be approximated from the discrete contour pixels
using concepts from digital geometry.

Various discrete length approximations for deformable models have been
presented in the literature. Zhu and Yuille (1996) argued that blurring
an image with a Gaussian filter has similar effects as including a length-
regularization term in the energy functional. One problem with this ap-
proach, however, is that edges get smoothed. Also, spurious intensity
fluxes across close regions can be a problem since they change the mean in-
tensities of these regions. Another approximation used in Song and Chan
(2002); Yu et al. (2006), and in techniques based on the Ising model, counts
the number of region changes on the pixel grid. While this approach is
computationally efficient, it causes the regions to tend to polygonal shapes
instead of developing smooth contours (Yu et al., 2006). Also, the contour
generally does not evolve smoothly, due to the discrete objective function.
Shi and Karl (2008) hence smoothed the contour of a discretized level
function using a Gaussian kernel, followed by a re-discretization step. A
drawback of this approach is that the smoothing is not represented in the
energy functional. The resulting trade-off between regularity and data
fidelity is hence difficult to control (Kybic and Kratky, 2009).

Here we use cut metrics and regularizing curvature flows. The former has
so far mainly been used in graph-cut segmentations, but perfectly suits
the algorithms presented in chapters 4 and 5.
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Figure 3.5: (a) The 16 neighborhood of a pixel. (b) Associated grid. See
main text for variables and details.

3.2.2.1 Cut metrics

The Ising model only roughly approximates the contour length. Boykov
and Kolmogorov (2003) hence introduced more sophisticated contour length
approximations on a lattice. We briefly restate their result for the Eu-
clidean case (Riemannian metrics are also considered in the original work)
and connect them to the results above. The length approximation is based
on the Cauchy-Crofton formula∫

nΓ dL = 2|Γ|, (3.23)

with nΓ the number of intersections of a straight line with the contour Γ.
L is the set of all lines. For the discrete version, consider the grid spanned
by all directions in G, as depicted in Fig. 3.5b. For each grid line or angle
ϕ (see Fig. 3.5a), Boykov and Kolmogorov (2003) derived the optimal edge
weight wk in order to approximate the Euclidean metric: This results in
the following edge-weights calculation:

wk =
h2∆ϕ

2|ek|
. (3.24)

Here, |ek| is the distance along the grid line k, k = 1 . . .K, h is the pixel
spacing, and ∆ϕk the angle difference to the (k− 1)-st grid line (ϕK = π).
The variables are in Fig. 3.5.
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In order to define a discrete length prior, we set the MRF potentials for
all doubletons to the edge weights, i.e., VC,|C|=2 = wk.

For vanishing h and ∆ϕ the approximation converges to the Euclidean
contour length. However, using Euclidean contour length approximations
causes the final contour to favor certain directions (Kybic and Kratky,
2009).

3.2.2.2 Contour length regularization using curvature flow

Smoother approximations have been studied by Kybic and Kratky (2009),
who proposed a regularizing flow for discrete level-set methods that ap-
proximates the local curvature κ as

κ(x) = C

(
|SRκx ∩X|L(x)||

|SRκ |
− 1

2

)
, (3.25)

with SRκx a hyper-sphere of radius Rκ centered at x and |SRκ | its volume.
C is a constant that depends on the image dimension d and on Rκ. We
adopt this approach, exploiting the fact that curvature regularization is
equivalent to contour-length minimization.1

We therefore directly add the curvature-regularizing flow to ∆E . The di-
rection of the flow is given by the outward normal on the contour. We
adapt the sign of κ to account for the direction of the flow: for expanding
regions, κ is subtracted from the energy difference, for shrinking regions
it is added to it. Rκ = 4 is found to provide a good trade-off between
regularity and resolution.

3.2.3 Moment-based shape priors

In contrast to local shape priors, global shape priors regularize the overall
shape of a region. Many approaches have been proposed. Osada et al.
(2002) used distances between distributions of angles and distances be-

1This is seen by applying variational calculus to
∑

i>0 λ|Xi| = λ
∑

i>0

∫
Γi

ds.
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tween randomly sampled points on the contour. This approach is usu-
ally referred to as shape distributions or shape contexts (Belongie et al.,
2002). Other shape-matching approaches are based on Hausdorff distances,
Fourier descriptors, shape-moment distances, or skeleton distances. Zhang
and Lu (2004) and Veltkamp and Hagedoorn (2001) give an overview.
Cremers et al. (2002) presented statistical shape priors for continuous de-
formable models.

In moment-based shape priors, one computes k moments of the distribution
of the points in a region. This results in a k-dimensional moment vector
M . Some vector norm between the moment vector MΩj of region Ωj and
the moment vector MT of a template shape is then used as shape-distance
measure. Such moment vectors are called geometric moments. Geometric
moments can be transformed to other bases in order to render them rota-
tion invariant. Examples of moment-based shape priors are found in Kim
and Kim (2000) and Rose et al. (2009). However, it is challenging and
computationally expensive to compute rotation-invariant measures based
on moments, especially in 3D.

We therefore consider a simple, but efficient 1D metric, which is naturally
invariant to all rigid-body transformations. We consider the moments of
all line-length segments from every discrete point within a region to a
fixed reference point. We use the centroid of the region as reference fixed
point. Conceptually, this is the D1-shape measure proposed by Osada
et al. (2002). But instead of sampling points on the contour, we consider
all discrete points within a region.

Such a 1D moment-based measure is not as accurate as 2D moment-based
measures. Nevertheless, Mertzios and Tsirikolias (1991) observed that
when deforming a shape only locally, this metric behaves well in the sense
that it increases monotonically with the deformation. In a local segmenta-
tion context, the shape is usually quite close to its target shape, such that
1D moments are accurate enough.

Let di be the Euclidean distance between a discrete point xi ∈ Ωj , j > 0,
and the centroid x̄ of Ωj , i.e., di = ‖xi− x̄j‖. Furthermore, let 〈di〉 be the
mean of these distances over all points in that region. Then, the normalized
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uni-variate central moment Mk of order k is

Mk(DΩj ) =
1

M2(DΩj )

 ∑
di∈DΩj

(di − 〈di〉)k
 1

k

. (3.26)

DΩj is the set of distances {di} of all points in Ωj . Normalizing with the
second moment M2 renders the measure scale-invariant. Using the result-
ing moment vector we can define the 1D-moment-based energy difference

∆Eshape = (MT −MΩ′j
)2 − (MT −MΩj )

2, (3.27)

where Ω′j is the perturbed shape.

3.3 Discussion

We provided explicit formulas for the probability ratios of discrete seg-
mentations of noisy images under various image models. We started from
Bayes’ formula and separately treated likelihood and prior terms. All en-
ergies considered multiple regions.

In the likelihood part, we distinguished between piecewise constant and
piecewise smooth models. We provided formulas for images corrupted with
Gaussian noise, Gaussian noise with fixed variance, and Poisson noise.

For the PC case we further distinguished image-formation models that in-
volve a blurring kernel K and models where K is the Dirac-delta function.
Future work on PC deconvolving energies, however, needs to study the
effect of delayed intensity updates. Alternatively, schemes that directly
incorporate intensity changes into the label-jump probability may be stud-
ied.

In order to account for PS models, we based the energy computations
on local statistics. We have shown a relationship between local-statistics-
based energy computations for PS image models and the MS functional
using the work of Brox and Cremers (2007). Accounting for a convolution
with a kernel K in a PS image model is ongoing work. The difficulty is
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that intensities then depend on the geometric state within the local patch.

We have further reviewed the explicit link due to Geman and Geman (1984)
between a digital image, interpreted as a realization of a field of random
variables, and the Gibbs distribution. This allowed computing prior prob-
abilities of segmentations from a modeled energy. Using this result, we
presented prior ratios for two different discrete length approximations.

We also presented an efficient, translation, scale, and rotation invariant
global shape prior based on 1D moments. The resulting shape descriptions
are not accurate enough to reconstruct a shape, but the prior can be used
to correct local errors of a segmentation.
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CHAPTER

FOUR

Unsupervised multi-region segmentation

with discrete models

4.1 Introduction

In unsupervised multi-region segmentation the number of regions, their
photometric features, and their contours are to be jointly estimated from
the image. This requires additional regularization on top of the usual
smoothness priors (see Sec. 3.2.2).

Related work Most multi-region methods use region-number priors (e.g.,
(Brox and Weickert, 2004; Delong et al., 2011)). Alternatively, a length-
/area balancing term is used (Sandberg et al., 2010). Brox and Weickert
(2004) proposed recursive splitting of regions into pairs of sub-regions such
as to minimize an energy that includes a region-number penalty . A sep-
arate level set is evolved for each region. In order to prevent regions
from overlapping, an additional penalization term is introduced into the
energy functional. The number of level functions that need to be evolved
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is reduced to one in unsupervised region-competition methods (Kadir and
Brady, 2003). A representation with only one level function, however, can-
not capture multiple contours touching in one point. Other multi-region
segmentation methods impose a fixed number of regions (or an upper
bound on it) that is often learned prior to contour evolution using, e.g.,
pixel-feature clustering or model selection. This is for example the case in
multi-phase level sets, which evolve log2M level functions in order to seg-
ment a fixed number of M regions (Vese and Chan, 2002). Besides the in-
creased computational cost of evolving multiple level functions, undefined
statistics from empty regions may hamper the evolution (Brox and Weick-
ert, 2004). Mansouri et al. (2006) presented a multi-region-competition
(Zhu and Yuille, 1996) implementation where the contours are implicitly
represented by multiple level functions. Lie et al. (2006) represented mul-
tiple regions using a single level function that converges to a piecewise
constant function indicating the different regions. Homeomorphic level
sets prevent topological changes during energy minimization (Fan et al.,
2008). Song and Chan (2002) introduced a fast discrete level-set method
for the two-region piecewise constant CV model. He and Osher (2007) gen-
eralized this method to an arbitrary, but priorly known number of piece-
wise constant regions and related the approach to topological derivatives
(Larrabide et al., 2008). Yu et al. (2006) optimized a two-region piecewise
smooth image energy using a discrete level function on a lattice. Fast dis-
crete level-set methods have been used for real-time tracking of a known,
fixed number of regions (Shi and Karl, 2008) and for fast approximate sur-
face evolution (Malcolm et al., 2008). Graph min-cut algorithms (Boykov
et al., 2001) are efficient combinatorial optimizers for discrete problems
with theoretical performance guarantees, both for priorly known numbers
of regions (Boykov et al., 2001) and for unknown numbers of regions using
a region-number penalty (Delong et al., 2011).

Connected-component prior Here we replace the prior or penaliza-
tion on the region number (or its upper bound) by the topological con-
straint that foreground regions have to be connected components. We
therefore define a foreground (FG) region as a connected set of pixels in
a certain digital geometry representation, amounting to a topological con-
straint. This definition is motivated threefold: (1) We wish that regions
determined by a segmentation algorithm delineate different physical ob-
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jects represented in an image (see Fig. 4.1). This frequently causes the
problem of choosing an appropriate number of regions so as to avoid over-
and under-segmentation (see arrows A and B in Fig. 4.1b). (2) It resolves
the dependence between the number of regions and the regularization con-
stant in the energy (see Fig. 4.2). (3) It can be evaluated using only local
information, whereas region-number penalties require global information
(see Sec. 2.2).

Another advantage of such a prior is that topological constraints can be
evaluated using local information only, whereas region-number priors re-
quire global information. The present definition of a region regularizes the
problem of estimating the number of regions jointly with their photomet-
ric features and contours. We use extended concepts from digital topology
(see Sec. 2.2) to enforce the topological region definition, and we present an
efficient discrete energy minimization algorithm that can locally minimize
a range of well-known energy functionals, including the energies presented
in Sec. 3, under this hard constraint.

We present an implementation of a versatile discrete-contour multi-region-
competition algorithm in 2D and 3D, inspired by discrete level sets (Shi
and Karl, 2008). The algorithm is based on the idea of using computational
particles to represent the evolving contour and is able to segment a priorly
unknown and arbitrary number of connected regions. Regions are dynam-
ically fused and split during energy minimization. This enables jointly
estimating the number of connected regions in an image, their photomet-
ric features, and their contours. We use digital topology (see Sec. 2.2) to
provide optional control over region splits and merges during contour evo-
lution. The topological constraint for foreground regions to be connected
components, however, is always present.

We demonstrate the applicability of the present method to three well-
known segmentation energy functionals: The first energy describes images
containing an unknown number of regions where each region has a different,
but constant (homogeneous) intensity. The energy is regularized using a
penalty on the approximated length of the overall contour. The second en-
ergy extends this model to account for regions containing piecewise smooth
intensity distributions. The third energy extends explicit deconvolving ac-
tive contours (Helmuth and Sbalzarini, 2009) to handle topological changes
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Figure 4.1: A motivation for defining FG regions as connected compo-
nents. The image shows a collection of cell nuclei, which are distinct real-
world objects (image: Dr. Prisca Liberali, University of Zurich). (a) Seg-
mentation (black outlines) using graph cuts (Boykov et al., 2001) to mini-
mize the two-region CV energy. Due to their different intensities, not all
nuclei are correctly delineated (see, e.g., arrow A). (b) Graph-cut segmen-
tation minimizing a ten-region piecewise constant energy. It is not clear
what number of regions to choose in order to avoid over-segmentation
and fusion of objects (see arrows B). (c) Segmentation using the present
algorithm constraining FG regions to be connected components. The al-
gorithm finds 39 connected FG regions, corresponding to the 39 nuclei in
the image.
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GC, M = 2

GC, M = 8

present

λ = 0.5 : λ = 1 :

I =

Figure 4.2: Illustration of the dependence between the number of regions
and the length-regularization coefficient λ in a piecewise constant image.
1st row: raw image I (left) and initialization for the present algorithm
(right). 2nd and 3rd rows: resulting reconstructed images using graph cuts
(GC) (Boykov et al., 2001) with M = 2 and M = 8 regions, respectively.
The lowest intensity that is detected depends on both M and λ. 4th row:
present reconstruction when defining a FG region as a connected com-
ponent. The result corresponds to the GC result with the ground-truth
number of M = 8 regions. The lowest intensity detected only depends on
λ.

during energy minimization and to arbitrary dimensions. This renders the
method less sensitive to the topology of the initial segmentation.

The remainder of this chapter is organized as follows: In Sec. 4.2 we discuss
the digital objects of our discrete explicit deformable model. Sec. 4.3
presents an interpretation of the topological prior in terms of an energy. In
Sec. 4.4 we present an efficient discrete algorithm for region-competition
energy minimization under hard topological constraints. In Section 4.5
we demonstrate the approximation of Sobolev gradients using particles.
Section 4.6 demonstrates the applicability of the present framework to
three well-known image models on both synthetic and real-world images
in 2D and 3D, and compares its performance with that of a multi-label
graph-cut minimizer (Delong et al., 2011). Section 4.7 summarizes and
discusses the results.
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4.2 Digital geometry representation

4.2.1 Connectivity of regions

We constrain FG regions in the image to be represented by connected sets
of pixels. All void space between FG regions is represented by one and
the same background (BG) region. Regions that can be captured by this
representation must be larger than a single pixel. Consequently, regions
cannot be connected via edges or corners of the pixel lattice. The FG re-
gions are hence defined as face-connected neighborhoods, i.e., 4-connected
in 2D and 6-connected in 3D. In the following we refer to this type of
connectivity as the FG connectivity. According to Jordan’s theorem, the
BG region then needs to be 8-connected in 2D and 18 or 26-connected in
3D (Ségonne, 2005). Here we use the (FG, BG)-connectivity pairs (4, 8)
and (6, 26) for 2D and 3D, respectively.

4.2.2 Contour

The discrete contour Γ̃i around FG region Xi, i = 1, . . . ,M − 1, is de-
fined by all pixels with at least one FG-connected neighbor belonging to
a different region Xj 6= Xi, j = 0, . . . ,M − 1. These contour points are

part of the corresponding FG region, i.e., Γ̃i ⊂ Xi, making all FG regions
closed, connected subsets of Ω. The BG region is the open complement
set X0 = Ω \

⋃M−1
i=1 Xi. Consequently, the continuous (d− 1)-dimensional

boundary Γ ∈ Ω of the FG region is the pixel edge as illustrated in Fig. 4.3.
In-between any two pixels of different regions, there is at least an infinites-
imal stripe of the BG region. Since FG regions are closed and have the
smallest connectivity type, they can never touch. Topological paradoxes
are hence avoided. In the following, however, we still say that FG regions
are touching whenever two pixels with different labels are FG neighbors.
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Figure 4.3: Pixel grid with two closed foreground regions (gray) and the
open background region (white). Pixels with a dot are discrete contour
points. These pixels belong to the respective FG region and contribute to
the region statistics. The bold lines illustrate the continuous contour Γ.

4.3 Connected components as region-merging
energy

Since we define regions as connected components, they may naturally
split during the energy-minimization process, provided these topological
changes are permitted by the user. The criterion for regions to merge can
be formulated as a hard region-merging penalty in the energy functional:

Emerge = ∑
(i,j)>0:Xi∼Xj

H[DKL(PXi ||PXi∪Xj ) +DKL(PXj ||PXi∪Xj )− θ] . (4.1)

H(·) is the Heaviside distribution and Xi ∼ Xj indicates that Xi and Xj

are FG-connected competing regions. Two regions merge if this is favorable
for the overall energy. In order to reflect the discrete-event character of
topological changes, the weight of this contribution to the total energy in
is ∞.
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4.4 Region Competition (RC) - Energy
minimization algorithm

We introduce a versatile region-competition mechanism inspired by dis-
crete level-set methods. In the present framework, minimizing an energy
E done using a rank-based discrete optimizer that does not require informa-
tion about the gradient of the energy functional. This is beneficial since
the hard penalty introduced by the topological constraint on regions is
not differentiable. We start by introducing the data structures and then
describe the minimization algorithm used to perform topologically consis-
tent contour evolution. The algorithm is designed with data locality and
parallelism in mind.

4.4.1 Data structures

The present method relies on three main data structures: First, regions
are identified using a label function (or label image) L : Ω 7→ N that maps
a discrete space coordinate x to the region label currently assigned to
that pixel. Contour pixels are assigned the negative label of the region
they bound. This allows identifying contour points directly from the label
image. The label of the BG region is fixed to 0.

Second, all points belonging to a contour are stored as computational
particles. Each particle A is defined by its location xA, i.e., the integer
pixel coordinates of the corresponding contour point, and its properties.
These properties are used to evolve the contour and are stored in a particle
data structure containing:

• the currently assigned label l = L(xA) to avoid expensive lookups in
the label image;

• the candidate label l′ as the label that minimizes ∆EA among all
other candidate labels;

• the change in energy ∆EA when changing the current label l to the
candidate label l′;
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Algorithm 1 Discrete region competition

1: Initialization: Set up L and C.
2: repeat
3: M = C
4: Optimization: see Algorithm 2
5: (Optional) Compute Sobolev gradients: see Sec. 4.5
6: Contour propagation: see Algorithm 3
7: Topology processing: see Algorithm 4
8: until convergence

• lists with the particle indices of the parent and child points of A.
Parents are all FG-connected points that belong to a different FG re-
gion. They are responsible for expanding the FG region they belong
to. Children are all FG-connected points that belong to a different
region, including the BG.

• the count r of parents with label l′.

Third, we use a hash map Ω 7→ C as an efficient data structure to iterate
over the particles and to map space coordinates x to particle indices A.
The hash map allows index lookups in O(1).

4.4.2 Algorithm

We describe an algorithm that iteratively propagates the contour points
(viz., the particles) of multiple regions over the image such as to locally
minimize an energy functional under topological constraints on the FG
regions. After initialization, the algorithm proceeds in iterations (see Al-
gorithm 1), each of which comprising three steps: optimization, contour
propagation, and topology processing. Optionally we compute Sobolev
gradient approximations before contour propagation. This optional step
is discussed in detail in Sec. 4.5.

Application-specific segmentation methods can be derived from the present
algorithm by specifying a particular energy functional and a set of topolog-
ical constraints. The former allows including prior knowledge about the
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image-formation process (e.g., the PSF of a microscope in a deconvolving
energy (Helmuth and Sbalzarini, 2009; Paul et al., 2013)) and the morphol-
ogy of the imaged objects (see Sec. 4). The latter allows including prior
knowledge about whether FG regions are allowed to fuse or split (or both
or none) during the energy minimization process (Bertrand, 1994; Lamy,
2007; Han et al., 2003). Regardless of the topological constraints on con-
tour evolution, however, a FG region is always defined as a FG-connected
component.

The input arguments to the algorithm are an energy functional E , the im-
age data I, and, since it is an iterative process, an initial segmentation L0.
Pixels in L0 that have a special label f can be used to indicate forbidden
regions. These regions are treated as boundaries that are never penetrated
by any contour, nor do they have an active contour themselves. In order to
avoid boundary checking at the border of the image domain Ω, we initially
pad the entire image by a layer of pixels with label f .

4.4.2.1 Initialization

All FG pixels with a neighbor of a different label in L0 are marked as
contour points. For each contour point, a particle is generated and added
to the hash map C, where the corresponding space coordinate is the key
of the map and the particle index its value (line 1 in Algorithm 1).

4.4.2.2 Optimization

In the main loop (line 3 in Algorithm 1), we first copy the current set
of particles C to M. M is the candidate list containing all particles we
consider moving to another region. We first attempt moving them to the
BG by setting all candidate labels l′ inM to 0 (line 2 in Algorithm 2). We
then calculate for each particle A the energy difference ∆EA = ∆E(xA, l→
0) = E(xA, 0)− E(xA, l).

In the next step, we attempt growing the FG regions. To do so, all particles
A ∈ M perform the following steps: All neighboring points that belong
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Algorithm 2 Optimization

1: for all A ∈M do
2: l′A = 0; ∆EA = ∆E(xA, l→ 0) = E(xA, 0)− E(xA, l)
3: for all {B | xB ∈ {N1

n(xA, L 6= lA)}, lB 6= f} do
4: register A in B’s parent list; register B in A’s daughter list
5: if B /∈M then
6: add B to M; Set lB = 0; rB = 1; l′B = lA;

∆EB = ∆E(xB , 0→ l′B)
7: else
8: if lA = l′B then
9: rB = rB + 1

10: else if ∆E(xB , lB → lA) < ∆E(xB , lB → l′B) then
11: l′B = lA
12: construct G from M
13: M =M\{A : ∆EA ≥ 0}

to a different region (including the BG) register A as a parent (line 4).
Particles for contour points that do not yet exist (since their current label
is 0) are created and added to M (line 6). All particles now know the
set of pixels they could potentially move to, and the set of pixels they are
attacked from.

The candidate label l′B of B is set to the label of A if this is favorable in
energy (lines 8–11). This means that if the candidate label of B is different
from the label of A (else we increase the parent count r since this candidate
label is supported by two or more parents, line 9), we set l′B to the label
lA of the parent if ∆E(xB , lB → lA) < ∆E(xB , lB → l′B). In addition, we
remove particles with ∆E ≥ 0 from the candidate list (line 13).

While each individual move in M is guaranteed to decrease the overall
energy, this may not be true for several moves performed simultaneously.
This property is inherent to discrete contour-propagation methods and can
cause contour and energy oscillations. We therefore monitor the history
of the contours and halve the percentage of accepted moves whenever the
contours do not propagate anymore. This amounts to reducing the step
size in a rank-based optimization scheme. Unless the algorithm has already
converged, the step size eventually reduces to 1, i.e., only a single move
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Algorithm 3 Contour propagation

1: find maximal-connected sub-graphs Gk of G.
2: for all Gk = {Vk, Ek} do
3: sort Vk according to ∆E
4: for all A ∈ Vk with EA < 0 do
5: if conditions C1, C2, and C3 are true then
6: ∀ children B with l′B = lA : rB = rB − 1.
7: else
8: M =M\A

fromM is executed in each iteration. This guarantees that the energy can
only decrease from then onward, and the algorithm hence converges to a
local minimum of E .

4.4.2.3 Contour propagation

The set of moves that will be executed simultaneously needs to be selected
according to the topological and causal constraints. Simply executing all
minimum-energy moves determined in the optimization step could lead to
violations of the topological constraints. Only contour points that are not
FG-simple are allowed to cause a topological change in any FG region.

Topological violations can arise from the fact that moves at iteration t may
depend on moves in iteration t + 1. This is illustrated in Fig. 4.4 for the
points (d, 2) and (c, 3). Whether region A is allowed to propagate to pixel
(d, 2) without disconnecting depends on the label of pixel (c, 2) in iteration
t + 1. The move in iteration t is only valid if pixel (c, 2) will still belong
to region A in iteration t + 1. But (c, 2) has a parent at (c, 3), proposing
it to join region B. This point at (c, 3) in turn is a candidate for label C
through the parent at (d, 3). Situations like this induce topological depen-
dence chains of arbitrary length. We identify the set of moves that are
topologically dependent by constructing an undirected graph G = {V,E}
(line 12 in Algorithm 2). The vertices V correspond to particles and the
undirected edges E to parent–child relationships. Topologically dependent
sets are then given by the maximal-connected sub-graphs Gk of G. The

56



4.4. REGION COMPETITION (RC) - ENERGY MINIMIZATION
ALGORITHM

1 2 3 4 5

b

c

d

6
A B C

a

Figure 4.4: Illustration of 3 adjacent FG regions A (light gray), B (dark
gray), and C (gray) in 2D. Points in the background region are white. Par-
ticles are shown as crosses. Points without a particle are interior points;
they are not FG-connected to any other region. The arrows point from
parents to the corresponding children. The circles indicate non-foreground-
simple points; interior points are not considered. See main text for details
about the algorithm.

maximal-connected sub-graph in the example of Fig. 4.4 contains the ver-
tices {(c, 2), (c, 3), (d, 2), (d, 3)}.

The contour is then propagated by selecting all compatible moves in Gk,
such as to minimize the sum of their energy differences. This is done inde-
pendently for each sub-graph Gk. In order to avoid enumerating all com-
patible moves, we use a sub-optimal heuristic (Algorithm 3). This starts
by sorting the vertices Vk of each sub-graph by ascending ∆E (line 3 in
Algorithm 3) and purging all invalid moves fromM in this order. Moving
particle A is valid if it fulfills all of the following conditions (line 5):

C1: if A is a child, its parent count is rA ≥ 1;

C2: if A is a parent, all of its children B that have already been accepted
as a move have rB > 1;

C3: if A is a parent, at least one of its children is not yet accepted or has
a candidate label l′B 6= lA.

C1 ascertains that the particle is connected to the propagating region.
C2 ensures that no child of this particle would lose connection to the
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Algorithm 4 Topology processing

1: change = true
2: while change do
3: change = false
4: for all A ∈M do
5: if xA is FG-simple then
6: Update data structures: Algorithm 5(xA)
7: change = true
8: for all A ∈M do
9: if holes are disallowed AND

(Tn(xA, L = l′A) ≥ 2 OR Tn̄(xA, L 6= lB) ≥ 2) then
10: next A
11: if Tn(xA, L = lA) ≥ 2 then
12: next A if splits are disallowed
13: store the seed set S = {N1

n(xA, L = l)}.
14: Update data structures: Algorithm 5(xA)
15: for all Xi ∼ Xj , i, j = 1, . . . ,M − 1, do
16: if fusions are allowed AND region merging criterion is true then
17: merge regions Xi and Xj and add seed to S
18: Recompute L using flood fill from seeds S

propagating region if this parent changed its label. C3 prohibits moves to
interior points. Valid moves for a parent A reduce the parent counts of all
its children B with l′B = lA (line 6).

In summary, Algorithm 3 identifies topologically dependent particles and
selects a topological compatible subset thereof. These particles are ranked
in order of decreasing energy differences before the moves are executed.
This ranking is independent of the particle processing order. It only de-
pends on the energy differences of the particles, which is a sole property
of the image and the contour state.

4.4.2.4 Topology processing

We detect and account for topological changes in the FG regions using
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concepts from digital topology (Bertrand, 1994; Lamy, 2007; Han et al.,
2003; Ségonne, 2005; Shi and Karl, 2008). The BG region is allowed to
change its topology arbitrarily. A genus change in a FG region can be a
split of the region into several regions, a fusion of two or more regions into
one, or the introduction of a hole into a region.

Splits and the introduction of holes are detected using the FG topological
number (see Sec. 2.2.2). If Tn(xA, {y : L(y) = l′A}) ≥ 2 or Tn̄(xA, {y :
L(y) 6= lB}) ≥ 2, changing the label of particle A to l′A introduces a
hole in region lB (line 9 in Algorithm 4). Similarly, if the FG topological
number for the label lB is larger than 1, the corresponding region splits,
unless splits are disallowed by the user (lines 11–12).

If region fusions are allowed, all competing pairs of regions (indicated by ∼
in line 15) undergo a region-merge check (line 16). In principle, this check
depends on the energy functional E . Different energy-independent merging
criteria, however, have been introduced based on region statistics (Zhu and
Yuille, 1996; Calderero and Marques, 2008; Ayed and Mitiche, 2008). Here
we use the symmetric Kullback-Leibler merging criterion (Calderero and
Marques, 2008) based on measuring the similarity between the empirical
intensity distributions PXi and PXj in the two regions Xi and Xj , i, j > 0.
The regions fuse if

DKL(PXi ||PXi∪Xj ) +DKL(PXj ||PXi∪Xj ) < θ , (4.2)

where DKL(·||·) is the Kullback-Leibler divergence between the two distri-
butions in the argument. The merging threshold θ is a free parameter of
the method. For θ = 0, regions are prevented from fusing.

Whenever region labels change due to splits or fusions, a seeded flood fill
in L is performed to identify the new connected components. For fusions,
the seed point is one of the pixels where the regions touch. For splits, all
FG points neighboring points where the regions were last in contact are
seeds. The points of last contact are easily found as those that are not
FG-simple (line 13). If a seed point moves to a different region, another
point in its geodesic neighborhood of order 1 becomes the new seed. The
flood fill (line 18) then reconstructs the label image L.
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Algorithm 5 Data-structure update

1: L(xA) = l′A.
2: if lA 6= 0 then
3: Add x′ ∈ N1

n(xA, lA) to C; L(x′) = −lA′
4: if lA′ 6= 0 then
5: Remove all interior points in x′ ∈ N1

n̄(xA, l
′
A) ∪ xA from C and set

L(x′) = |l′A|.
6: else
7: C = C\xA

4.4.2.5 Data-structure update

During topology processing, moves that do not induce topological viola-
tions are executed and the data structures are updated (Algorithm 5 called
from lines 6 and 14 of Algorithm 4). The labels of the corresponding pix-
els are changed to the respective candidate labels, and the label image is
updated accordingly (line 1 in Algorithm 5). These changes may causes
the creation of new contour points, the particles of which are added to
the hash map C (line 3). Similarly, the particles from pixels that newly
became interior points are removed from C (lines 5 and 7).

4.5 Approximation of Sobolev gradients

The RC algorithm amounts to a gradient descent, where the gradient is
approximated at discrete points in order to obtain ∆E . We used a L2-
type gradient. We therefore considered energies belonging to the L2 inner-
product function space. This inner product has certain undesirable proper-
ties for deformable models, which have been extensively discussed by Sun-
daramoorthi et al. (2007). For discrete models, the following two of these
properties are of special interest: First, the inner product does not contain
any regularity terms. This results in non-smooth contour/time (hyper) sur-
faces. Hence, in the presence of noise, the contour becomes non-smooth
during evolution. Curvature regularization via priors is typically used to
prevent this. Second, the L2-type gradient is ignorant w.r.t. the type of
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curve motion, such as global translations or local adaptations. Intuitively,
the contour therefore locally optimizes “on a small scale” and frequently
steps in local minima.

In a Sobolev function space, functions are associated with a norm that
contains Lp-norms and derivatives of the function itself. The metric on
that space induced by this inner product hence includes smoothness terms
that allow addressing the regularity issues mentioned above. Using such a
metric does not affect the global minimum of the function, but it amounts
to preconditioning the L2-type gradient.

Sobolev gradients have been introduced by Neuberger (1997). Deformable
models using a Sobolev-type inner products have been presented by Sun-
daramoorthi et al. (2005); Charpiat et al. (2005). Detailed theoretical and
practical considerations can be found therein. It has been shown that
curve evolution using Sobolev gradients are smoother and more robust
w.r.t. contour initialization. This comes at the cost of more expensive
gradient computations. Often, however, often less iterations are necessary.

Here, we show how to use Sobolev gradients in RC using particle interac-
tions. We first discuss the inner product considered. Then we compute
energy differences based on the metric induced by this inner product.

4.5.1 Inner product

We closely follow the argumentation of Sundaramoorthi et al. (2007). They
consider a Sobolev space W 1,2, which is a Hilbert space H1, and define its
inner product as

〈h, k〉H1 := h̄ · k̄ + ε · E2 · 〈∇h,∇k〉L2 , (4.3)

where h and k are elements of the tangent space of Γi. The tangent space
is the set of all possible deformations of Γi. The ∇-operator in Eq. (4.3)
is w.r.t. the L2-norm. The variable ε ∈ R+ is a hyper parameter for
smoothness and E > 0 determines the length scale of the smoothness
terms in the inner product. Sundaramoorthi et al. (2007) set E = |Γi|, we
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further discuss E in Sec. 4.5.2.1. The average h̄ of h over Γi is

h̄ =
1

|Γi|

∫
Γi

h(s)ds. (4.4)

The average k̄ is defined similarly. The L2 inner product is

〈h, k〉L2 =
1

|Γi|

∫
Γi

h(s) · k(s) ds. (4.5)

4.5.2 Sobolev gradient computation

In order to compute the first-order Sobolev gradients using the metric
induced by the inner product in Eq. (4.3), Sundaramoorthi et al. (2007)
presented the following equality

∇H1E(s) =

∫
Γi

K̃(ŝ− s) · ∇E(ŝ)dŝ = (K̃ ∗ ∇E)(s) (4.6)

with convolution kernel

K̃(r) =
1

E

(
1 +

(|r|/E)2 − (|r|/E) + 1/6

2ε

)
, r ∈ [−E/2, E/2]. (4.7)

Figure 4.5 shows K̃ for different ε. Equation (4.6) enables computing the
first-order Sobolev gradient from the L2 gradient. Note that the convolu-
tion domain is Γi.

4.5.2.1 Kernel selection

Sundaramoorthi et al. (2005) set E equal to the contour length |Γi| in
order to obtain a scale-invariant inner product in Eq. (4.3). Gradient
information is then shared along the entire contour. This enables global
contour movements such as translations.

Here, we fix E and therefore set a scale with respect to the image coor-
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Figure 4.5: Kernel K̃ for E = 1 and different ε. The solid, dotted, and
dashed curves show K̃ for ε = 1/24, ε = 0.06, and ε = 0.08, respectively.

dinate system. The support of K̃ then becomes finite, which is beneficial
for computational efficiency. Moreover, it enables us to approximate the
arc distance ŝ− s between two points, which is used to evaluate the kernel
in Eq. 4.6. RC’s discrete representation, however, does not allow comput-
ing this quantity. Since we consider a relatively small support of K̃, we
approximate intrinsic distances by the Euclidean distance d(·, ·). We set
ε = 1

24 . The kernel then smoothly approaches zero at its tails, as depicted
in Fig. 4.5. The length scale E is a user defined parameter.

4.5.2.2 Discrete approximation

Since the particles store a discrete L2 − type gradient approximation on
both sides of the contour Γi, we can approximate the Sobolev gradient
by convolving over particles. In particle methods, discrete convolution
amounts to pairwise particle–particle interactions (Hockney and Eastwood,
1988; Eldredge et al., 2002; Koumoutsakos, 2005; Schrader et al., 2010).
We therefore efficiently compute this convolution by summing kernel-weigh-
ted energy differences of neighboring particles.

Let Qp be the set of particles in M that are located in the support of K̃
and have the same label as p, i.e., Qp = {q ∈M| d(xq, xp) < E/2, lp = lq}.
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Similarly, let Q′p be the particles within the kernel support that lie on the
other side of the contour, i.e., Q′p = {q ∈ M| d(xq, xp) < E/2, lp = l′q}.
For each particle p we then update the energy difference as follows:

∆Ep ←
1

|Qp|
∑
q∈Qp

K̃(d(xq, xp))∆Eq −
1

|Q′p|
∑
q∈Q′p

K̃(d(xq, xp))∆Eq (4.8)

We use cell lists (Hockney and Eastwood, 1988) with a cell edge-length
equal to the interaction cutoff radius of E/2 in order to efficiently find the
neighbors (interaction partners) of each particle. This reduces the average
time complexity of the discrete convolution from O(N2) to O(N) for a
total of N contour particles.

If both terms in Eq. (4.8) have the same sign, the approximated Sobolev
gradients on both side of the contour have opposite directions. This hap-
pens when the optimizer found an extremum of the energy. Consequently,
the energy differences on one side of the contour are negative. Since the
discrete representation does not allow sub-pixel deformations, the contour
then oscillates.

4.6 Benchmarks and applications

We demonstrate the capabilities and limitations of the proposed topolog-
ical region prior and RC minimizer by applying them to synthetic bench-
mark images with three different energy models. In each case, we also
illustrate the practical applicability of the method to real-world images
and provide computational timings. All times reported have been mea-
sured on a single 2.67 GHz Intel i7 core with 4 GB RAM using the Intel
C++ compiler (v. 12.0.2). As a benchmark, we compare with iterated ex-
tended α-expansions with label costs as a region-number penalty (Delong
et al., 2011). We use an 8-neighborhood with edge weights following the
Cauchy-Crofton formula (Boykov and Kolmogorov, 2003), see Sec. 3.2.2.1.
Compared to other multi-label optimization techniques like α − β swaps,
α-expansions guarantee to find a solution with an energy at most twice
the energy of the global minimum (Delong et al., 2011). The α-expansions
are iterated in a PEaRL-like manner in order to solve the joint estimation
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problem of region numbers, intensities, and contours (Isack and Boykov,
2011). We choose this graph-cut-based benchmark algorithm, referred to
as GC below, since it is also discrete and provides good theoretical per-
formance guarantees. The corresponding source code was obtained from
http://vision.csd.uwo.ca/code/. For all benchmarks we use the over-
all energy

E = Edata + λElength + αEmerge. (4.9)

All test cases and results are summarized in Tab. 4.1. For test cases with
available ground-truth data we additionally provide two quality measures:
the relative error in energy and the percentage of missclassified pixels. The
latter is w.r.t. the optimal label pairing between the ground-truth and the
found labels.

4.6.1 piecewise constant model

We first consider images comprising an unknown and arbitrary number
of connected FG regions with each region having a potentially different,
but constant mean intensity. After experiments using synthetic data, we
present and compare results for natural scene images. We conclude this
subsection with a 3D real-world application to segmenting fluorescently
stained nuclei. All results in this subsection are performed using the fixed-
variance Gauss-noise model presented in Sec. 3.1.1.1.

4.6.1.1 Benchmarks on synthetic data

Figure 4.6 illustrates the behavior of the present algorithm and of GC using
the above energy functional on a synthetic image. The image contains 6
regions, each of which having a different, but constant mean intensity.
The present algorithm is started with an initial segmentation far from
the correct result and with a wrong number of initial regions (Fig. 4.6e).
This demonstrates the capability of the algorithm to merge regions and
to correctly delineate boundaries between touching regions. The total
computational time used for this example is 0.39 s, despite the unfavorable
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Optimizer Initialization Optimizer parameters Edata

Icecream PC, 130× 130, Fig. 4.6

present 6× 6 bubbles θ = 0.2, Rκ = 4 PC

GC M = 12 labelcost = 5 PC

GC M = 6 labelcost = 0 PC

Icecream PC, 410× 410

present 8× 8 bubbles θ = 0.2, Rκ = 8 PC

GC M = 12 labelcost = 5 PC

GC M = 6 labelcost = 0 PC

Icecream PC, 100× 100× 100

present 5× 5× 5 bubbles θ = 0.2, Rκ = 4 PC

GC M = 12 labelcost = 5 PC

GC M = 6 labelcost = 0 PC

Zebrafish embryo nuclei, 512× 512× 39, Fig. 4.9

present local maxima θ = 0, Rκ = 2 PC

Bird, 481× 32, Fig. 4.8a/b

present 18× 12 bubbles θ = 0.5, Rκ = 8 PC

GC M = 5 labelcost = 50 PC

Icecream PS, 130× 130, Fig. 4.10

present 5× 5 bubbles θ = 0.2, Rκ = 4 PS

GC 5× 5 bubbles labelcost = 20.5 PS

GC 3× 3 bubbles labelcost = 40 PS

Icecream PS, 100× 100× 100

present 3× 3× 3 bubbles θ = 0.3, Rκ = 4 PS

GC M = 3 labelcost = 20.5 PS

Zebrafish embryo germ cells, 188× 165× 30, Fig. 4.13

present bounding box Rκ = 0.04 PS

Cloud, 481× 32, Fig. 4.14a/b

present 18× 12 bubbles θ = 0.2, Rκ = 8 PS

GC 3× 5 bubbles labelcost = 175 PS

Elephants, 130× 130, Figs. 4.8c/d and 4.14c/d

present 18× 12 bubbles θ = 0.5, Rκ = 8 PC

GC M = 5 labelcost = 50 PC

present 18× 12 bubbles θ = 0.2, Rκ = 8 PS

GC 3× 5 bubbles labelcost = 175 PS

Convolved artificial image, 49× 72, Fig. 4.15

present bounding box θ = 0.2, Rκ = 4 dec

Endosomes, 512× 386, Fig. 4.17

present local maxima θ = 0.1, Rκ = 2 dec

Endoplasmatic reticulum, 250× 325× 16, Fig. 4.18

present Otsu threshold θ = 1000, Rκ = 4 dec

Table 4.1: Test cases benchmarking the present optimizer(present) against
multi-label GC.
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Energy parameters Final E (E−EGT)

EGT

misscl.
px [%]

Iter. CPU time

Icecream PC, 130× 130, Fig. 4.6

λ = 0.04 71.42 4e-5 0.24 64 0.39s

λ = 0.04 71.28 -1e-3 0.11 3 0.28s

λ = 0.04 75.85 0.06 4.7 3 0.09s

Icecream PC, 410× 410

λ = 0.04 467.2 5.2e-3 0.11 110 7.34s

λ = 0.04 464.3 -1.0e-3 0.04 5 8.18s

λ = 0.04 760.8 0.63 19 3 1.3s

Icecream PC, 100× 100× 100

λ = 0.04 1863 5.5e-3 0.11 62 57s

λ = 0.04 1844 -4.4e-3 0.04 5 76.9s

λ = 0.04 1880 0.014 2.09 5 38.5s

Zebrafish embryo nuclei, 512× 512× 39, Fig. 4.9

λ = 0.04 * - - 44 7.3m

Bird, 481× 32, Fig. 4.8a/b

λ = 0.2 * - - 83 4.06s

λ = 0.2 * - - 9 8.81s

Icecream PS, 130× 130, Fig. 4.10

λ = 0.04, β = 0.05, R = 8 87.94 8.5e-4 0.07 71 0.49s

λ = 0.04, β = 0.05, R = 8 87.87 -5.3e-5 6e-3 9 10.2s

λ = 0.04, β = 0.05, R = 8 87.87 -5.3e-5 6e-3 8 3.47s

Icecream PS, 100× 100× 100

λ = 0.04, β = 0.05, R = 8 4618 6.7e-4 0.01 77 4m

λ = 0.04, β = 0.05, R = 8 4615 -2.7e-6 1e-3 4 12m

Zebrafish embryo germ cells, 188× 165× 30, Fig. 4.13

λ = 0.08, β =5e-3, R = 4.5µm * - - 207 5.3m

Cloud, 481× 32, Fig. 4.14a/b

λ = 0.2, β = 0.1, R = 30 * - - 157 57.77s

λ = 0.2, β = 0.1, R = 30 * - - 16 12.3m

Elephants, 130× 130, Figs. 4.8c/d and 4.14c/d

λ = 0.2 * - - 163 11.26s

λ = 0.2 * - - 13 42.57s

λ = 0.2, β = 0.05, R = 30 * - - 385 25.57s

λ = 0.2, β = 0.05, R = 30 * - - 17 13.2m

Convolved artificial image, 49× 72, Fig. 4.15

λ = 0.04 27.13 -5e-2 1.52 53 2.3s

Endosomes, 512× 386, Fig. 4.17

λ = 0.04 * - - 41 32s

Endoplasmatic reticulum, 250× 325× 16, Fig. 4.18

λ = 0.15 * - - 55 7.11m

* Final energy not comparable due to different definitions of a region.
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choice of initial contours.

The evolution of the total, external, and internal energies for this case is
shown in Fig. 4.7. The present algorithm converges after 64 iterations.
The dot symbols mark the time points at which fusions between two or
more regions occurred. GC rapidly finds a solution with an energy that
is slightly lower than that of the ground truth. This can be explained by
the noise introducing spurious local minima in the energy landscape. The
CPU times until convergence are comparable for the two algorithms. In
order to test how the results scale with image size, we also consider the
same problem with the image zoomed (not padded) to 410×410 pixels, and
with a 3D version of the image (see Tab. 4.1). In all cases GC is sensitive
to the initial number of regions (Figs. 4.6c and 4.6d) when using uniformly
distributed initial region intensity estimates. With an initial number of
M = 12 regions GC solves the problem with a CPU time comparable to
the present algorithm; for M = 6 GC fails to find the correct segmentation.
The GC implementation requires ≈ 1.76 GB of main memory for this 3D
case; the present code uses ≈125 MB.

4.6.1.2 Application to real data

We assess the real-world applicability of the present algorithm by applying
it to 2D natural-scene images from the Berkeley database (Martin et al.,
2001) and to a 3D confocal fluorescence microscopy image of stained nuclei
in a zebrafish embryo. The results are shown in Figs. 4.8 and 4.9. In
Fig. 4.8 we visually compare with GC results; the energies, however, cannot
be compared due to the different definitions of what constitutes a region.
The nuclei in Fig. 4.9 are small enough to justify the model of constant
intensity within each nucleus. Different nuclei, however, have different
intensities, e.g., arrows A and B in Fig. 4.9a, benefitting from a multi-
region segmentation approach. The final label image after 44 iterations is
shown in Fig. 4.9b. For better visualization, the gray-scales are the region
labels rather than the estimated intensities. An overlay of the original
image and the final contours is shown in Fig. 4.9c for the area highlighted
by the yellow rectangle in Fig. 4.9b. Figure 4.9d shows the result when
allowing region fusions, illustrating the effect of topological control during

68



4.6. BENCHMARKS AND APPLICATIONS

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Synthetic example using the energy EPC. (a) Piecewise con-
stant ground-truth image. (b) Ground-truth image corrupted with Poisson
noise. The 5 FG regions correspond to peak signal-to-noise ratios (SNR)
of 4, 5.25, 6.5, 7.75, and 9, respectively. (c) Final result from GC when
initialized with the ground-truth number of M = 6 regions. The GC al-
gorithm fails due to inaccurate estimates of the region intensities. (d)
Correct GC result with 6 final regions when initializing with M = 12
regions. (e–h) Contour evolution at iterations 0, 15, 25, and 64 of the
present algorithm with contour points (particles) shown in white. The
correct number of 5 connected FG regions is found.
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Figure 4.7: Energy evolution for both algorithms. For the present algo-
rithm we show Elength (dash-dotted), EPC

data (dashed), and the total energy
(sold). Circles mark region-fusion events. The red line shows the GC
energy evolution for an initial M = 12. Crosses mark iterations. The
residual energy of the ground-truth image is indicated by the horizontal
dashed blue line.

contour evolution.

4.6.2 piecewise smooth model

We benchmark the RC algorithm on an artificial image with shaded regions.
We use the piecewise smooth Gaussian-noise model with fixed variance
described in chapter 3.1.3. We then present results of a 3D fluorescent
microscopy image with similar features. Finally, we compare RC and GC
on two 2D natural-scene images. The total energy for these benchmarks
is E = EPS

LS + βEballoon + λ|Γ|. The last term is approximated by adding κ
to ∆E (see Sec. 3.2.2.2).

4.6.2.1 Benchmarks on synthetic data

Figure 4.10 illustrates the behavior of the present algorithm (Figs. 4.10a
to 4.10d) on an image with linearly shaded FG and BG and compares it
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(a) (b)

(c) (d)

Figure 4.8: Visual comparison on natural-scene images using EPC. (a/c)
Segmentation result using the present algorithm; (b/d) using GC. GC
finds 3 regions in (b) and 4 in (d). The present algorithm finds 3 connected
FG regions in (a) and 9 in (c).
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Figure 4.9: Real-world application using EPC to segment nuclei in a ze-
brafish embryo imaged by confocal fluorescence microscopy. (a) Visual-
ization of the nuclei in the raw 3D data (image: Dr. Andrew Oates and
Bhavna Rajasekaran, MPI-CBG Dresden). (b) Maximum-intensity pro-
jection of the final label image L. The algorithm is initialized with small
FG regions placed at all local intensity maxima after Gaussian (σx = 5 px,
σy = 5 px, σz = 2 px) blurring. The topology is fixed to the initial topol-
ogy, with the exception that regions are allowed to vanish. On average
1.03 · 106 candidate particles are processed per iteration. 99.99% of the
particles stop moving after 25 iterations. The algorithm converges after
44 iterations, finding 3218 connected FG regions. Since every connected
component is a separate region with its own intensity estimate, nuclei of
different brightnesses (e.g., arrows A and B) are correctly segmented. (c)
Magnified z-plane showing an overlay of the original image with the final
contours (black) in the region highlighted in yellow in (b) (intensities in-
verted for display purposes only). Touching nuclei are not fused if region
merges are disallowed during contour evolution. (d) Allowing regions to
merge, touching nuclei of similar intensities are assigned to the same re-
gion (e.g., arrow C) and the final number of connected FG regions is 1452.
The visualizations in (a) and (b) were done using Imaris by Bitplane, Inc.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10: Synthetic example using the energy EPS. Two overlapping
linearly shaded disks on a linearly shaded background, corrupted with Pois-
son noise. The brighter parts of the disks (top right) approximately cor-
respond to a peak SNR of 8.7, while the low-intensity parts (bottom left)
have SNR ≈ 3.2. (a–d) Contour evolution at iterations 0, 5, 15, and 70
of the present algorithm. The correct number of 2 connected FG regions
is found. (e–h) Evolving contour at iterations 0, 1, 4, and 9 of the GC
algorithm, also finding the correct number of regions.
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Figure 4.11: (i) Energy evolution for the two algorithms. For the present
algorithm we show the evolution of EPS

data (dashed), Elength (dash-dotted),
Eballoon (dotted), and of the total energy EPS (solid). Dots mark region-
fusion events. The red line shows the energy for GC. Crosses mark iter-
ations. The residual energy of the ground-truth image is indicated by the
horizontal dashed blue line.

with GC (Figs. 4.10e to 4.10h). In the high-SNR areas, the data term of
the energy dominates the evolution, and the contours immediately stick to
intensity edges. Within the shaded FG circles, the regions expand as driven
by the balloon force. After 5 iterations, regions that are not separated by
large intensity gradients begin to merge.

The present algorithm is robust with respect to different choices of the
patch radius R. However, R should be chosen smaller than the length
scale of intensity variations and large enough such that |SR| constitutes a
representative sample to construct the local intensity histograms P .

Figure 4.11 shows the evolution of all energy terms for the present example.
When initialized with 25 bubbles as shown, GC is about 20 times slower
than the present algorithm, since it evaluates the energy everywhere in
the image, whereas the present algorithm evaluates it only at the parti-
cles. Both methods find solutions close to the ground truth and correctly
estimate the number of regions.

The results for a 3D version of the image in Fig. 4.10 are given in Tab. 4.1.
In the 3D case, GC is initialized with the ground-truth number of regions
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and an initial contour close to the ground-truth solution in order to keep
CPU times reasonable. The present algorithm is again initialized with
bubbles.

4.6.2.2 Application to real data

Real-world applications of the present image model are shown in Figs. 4.13
and 4.14. The data consist of a 3D confocal image of primordial germ cells
in a zebrafish embryo (Fig. 4.13a) and 2D natural-scene images from the
Berkeley database (Fig. 4.14) (Martin et al., 2001). The difficulty in seg-
menting these images is that the intensity is inhomogeneous within each
object, as illustrated in Fig. 4.13b. Also the background is inhomogeneous
in all images, requiring a piecewise smooth model. Figure 4.12 shows the
surface evolution for the primordial germ cells image. The final segmenta-
tions obtained with the present algorithm are shown in Figs. 4.13c, 4.14a,
and 4.14c. The segmentations using GC are shown in Figs. 4.14b and
4.14d. Comparing Figs. 4.14c/d with Figs. 4.8c/d illustrates the difference
between a piecewise constant and a piecewise smooth image model.

4.6.3 Deconvolution model

We test the algorithm on blurred data using the deconvolving model in
Eq. (3.13) with external energy Edata = EPC,dec

LS . We first consider synthetic
data and then provide a 2D real-world example of segmenting fluorescently
labeled endosomes.

4.6.3.1 Benchmark on synthetic data

Figure 4.15 illustrates the behavior of the present algorithm using the
deconvolving energy functional on a synthetic image. The image simulates
a realistic scenario in fluorescence microscopy with a pixel size of 80 nm
and a half-width of the PSF of 120 nm. The image blurred by the PSF
(Fig. 4.15b) corrupted with Poisson noise (Fig. 4.15c) with a peak SNR
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(a) (b)

(c) (d)

Figure 4.12: Top view of the 3D contours minimizing the energy EPS

after 50 iterations (b), 100 iterations (c), and 257 iterations (d). The
algorithm is initialized with a box-shaped region (a). The length-term
coefficient λ is set to 0.08, the balloon force coefficient to β = 0.005, and
the local patch radius to R = 4.5µm (corresponding to 9 × 9 × 3 voxels).
After 208 iterations oscillations are detected and after 257 iterations the
process converges. The average CPU time per iteration is 1.25 s, resulting
in a total processing time of 5.3 minutes. All visualizations in this figure
were done using Imaris 7.2 by Bitplane, Inc.
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20µm

(a)

(b) (c)

Figure 4.13: Real-world application using EPS to segment primordial germ
cells in a zebrafish embryo. (a) The raw 3D confocal image showing 3 cells
with a fluorescent membrane stain (image: Mohammad Goudarzi, Univer-
sity of Münster). Intensities are inverted for display purposes only. (b)
Intensity isocontour illustrating the inhomogeneity of the objects (bottom
view). (c) Final segmentation using the present algorithm with EPS (bot-
tom view). The algorithm is initialized with a single box-shaped contour
encompassing all objects and ultimately finds 3 connected FG regions. Vi-
sualizations were done using Imaris by Bitplane, Inc.
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(a) (b)

(c) (d)

Figure 4.14: Visual comparison on natural-scene images using EPS. (a/c)
Segmentation result using the present algorithm; (b/d) using GC. GC
finds 6 regions in (b) and 9 in (d). The present algorithm finds 17 con-
nected FG regions in (a) and 14 in (c).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.15: Synthetic example using the energy Edec. (a) The ground-
truth image. (b) The image convolved with a Gaussian point-spread func-
tion with σ = 1.75 px, modeling a confocal fluorescence microscope. (c)
The blurred image after addition of Poisson noise. The intensity of the
u-shaped object corresponds to a peak SNR of 3, that of the circular re-
gion to an SNR of 4. (d) The reconstructed image using the deconvolving
model. (e) The reconstructed image using a piecewise constant model with
λ = 0.1, θ = 0.8. (f–j) The contour after 1, 10, 20, 35, and 53 iterations,
finding the correct number of 2 connected FG regions. The algorithm re-
duces the step size upon detecting oscillations after 30 and 77 iterations.
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Figure 4.16: Energy evolution for the deconvolving model. The solid line
represents the total energy, the dashed line Edecdata, and the dash-dotted line
Elength. The dot symbol indicates a region-merging event. The residual
energy of the ground-truth image is indicated by the horizontal dashed blue
line.

of 3 and 4 for the dimmer and brighter object, respectively. The width of
the gap between the objects is equal to the half-width of the PSF.

Without using the information of how many objects are represented in the
image, we start the segmentation from a single, rectangular initial contour
(Fig. 4.15f). Figures 4.15f to 4.15j show the evolution of the contour. Since
the area of the circle is larger than the area of the u-shaped object, the
intensity estimate is initially dominated by the circle. This causes initial
over-segmentation of the u-shaped object. At iteration 19, the lower region
splits into two regions with independent intensity estimates. This causes
the regions segmenting the u-shaped object to merge again, resulting in
a correct detection in the end. Figure 4.16 shows the evolution of the
energies during this segmentation process.

We compare the results with those obtained using the piecewise constant
energy without deconvolution. The corresponding final reconstruction is
shown in Fig. 4.15e. The PC model is not able to separate the two objects.
It is moreover necessary to set λ to be 10 times larger than for the decon-
volving energy in order to prevent overfitting the blurry object boundaries
with many small regions.
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4.6.3.2 Application to real data

A deconvolving energy functional is particularly useful when segmenting
near-diffraction-limited objects as they occur, e.g., in intra-cellular imag-
ing. We illustrate this in Fig. 4.17 using a single plane of a 3D confocal
image showing endosomes labeled with fluorescent Rab5 protein (Helmuth
et al., 2009). Endosomes are small membrane-bound organelles of about 20
to 200 nm size. Accurately reconstructing the outlines of the many blurred,
dense objects in this image is challenging when not accounting for the mi-
croscope PSF. Here we use a simple Gaussian model PSF whose width is
determined by fitting it to point-like structures in the image. A separate
measurement of the actual PSF of the microscope was not performed. Ini-
tially, we place small circular contours around every local intensity max-
imum in the image. These contours then rapidly evolve to concentrate
around the endosomes. The number of regions in the image does not need
to be known when initializing the algorithm. This is an advantage over
explicit deconvolving active contours (Helmuth and Sbalzarini, 2009). Ex-
plicit deconvolving active contours, however, provide sub-pixel resolution,
whereas the present method is limited to pixel-level accuracy. This pre-
vents the correct detection of objects covering less than 2 pixels. After
73 iterations, the algorithm converges to the reconstructed model image
shown in Fig. 4.17b. The original image overlaid with the final outlines in
the region indicated in Fig. 4.17a is shown in Fig. 4.17c. The two touch-
ing objects in the lower-right corner are properly separated based on their
different intensities.

We apply RC using a deconvolving energy EPC,dec
Poisson to a 3D image of an

endoplasmatic reticulum (ER). ERs also are near-diffraction-limited sub-
cellular structures. We compare joint deconvolution and segmentation
to a PC segmentation without deconvolution in Fig. 4.18. The segmen-
tation without deconvolution tends to include out-of-focus light into the
foreground object. The deconvolving energy therefore causes the contour
to resolve fine structures in more detail, as shown in Fig. 4.18d. Also, the
objects are usually smaller. Consequently, small isolated structures may
be missed since the curvature regularization acts stronger on smaller ob-
jects. For the sake of comparison, however, we here used the same prior
hyperparameter λ = 0.15 for both cases. We approximate the PSF by a
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10µm 2µm

(a)

(b) (c)

Figure 4.17: Real-world application of the deconvolving model to fluores-
cently labeled endosomes in live HER911 cells. (a) Confocal fluorescence
microscopy image after background subtraction using a rolling-ball algo-
rithm (image: Prof. Urs Greber, University of Zurich, and Dr. Christoph
Burckhardt, Harvard University). (b) Final reconstructed image in the
inset window shown in (a). (c) The final contours (black pixels) overlaid
onto the original image data. Starting from 1541 spherical FG regions
centered at local intensity maxima, the algorithm finds 72 connected FG
regions. We approximate the PSF by a Gaussian with σ = 1.011 px, found
by fitting to signals of point-like structures in the image. Intensities are
inverted for display purposes only.
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Gaussion with σx,y = 1 px and σz = 1.5 px. We stop the algorithm after
50 iterations, which needs 7.11 minutes for the image of size 250×325×16
pixels.

4.6.4 Cell segmentation with spherical shape prior

Figure 4.19 shows the effect when using the global shape prior discussed
in Sec. 3.2.3. We first segment the images without shape prior. Regions
are initialized at local intensity maxima after blurring. We then use the
obtained segmentations as initialization for a second segmentation with
shape prior. We used a circle as a template shape.

4.6.5 Applications using Sobolev gradient approximations

We compare RC results using approximated L2 gradients with RC re-
sults using approximated Sobolev gradients (Sec. 4.5). We first challenge
both approaches using an artificial deconvolution problem. Figure 4.20
shows the artificial data, intermediate results, and final results for both
approaches. We always initialize with 25 bubbles on a cartesian grid.
During the first 15 iterations, regions evolve almost identically for both
approaches. After 59 iterations, the Sobolev-gradient approach is closer
to the final solution. After 88 iterations, it starts oscillating and there-
fore falls back to the L2-gradient mode. It converges after 282 iterations.
The L2-gradient approach converges after 500 iterations. The results for
both algorithms are shown in Figs. 4.20h and 4.20l. The average iteration
times are 0.74s with and 0.73s without Sobolev gradients. They are almost
identical because of the deconvolving energy calculations , i.e., computing
the L2-gradient approximations is computationally more expensive than
computing the Sobolev-gradient approximations.

In Fig. 4.21 and Fig. 4.22 we show real-world data with low SNR. Both ex-
amples illustrate that Sobolev gradients maintain smooth contours, result-
ing in less noise-sensitive segmentations. The L2-gradient result requires
stronger curve-length penalization in order to regularize the contour. How-
ever, this fails for the example in Fig. 4.21 as regions start to collapse when
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(e) (f)

Figure 4.18: Piecewise constant segmentations of ER data with and with-
out deconvolution model. (a) Confocal fluorescence microscopy image (im-
age: Helenius group, ETH Zürich). (b) Data with segmentation contour
(yellow mesh) when using EPC,dec

Poisson as the external energy. The illustrated
region corresponds to the yellow frustum shown in (a). (c) 2D slice with
segmentation contour using the external energy EPC

Poisson. The region cor-
responds to the region indicated by the red window in (a). (d) Same as
(c) but segmentation using the deconvolving external energy EPC,dec

Poisson. (e)
Original data of the region indicated in red. (f) Reconstructed image J
of the segmentation shown in (b) and (d). Intensities have been inverted
for display purposes only.
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5µm

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.19: Fluorescently labeled cells (image: Michael Unger, BISON
Group, ETHZ) segmented with and without global spherical shape prior.
The topology has been fixed during contour evolution. (a–d) shows the
low-SNR raw data. (e–h) shows the segmentation results without global
shape prior. (i–l) shows the segmentation results with global shape prior.
The lower-most region in (l) can not satisfy the spherical prior due to the
image boundary and tries to compensates in another direction.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.20: Region evolution using L2 and Sobolev gradient approxima-
tions for the deconvolving energy EPC,dec

LS . (a) Ground-truth data with
overlaid Gaussian point-spread function of width σ = 15 pixels. (b) Con-
volved image. (c) Convolved image with Poisson noise of SNR 6. (d) Ini-
tialization for both algorithms. (e–h) Regions after 15, 59, 88, and 500
iterations using the L2-type gradient. (i–l) Regions after 15, 59, 88, and
282 iterations using the Sobolev-type gradient.

86



4.7. DISCUSSION AND CONCLUSIONS

5µm

(a) (b)

Figure 4.21: Segmentation results of fluorescently labeled cells using the
energy EPC

LS . Topology is locked and the regions are initialized at local
intensity maxima after image blurring. (a) Segmentation when using L2-
gradient approximations. (b) Segmentation when using Sobolev-gradient
approximations.

λ is increased. Similarly, a stronger length regularization fragments the seg-
mentation of the membrane, especially in domains where the membrane in
Fig. 4.22d has weak signal. The runtime using Sobolev gradients, however,
is smaller only for the example in Fig. 4.21, where a more expensive energy
is used. In this example the algorithm using approximated L2 gradients
does not converge after 200 iterations (43 s). When using Sobolev gradi-
ents, the algorithm converged after 93 iterations (16 s). In the example in
Fig. 4.22, however, the algorithm with approximated L2 and Sobolev gra-
dients needs 106 iterations (254 s) and 200 iterations (549 s), respectively.

An additional segmentation example using Sobolev gradients for images of
proton emission patterns is shown in appendix B.2.

4.7 Discussion and conclusions

We have presented a discrete multi-region-competition framework based
on the topological constraint that each foreground region has to corre-
spond to a connected set of pixels in some discrete geometry representa-
tion. An energy-minimization algorithm that accounts for this topological
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(a) (b)

(c) (d)

Figure 4.22: Shoot apical meristems of Arabidopsis labeled with plasma
membrane localized fluorescent protein. (a) Data image of size 756 ×
622 pixels (image: Liu et al. (2010)). (b) Initial contour from Otsu thresh-
olding. (c) Segmentation contour using approximated L2 gradients. (d)
Segmentation contour using approximated Sobolev gradients.
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constraint has been implemented in both 2D and 3D and tested using
three popular energy functionals. The number of regions in an image does
not need to be known a priori, and the initial segmentation can have a
different topology than the final result. We have presented a novel discrete
contour-propagation scheme. We enforced the topological region definition
and provide optional control over region merging and splitting during con-
tour evolution. The contours are represented by computational particles
that evolve as driven by the energy-minimizing flow. Like discrete level-set
methods (Shi and Karl, 2008), the present algorithm only requires evalu-
ations of the energy functional, but not of its gradient. This is beneficial
given the non-differentiable topological constraint. Contour oscillations are
suppressed by adaptive step-size reduction in the rank-based minimization
algorithm.

We have shown that the chosen particle-based approach allows to approx-
imate Sobolev gradients using efficient particle–particle interactions. We
demonstrated that the presented approximations allow to benefit from
three Sobolev-gradient-based optimization properties. First, less length
regularization is needed as Sobolev gradients naturally regularize the con-
tour evolution. This allows more detailed segmentations for low-signal
images. For the same reason, Sobolev gradients are beneficial for partic-
ularly noisy data. Third, the Sobolev-gradient-based optimization path
often needs less iterations. For expensive energies this may amortize the
Sobolev-gradient approximation computation and therefore may lead to
better performance.

We illustrated the algorithm on synthetic images and demonstrated its
applicability to real-world data using three different energy functionals.
We compared with results obtained using a state-of-the-art discrete en-
ergy minimizer based on multi-label graph cuts (GC) (Delong et al., 2011).
The first energy represented a piecewise constant image intensity model.
The second functional used a piecewise smooth image model to allow for in-
homogeneous intensity distributions within regions. Applying the method
to a deconvolving energy unites image deconvolution and segmentation
and extends explicit deconvolving active contours (Helmuth and Sbalzarini,
2009) to handle topological changes during energy minimization and to
higher-dimensional images.
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The benchmarks demonstrated that the solution quality and the runtime of
the present algorithm are competitive. Compared with GC, the present al-
gorithm is particularly competitive for large region numbers and for costly
energy functionals, such as piecewise smooth energies. GC rapidly finds
low-energy solutions. For alternating geometric/photometric optimization
of multi-region energies, however, the large geometric step sizes of the
GC-based PEaRL algorithm may lead into wrong energy funnels. The
resulting segmentations then wrongly delineate regions, as for example in
Fig. 4.6c. If GC correctly estimates the intensities, it typically finds better
solutions than RC in terms of energy and missclassified pixel, because RC
converges to local minima.

Due to the discrete contour representation, the present method is limited
to single-pixel accuracy. Sub-pixel accurate segmentations, such as those
achieved by explicit deconvolving active contours (Helmuth and Sbalzarini,
2009) would require continuously varying particle positions, hampering the
efficient solution of the energy-minimization problem and the application
of digital topology.

A limitation of the present method compared to GC is that contours can
only advance at most one pixel per iteration. For initial contours far from
the final solution, segmentation may hence be slow. Nevertheless, the
timings of the present implementation as reported for each test case are
encouraging when compared with GC. The computational cost of the algo-
rithm depends on the energy functional to be minimized. In the example
of Fig. 4.13, evaluations of the energy functional accounted for 88% of
the computational time (66% for EPS

data, 22% for the curvature-regularizing
flow), whereas topology processing took 1%, contour propagation 4%, and
data-structure update 3%. Table 4.2 shows this breakdown of the compu-
tational cost for each of the three energy functionals considered. For the
PC model, curvature approximation and contour propagation are the most
expensive parts. This is due to lookups in L and I. For the same reason,
the computational time using the PS model is dominated by evaluating
the data energy. For the deconvolving energy functional, pre-computing
the model image J dominates the processing time. The time complexity
of the algorithm with the PC and PS image models is O(|Γ̃|), i.e., linear
in the total number of particles and independent of the image size. For
the deconvolving energy functional, however, the convolution renders the
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PC PS DEC

evaluating Edata 1% 66% 97%

evaluating Elength 31% 22% <1%

optimization 21% 4% 2%

contour propagation 31% 4% <1%

topology processing 4.5% 1% <1%

data-structure update 11.5% 3% <1%

Table 4.2: Relative computational costs of the different steps of the algo-
rithm for the three energy functionals (PC, PS, dec) considered here. All
times were measured using the respective biological example images.

complexity dependent on the image size as O(|Ω| log |Ω| + |Γ̃|). The com-
putational performance of the present implementation could for example
be improved by storing the image data along a space-filling curve, which is
expected to improve cache efficiency, as points that are close in the image
will also be close in memory.

Faster executions can be achieved using general-purpose graphics process-
ing units (GPGPU) for the energy-difference computation. GPGPUs are
highly parallel streaming multi-processors. Ebrahim (2011) implemented
the energy EPS

LS and κ computation (see Sec. 3.2.2.2) using the OpenCL
API (Stone et al., 2010), which aims at standardizing programming het-
erogeneous parallel hardware. Ebrahim (2011) benchmarked the GPGPU
implementation running on a nVidia Tesla C2050 against RC running on
an Intel Xeon 3.2 GHz CPU for 2D and 3D images. For 3D images the
overall speedup gained using the GPU was 20. Interestingly, the speedup
was mainly due to the spatial locality caching of the GPU’s texture mem-
ory rather than processing power. In 2D, this caching effect is weaker.
Nevertheless, speedups of 60% were reported. Future work includes sup-
plementing the work by (Ebrahim, 2011) by implementing more energies
as OpenCL kernels and testing these on different hardware platforms.
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CHAPTER

FIVE

Efficient shape sampling with

Markov-chain Monte Carlo

In the previous chapter we jointly estimated the number of regions, their
contours, and their intensities. We introduced a heuristic probability den-
sity optimizer w.r.t. region contours. We hence found a (local) maximum-a-
posteriori (MAP) estimate. The method suffers from various shortcomings.
First and most importantly, the solution found may be a local maximum.
The method is therefore sensitive to the initialization and regularization
parameters. Second, even if the global optimum is found, we do not get any
information about the sensitivity or robustness of that solution. Third, in
particular when segmenting fine structures, the approach in chapter 4 suf-
fers from the object representation being limited to pixel resolution. This
resolution limit might cause oscillations that we need to detect, which is
difficult, and handle, which is expensive.

Here, instead of optimizing an energy functional, we sample from the pos-
terior distribution p(L|I) induced by the energy. The term sampling refers
to drawing multiple samples from the distribution. The goal is to find a
representative collection of segmentations L = {Li} representing the distri-
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bution with pdf p(L|I). In order to do so, we use MCMC methods. More
precisely, we design a Metropolis-Hastings algorithm.

Due to the stochastic nature of MCMC methods, the deformable contour is
able to overcome local probability maxima. Also, since we are not aiming
for the maximum only, but for a full description of the posterior, we gain
additional insight into the robustness of the MAP solutions. Fan et al.
(2007) successfully characterized multi-modal distributions using shape
sampling for image segmentation. Investigating the mode associated to
a MAP solution allows characterizing the robustness of a particular seg-
mentation. With a representative sample from the posterior in hand we
can also assess marginals, such as the probability of boundary (Chang and
Fisher III, 2011) or confidence-band estimates for the segmentation prob-
ability. The image-formation model needs to be exact though, else such
confidence bands are lower bounds.

An important difference to the optimization problem in the previous chap-
ter is that we here fix the number of regions. The task of sampling a
segmentation space with unknown number of regions is very difficult and
is not considered. In chapter 4 we defined a region as a connected com-
ponent. This, together with an initialization, was sufficient to determine
the final number of regions. Since we now fix the number of regions, we
do not need to satisfy such a topological constraint. Nevertheless, we also
present a method to sample topologically constrained shapes.

The next section gives a brief overview of Markov chain theory to make this
chapter self-contained. We then review related works on shape sampling.
In Sec. 5.3 we present a novel discrete method, and its implementation,
to sample target distributions for probabilities introduced in chapter 3.
In Sec. 5.4 we apply the algorithm to synthetic and real-world data for
different image models. We benchmark the algorithm against a state-of-
the-art method (Chang and Fisher, 2012). We conclude this chapter with
a discussion and outlook.
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5.1 Introduction to MCMC

We are given π(·), a distribution that we do not know explicitly, but we’re
able to evaluate (query) an unnormalized version of π. For example, π
could be the posterior p(L|I) of segmentations given the image I and a
Bayesian image model (see chapter 3). Given the image model and I, we
can query the (unnormalized) probability of a particular segmentation L.
Our goal is to sample from π in order to get a representative collection
L. The idea of MCMC methods is to construct a stochastic process, a
Markov chain, whose visited states {xt} mimic a sample from the target
distribution π. We hence design a Markov chain such that its equilibrium
distribution is π. Then, we simulate the Markov chain for a long time
and store all visited states. Using this sample we are able to compute the
desired statistics.

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)
is a MCMC method. The next section shows that this algorithm, by
construction, produces a Markov chain that is reversible, aperiodic, and
irreducible. These are sufficient conditions for converging to the correct
equilibrium distribution π (Smith and Roberts, 1993). Rigorous math-
ematical derivations are beyond the scope of this thesis. A good and
thorough overview of MCMC can be found in Brooks (1998). Here we
reproduce only the necessary theorems and give references to the corre-
sponding proofs. The first subsection summarizes Markov theory. The
second one explains why the Metropolis-Hastings algorithm produces a
chain with equilibrium distribution equal to the target distribution.

5.1.1 Excerpt of Markov chain theory

The definitions and theorems in this subsection were selected or adapted
from Bremaud (1999). Proofs of all theorems stated in this subsection can
be found therein.

In the context of this chapter we focus on discrete state spaces. Let Ξ
be the finite state space of a Markov chain. This is, the state-transition
probabilities can be written in matrix form. The element pij = p(xt+1 =
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j|xt = i) is the probability for the chain to move from state i to state j. We
also restrict ourselves to homogeneous Markov chains (HMC), i.e., chains
for which the transition probabilities (in the discrete case the transition
matrix or transition graph) are independent of time:

Definition 6 (Homogeneous Markov Chain). Let {xn}, n ≤ 0, be a
discrete-time stochastic process with countable state space Ξ. If for all
integers n ≤ 0 and all states i0, i1, . . . , in−1, i, j,

p(xn+1 = j|xn = i, . . . ,x0 = i0) = p(xn+1 = j|xn = i) (5.1)

whenever both sides are well-defined, this stochastic process is called a
Markov chain. It is said to be a homogeneous Markov chain if in addi-
tion, the right-hand side of (5.1) is independent of n.

The exclusive dependence on the past through the predecessor state is
called the Markov property . The distribution of a discrete-time HMC at
a certain time t is a probability vector of length |Ξ| with the i-th entry
the probability of being in state i after t iterations. Due to the Markov
property, the distribution of a Markov chain is completely determined by
the initial distribution of the states in Ξ and the transition matrix. When
running the stochastic process sufficiently long, this probability vector may
converge. If so, the distribution to which the chain converges is called the
stationary-, the equilibrium-, or the steady-state distribution:

Definition 7 (Stationary Distribution). A stationary probability distribu-
tion π satisfies for all states i

π(i) =
∑
j∈Ξ

π(j)pji. (5.2)

From this definition the following theorem immediately follows:

Theorem 3 (Steady State). A chain started with a stationary distribution
is stationary.

Three key questions are: 1. Will a certain Markov chain ever converge
to a stationary distribution? 2., If so, to which distribution?; there might
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be multiple, and 3., In what sense does the chain converge, and are we
allowed to compute averages over L?”.

In order to formulate necessary conditions for convergence to exactly one
equilibrium distribution, we use irreducibility, positive recurrence, and ape-
riodicity.

Irreducibility is a characteristic of the transition graph. Informally,
it guarantees that the entire state space is accessible from every state.
Irreducibility implies that the stationary distribution is unique, provided
it exists.

Definition 8 (Communication). A state j is said to be accessible from
state i if and only if there is at least one path i, i1, . . . , im−1, j from i to j
such that

pii1 · pi1i2 · · · pim−1j > 0.

States i and j are said to communicate if i is accessible from j and j is
accessible from i.

The communication relation is reflexive, symmetric, and transitive and is
therefore an equivalence relation. It generates a partition of Ξ into disjoint
equivalence classes called communication classes. In other words, within a
communication class all possible pairs of states communicate. And, if two
states communicate they belong to the same communication class.

Definition 9 (Irreducibility). If there exists only one communication class,
then the chain is said to be irreducible.

In other words, a chain is irreducible if it is possible to access every state
from every other state. Irreducibility hence allows accessing the whole
state space, irrespective of the initial state.

Irreducibility, however, does not guarantee that the chain visits a certain
state twice in finite time. Summary statistics on Lmay therefore be invalid.
We have to ensure that such statistics exist.
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Recurrence For irreducible HMC recurrence is a good notion for stabil-
ity. As we will see later, this allows us to compute the desired statistics.
Recurrence bounds the return time Ti, i.e., the time needed by a chain
starting in state i to return to state i:

Definition 10 (Recurrence). State i ∈ Ξ is called recurrent if

p(Ti <∞) = 1.

A recurrent state i ∈ Ξ is called positive recurrent if E[Ti] <∞.

Recurrence is easy to prove if Ξ is finite:

Theorem 4. An irreducible HMC with finite state space is positive recur-
rent.

From the following equivalence theorem

Theorem 5 (Stationary Distribution Criterion). An irreducible HMC is
positive recurrent if and only if there exists a unique stationary distribution.

and theorem 4 we can answer question 2: An irreducible chain in a finite
state space is recurrent and hence, if at all, converge to a unique equilib-
rium distribution.

Aperiodicity and convergence to steady state We have not yet
discussed sufficient conditions for a chain to converge to an equilibrium
distribution. It can be shown (via coupling of Markov chains) that a HMC
of period one will eventually converge. We therefore use the concept of
periodicity:

Definition 11 (Arithmetic Definition of Period). The period di of state
i ∈ Ξ is

di = gcd{n ≤ 1; pii(n) > 0} (5.3)

with di = ∞ if there is no n > 0 with pii(n) > 0. A state i is called
aperiodic if di = 1.
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In words, if a state i always returns back to the same state i in a multiple of
k steps, the state has a period of k. This implies that two communicating
states have the same period. A chain is said to be aperiodic if all states
in Ξ are aperiodic. In order to prove aperiodicity we need to show that
for any state x the greatest common divisor of 2 different path lengths of
x → x is 1. The easiest way to achieve this is to design a kernel with
P (xt = xt−1|xt−1) > 0.

For an ergodic chain, i.e., an irreducible, positive recurrent, and aperiodic
chain, the following holds:

Theorem 6 (Convergence to steady state). Let P be an ergodic transition
matrix on a countable state space. For all probability distributions µ and
µ̃ on Ξ,

lim
n→∞

1

2
|µTP n − µ̃P n| = 0 (5.4)

This result, together with theorems (4) and (5), shows that a discrete
HMC under mild regularity conditions (aperiodicity and irreducibility) will
eventually converge to the equilibrium distribution π, independent of the
initial distribution µ. This is a sufficient conditions answering questions 1
and 2.

Ergodic theorem Finally, the following theorem answers question 3:

Theorem 7 (Ergodic Theorem). Let {xn} be an irreducible positive recur-
rent Markov chain with the stationary distribution π, and let f : Ξ → R
be such that ∑

i∈Ξ

|f(i)|π(i) <∞.

Then for any initial distribution µ

lim
N→∞

1

N

N∑
k=1

f(xk) =
∑
i∈Ξ

f(i)π(i) (5.5)

almost surely.

This theorem allows us to compute empirical averages over the output of
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a stochastic process since they converge to probabilistic averages.

For a HMC in a finite state space, irreducibility and aperiodicity guarantee
convergence to a unique equilibrium distribution in such a way that we
can compute averages in the form of Eq. (5.5). In the following, we ensure
convergence by constraining the chain these two conditions.

5.1.2 The Metropolis-Hastings algorithm

Following our plan of constructing a Markov chain with one and only
one equilibrium distribution that is equal to the target distribution, the
next step is to find the correct transition matrix P . In this subsection
we assume P fulfills the regularity conditions of being positive recurrent,
aperiodic, and irreducible. Finding P becomes easier when constraining it
to be a reversible transition matrix and profiting from implications of the
reversible property:

Definition 12 (Detailed balance). A MC is said to be reversible with
respect to any initial distribution π if for any i and j

πi · pij = πj · pji. (5.6)

A chain satisfies detailed balance if the above equation holds.

We marginalize Eq. (5.6) over j and get∑
j

πj · pji =
∑
j

πi · pij = πi
∑
j

pij = πi,

which exactly matches Def. 7. Hence,

Theorem 8. Let P be a transition matrix on the countable state space Ξ,
and let π be some probability distribution on Ξ. If for all states i, j ∈ Ξ the
detailed balance equations are satisfied, then π is a stationary distribution
of P .

We hence search for P such that Eq. 5.6 holds. The following intuitive
argument is adapted from the paper of Chib and Greenberg (1995). As-
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sume that we have a transition probability matrix Q that does not fulfill
the detailed balance condition, for example

πi · qij > πj · qji.

In this situation moving from state i to state j happens too often. In order
to correct for this imbalance we introduce a probability distribution with
transition probabilities αkl ∈ [0, 1] as follows:

πi · qij · αij
!
= πj · qji · αji.

Since moving from j to i happens too rarely, we set αji to its maximum
value αji = 1 and solve for αij :

αij =
πj
πi
· qji
qij

(5.7)

α is called the Metropolis-Hastings ratio. From state i we then move to
state j only with probability αij in order to compensate for the imbalance.
This yields the desired P . We can simulate this chain with an acceptance-
rejection scheme as described in algorithm 6.

Algorithm 6 Metropolis-Hastings

1: repeat
2: set i := xt and draw a state j from qit

3: if u ∼ U(0, 1) ≤ αij = min
(
πj ·qji
πi·qij , 1

)
then

4: xt+1 ← j
5: else
6: xt+1 ← i
7: until convergence

This is the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953;
Hastings, 1970). The algorithm is useful and successful because of mainly
two properties: First, the proposal distribution q can be freely chosen.
We design it to be irreducible and aperiodic. Second, from the MH ratio
(line 3) we see that we only need to be able to query an unnormalized
version of π(·), as the decision to move only depends on a ratio.
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The first term on the right-hand side of Eq. (5.7) is called the posterior
ratio, the second term the forward-backward ratio (FBR). We further call
the acceptance rate (AR) the fraction of accepted moves among all trials.
Roughly, acceptable ARs are in the range between 10 and 50 percent. At
equilibrium, a chain with an AR above 50% usually propose samples with
posterior values similar to each other. According to line 3 such samples
are very often accepted. Consequently, the chain is not selective and the
samples are biased by the proposal distribution unless the chain is ran
for long-enough time. In order to improve one usually alters q such as to
propose x′ with larger distance to x in parameter space. We say that the
step size is increased. Note that before the chain reaches equilibrium, the
AR may be larger than 50%. Similarly, if the step size is too large, in a
reasonably large parameter space, we need to be lucky to find a proposal
with comparable or better posterior. In this case the chain sticks around
x, and this sample is overrepresented. It is hence important to properly
tune the step size of a MH algorithm.

5.2 Related work

MCMC methods have extensively been used in image processing since the
seminal paper of Geman and Geman (1984). They established an analogy
between statistical physics models and images using the equivalence be-
tween Markov random field (MRF) and the Gibbs-Boltzman-distribution
(Grimmet, 1973). In their work they introduced the Gibbs sampler, which
can be interpreted as a variant of the MH algorithm, for MRFs leading to
a highly parallel MAP algorithm for image restoration.

Tu and Zhu (2002) presented a MCMC method for models introduced in
the seminal paper of Zhu and Yuille (1996). They defined a state space
allowing jump-diffusion dynamics for the chain. Diffusion dynamics was
used to sample region deformations and competition. Regions were explic-
itly represented. This enabled the use of jump dynamics for merging and
splitting. Jump dynamics was also used to jump between different image
models for uniform, textured, cluttered, and shaded regions. Such models
focus on natural scene images.
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Fan et al. (2007) designed a proposal for shape perturbation on implicitly
defined regions using level sets. The level-set perturbation was applied
in the vicinity of a point sampled on the contour. The method therefore
needed to switch back and forth between implicit and explicit representa-
tions, which generates a heavy computational overhead. Their proposal is
biased toward smooth shapes, as it incorporates a regularizing flow. This
rendered proposal asymmetric and calculating the backward proposal den-
sity became non-trivial. The authors used locally linear approximations
of the shape to compute this value. Topological changes were not explic-
itly treated in the paper. An interesting aspect discussed by Fan et al.
(2007) is conditional simulation. In conditional simulation a certain part
of the state space is fixed. This can be very useful for semi-automated
segmentation tasks, where experts label parts of image.

Chen and Radke (2009) demonstrated the superiority of sampling ap-
proaches over optimization by characterizing multi-model distributions
and visualizing the corresponding segmentations. Their approach sam-
pled shapes from a distribution over the space of signed-distance functions
(SDF). Shape deformation was achieved by deforming the contour around
a foot point by pushing it in the direction of the normal. The presented
deformation scheme was able to maintain the SDF property. Nevertheless,
the proposal scheme did not allow simple computation of the FBR. In fact,
the backward proposal could not be calculated exactly. The approxima-
tion used depends on the curvature, and the equilibrium distribution was
hence biased. The method did not allow topological changes.

Later, Chang and Fisher III (2011) drastically lowered the number of iter-
ations needed to converge to the stationary distribution by sampling with
biased proposals. They presented a proposal distribution that was biased
along the gradient of the underlying energy functional. Deformation was
achieved by adding Gaussians to the level-set function. This proposal was
parametrized and contained three random variables of which multiple com-
binations might lead to the same shape deformation. Thanks to a clever
proposal scheme, good approximations could be made in order to compute
the FBR. Furthermore, the authors extended the method to represent and
sample a multiple, but fixed numbers of regions.

Recently, the same authors presented a sampling scheme similar to a Gibbs
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sampler called Gibbs-inspired Metropolis Hastings (Chang and Fisher, 2012).
Level sets were used to represent and deform shapes. The level-set values
were changed within a mask. Perturbation were chosen such that the MH
ratio is 1, like in Gibbs sampling. Using digital topology the method al-
lowed sampling shapes in topologically constrained spaces. In terms of
computational performance the method clearly outperformed the previous
methods. We hence use this latest method to compare with.

5.3 Discrete region sampling

We present a discrete multi-region method to sample the posterior p(Γ|I).
The algorithm can be seen as a sampling version of RC (see Sec. 4), which
is a discrete particle-based MAP algorithm. We therefore call the present
algorithm discrete region sampling (DRS) .

Inspired by the algorithms reviewed above, DRS supports biasing the pro-
posal distribution and sampling in a topologically constrained space. The
work by Chang and Fisher III (2011) particularly influenced the design of
the present approach. A fundamental difference between the present ap-
proach and all reviewed approaches is the explicit, discrete object represen-
tation. Nevertheless, the present algorithm naturally changes the object’s
topology. Due to the finite state space, proving ergodicity is trivial. Also,
the FBR can be computed exactly.

DRS fundamentally differs from the above algorithms in terms of the sam-
pling strategy. Previous methods focus on increasing the step sizes while
maintaining the AR. DRS efficiently performs a large number of small
steps with a relatively high acceptance rate. This strategy exploits the
fact that many image models are induced by energies whose differences
can be efficiently computed for small shape deformations.

This section is structured as follows: We first introduce the state space
and the discrete move set. We then discuss the FBR computation for
different step sizes. In subsection 5.3.3.2 we show how to bias the pro-
posal distribution toward smooth shapes and how to sample topologically
constrained shapes with only minor changes to the algorithm. In subsec-
tion 5.3.4 we present a summary of DRS. Before concluding the section
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with benchmarks and applications, we show that the present Markov chain
fulfills the regularity conditions discussed in the previous section.

5.3.1 The move set and the state space

Objects are represented using a label image L, as in chapter 4. In a discrete
multi-region object representation, Γ is restricted to closed objects and it
can be bijectivly mapped onto a corresponding label image L. In order to
perturb Γ, we perturb L. We do so by either adding or removing discrete
points to a region. Or both. In order to calculate the FBR, we need to
be able to compute the probability of selecting a certain discrete point.
The proposal therefore is a discrete probability distribution. In order to
keep track of the discrete candidate points, we mark them with a particle,
similar to the particles introduced in chapter 4.

5.3.1.1 Particles

Definition 13. A particle A is a triplet (xA, l
′
A, wA) with position xA ∈ Ω,

candidate label l′A ∈ [0;M ], and weight wA ∈ R.

Applying a particle causes the label image to inherit the particle’s candi-
date label at position xA. We define the operator ◦ : (Ξ,P)→ Ξ to indicate
a transition from one state to another using particle A, i.e., xt+1 = xt ◦A.

We distinguish between two types of particles, regular and floating parti-
cles.

Regular particles The particles mark the positions where L can be
perturbed to an intermediate label image L′. Therefore, we need to place
them such that L′ is a comparably good candidate in terms of the posterior
probability. A large perturbation activity close to the contour of an object
is likely to fulfill this criterion. We therefore introduce regular particles.
Their locations are bound to the contour. More formally:

Definition 14 (Regular particle set). A regular particle A is a particle
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◦T

◦T ′
T T ′

xt : x′
t :

Figure 5.1: Regular particles in a topological trap. The gray shaded region
is a foreground region, the background region is white. Circles indicate
particles. See main text for details.

such that L(xA) 6= l′ and |N1
n(xA, Xl′)| > 0 where n denotes the connectiv-

ity of region l′. The set P contains every possible regular particle exactly
once.

Consequently, P is entirely defined by L.

Floating particles In order to ensure reversibility, a reverse particle
A′ is needed in xt+1 that, when applied, leads back to state xt, i.e.,
A′ = (xA, Lxt(xA), wA′). When considering regular particles only, we
allow situations as illustrated in Fig. 5.1. All particles in xt correspond
to Def. 14. The reverse particle of particle T ′ at x′t, however, does not.
We hence either reject the move because the FBR is 0, or we augment
the particle set. We avoid this trap by augmenting the particle set with
unbounded floating particles. We denote the set of floating particles Pf .
The discrete proposal distribution is therefore based on particles in P∪Pf .

A transition from a regular to a floating particle occurs when a connected
component collapses w.r.t. the region connectivity. At the same time, a
hole is closed. Similarly, a transition from a floating particle to a regular
particle occurs when a new connected component is created. At the same
time, a hole may be created.
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5.3.1.2 The state space

In order to allow topology-changing proposals, we introduced floating parti-
cles. Unlike regular particles, the label image L does not naturally encode
these particles. We therefore augment the set L by the set of all possi-
ble floating particle sets {Pf} with at least one particle belonging to each
region (the number of regions is fixed to M). We define hence the state
space Ξ as

Ξ = L × {Pf}. (5.8)

For M topologically unconstrained objects, Ξ is of size

|Ξ| = M |Ω| · (|Ω| − 1)M−1.

This state space is huge1. However, for all posteriors of the Bayesian image
models discussed in Sec. 3, L(x) depends only on a few other pixels in the
vicinity of x. Most entries in the state vector are hence uncorrelated.

5.3.1.3 Moving in the state space

The Markov chain moves from state xt to xt+1 by either applying parti-
cles (geometric moves) or by changing the particle set Pf (non-geometric
moves). We call the latter off-boundary sampling.

Geometric moves The particles operate on L and hence on Γ, i.e., they
constitute the geometric part of the move set. A particle is selected accord-
ing to its weight, which represents an unnormalized discrete probability.
For single-particle moves

qA =
wA∑
B∈P wB

(5.9)

1Assume a 2-region problem in three dimensions with a reasonable image size, e.g.
|Ω| = 512× 512× 16 pixel. In this example, the state space size is |Ξ| ≈ 101262618.For
comparison, the Eddington number, the number of protons in the observable universe,
is 1.57 · 1080.
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Algorithm 7 Apply a particle

1: ifA ∈ Pf and L(xA) = l′A then reject.
2: L(xA) = l′A
3: Remove A
4: if A′ fulfills Def. 14 then
5: insert A′ in P.
6: else
7: if A′ ∈ Pf then insert A′ in Pf else reject.
8: Ensure P satisfies Def. 14 ∀B : xB ∈ NM (xA).
9: Filter P to satisfy topological constraints.

10: Update particle weights ∀B : xB ∈ NM (xA) (depending on q)

is the proposal probability of the move proposed by particle A. The pro-
posal and FBR computation for multi-particle moves is discussed in the
next section.

We now detail the procedure of applying a particle. Algorithm 7 shows
the individual steps. If A is drawn from Pf we first check if it is applicable
(line 1). A particle is not applicable if the label image at that location is
equal to the A’s candidate label. In this case the chain performs a self-
transition and we therefore reject the move. In all other cases we update
the label image (line 2). We remove A from either P or Pf in line 3. The
reverse particle is then inserted in the appropriate container (lines 4–7). If
that location in Pf is already occupied we reject the move immediately. In
lines 8 and 10 we update the regular particles in the neighborhood. The
weight update is only required when biased proposals are used. While
scanning the neighborhood for updating P, all particles not satisfying any
given topological constraints are removed from P. This ensures that P only
contains particles that, when applied, lead to topologically valid shapes.

It is possible that a regular and a floating particle with identical candidate
labels share the same location. Also, while waiting to be selected by the
proposal process, the pixel of a floating particle F may change its label.
When F is selected in such a situation, the chain performs a self-transition,
i.e., xt+1 = xt. This has the same effect as rejecting the move.
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pf 1− pf

draw p ∈ {Pl ∪ Pf}

add p to Pf

with q ∼ ‖∇I‖
draw x ∈ Ω

draw l ∈ [1,M ]

remove p from Pf

(α = 1) (α = 1)

p = (x, l, ·) /∈ Pf p = (x, l, ·) ∈ Pf

and run algorithm 7

Figure 5.2: Decision tree of the Markov kernel.

Off-boundary sampling The notion of floating particles provides an
opportunity to extend the proposal q almost arbitrarily. We may hence
place unbounded particles at interesting locations far from the contour.
Interesting locations have large image gradients ‖∇I‖. We call this option
off-boundary sampling . For the sake of reversibility, off-boundary particles
can also be removed.

In order to ensure correct FBR calculation, off-boundary sampling only
introduces moves that are not possible in any other way. Namely, we
insert or remove a particle from Pf . This cannot be achieved by regu-
lar particles without also changing the label image, which is part of the
state space. Figure 5.2 illustrates how off-boundary sampling is integrated.
With probability qf we operate on the set Pf . Off-boundary sampling can
be disabled by setting qf = 0. At any value of qf ∈ [0, 1[ the equilibrium
distribution remains the same.

The posterior remains unaffected by off-boundary moves. Consequently,
the MH ratio is equal to the FBR. The equilibrium distribution for floating
particle locations is hence uniform. On average, the probability for a
floating particle to exist is 0.5 at each location. Since we bias the proposal
to insert and remove floating particles more often at positions where ‖∇I‖
is large, convergence may be slow. Off-boundary sampling is, however,
useful during the burn-in phase in order to explore interesting parts of
the state space. After burn-in phase, we gradually reduce qf to 0. Since
the Markov chain converges to the same equilibrium for any fixed qf , this
annealing is optional. The calculation of the FBR is discussed in the next
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section.

5.3.2 FBR computation

5.3.2.1 FBR computation for multi-particle moves

When operating on flat π or sampling with too small step size, the MH al-
gorithm performs a random walk following the proposal distribution. Con-
sequently, the samples drawn do not represent the target distribution, but
rather they reflect the proposal. More representative samples can be drawn
by increasing the step size (Liu et al., 2000).

A simple way to increase the step size is to draw (and apply) multiple
particles per move. For simplicity, we sample with replacement. The order
in which particles are drawn is irrelevant. We therefore sample from a
discrete multinomial distribution. We are in a degenerate case since we
have as many different categories (also called classes) as particles. Assume
the chain is in state xt. The quantity q(x′|xt) is the probability of drawing
the particles leading to state x′. Consider k′ trials with replacement. The
experiment consists of k different outcomes (k ≤ k′). The integer npi
counts how many times category i (or the particle pi) has been sampled.
Then the multinomial proposal pmf reads

q(x′|xt) = q(p1, . . . , pk|xt) =
k′!

np1
! · · ·npk !

· qnp1
1 · · · qnpkk . (5.10)

For this proposal pmf, the FBR computation simplifies to

q(x′|xt)
q(xt|x′)

=
∏
i

q(A′i)

q(Ai)
, (5.11)

where A′i is the reverse particle of Ai. This FBR can be computed effi-
ciently. The move set is designed such that the reverse particle always
exists.

Note that the step size is automatically reduced if the same particle is
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selected twice. Sampling with replacement avoids situations where not
enough particles are available. This is especially useful when using any
kind of stratified sampling (see Sec. 5.3.3.1). Nevertheless, a sampling
strategy without replacement could be chosen as well.

Alternative step-size increase strategies Constraining the topology
while increasing the step size with the above strategy leads to an in-
tractable FBR. In order to build a discrete proposal we would have to
enumerate all topologically valid particle groups of size smaller or equal
to k. In order to reduce the acceptance rate while ensuring topological
constraints using digital topology, the following approaches can be consid-
ered:

• Liu et al. (2000) introduced the multiple-try Metropolis-Hastings
algorithm. The algorithm produces a reversible chain with smaller
AR at the cost of evaluating multiple candidates per iteration.

• A more efficient possibility is to assign multiple pixels to one parti-
cle2. Although this leads to a resolution loss of the final probability
density map, qualitatively the result will be as useful as having the
full resolution. This is because there is no significant “change” of
probability within the particle’s scope. If there was a significant
change, the MH ratio would be selective without step-size increase.

5.3.2.2 FBR computation for two conditional particles
(conditional proposals)

For certain image models, such as the deconvolving model (see Sec. 3.1.2),
the posterior probability changes drastically when growing or shrinking
a region. A move with a smaller energy difference is to add and remove
two neighboring discrete point at the same time. Figure 5.3 compares a
single-particle-move energy difference with the energy difference for the

2Sometimes such a collection of pixels is called a super-pixel. Any space-filling pat-
tern homotopic to a rectilinear grid could be used to define super-pixels. We presume
a rectilinear grid in order to be compatible with digital topology.
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Figure 5.3: The volume below the light gray surface corresponds to the
change in energy when adding a discrete point using the energy function
Edec with a Gaussian PSF. The volume below the dark curve shows the
change in energy when locally deforming the contour by moving a discrete
point.

two-particle proposal when using the deconvolving model from Sec. 3.1.2.

In order to include local area-preserving moves in the proposal we apply
two particles A and B in one move. We first sample a particle A. The
particle location xA then serves as foot point, similar to the work of Chen
and Radke (2009). We then create a new discrete distribution from which
we sample the partner particle B. The distribution contains all particles in
the set QA = {{Px◦A|x ∈ N+

n (xA)} ∪ A}. The neighborhood set N+
n (xA)

contains xA. In order to still allow growing an shrinking regions, we also
include particle A in QA. If B is the same particle as A, we perform a
one-particle move.

On the one hand, drawing the candidates A and B is straightforward.
On the other hand, computing the FBR for a combined move involves 8
probability mass functions:

q(x|x′)
q(x′|x)

=
q(A′|x′) · q(B′|x′ ◦A′) + q(B′|x′) · q(A′|x′ ◦B′)

q(A|x) · q(B|x ◦A) + q(B|x) · q(A|x ◦B)
. (5.12)
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A′ and B′ are the reverse particles of A and B, respectively. The prob-
ability q(A) follows from Eq. (5.15) in state xt. For the other proposal
pmf values we follow the scheme illustrated in Fig. 5.4: We first need to
find B. Starting at xt we apply A in order to find out what particles are
contained in N+

n (xA) after having applied A. We sample B from the set
QA. Knowing B we can calculate the conditional probability q(B|xt ◦A).
This intermediate state is equivalent to x′ ◦B′ (see Fig. 5.4). We therefore
also compute q(A′|x′ ◦B′). In order to calculate q(B) we need to go back
to the original state by applying A′. Back in state xt we calculate q(B|xt).
Then, we apply B. In state xt◦B we calculate q(A|x◦B) and q(B′|x′◦A′).
Eventually, we move to state x′ = xt ◦B ◦A in order to calculate q(A′|x′)
and q(B′|x′). These are the two last ingredients for the FBR in Eq. (5.12).

The additional data structure manipulations for this two-particle proposal
scheme generate computational overhead. For a deconvolving energy, how-
ever, conditional sampling amortizes by increasing the acceptance rate.
Experiments are presented in Sec. 5.4.3.

5.3.2.3 FBR computation for floating particles

In Sec. 5.3.1.1 we introduced off-boundary sampling using floating particles.
Recall from Fig. 5.2 that we first decide (with probability 1 − qf ) for a
move to deform the contour or for a move to alter Pf . Then, we decide
between inserting (with probability qI) and deleting a floating particle.
The proposal probability of inserting a floating particle at posit on x is

q(xt+1|xt) = qf · qI ·
1

Ze
‖∇I(x)‖, Ze =

∑
x∈Ω

‖∇I(x)‖ (5.13)

If we decide to delete a particle, we sample a particle uniformly. The
probability for deleting of a floating particle hence is

q(xt+1|xt) = qf · (1− qI) ·
1

|Pf |
. (5.14)
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xA xB

A A′

B

A

q(A|x)

q(A′|x′ ◦B′)

q(B|x)

q(B|x ◦A)

q(B′|x′ ◦A′)

q(A′|x′)

q(B′|x′)

q(A|x ◦B)

xt :

A′, B′

x′ :

A′

B′

Figure 5.4: Illustration of the move order for the conditional proposal
computation in the two-region case. xA and xB are the positions of two
hypothetical particles A and B, respectively. The color in the particle
(small circle) indicates the candidate label. The starting state is xt. The
transition labels indicate the particle(s) that are applied in order to reach
the next (intermediate) state. State x′ is the newly proposed state. If the
proposal is accepted, xt+1 is set to x′. The dashed transition is only used
when rejecting x′. The transitions in gray illustrate that x ◦ A = x′ ◦B′

and x ◦ B = x′ ◦ A′. The conditional probabilities q(A′|x′ ◦ B′) and
q(B′|x′ ◦A′) can therefore be calculated in the same intermediate state as
q(B|x ◦ A) and q(A|x ◦ B), respectively. We denote by q(·) the different
proposals to be calculated in the corresponding states.
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This probability is undefined if there is no floating particle. In this case
we reject the move since the FBR is zero.

From Eqs. (5.13) and (5.14) we can calculate the FBR regarding the
floating particles.

5.3.3 Biasing the proposal distribution

The proposal distribution is a crucial part for any MH algorithm. It has
to be designed such that the chain is ergodic (see 5.1.1). At the same time
it is responsible for the algorithm’s performance. In theory, no matter
what proposal distribution is used, when running a correct MH algorithm
long enough, the Markov chain will eventually converge to its equilibrium
distribution π. In practice, the proposal distribution determines how long
it takes from the equilibrium distribution and how long one has to sample
to obtain a representative sample from π. For good performance we need
to focus on the interesting parts of the state space. It is about deciding

“where to look first?”. If prior knowledge is available about what relevant
states look like, one should use this knowledge. It can be shown that the
proposal distribution should be close to the target distribution in order to
achieve fast convergence (Mengersen and Tweedie, 1996).

The same can be formulated more technically: For the Metropolis-Hastings
algorithm, all samples with a MH ratio larger than 1 are accepted. There
is no difference between much-better samples and slightly-better samples.
A good proposal allows taking larger steps while maintaining acceptable
acceptance ratios. With fixed acceptance ratio, a larger step size therefore
allows faster exploration of the space. The chain is said to be well mixing.

The present method focuses on taking many small steps around interesting
locations, namely around the contour. We take advantage of both efficient
proposal computation and local target-density ratio computation for small
contour perturbations. Instead of taking one big but computationally ex-
pensive step, we perform many small computationally cheap steps. While
a big step might be rejected, the small-step strategy has a high probability
of moving forward in the same computational time. Additionally, floating
particles enhance the local perturbation sampling. They explore the state
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space at interesting locations. Nevertheless, the particle set P is usually
very large and, for reasons discussed above, it may be beneficial to bias
particle selection, i.e., bias the proposal distribution. In the following we
discuss how we bias the proposal. Using stratified sampling we focus on
interesting objects or locations. Using smooth proposals we favor smooth
contours.

5.3.3.1 Stratified sampling

The particle set P can be split into subsets amounting to discrete strat-
ified sampling. For example, we might partition particles according to
the regions they belong to. Reconsider the Markov kernel decision tree
in Fig. 5.2. We first choose a region l from a uniform distribution with
ql(l) = 1

M−1 . Then, we sample the particles from the subset Pl that con-
tains only particles belonging to region l. This ensures that small and large
regions receive the same amount of processing time. Therefore, the final
posterior representation is of better quality for small regions. This strati-
fied sampling approach leads to relative quantification errors that may be
useful for certain applications, for example in protein quantification (see
Sec. 5.4.4). Note that any other partitioning of P could be used as well.

5.3.3.2 Smooth proposals

Assuming that the target distribution favors smooth contours, it is favor-
able to propose smooth samples. In image segmentation, this assumption
is reasonable since the prior probability often contains a length penalty
causing the contour to be smooth. This has already been exploited by Fan
et al. (2007) and Chen and Radke (2009). Chang and Fisher III (2011)
biased the proposal with the full energy gradient. Here we show how to
incorporate a smooth contour bias into a discrete proposal using particle
weights.

For smooth boundary proposals, wi is related to the contour length caused
by the pixel at the particle’s position. As weights we use the length approx-
imations for contours and surfaces introduced by Boykov and Kolmogorov
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(2003). These approximations are discussed in Sec. 3.2.2.1. They are
based on the Cauchy-Crofton formula which relates the Euclidean length
of a curve to the number of grid lines intersecting it. Although there exist
grids leading to more accurate length estimation, we use a rectilinear grid
with an 8-neighborhood in 2D and a 26-neighborhood in 3D. The length
approximation need not to be very accurate here since it is only used to
bias the proposal. Efficient computation is more important. Let l = L(xA),
then

q(A|x) =
1

Z

∑
y∈N1

m(xA)

w(|y − x|) · δL (L(y)) , Z =
∑
A∈P

wA, (5.15)

where δL is the Kronecker delta. Recall that N1
M (·) is the full 3d neighbor-

hood set. Z is the partition function. For efficient evaluation, the weight
function w(·) can be pre-computed for all input values. Whenever a parti-
cle is applied, all particles in the fully connected neighborhood need their
weights updated.

Note that through particle weights we could incorporate any type of bias
into q without altering the algorithm. In Sec. 5.4.3 we show that smooth
proposals indeed increase the acceptance rate.

5.3.3.3 Topologically constrained proposals

Recently, Chang and Fisher (2012) proposed sampling in topologically con-
straint spaces. Digital topology (see Sec. 2.2) is used to detect topological
events and prevent them if necessary.

Topologically constrained sampling reduces the state space Ξ to a subspace.
Although this reduces the space size, it does not necessarily simplify the
sampling task. Many paths towards a good solution may temporarily leave
the valid space. Moreover, we are interested in Markov chain summary
statistics. Gaps between object boundaries ensure a particular genus, how-
ever, eventually vanish in the summery statistics (unless they are favored
by the target distribution).

We argue that topologically constrained sampling is useful only if seed
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points of connected objects are known. Then, the sampler can delineate
the object boundaries starting from the known seed points.

In order to fulfill topological constraints in the present framework, we set
qf = 0 and filter both particle sets P and Pf such that the topologi-
cal numbers (see Sec. 2.2.2) at all particle positions fulfill the constraints.
The sampler will therefore only consider topologically valid shape pertur-
bations.

Whenever a particle A is applied, particles in the fully-connected neighbor-
hood y ∈ NM (xA) are invalidated or validated. Therefore, P needs to be
updated locally. We do so by collecting particles for all y and computing
their topological numbers. We then ensure that all particles with a valid
topological number pair are contained in P, and none of the others (line 9
in algorithm 7).

5.3.4 Overall algorithm

We summarize DRS in algorithm 8. Lines starting with an asterisk are
optional. Instructions starting with two asterisks are executed only when
using conditional proposals. The algorithm is started with an initial label
image L0 which implicitly determines the number of regions. L0, together
with an empty set of floating particles, defines the initial state x0. We
initialize the regular particle set P (line 1) such as to respect topological
constraints. If biased proposals are used, we compute the particle weights
(line 2), else all weights are set to 1. In the main loop we first sample a
region r (line 4). When using stratified sampling (sectoin 5.3.3.1) we only
consider the subset of particles belonging to this region. With probability
qf (lines 5 and 6) we then perform off-boundary sampling (lines 7–15)
as described in Sec. 5.3.1.3. We linearly decrease qf during the burn-in
phase. We then draw at least one particle A according to the proposal
q(·) (line 18). Recall that P is maintained (by algorithm 7) such as to
only contain particles leading to a topologically valid shape. For large
step sizes multiple particles are drawn by repeating lines 17–19. The step
size must be set to 1 if topological constraints or conditional proposals are
used. When using conditional proposals we also need to find the partner
particleB (line 21), for which we first simulateA (line 18). We then drawB
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Algorithm 8 DRS - Discrete Region Competition Sampling

1: Initialization: Set up x0, i.e., P from L0, Pf = ∅
2: * For all particles, calculate w according to eq. (5.15)
3: repeat
4: Sample a region r [*and filter P ∪ P for region r]
5: Sample u1 ∼ U [0; 1] [* adapt qf ]
6: if qf < u1 then
7: if Coin toss is head then
8: Sample x ∼ ‖∇I‖
9: Compute FBR using Eq. (5.13) and (5.14).

10: Insert F = (x, r, wp) if u2 ∼ U [0; 1] < max (FBR, 1).
11: else
12: Sample a F from Pf , if Pf 6= ∅ , else next iteration
13: Compute FBR using Eq. (5.13) and (5.14).
14: Delete F if u3 ∼ U [0; 1] < max (FBR, 1).
15: next iteration
16: ∆E = 0
17: for i=1. . . step size do
18: Sample particle Ai from {P ∪ Pf} according to qi
19: ∆E = ∆E + ∆E(xA, L(xA)→ l′A) [** +∆E(xB , L(xB)→ l′B)]
20: Compute q(x′|x) using Eq. (5.10)
21: ** Apply A. Sample B from P|xB ∈ N+

n (xA). Apply A′. .
22: Move to x′ by applying Ai [**and B]
23: ** Compute conditional proposals in eq. (5.12) using eq. (5.15)
24: Calculate q(x|x′) using (5.15).

25: if u4 ∼ U [0; 1] < max
(

exp(−∆E) q(x|x
′)

q(x′|x) , 1
)

then

26: xt+1 ← x′ else apply A′i [**and B′]; xt+1 ← xt
27: until max. number of iterations reached
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from particles located in the neighborhood N+
n (xA). During this simulated

move, conditional proposal probabilities can be calculated as illustrated in
Fig. 5.4. We finally move to the proposed state x′ by applying particle A
(and B when using conditional proposals) using algorithm 7. In this new
state we compute the backward proposals (line 24). We then compute ∆E
according to an energy described in chapter 3 (line 19). For multi-particle
moves we add all particle contributions to ∆E . Finally, we apply the MH
algorithm in lines 25 and 26.

5.3.5 Implementation

We implemented DRS as image-processing filter in the ITK image-process-
ing software library (Ibanez et al., 2005). All linear combinations of en-
ergies introduced in chapter 3 can be sampled with this implementation.
DRS is implemented for 2D and 3D images.

The present algorithm uses large iteration numbers. An efficient imple-
mentation is hence crucial. In this subsection we discuss implementation
details on critical routines and data structures. We start with the imple-
mentation for particle containers. We then discuss efficient approximate
sampling using particle weights.

5.3.5.1 Data structure for efficient particle sampling

In line 18 of algorithm 8 we sample from P and Pf , which are both set
data structures. We need to be able to quickly insert and erase particles
from containers. At the same time, we need to efficiently access particles
in random-access fashion as generated by the random number generator.
Implementations of sets (hashed or not) are usually unordered. We there-
fore build enumerated set using one vector and one hash map as follows:
Particles are stored as keys in the hash map. The corresponding values are
equal to the indices in the vector. Vector element i a pointer to particle i.

Look-up, random access, insertion, and deletion then all have a complexity
of O(1):
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• We find a particle looking up the particle in the hash-map.

• In order to access the particle at position i (i has been generated by
the number generator), we dereference the i-th vector entry.

• For inserting a particle A, we first look up the corresponding entry
in the hash map. If it already exists, we are done. Else we insert
a key/value pair into the map with A being the key and the value
being the vector’s length. We then append a pointer to A to the
vector.

• For deleting, we move the last element in the vector to the position
of the deleted particle and update the hash map.

S a data structure is sometimes referred to as a constant indexed (hash)
set.

5.3.5.2 Discrete distribution sampling

In Sec. 5.3.3.2 we weighted particles in order to bias the proposal toward
smooth contours. Without biasing, i.e., ∀A ∈ P : qA = 1

|P| , we sample

a uniform number in [0, |P|[ and access the particle at this position. For
unequal weights, the optimal algorithm has a computational complexity of
O(|P|) (Bringmann and Panagiotou, 2012). For large numbers of particles
this renders the algorithm with smooth proposals intractable. A good
approximation can, however, be obtained when assuming that particles are
unordered and that their weights are moderately equilibrated within the
container. We consider N consecutive elements (with periodic boundary
conditions) in the indexed set P as a representative sample. Here, this is a
valid assumption since all particles have one out of three different weights.
We set N = 30.

We generate all random numbers with a Mersenne Twister random number
generator (Matsumoto and Nishimura, 1998).
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5.3.6 Irreducibility and aperiodicity

We argue that our move set described above induces an irreducible and
aperiodic transition graph in Ξ, provided each particle is assigned a prob-
ability larger than 0. For the sake of completeness, these two properties
are proven here.

Irreducibility Recall that for a finite-state HMC to be irreducible, the
probability of accessing every state i from every other state j needs to be
non-zero (see Sec. 5.1.1). We assume the move set with qf = 0, which
is a subset of the move set when qf > 0. The following proof shows
irreducibility for our move set when Ω is larger than 2× 2(×1).

By definition, any state j has at least c > 0 connected component(s) (in-
cluding isolated floating particles) of any region l. Assume the connected
component’s centers of mass falling on pixel at positions xi, i = 1 . . . c.

For any region there is always a regular particle with candidate label l until
the region is equal to the image domain Ω. This follows from the definition
of regular particles. Similarly, for every region of more than c pixel in size
there are always at least c + 1 regular particles with candidate label 0.
Since there is always a particle A with xA 6= x, qp > 0 there is a non-zero
probability for every region to collapse at a center-of-mass position x. This
accessible state is illustrated as state (0) for the two-region case in Fig. 5.5.

We partition the image domain into 2 × 2(×1) subdomains. There are
|Ξ| = 24 · 24 possible states for this patch. Figure 5.5 illustrates the non-
zero probability path to 16 states (modulo rotation) covering all possible
configurations of the label image. Note that the rotated configuration (3’)
is accessible from (1). Moreover, there is a non-zero probability path to
create a floating particle, e.g., (1) → (2) → (3) → (4′) → (5). State (5)
modulo the floating particle corresponds to state (1). Transitions through
application of regular particles enable generating floating particles in any
of the 4 fields in any order. Due to the independence of floating and
regular particles all 24 label configurations can be combined with all 24

floating particles configurations (exept the state with blank label image
and 0 floating particles). Therefore, every j ∈ Ξ can be accessed for this
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xi

(0) (1) (2) (3) (4)

(4’) (5)(2’)(3’)

Figure 5.5: A 2 × 2 patch of a 2D image or 3D slice. Circles indicate
floating particles with corresponding candidate label. Regular particles are
not shown. For better visibility the diagram illustrates only a subset of
the full transition graph. Note that state (3’) corresponds to (1) rotated
by 90 degrees.

patch. To explore the entire connected component (at which we collapsed
to enter state (0)) we move the 2× 2 sliding window by one pixel row.

When repeating the above procedure for all regions, any state can be
recovered reached, the “empty” state without floating particles or with
blank label image, which by definition does not belong to Ξ.

Aperiodicity The easiest way to break a period is to allow moving from
state i to the same state i with non-zero probability (see chapter 5.1.1).
Such self-transitions have non-zero probability when a floating particle
with L(xA) = l′A exists.

Note that when considering regular particles only, the chain has a period
of 2. This is because applying a reverse particle is the same as recovering
the original state, i.e., x = x ◦Ai ◦A′i.

5.4 Applications

We first apply DRS to various artificial images. In order to validate
the algorithm, we generate a ground-truth posterior. Moreover, we com-
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pare DRS with Gibbs-inspired Metropolis-Hastings (GIMH) (Chang and
Fisher, 2012) using two different ground-truth target probabilities. We
then present a toy example to illustrate the usefulness of floating particles.
In subsection 5.4.3 we use the algorithm to analyze the deconvolution prob-
lem using forward simulation in different situations. In the same subsection
we discuss the effect of smooth and conditional proposals. The second set
of applications considers fluorescence microscopy images. A first real-world
application for protein quantification is presented in subsection 5.4.4. The
example shows the multi-region sampling capability of DRS and motivates
uncertainty quantification. In Sec. 5.4.5.1 we demonstrate the robustness
of the present sampling approach on real-world data. We also apply DRS
in 3D in Sec. 5.4.6.

5.4.1 Comparison with Gibbs-inspired MH

We compare the present algorithm with GIMH (Chang and Fisher, 2012).
GIMH outperforms previous algorithms by an order of magnitude (Chang
and Fisher, 2012) in terms of sampling speed. GIMH and DRS are gradient-
free, allowing one to easily integrate new energies. Also, both samplers
support multiple regions and allow constraining the shape topologies.

GIMH Chang and Fisher (2012) propose to use a level set φ for shape
representation. They therefore operate on an infinite-dimensional state
space. The foreground is defined as φ > 0. The posterior only changes
when φ changes its sign. In each iteration, a spherical mask m is sampled
and the level set is perturbed as φt+1 = φt + f ·m with f ∈ R. Then, for
all f that change sign(φ) anywhere, the posterior is computed. Since φ
imposes an ordering of the pixels, the number of possible posteriors for any
perturbation is tractable (given m and conditional on pixels that are not
in m). From this discrete conditional posterior, the algorithm samples the
new state. Conceptually, this procedure is related to block-Gibbs sampling
since the posterior is not conditionally sampled along one, but along many
dimensions at a time (namely for all pixels within m).

GIMH also adapts its step size. Large masks m, corresponding to large
steps, allow fast convergence. The problem with large step sizes, together
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with the pixel ordering according to φ, is that pixels are coupled to neigh-
boring pixels through the mask m. Drawing f hence depends on the mask
size: Consider the mask falls into a constant image region with probabil-
ities p0 = 0.6 and p1 = 0.4 to belong to the foreground and background,
respectively. Assume φ > 0 for half of the pixel in m. Then, the condi-
tional posterior to draw f such that k pixels change to the foreground is(
p0

p1

)k
. Hence, the larger the mask m, the higher the probability for a

large step size, i.e., a large |f |.

Similarly, only few pixels can already heavily influence the decision of other
pixels within the mask. In the conditional posterior space, one orthogonal
dimension hence dominates the conditional posterior.

This pixel dependence within the mask m biases the samples from GIMH
toward the mode. This effect becomes stronger the larger the masks is.
This bias toward the mode is illustrated in the following experiment.

Test cases We use a two-region model for which we know the ground-
truth target probability. This probability indicates how probable it is for
a region to occupy any pixel. For simplicity, we ignore any prior.

We assume the pixel-wise probabilities for the foreground to be drawn from
a fixed Gaussian distribution pFG ∼ N (µFG, σ

2
FG). The background region

is drawn from pBG ∼ N (µBG, σ
2
BG). We are given an image I shown in

Fig. 5.6a. We can compute the ground-truth target distribution π. The
probability of observing the foreground region at pixel x is

π(x) =
pFG(I(x))

pFG(I(x)) + pBG(I(x))
.

For both algorithms we calculate the mean shape from the samples gener-
ated by the chain3. We then report the pixel-wise L1 and L2 distance to
the ground-truth target distribution.

3For GIMH thinning is used for technical reasons. To the best of our knowledge,
this does not significantly change the results reported here.
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(a)

(b)

Figure 5.6: (a) Data image of size 146×546 pixels. The background value
is 10 (black) while the brightest pixel is of intensity 255. The Kanji char-
acters denote the word “sampling”. (b) Two different target probabilities
π1 (left) and π2 (right). Each pixel reports the probability of belonging to
the foreground region. Black and white correspond to probabilities 1 and
0, respectively.

We perform this experiment on two target distributions with parameters

• (µBG,1 = 15, σBG,1 = 10, µFG,1 = 50, σFG,1 = 10) and

• (µBG,2 = 10, σBG,2 = 20, µFG,2 = 30, σFG,2 = 30).

Figure 5.6b shows the color-coded π1 and π2 side by side. The second case
is somewhat more difficult since pixels in the whole image have a reasonable
probability of belonging to region 1. The lowest probability in this second
case is min(pFG(I(x)) = 0.348. In the first case min(pFG(I(x)) = 0.00038.

Fig. 5.7 plots the L1 and L2 errors versus CPU time for both algorithms.
No burn-in phase is considered. We initialized GIMH with a random level
set with values in [−0.5, 0.5]. We used bubbles on a grid to initialize DRS.

Due to larger step sizes, GIMH approximates the target distributions faster
during the first few seconds. In the first case, we measured a lower L1 er-
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ror for DRS’ samples after approximately 8s; the L2 error is lower after
4s. This is due to the neighbor dependencies in the GIMH masks, which
cause the samples to be biased toward the mode. For a broader target
distribution such as π2, this difference becomes more significant. While
GIMH improves the approximation only during the first computation sec-
ond, DRS constantly decreases the error. The resulting probability maps
are shown in Fig. 5.8. The results from GIMH are clearly biased toward
the mode. For π2, GIMH fails to represent the p = 0.348 confidence level
in the vicinity of the Japanese characters. The probability map of DRS
approximates the target distributions more accurately in both cases. It
is, however, less smooth though due to its discrete character. The map
becomes smoother the longer we run the algorithm. Figures 5.8d and 5.8f
show that also the DRS approximation slightly overestimates the probabil-
ity of the foreground region. We believe that this is because the floating
particle distribution has not yet converged to the vicinity of its equilibrium.
The effect on the summary statistics of the geometric subspace, however,
is minor. Different initial floating particle distributions may be tested in
future research.

5.4.2 Topology change

The toy example in Fig. 5.9 illustrates how off-boundary sampling enables
DRS to change the shape genus.

Figure 5.9a shows a simple shape with a hole. The image is corrupted with
Poisson noise. We initialize the chain with a circular shape (indicated by
the red circle). After only a few iterations, new connected components
emerge. Floating particles are more frequently introduced and removed at
the boundary of the object where the image gradient is large. In Fig. 5.9b
the traces of several accepted floating particles are visible, not only in
the interior of the triangle, but also at the corners. Traces of topological
changes are annotated with red arrows. The algorithm require 1.4s for
200000 iterations on this image of size 300× 300 pixels.
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Figure 5.7: Sampling error versus CPU time. The solid and dashed lines
show the errors for DRS and GIMH, respectively. (a) and (b) show the
L1 and L2 distances between the reconstructed distribution and the ground
truth π1. (c) and (d) show the distances to π2. We consider the first 25
seconds of computational time without any burn-in phase.
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(a) (b)

(c)

(d) (e)

(f)

(g) (h)

(i)

Figure 5.8: Visualization of the resulting probability estimates. (a) DRS
estimation of π1. (b) GIMH estimation of π1. (c) Ground truth π1.
(d),(e), and (f) show (a),(b), and (c) in the respective zoom window (red).
(g) DRS estimation of π2. (h) GIMH estimation of π2. (i) Ground truth
π2.
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(a) (b) (c) (d)

Figure 5.9: Illustration of the ability of DRS to change the contour genus
using floating particles. (a) Initialization contour overlaid on the original
image data. Panels (b),(c), and (d) show the probability maps after 10 000,
50 000, and 150 000 iterations, respectively. Red arrows mark topological
changes.

5.4.3 Deconvolution using smooth and conditional proposals

Besides robust identification of the probability mode, sampling the shape
space provides information about the shape of the target probability. The
first goal of this subsection is to analyze certain aspects forward-simulation-
based deconvolution. In Secs. 5.3.2.2 and 5.3.3.2 we introduced conditional
and smooth proposals. Both techniques require additional computations.
Conditional proposals require building a second pmf from particles in the
neighborhood of a previously drawn particle. Biasing the proposal, i.e., as-
signing state-dependent weights to the particles, is computationally expen-
sive for two reasons: First, the weights need to be calculated and updated.
Second, we need to draw a particles from a discrete probability distribution
(categorial sampling). If the energy is expensive to evaluate, such efforts
may be amortized. The deconvolving energy is expensive, depending on
the support of the PSF. The second goal of this subsection is to elaborate
on the different alternative proposals.

We consider the artificial ground-truth image in Fig. 5.10a. It contains
three connected components. After blurring the image with a PSF the ob-
jects are difficult to separate. For this example we use a Gaussian PSF of
width σPSF = 7. It is superimposed in the upper-left corner of the ground-
truth image in Fig. 5.10a. We simulate the image-formation process of
a microscope by a convolution followed by corruption with multiplicative
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Poisson noise. We consider a simpler case with SNR ≈ 12 and a more diffi-
cult case with SNR ≈ 3. The resulting test images are shown in Figs. 5.10b
and 5.10c.

We separate the deconvolution problem into the geometric and the photo-
metric subproblem, which are strongly coupled. We first assume the cor-
rect photometric parameters to be known. We further assume the object
to have piecewise constant intensity. Without any further prior knowledge
we find that many shapes are plausible. This is because of the information
loss due to low-pass filtering with the PSF and noise. As illustrated in
Fig. 5.10e, the confidence bands are wide, even for a high SNR. We ob-
serve that the probability of recovering the corners decreases. At an SNR
of 3 the probability map is shown in Fig. 5.10f. We conclude that the
geometric subproblem is ill-posed since many original states are plausible.

If the photometric parameters are unknown, the uncertainty further in-
creases. Even when initializing with the ground-truth segmentation, vari-
ations of the geometry are still plausible. Since the photometries are es-
timated conditional on the shape, the intensities will be over-estimated
at some point. This causes the shape to retract, which further increases
the estimated intensities. The sampler therefore walks along a probability
ridge and finds a state that seems intuitive: The intensity estimates are
twice the ground-truth intensities, and the geometry covers only half of
the area of the ground-truth object. The process then continues reducing
the area and increasing the intensities. This does not happen because they
are more probable than the ground-truth solution, but because there is a
large number of plausible states to explore. We therefore need to introduce
a prior in order to “keep the shape together”, which causes lower intensity
estimates. Penalizing the contour length is a good solution, as long as we
are not reconstructing filamentous structures.

Iterative approaches For comparison, we apply three different, com-
monly used deconvolution algorithms: Tikhonov-Miller inverse filtering
(van Kempen et al., 1997), total-variation regularized Richardson-Lucy
(Richardson, 1972; Lucy, 1974; Dey et al., 2006), and a wavelet-regularized
version of the thresholded Landweber method (Vonesch and Unser, 2008).
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: (a) Ground-truth data with overlaid point-spread function.
(b) Convolved image with Poisson noise of SNR 12. (c) Convolved image
with Poisson noise of SNR 3. (d) Intermediate probability map from DRS
applied to (b) when using EPC,dec

Poisson without any prior. (e) Same as (d), but
with region intensities known to DRS. (f) Same as (e), but applied to (c).
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An overview of popular deconvolution algorithms is discussed by Sarder
and Nehorai (2006). We ran all algorithms for 200 iterations. We used the
implementations in the software bundle accompanying the work of Vonesch
and Unser (2008).

A direct comparison is difficult. The three deconvolution algorithms men-
tioned above are image reconstruction methods rather than segmentation
methods. The results, however, illustrate the difficulty of the task.

Figure 5.11 shows the results from the three algoritmhs for both SNR cases.
Tikhonov-Miller inverse filtering is known to have a low deconvolution but
high a denoising effect. In our experiment, this algorithm performs well
on the low-intensity image. In both cases, however, details are lost. The
Richardson-Lucy algorithm is appropriate for Poisson and recovers the
shapes quite well in the high-SNR case. We observe that the algorithm
roughly creates 3 regions of similar intensity: the background, the fore-
ground, and an intermediate region. The intermediate region is located
where the sampler reports uncertainty in Fig. 5.10e. For the low-SNR
case, the algorithm seems to amplify the noise. Similar results with less
denoising are obtained with the thresholded Landweber algorithm.

Results We regularize the geometric problem using the curvature regu-
larization discribed in Sec. 3.2.2.2. We run the DRS and RC algorithms
for both SNR cases. We run DRS for 125 000 iterations with a burn-in
phase of 62 500 iterations. Timings are reported in Tab. 5.1.

Fig. 5.12 shows sampling (DRS) and optimization (RC) results using the
data image at SNR ≈ 12 (Fig. 5.10b) for three different prior weights,
λ = {4, 10, 15}. Interestingly, for λ = 10 the certainty at corners increases
compared with λ = 4. When further increasing λ to 15, the shape is
oversmoothed and corners are rounded. Since RC sticks to local minima
close to the mode, we assume that the landscape is rugged in the vicinity
of the mode.

Fig. 5.13 shows DRS and RC results on the image with SNR ≈ 3 with
λ = 1, 2, and 5. We adapted λ to values 1,3, and 5. λ = 1 is too small
and the same effect as described above occurs. λ = 3 seems to impose
a reasonable prior; the objects are almost separated. The sampler re-
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Deconvolution results of different algorithms using the artifi-
cial images in Figs. 5.10b and 5.10c. The upper row correspond to results
for an SNR of 12, the lower row are results for the image with SNR 3.
(a),(d) Tikhonov-Miller inverse filtering. (b),(e) Richardson-Lucy algo-
rithm. (c),(f) Wavelet-regularized thresholded Landweber deconvolution.
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Sampling (upper row) and optimization (lower row) results
for the deconvolution task on the image in Fig. 5.10b (SNR ≈ 12) for
different regularization parameters λ: (a),(d) λ = 4; (b),(e) λ = 10;
(c),(f) λ = 15.

ports uncertainty between the circle and the bottom bar. With λ = 5
the confidence-band width gets narrower, as expected when imposing a
stronger prior. The sampler, however, takes longer to reach equilibrium.
From Fig. 5.13f we can interpret that the Markov chain disconnects the
upper from the middle object after the burn-in phase. We observe that the
optimizer better separates the objects for low λ. For λ = 10 and λ = 15,
however, RC gets stuck in local minima induced by the prior.

Proposal scheme The results reported are generated using conditional
and smooth proposals. In order to show the effect of other proposals we
additionally run all 4 combinations of proposals (i.e., standard, biased,
conditional, and biased-conditional) for the SNR ≈ 12 case. Acceptance
rates for two different PSF sizes, σPSF = 7 and σPSF = 2, are reported
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Sampling (upper row) and optimization (lower row) results
for the deconvolution task on the image in Fig. 5.10c (SNR ≈ 3) for
different regularization parameters λ: (a),(d) λ = 1; (b),(e) λ = 3; (c),(f)
λ = 5.
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σPSF = 7 σPSF = 2
proposal avg. AR [%] time [s] avg. AR [%] time [s]

37.4 41 11.1 9
biased 55.4 49.6 16 14.7

cond.
42.6 36 18 10

biased 53.8 39 29.6 18.5

Table 5.1: Summary of ARs and average computational times of the
plots in Fig. 5.14. The experiments are performed with DRS applied to
the image in Fig. 5.10b. Two different PSF sizes for the Poisson-noise-
deconvolution image model are tested on 4 different proposal schemes.

in Fig. 5.14. For σPSF = 7, all acceptance rates are above 35%. This
is due to the flat PSF. When adding or removing a point the intensity
difference at a single pixel within the PSF support is small. The Poisson
noise model tolerates such deviations (see Eq. (3.14) in Sec. 3.1.2). When
biased proposals are used, the acceptance rate is too high.

With a Gaussian PSF of width σPSF = 2, some pixel intensities change
drastically when adding or removing a pixel. Consequently, |∆E| is larger
and the decision to accept or reject the move becomes more certain. As
motivated in Sec. 5.3.2.2, conditional proposals are well suited in this case.
The intensity change per pixel is less if two nearby particles with different
candidate labels are applied at the same time (recall Fig. 5.3). Fig. 5.14b
shows that using conditional proposals increases the acceptance rate from
10% to 18%, while the computational time only increases slightly from 9s to
10s (see Tab. 5.1). Biased proposals significantly increase the computation
time. This is because when the PSF is smaller the energy is less expensive
to evaluate, and the proposal-computation overhead becomes relatively
more expensive. Combining both specialized proposal schemes increases
the AR almost by a factor of 3 while doubling the computational time.
For particle moves on images with high SNR, the intensity differences
increase. Therefore, the decision to accept or reject a move becomes more
certain. Consequently, for images with high SNR, conditional proposals
are indispensable.
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Figure 5.14: Acceptance rates (AR) versus particle moves for deconvolv-
ing segmentation of the image in Fig. 5.10b (SNR ≈ 12) with a Poisson
noise model. We ran 250000 iterations per run without conditional propos-
als, and 125 000 iterations for runs with conditional proposals (since they
perform 2 particle moves per iteration). (a) AR for σPSF = 7. (b) AR for
σPSF = 2. Solid, dashed, dotted, and dash-dotted lines represent standard,
biased, conditional, and biased-conditional proposals, respectively.
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5.4.4 Protein quantification in cells - Robust low intensity
segmentation

Fluorescence microscopy allows quantifying concentration of fluorescently
labeled proteins in cells or cell compartments. After image segmentation,
pixel-wise intensity values are used to reconstruct the amount of protein
within the region of interest. Such quantification relies on robust seg-
mentation algorithms. Uncertainty estimates of object boundaries further
improve the sample-set quality. Fig. 5.15b shows a region of interest of a
noisy real-world image. We initialize one region around each local inten-
sity maximum after low-pass filtering. The initial region boundaries are
indicated in red in Fig. 5.15a. This initialization process produces 6 false
positives at the image boundary.

We run DRS for 2 000 000 iterations using a Gaussian-noise piecewise con-
stant image model. For each label the sampler outputs a probability map
for the corresponding region. The region maps for the initial false posi-
tives are empty, i.e., they report a zero probability. Figure 5.15b shows
the probability maps for the three different non-empty regions. For bet-
ter visibility of the results we slightly separated the probability maps in
Fig. 5.15b. We observe smooth probabilities at locations where cells are
touching each other since the likelihood term is not decisive in-between
the cells. The pixel-wise probabilities are hence dominated by the prior.

In order to improve the quantification quality, we discard all pixels that
have a probability below 95% of belonging to a foreground region.

5.4.5 Comparison with optimization

5.4.5.1 Imaginal wing disc in 2D

The following example illustrates DRS’ robustness w.r.t. the initialization.
We use an image of complex-shaped cellular structures from Zartman et al.
(2012). We compare the result from local optimization using RC (see chap-
ter 4) with the DRS approach. For this comparison we consider a 2D
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3µm

(a) (b)

Figure 5.15: Touching fluorescent cells. (a) Contours (red) of initial
regions using local maximum detection after blurring. (b) Probability map
of a multi-region segmentation after 2 000 000 iterations. For visibility of
the results, the probability maps of the three cells have been artificially
separated. White corresponds to probability 0 and black to probability 1.

version of the image; the full image is segmented in the following section.
Fig. 5.16 shows the results from both algorithms. The intensity signal is in-
homogeneously distributed across the image. We use a piecewise constant
image model, which does not match the data image in Fig. 5.16a. In order
to challenge the algorithms, we initialize the contour to a small region as
marked in Fig. 5.16a. For the sake of the experiment, we set qf = 0 in
order to avoid new seeds from which the contour could explore the image.
Starting from the small initial patch, RC converges in 0.22s; the result is
shown in Fig. 5.16b. It corresponds to a local posterior mode. Within
the same time DRS produces the confidence map in Fig. 5.16c. After 10
million iterations, which approximately takes one minute, almost all cell
membranes are correctly segmented.

Note that although the DRS result reaches a lower-energy solution, the
RC result is nevertheless reasonable. The optimizer is constrained to find
a connected region of constant intensity. It would, when initialized with
the final state of the sampler, split the region into many smaller regions
in order to cluster different region intensities.

140



5.4. APPLICATIONS

5µm

(a) (b) (c) (d)

Figure 5.16: (a) Maximum intensity projection of an image stack of flu-
orescently labeled cell membranes. The red square indicates the contour
of the initial region. (b) The solution found by the RC. (c) The posterior
after the same time using DRS. (d) The solution found by DRS, without
off-boundary sampling, after 10 000 000 iterations. Image data are from
Zartman et al. (2012).

5.4.5.2 Mitochondria

We apply RC and DRS to a real-world application for mitochondria seg-
mentation. We used a piecewise smooth external energy and curvature
regularization for the internal energy (see Sec. 3.2.2.2). Both algorithms
are initialized using a binary mask obtained by Otsu thresholding. We
run RC until convergence and DRS for 5 000 000 iterations. For DRS, we
obtained contours by thresholding the probability map at a probability
value of 0.5. At image locations with strong signal, the results of both al-
gorithms are nearly identical. Regions with weaker signal that were missed
by the Otsu-based initialization are still delineated by DRS.

Figure 5.17 shows an example result. More results are shown in Ap-
pendix B.1.

5.4.6 Imaginal wing disc - A 3D example

We apply DRS to a 3D fluorescence microscopy image stack of the imag-
inal wing disc of a Drosophila larva. We aim at segmenting all cells and
reconstructing their neighborhood graph. The image is difficult to segment
because of the thin structures to reconstruct, the low SNR, and the inho-
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(a) (b) (c)

20µm

(d) (e) (f)

Figure 5.17: Comparisons of RC and DRS segmentations for images of
fluorescently labeled mitrochondria in 2D. (a) The image data of size
512 × 512 pixels (image: Kathy Ushakov, Dept. of Cell Physiology and
Metabolism, University of Geneva Medical School). (b) Contours of the
RC segmentation. (c) Contours corresponding to the 0.5 iso-level of the
DRS probability map. (d) Close-up data image. (e) Close-up of RC’s con-
tours. (f) Close-up of the 0.5 DRS’ confidence contour. See Appendix B.1
for additional comparisons.
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mogeneously distributed fluorescent protein. So far, automated methods
did not provide satisfactory segmentation quality in 3D.

The image is of size 512 × 512 × 12 voxels. A slice of the data is shown
in Fig. 5.18a together with a scaled inset in Fig. 5.19a. We use a piece-
wise smooth Gaussian image model with discrete approximated contour
length prior (see Sec. 3.2.2.1). For this energy, we perform 5 million DRS
iterations in 13.6 minutes. For comparison, the same number of iterations
with the computationally more efficient piecewise constant energy takes
1 minute. The average acceptance rate is 16%. Both experiments are
performed on a laptop computer with an Intel i7 processor. The overall
memory usage of the algorithm is about 240 MB.

We present 3D shape sampling results, e.g., two confidence surfaces, from
DRS in Figs. 5.18b and 5.19. Due to performing energy calculations only in
the vicinity of the contour, the present algorithm allows sampling shapes in
3D in reasonable time. We are not aware of any previous implementation
producing posteriors for 3D images. GIMH could in principle be extended
to 3D, but its sampling time increases linearly with the number of voxels.

5.5 Discussion and outlook

We presented a Markov-chain Monte Carlo method for discrete shape sam-
pling. We tailored the Metropolis-Hastings algorithm to a discrete multi-
region sampling (DRS) algorithm. The resulting Markov chain samples
shapes of different topology (if not otherwise constrained) despite the ex-
plicit shape representation. The algorithm follows the idea of performing
many small, computationally cheap moves and certainly accept some of
them. In order for this strategy to be efficient, energy differences need to
be computationally cheap to evaluate for local shape perturbations.

We represented the discrete proposal distribution for local shape perturba-
tion using particles. The proposal was designed such as to locate particles
in the neighborhood of the contour. We have shown that assigning weights
to particles biases the proposal distribution toward smooth shapes in or-
der to improve the acceptance ratio. For the same reason we introduced
conditional moves that combine two particle moves. We have proven that

143



CHAPTER 5. EFFICIENT SHAPE SAMPLING WITH
MARKOV-CHAIN MONTE CARLO

10µm

(a) (b)
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Figure 5.18: (a) A section from the image stack of a developing
Drosophila wing. The image stack was recorded by Zartman et al. (2012).
(b) Corresponding probability map of a 3D sampling result using a piece-
wise smooth Gaussian noise model. (c) Close-up data image in a region
where wing disc is curved. (d) Probability map corresponding to (c).
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(a) (b)

Figure 5.19: Segmentation confidence surface visualized using Paraview
(Henderson, 2007). The red surface interpolates the 0.9 probability iso-
level of the 3D probability map. The transparent surface shows the 0.1
confidence level.

the associated Markov chain is ergodic.

We benchmarked the algorithm for two artificially generated target prob-
abilities and compared the results with those from the Gibbs-inspired
Metropolis Hastings sampler (Chang and Fisher, 2012). GIMH rapidly re-
duced the L1 and L2 distances to the target distribution due to its larger
step size. GIMH converged to a biased distribution. DRS better recon-
structed the target probabilities and had smaller L1 and L2 errors after a
few seconds of compute time.

We applied the algorithm to artificial and real-world images. We first
demonstrated the sampler’s ability to change the contour topology. We
then analyzed the different proposal strategies for the deconvolving seg-
mentation problem. We conclude that for small PSFs and high SNRs
conditional proposals are beneficial. Biased proposals amortize their com-
putational overhead for expensive energies, e.g., deconvolving energies with
large PSFs and piecewise smooth energies with large local windows. By
comparing the algorithm to RC we showed that the sampler is able to
overcome local minima and is hence robust to bad initializations. We
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demonstrated multi-region sampling using the real-world application for
protein quantification in touching cells. We concluded the applications
with a 3D real-world segmentation and reconstruction of the correspond-
ing confidence surfaces.

A sampling approach is more robust than local optimization approaches
w.r.t. initialization and local optima. The sampler additionally provides
confidence bands for the segmentation if the image-formation model is
accurate. The sampler, however, has shortcomings though. First, DRS
is computationally expensive. For many applications RC is more efficient,
as it needs less energy evaluations to find a good segmentation. Second,
RC uses the connected-component prior in order to estimate the number
of regions in an image. DRS needs the number of regions to be fixed
beforehand.

We propose to relax the first shortcoming using approximate initialization
of the target distribution and parallel computation.

Good initializations start the chain close to the equilibrium distribution. In
practice, this can be achieved using hierarchical resolution approach: A pre-
run using a down-sampled image could provide a low-resolution probability
map for initialization on next finer level. This approach exploits the fact
that neighboring pixel are likely to have similar probability values.

Parallel hardware can be exploited in various ways. The simplest approach
is to run multiple Markov chains and then combine their samples. This
approach, however, wastes computational time for each chain’s burn-in
phase. For energies with finite computational support, such as piecewise
smooth energies, domain decomposition may be appropriate, as illustrated
in Fig. 5.20. Domain decompositions have the advantage of being more
cache efficient and also they allow processing images that do not fit the
memory of a single computer. An implementation could for example be
realized using the Parallel Particle Mesh library (PPM) (Sbalzarini et al.,
2006). Within each subdomain Λij , a DRS algorithm samples the shape
space. Ghost layers are updated on demand. If the whole Markov process
is in equilibrium, the data in the ghost layers represent a partial sample
from the target distribution. It is not clear though, and remains to be
shown, whether such a scheme converges to equilibrium.
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Figure 5.20: Domain decomposition for parallel distributed-memory im-
plementation of DRS using the PPM library (Sbalzarini et al., 2006). Λij

are the subdomains of the image. Ghost layers (light-blue shaded) are
needed to compute the energy differences. The dotted circle indicates the
local support of an energy difference computation at particle location x.

The second shortcoming is more severe. In order to extend the method to
estimate the number of regions, careful reconsideration on region number
regulation is necessary. The prior used in chapter 4 seems unpractical,
since too many regions would be created due DRS’ stochastic nature. One
solution might be to consider a soft region penalty, as is for example used
in optimization (Delong et al., 2010; Brox and Weickert, 2004). A jump-
diffusion process, as proposed by Tu and Zhu (2002), could be used to
switch between different region models.

Another appealing enhancement of DRS seems to be parallel tempering.
Parallel tempering (Geyer, 1991) robustifies standard sampling methods by
running multiple Markov chains in parallel. Each of the chains is assigned
a different temperature Tk. In case the underlying model is a Markov
random field, this temperature corresponds to the temperature parameter
of a Boltzmann distribution. Else, the temperature is an inverse factor
on the negative logarithm of the target distribution. One chain runs at
temperature T0 = 1, all others run on higher temperatures. From time
to time, chains exchange their states according to a Metropolis-Hastings
criterion. The method can be seen as running a parallel stochastic process
that generates good proposal for the chain at T0. Parallel tempering only
requires slight modifications of a standard MCMC implementation.
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CHAPTER

SIX

On-line confidence estimates with

application to microtubule tracking

6.1 Introduction

We present on confidence estimation for object detection and segmentation
where the object size is below pixel resolution. We hence use a continuous
explicit geometry representation. Small objects are difficult to segment in
noisy images. This is because few data points are available for intensity
estimation. According to the law of large numbers, the estimation variance
is hence larger. We therefore impose a shape prior by explicitly represent-
ing the object in parametrized form. This prior is additionally with the
fixed-region-number constraint from chapter 5.

Using knowledge about the image-formation process allows sub-pixel esti-
mates. Sub-pixel accuracy is achieved by exploiting convolution artifacts
in image formation. We hence use a deconvolving energy (Eq. (3.12)) in
the likelihood term. Intensities, however, are not estimated separately, but
become part of the state, for the reason outlined above. We improve inten-
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sity estimation by filtering the posteriors over time-lapse image sequences
using Bayesian recursive filters. The underlying assumption is that the
intensities vary smoothly across consecutive frames.

We design a Bayesian recursive estimator, i.e., a particle filter. Parti-
cle filters represent the posterior distribution using a particle-based, i.e.,
non-parametric, function approximation. In order to avoid problems such
as degeneracy of particle weights or sample impoverishment, we use a
MH-within-particle filter : Within each frame, we run an adaptive MH
algorithm. Since the posterior pdf may drastically change between con-
secutive frames, we need to adapt the MH proposal distribution. We
present a versatile proposal adaption scheme inspired by the covariance-
matrix-adaptation evolution strategy (CMA-ES). CMA-ES is a competi-
tive stochastic optimization method introduced by Hansen and Ostermeier
(1996). It uses a Gaussian proposal and adapts its covariance matrix in
order to robustly search the state space.

We validate the confidence estimates of our method on synthetic data at
different SNR and present an application to the analysis of the intrinsically
stochastic motion of astral microtubules during metaphase in yeast cells.
Particle filtering without on-line confidence estimates has previously been
successfully used to track microtubules in live cells (Smal et al., 2008).

In the following section we briefly introduce particle filtering and related
problems. We then present the generic part of the present algorithm with
a short discussion on convergence of adaptive schemes in subsection 6.3.1.
In Sec. 6.4.2 we tailor the algorithm for microtubule length tracking by
carefully designing a likelihood and a prior. We then numerically validate
the algorithm and conclude with a short discussion in Sec. 6.6.

6.2 A short introduction to particle filtering

A comprehensive overview of particle filters (aka. sequential Monte Carlo
or condensation algorithm) can be found in Cappé et al. (2007); Maskell
(2001). From Maskell (2001) we adopt notation and the following relations.
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Particle filters are sequential importance samplers. Importance sampling,
of which the MH algorithm is one particular instance, is used is to approx-
imate an unknown pdf π that can only be queried (evaluated). A particle
cloud {xi}, i = 1 . . . N , is drawn from a proposal distribution q and the
target distribution is approximated as

π(x) ≈
N∑
i=1

wiδ(x− xi), wi ∝ π(xi)

q(xi)
,

N∑
i=1

wi = 1, (6.1)

where δ is the Dirac-delta function. The wis are the particle weights,
satisfying partition of unity. The set {xi, wi} hence is a random measure.

In chapters 4 and 5 we used particles to represent a discrete approximation
of the proposal distribution. Here, particles are weighted support points
for a posterior pdf approximation. Formally, the posterior is approximated
as:

p(x0:t|z1:t) ≈
N∑
i=1

witδ(x0:t − xi0:t), w
i
t ∝

p(xi0:t|zi1:t)

q(xi0:t|zi1:t)
. (6.2)

The vector x0:t contains all states up to time t. The xi0:t are the support
points with associated weights wit, which together form a random measure
that characterizes the posterior. The posterior p(x0:t|z1:t) incorporates
the measurements z1:t and priors up to time t. Assume that at time t+ 1
a new measurement becomes available. The algorithm incorporates this
new information in the prior. The new state will therefore be filtered with
this prior model. In order to adapt to the resulting new posterior, the
particles adapt their weights and also move.

Using this Markovian property, Bayes’ rule, and the assumption that the
proposal at time t− 1 only depends on xt−1 and the new measurement zt,
one can derive the weight update (see (Maskell, 2001)):

wit ∝ wit−1

p(zt|xit) · p(xit|xit−1)

q(xit|xit−1, zt)
. (6.3)

The choice of proposal q(xit|xit−1, zt) is crucial for the algorithm’s perfor-
mance. Setting it equal to the prior is often a good choice. The prior
p(xit|xit−1) describes the expected system dynamics. For the present appli-
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cation, this is further discussed in Sec. 6.4.2.2. Prior and proposal usually
can, by design, be efficiently evaluated. The particle likelihood (zt|xit) is
often the most expensive part to compute. If it can be factorized, though,
all likelihood marginals factor out when normalizing the weights.

In the present application of microtubule-length tracking in digital images,
these factorable marginals correspond to pixel for which the pixel-wise like-
lihoods are identical across all particles. Hence, the likelihood calculation
reduces to an energy-difference evaluation as discussed in chapter 3.

Degeneracy, resampling, and sample impoverishment In sequen-
tial schemes, the posterior changes over time. This change can include a
movement of the distribution’s mode and of its shape. This may render
that particles misplaced, and Eq. (6.2) then only badly approximates the
posterior. In practice, one observes that in such situations most particles
have a weight close to 0. This is called the degeneracy problem. The
posterior representation can be improved by resampling procedures. Re-
sampling sets all particle weights to 1. In order to still represent the same
distribution, particles are moved accordingly. This procedure has a of
linear time-complexity. Resampling, however, causes particles to occupy
coinciding state-space locations which may result in a bad posterior ap-
proximation due to insufficient particle support. This problem is referred
to as sample impoverishment.

6.3 Proposed algorithm

We use the adaptive procedure outlined in Algorithm 9 to relax the sam-
ple impoverishment problem and allow for multi-scale likelihood functions.
The algorithm starts by defining the initial set P of N particles (line 1
of Algorithm 9), which are later sampled from the proposal distribution q
(line 4). This is followed by computation of the normalized particle weights
(lines 6–7) and MCMC iterations (lines 8–18) comprising two phases: an-
nealing (lines 10–13) and classical MCMC moves (line 17). The annealing
phase provides a good starting point and proposal distribution for the
classical MCMC moves.
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Within the MCMC sub-routine (line 17), the particle positions are updated
by a Metropolis-Hastings algorithm conditional on the value of the poste-
rior pdf. This yields the new particle set Pu with unchanged weights. We
use a Gaussian with a diagonal covariance matrix as the proposal distribu-
tion for the MCMC moves. Good proposal distributions should be similar
to the desired stationary distribution (Chib and Greenberg, 1995). During
annealing, the covariance matrix of Pu (line 9) approximates the covari-
ance matrix of the stationary distribution. We estimate the covariance
matrix as:

Σ̃ =

N∑
i=1

wi(xi − x̃)(xi − x̃)T , x̃ =

N∑
i=1

wixi . (6.4)

Since the initial proposal distribution is very broad, most particles are de-
generate. In order to cluster the particles at positions of high likelihood, we
perform a resampling operation (line 11). After resampling, Σ is adapted
(annealed) in line 12. The parameter 0 < c < 1 is the exponential learning
factor of the adaptation of Σ. Annealing ends as soon as the adaptation
becomes insignificant. We quantify significance by the Kullback-Leibler
divergence DKL between two normal distributions with means 0 and co-
variance matrices Σ and Σ′ (line 14). If its derivative D′KL is smaller than
a user-defined threshold ε, annealing stops (lines 14–16).

As soon as a user-defined termination criterion (e.g., maximum number of
iterations) is met (line 18), the desired estimates x̂, Σ̂ for the moments of
the posterior are computed based on the union of all particle sets since the
end of the annealing phase (line 19).

6.3.1 A note on adaptive proposals for MCMC

It is difficult to prove that the MH algorithm converges to the target distri-
bution π when using adaptive proposals. Often, however, it is argued that
such a proof is unnecessary in practice, because one can stop the adapta-
tion at some point and freeze the proposal from then onward. Andrieu
and Thoms (2008) counter that investigations on convergence properties
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Algorithm 9 Particle Filter with Adaptive Annealing

1: Initialize sample set P1 = {xi0}
2: for k = 1 . . . Nframes do
3: u = 1, annealing = true
4: Draw samples xik ∼ q, wi = 1/N
5: Initialize Σ using Eq. 6.4 on P1

6: Compute weights wi = L(Ik, x
i
k)p(xik)

7: Normalize weights wi = wi/
∑
j w

j

8: repeat
9: Estimate Σ′ using Eq. 6.4 on Pu

10: if annealing then
11: Pu = Resample(Pu)
12: Adapt Σ = (1− c)Σ + cΣ′

13: if D′KL(N (0,Σ)||N (0,Σ′)) < ε then
14: annealing = false, u′ = u
15: MCMC(Pu,Σj,j), u = u+ 1
16: until not(termination criterion)
17: Compute x̂ and Σ̂ using Eq. 6.4 on ∪uj=u′Pj

of adaptive MCMC schemes are justified, because adaptation only works
well when the proposal is already a good approximation of π.

Haario et al. (2001) presented an adaptive random-walk MH algorithm.
They proved that their update scheme leads to an algorithm that con-
verges to the target distribution while updating the proposal. Their result
inspired research on adaptive proposals until today. Roberts and Rosenthal
(2007) proved that diminishing (or vanishing) adaptation and containment
together are sufficient for π-ergodicity, i.e., for the chain to converge to π.
The latter condition is usually difficult to prove (Bai et al., 2009). A rig-
orous discussion of convergence for present rank-µ-based update scheme is
beyond the scope of this work. We therefore freeze the proposal after some
time and use preliminary runs as an optimization procedure. We verify
that the adaptation did not diverge to “bad” proposals by inspection of
the covariance entries.
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6.4 Application to microtubule tracking

In this subsection we implement the above scheme with likelihood and
prior for the application of microtubule tracking. We discuss in detailed
the likelihood construction since the formation model differs slightly from
the models discussed in Sec. 3.

3D digital videos were acquired using a confocal microscope and show
the microtubule tip and Spindle Pole Body (SPB) proteins Spc72p and
Bik1p, labeled with green fluorescent protein (Fig. 6.1a–c). The dynamics
of the system are driven by microtubules randomly switching between
phases of assembly and disassembly. As fluorescent proteins are constantly
transported along the microtubules, they may cause object intensities to
increase over time, even though the total intensity in the whole image
decreases due to photobleaching.

6.4.1 State space

We model the spindle and microtubule tip with 3 connected, diffraction-
limited objects. The three objects appear as scaled 3D PSFs. The state
space Ξ ⊂ R12 is continuous. A state x ∈ Ξ is

x = (xSPB1 , ySPB1 , zSPB1 , cSPB1 ,

xSPB2 , ySPB2 , zSPB2 , cSPB2 ,

xTip, yTip, zTip, cTip) .

(6.5)

For each object, (x, y, z) are spatial coordinates and c is the object’s inten-
sity.
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(a)

1µm

(b)

(c) (d)

Figure 6.1: (a) An example micrograph of labeled yeast cells in maximum-
intensity projection. Intensities are inverted for better visualization. (b)
Maximum-intensity projection of the labeled microtubules in a single cell
during mitosis. (c) 3D stack of the microtubules in (b). The spots from
left to right are the microtubule tip, SPB 2 (old pole), and SPB 1 (new
pole). (d) Image with overlaid proposal distribution. Each particle of
the particle filter gives rise to 3 dots, corresponding to the 9 estimated
position parameters.
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6.4.2 Bayesian image model

6.4.2.1 Image acquisition and likelihood

We used an electron multiplying charge-coupled device (EMCCD) cam-
era, where electrons exiting the CCD sensor are multiplied in a pipeline
before the voltage is read out. The dominant noise sources are Poisson-
distributed shot noise and excess noise (multiplication noise). Excess noise
is introduced by the stochastic process of impact ionization in the electron-
multiplying pipeline, while shot noise is imposed by the discrete photon
counts. The pdf of the number e of electrons exiting the multiplying
pipeline for a number E of electrons entering is modeled as (Hynecek and
Nishiwaki, 2003):

p(e, E) =
1√

2πF 2G2E
exp
−(n−GE)2

2F 2G2E
, (6.6)

where G > 1 is the linear digital gain and F the excess noise factor (ENF).
The number E of electrons entering the pipeline can be determined from
the gray-scale intensity values O in the image as:

E = (O −D)
C

G ·Qλ
. (6.7)

D is the mean of the “dark image”, recorded using the camera system
without any light source, C is a camera-specific constant provided by the
manufacturer, and Qλ the quantum efficiency of the CCD sensor at the
recording wavelength λ.

Using this noise model, we formulate for each voxel x ∈ I in the observed
image I the marginal p(Iv|Jv), the pdf of the pixel having intensity Iv given
an expected intensity Jv. For a specific realization of J , i.e. an expected
image, p(Jv) = 1, such that the marginal is given by the joint pdf in Eq. 6.6
with E = Jv. The expected image J (in the absence of noise) is computed
from the current state vector x of the particle filter and the PSF of the
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microscope as:

J(x) = B +

2∑
i=1

cSPBi ·K([x, y, z]SPBi) + cTip ·K([x, y, z]Tip) . (6.8)

K([x, y, z]) is the microscope PSF centered at position (x, y, z). All pixels
of the background image B are set to the most frequently occurring pixel
intensity in the observed I. Construction of the marginals is completed
by modeling the PSF of the microscope. As a first approximation, we use
a Gaussian whose width is fitted to recorded images of point sources. In
addition, we also measured the true PSF by imaging fluorescent beads,
and generated a high-resolution look-up table for the PSF as described in
appendix C. The two models are compared in Sec. 6.5.2.

Using the noise and PSF models outlined above, and assuming the noise
in different pixels to be statistically independent, the likelihood function
can be constructed by multiplying all marginals, thus:

p(z|x) = p(I|J(x)) =
∏
v

p(Iv|Jv) . (6.9)

Evaluation of this likelihood function is computationally efficient since
many voxels have identical intensity values and need not be considered
separately.

6.4.2.2 Proposal and prior

We set the proposal equal to the prior. The prior distribution has, in our
framework, the role of constraining the search space to regions of high
likelihood. Before the annealing step of the algorithm, it is equal to the
proposal distribution q of the particle filter. We choose a uniform distri-
bution q ∼ U [I] over some interval I. For the present application, we
use cell-fixed spherical coordinates. The old SPB serves as the origin, the
optical axis of the microscope corresponds to zero azimuthal angle, and
the x-axis in image space is used as the reference for the polar angle.
The interval I around xk is specified in these coordinates. The resulting
particle-represented proposal is illustrated in Fig. 6.1d and Fig.6.2a. Fig-
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ure 6.2b shows how the MH algorithm concentrates the proposed particles
around locations of high likelihood.

6.5 Validation and results

We use the mean of the particles to estimate the object positions. Further-
more, we assess uncertainty estimates by measuring the empirical variance
of the approximated posterior distribution.

6.5.1 Validation data

We validate the error estimates on artificial feature point data. Time series
of artificial images Zi are generated according to Eq. 6.8 based on known
state vectors x and B = 50. The feature point positions perform a random
walk, yielding a movie of simulated Brownian motion. As a PSF, we use
the measured PSF of the microscope determined from images of fluorescent
beads. Assuming the PSF to be radially symmetric, the intensities are
averaged along circles of different radii around the intensity centroid of
the bead’s image (Sbalzarini and Koumoutsakos, 2005). We average the
PSF determined from 5 different images in order to reduce the nose. Since
the width of the likelihood function decreases with increasing SNR, we
test adaptation to different likelihood widths by simulating different SNRs.
This is done by scaling the peak intensity Zmax of the PSF according
to: SNR = (Zmax − b)/(F ·

√
Zmax). The ENF is measured to be F =

1.5 for our equipment. Finally, we replace all pixel values Zv in Z by
Gaussian random numbers with mean Zv and standard deviation FG

√
Zv

(cf. Eq. 6.6) with G = 40. The resulting images correspond to a pixel size
of 160 × 160 nm and a distance between confocal planes (voxel depth) of
200 nm.
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Tip

SPB1

SPB2

(a)

Tip

SPB1

SPB2

(b)

Figure 6.2: 2D illustration of the proposal and posterior pdfs with the
images I and J . (a) The particles in red represent the proposal pdf. Each
particle stores 3 space coordinates and 3 intensity values. The state space
is sampled in the vicinity of the estimate of the previous frame. The gray-
scale surface represents J based on one particular particle (indicated in
black in the x-y plane). The weight of the particle is calculated based on
the distance between the simulated image and the actually measured image.
(b) Particle representation of the posterior pdf after adaptive MCMC (see
text for details). The gray-scale surface represents the data image I.
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6.5.2 Results

We use the present adaptive particle filter to track the Brownian motion of
the feature points in the artificially generated movies and assess the quality
of the confidence estimates (not of the tracking itself!). We compare the
estimated standard deviation σ̂ of the x and z positions (y is identical to
x, not shown) – as determined by the Σ̂ in Algorithm 9 – to the standard
deviation with respect to the known true positions xi of the validation

data: σ =
√

1
T

∑T
t (x̂t − xt)2. All estimates are averaged over T = 200

frames, leading to averaged true and estimated uncertainties 〈σ〉 and 〈σ̂〉,
respectively. We use n = 40 particles and 40 MCMC iterations after
annealing. Figure 6.3 shows the results. The confidence estimates as
determined by Algorithm 9 (solid lines) are always larger than the ground-
truth standard deviations of the benchmark data (dashed lines), providing
conservative uncertainty estimates. Using a Gaussian PSF model (squares),
both the estimated and the true variance are larger than when using the
true PSF (circles). For the true PSF, our algorithm is able to accurately
estimate the tracking confidence with mean standard deviation differences
∆σ = |〈σ〉 − 〈σ̂〉| < 6 nm in the lateral and ∆σ < 14 nm in axial direction.
The standard deviation of the estimator decreases with increasing SNR
and is low throughout (<5 nm laterally and <20 nm axially). In 99% of
the frames, the confidence estimates are accurate within ±3σ̂.

6.6 Conclusion

We have presented and validated an object tracking framework with on-
line confidence estimates based on the MH-within-particle filter paradigm
with adaptive proposal annealing. The framework provides on-line sub-
pixel estimates of the tracking uncertainty at all SNRs tested. If the
system and imaging models do not accurately describe the imaged process,
these uncertainties are lower bounds.

The presented adaptive MCMC scheme handles well likelihood functions
of different widths. On multimodal posterior distributions, however, the
adaptation scheme leads to overly broad proposals. Consequently, this
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Figure 6.3: Means of real (dashed lines) and estimated (solid lines) track-
ing uncertainties at different SNRs using a Gaussian PSF approximation
(squares) and the true, measured PSF (circles). The dotted lines represent
the standard deviation of the estimator. (a) In the lateral x direction, the
mean estimate deviates by 3.8 . . . 6.0 nm (< 0.04 pixel). (b) In the axial
z direction, the difference of the mean errors is between 11.3 and 13.5 nm
(< 0.07 voxel depths).
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leads to frequent rejection of MCMC moves and to bad estimation of the
tracking uncertainty. In order to allow for the multi-hypothesis capability
of particle filters, the adaptation scheme would need to be run on parti-
cle sub-populations. This could be, e.g., well done by using a clustering
algorithm.

A more fundamental issue concerns the convergence properties. The present
adaptation scheme needs to be disabled after the burn-in phase in order
to guarantee π-ergodicity. Proving π-ergodicity for the present annealing
scheme could be exploited significantly lower the computational cost.

The present framework, as well as the PSF estimation tool, are imple-
mented as plug-ins to the open-source platform ImageJ. The tool has been
used to process a large number cells for a global analysis of microtubule
dynamics in S. cerevisiae (Rauch, 2012).
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CHAPTER

SEVEN

Conclusions

We addressed the problem of unsupervised image segmentation by con-
straining a region to be a connected component. We presented an efficient
topology-controlled optimizer that works with the above region definition.
Furthermore, we presented a posterior sampling algorithm that assesses
the segmentation robustness by reporting confidence estimates from the
posterior. The resulting algorithm also robustifies the popular local op-
timization approach for deformable models using a stochastic relaxation.

All presented algorithms are based on Bayesian image models and allow in-
corporating prior knowledge about the image-formation process, as well as
local and global shape prior. These algorithms were designed with focus on
applications in fluorescence microscopy. However, they are also applicable
to any other situation where an image-formation model can be formulated.
Here, we have presented and implemented various models for piecewise con-
stant and piecewise smooth images. We also considered image-formation
models that involve a blurring process by a convolution with a PSF. We
presented and implemented all models for images corrupted with Gaus-
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sian noise, Gaussian noise with fixed variance, and Poisson noise. We did,
however, not discuss the implementation of a deconvolving energy with a
piecewise smooth image model. This is currently under development.

We presented a multi-region-competition image segmentation algorithm
(RC) for black-box energies with unknown numbers of regions. The key
assumption was that a region is a connected component. This amounts
to a topological prior that locally regularized the problem of finding the
number of regions in an image. We used a discrete explicit contour rep-
resentation in order to make use of extended notions of digital topology.
Characterizing topological events was intrinsically needed to ensure the
definition of a region as a connected component. However, we took ad-
ditional advantage of this topological control to enforce topological prior
knowledge. RC proposes new contours using discrete particles as region-
flip candidates. It optimizes the posterior by accepting particles in energy-
rank order, while controlling the topology. The particle-based approach
also allowed robustifying the local optimization scheme by approximating
Sobolev gradients. This was achieved by energy-difference filtering on the
particle cloud. The resulting contours are smoother and need less regu-
larization. We benchmarked RC against PEaRL, an EM algorithm using
graph-cuts for geometry optimization. We benchmarked 2D and 3D images
with PC and PS image models. RC performed well on expensive energies,
because energy differences are only needed in the vicinity of the contour.
The global geometry updates of PEaRL resulted in low-energy solutions,
provided that the algorithm had converged to the correct energy-landscape
funnel. However, direct comparison was difficult since the two algorithms
use different definitions of a region.

We identified RC’s dependence on the initialization to be the major weak-
ness of the algorithm. This undesirable property renders the usage of
the algorithm non-trivial. Two less severe issues concern with contour-
oscillation detection and accurate calculation of differentials. Both aspects
are related and originate from RC’s discrete character. The former causes
the algorithm to perform unnecessary iterations. The latter leads to ap-
proximated energy gradients, which might cause contour oscillations.

In order to further improve segmentation robustness w.r.t. the initializa-
tion, we introduced the discrete region sampling (DRS) algorithm. DRS
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is a Metropolis-Hastings algorithm that samples discrete shapes from the
posterior distribution. DRS represents the proposal distribution using a
discrete particle-based function approximation. Particles were mostly lo-
cated in the vicinity of a contour and at large intensity-gradients. Using
particle weights, we biased DRS’ proposal toward smooth shapes. DRS re-
lies on efficient energy-difference computations in order to sample a large
number of perturbed shapes. Summary statistics of these samples then
provide a mean segmentation and confidence intervals for a fixed number
of regions. We proved that the algorithm converges to the correct tar-
get distribution. We validated and benchmarked DRS on artificial and
real-world images in two and three dimensions. We benchmarked DRS
against Gibbs-inspired Metropolis Hastings (GIMH) introduced by Chang
and Fisher (2012). GIMH is a multi-region, level-set method that allows
larger step sizes. These large steps enabled GIMH to quickly approximate
the target distributions. However, we have shown that GIMH converges
to a target distribution that is biased toward the mode. This is, if the tar-
get probability is below 50%, the approximated probabilities are too low.
And the approximated probabilities are too high if the target probability
is above 50%. We have shown in theory and practice that DRS converges
to the correct target distribution.

We have further discussed limitations, possible future enhancements, and
open problems of the presented approach. First, DRS needs to know the
number of regions a-priori. Second, DRS (as well as GIMH) is a compu-
tationally involved sampling algorithm. The convergence time and hence
also the runtime depend on the initialization and the complexity of the tar-
get distribution. However, we discussed various possibilities to speed-up
the algorithm including parallelism or multi-resolution approaches. Third,
like RC, DRS suffers from approximated energy differences based on ap-
proximated differentials. This sometimes causes the probability map to be
pixelated.

Moreover, DRS’ discrete explicit contour representation is not able to sam-
ple sub-pixel shapes. We hence presented a particle-filter framework to
track objects that are smaller than the pixel size using a continuous explicit
representation. In order to address the well-known problem of particle-
weight degeneracy and sample impoverishment, we presented an adaptive
MCMC algorithm that was applied at each iteration. The scheme adapts
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the covariance of the proposal to the local likelihood scale and therefore
provides better particle-based representations of the posterior. Conver-
gence results for the adaptive Metropolis-Hastings scheme, however, have
not been presented. Furthermore, the algorithm is currently limited to
unimodal posteriors.

Ongoing research in convexification schemes has recently provided tight
approximations to the global minimum of the joint geometric and photo-
metric problem under the Chan-Vese image model (Brown et al., 2011). It
has, however, also been proven that it is not possible to find exact convex
relaxations for certain energies (Paul et al., 2013). For such energies, shape-
sampling strategies such as GIMH and DRS provide an alternative. In our
opinion, shape sampling methods moreover have the potential to replace
local optimizers, such as active contours, in non-real-time applications due
to their robustness.

Combining the topological prior of connected regions with the presented
sampling approach is appealing. We found the topological prior useful for
unsupervised segmentation, since it links the notion of a region to physical
objects. Unlike approaches that penalize the number of regions in the
energy, the presented topological prior only concerns the spatial location of
regions. It therefore has a local character. Shape sampling with unknown
numbers of regions, however, has not been addressed in this work. We
consider this task difficult, since the state space grows tremendously. How
to softly impose an equivalent prior in the internal energy in order to
enable unsupervised segmentation using shape sampling, is unclear to us
to date.
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APPENDIX

A

Region competition on the command line

We implemented the RC and DRS algorithms presented in chapters 4 and
5 in the open-source image-processing library ITK (Ibanez et al., 2005).
Image processing in ITK is performed in a pipeline where image data is
processed stage-by-stage, starting at a source and ending in a sink. The
source often is an image reader and the sink an image writer. In-between,
image-to-image filters perform the actual processing, i.e., reconstruction,
registration, or segmentation. RC and DRS are implemented as ITK image-
to-image filters.

We also implemented a hierarchy of energy functions, including all func-
tions presented in chapter 3. RC and DRS offer an interface to use any of
these energy functions in any linear combination.

We also implemented a command-line tool called RegionCompetition that
allows controlling all options of the algorithms. Additionally, the tool
offers different intitializations and some pre-processing capabilities. In
this section we discuss all options for both algorithms and describe how to
configure the energies.
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A.1 Basic usage

By default, the RegionCompetition tool segments the image provided in
the first command-line argument. The tool then writes the label image
into the working directory. Furthermore, a parameter file with the same
name is written in the json format. Such parameter files can be reused
via the --params <path> option. The -o option can be used to determine
the output file names. For example1

./RC cells_A.tif -o cells_A_segm.vtk -i 200 -s 1 1 3

./RC cells_B.tif -o cells_B_segm.vtk --params cells_A.json

The option -i <N> determines the maximum iteration number. The -s <x

y [z]> option expects a d-dimensional vector indicating the pixel or voxel
sizes in physical units. In the example above, we set the voxel depth to be
3 times larger than the pixel size. This spacing determines the scaling of
the world coordinates. RC --help gives an overview of all options.

A.1.1 Initialization

The initialization automatically determines the starting number of regions.
Each connected component is interpreted as a region, unless the option
--continue is used. The --continue option reads label values from an
initialization image, which can be used for providing a custom an initial-
ization or when using DRS.

Five different initialization modes are available. The mode is chosen as
follows

--init_mode [sphere|rect|otsu|blob_det|file].

• sphere initializes a spherical region around each local intensity maxi-
mum after blurring the image with a Gaussian filter of width σ. This
initialization is suited for blob-like structures with approximately

1The examples provided in this appendix assume execution in a bash shell.
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equal sizes. The parameter σ can be specified by the option --init -

sigma. A good value is approximately one sixth of the object diam-
eter. The radius of the region can be set with --init sr.

• rect initializes with a single rectangular region. We used this for
primordial germ cells in Fig. 4.12a. The distance from the image
border can be set with init rb <x> <y> [<z>]

• otsu performs an Otsu thresholding. Values above the threshold are
considered FG. Different connected components define the different
intial FG regions.

• blob det performs a scale-space blob detection (Lindeberg, 1998).
This is suitable if blobs of different radii are to be segmented. Up-
per and lower scale can be set with --init blob min <arg> and
--init blob max <arg>, respectively.

• file expects an external initialization image whose path must be set
with --init image <path>.

A.1.2 Preprocessing

Preprocessing options can be listed using the --hp option. Preprocess-
ing includes Gaussian filtering, masking, simple background subtraction,
discarding outlier pixel, and image normalization.

• --no normalization prevents the image normalized to values in
[0, 1]. Normalization has the advantage, that the energy hyper-para-
meters are independent of the image contrast. Since normalization
changes the energy, it should be disabled when using DRS, except
when using DRS for robust optimization.

• --preproc sigma <σ> determines the Gaussian kernel’s standard de-
viation σ in world coordinates. The kernel is isotropic.

• --mask image <path> causes all pixels with non-zero entries in the
mask image to be ignored. This is implemented by setting the for-
bidden region label at these locations. See Sec. 4.4.2.
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• --masking sigma <σ> and --masking ths <t> are used together
for automatic masking as follows: All values lower than the intensity
percentile t after blurring with a Gaussian of width σ are ignored by
setting their labels to the forbidden region label.

• --bgs <s> performes a simple background subtraction using high-
pass filtering. The parameter <s> determines the high-pass scale.

• --disc lower and --disc upper can be used to discard “dead” pix-
els. Pixel that have a larger (or smaller) value than the 0.995 (or
0.005) quantile of the image histogram are set to a local mean.

A.2 Topology-related options

Region topology is controlled by the following three options:

• --no fusion prevents regions from fusing during energy minimiza-
tion (only in RC, since in DRS regions never fuse).

• --no fission prevents regions from splitting into two connected
components during energy minimization.

• --no handle prevents regions from developing holes. This does, how-
ever, not fix the topology of a region that has been initialized with
a hole.

A.3 RC-related options

The following options are used with RC only:

• --gpu computes energy differences on the GPU using OpenCL. In
order to activate this option, one needs to set the corresponding
compiler flag when compiling the program. Currently, EPSLS and the
curvature flow described in Sec. 3.2.2.2 are implemented as GPU
versions.
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• --fast evolution causes energies to be calculated only if particles
or their neighborhood have moved in the previous iteration. If not,
the energies of non-moving particles are evaluated only at increasing
time intervals.

• --sobolev sigma <E> activates the Sobolev gradient approxima-
tions for RC. The argument E is the length scale of the smoothness
term considered in the inner product; see Eq. (4.3).

A.4 DRS-related options

All sampling options can be listed using the --hm option. The following
options are available with DRS only. The sampler DRS is activated with
the option --mcmc <s> where s determines the step size. A step size of 1
should be good for most applications.

• burn <k> modifies the burn-in phase length. The number of burn-in
iterations is k · i where i is the total number of iterations, k ∈ [0, 1).

• --biased proposal enables the biased-proposal mode in order to
propose smooth shapes, see Sec. 5.3.3.2.

• --offboundary <qf> sets the off-boundary sampling probability qf ,
see Sec. 5.3.1.3.

• --temp modifies the temperature of the Gibbs distribution. Note
that altering the temperature also changes the posterior. Tempera-
ture modification can be used, for example, for simulated annealing.

A.5 Energy-related options

All energy options can be listed using the --he option.

173



APPENDIX A. REGION COMPETITION ON THE COMMAND LINE

A.5.1 external energy options

Image-formation model energies The external energy is selected us-
ing the --energy <Edata> option. The influence of the external energy
can be weighted with the option --data <arg>. Currently implemented
energy types are:

• pc for EPC
LS , see Sec. 3.1.1.1.

• pcGauss for EPC
Gauss, see Sec. 3.1.1.1.

• pcPoisson for EPC
Poisson, see Sec. 3.1.1.2.

• pcDec for EPC,dec
LS , see Sec. 3.1.2.1.

• pcDecGauss for EPC,dec
Gauss , see Sec. 3.1.2.1.

• pcDecPoisson for EPC,dec
Poisson, see Sec. 3.1.2.2.

• ps for EPS
LS , see Sec. 3.1.3.1.

• psGauss for EPS
Gauss, see Sec. 3.1.3.1.

• psPoisson for EPS
Poisson, see Sec. 3.1.3.2.

• psLi for the energy functional by Li et al. (2008).

If a deconvolving energy is used, one must set the PSF using the option
--psf <path>. For PS energies, one can set R, the radius used to collect
local statistics, with the -r <R> option.

Data-dependent balloon potential Besides the standard external en-
ergies above, additional energy terms can be enabled: -b <β> enables the
balloon force with coefficient β, see Sec. 3.1.4.

Region merging The region merging threshold θ can be set with the
option -t <θ>.
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A.5.2 Internal energy options

Local energies The internal energy can be selected using the --internal
<Eint> option. All internal energies are weighted with λ, which can be set
with the -l <λ> option. Currently implemented internal energies are:

• curv uses the curvature regularization by Kybic and Kratky (2009)
as discussed in Sec. 3.2.2.2. The mask radius Rκ used for curvature
regularization can be set with --cr <arg>.

• manhattanLength uses the cut metrics by Boykov and Kolmogorov
(2003) as discussed in Sec. 3.2.2.1. We use a 16-neighborhood grid
in 2D and a 26-neighborhood grid in 3D.

• springPotential simulates a regularizing flow induced by the poten-
tial resulting from connecting particles with springs. The parameter
λ is interpreted as the spring constant. (Not discussed in this thesis)

• expPotential simulates a regularizing flow induced by an attractive
exponential potential acting between particles. (Not discussed in the
thesis)

Global shape priors Using global shape priors requires the user to
define a template shape using the option --shape image <path>. The
order k of moments considered in the energy can be specified with the
option --moment order <k>.
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B

Additional results

B.1 Mitochondria

Figure B.1 compares DRS and RC segmentations using fluorescence mi-
croscopy images of mitrochondria in 2D. The figure complements the ex-
ample in Sec. 5.4.5.2.

B.2 Proton emission patterns

We apply RC to images of proton emission patterns that occur when a
high-energy laser beam hits a block of metal. Results are summarized
in Fig. B.2. We initialized the RC algorithm with small bubbles at local
intensity maxima. Since intensities are varying within filament patterns,
we use a piecewise-smooth energy EPSLS . The images are almost noise free
allowing for a small internal energy parameter λ. In order to minimize
λ - and hence maximize the detection ability of dark filaments - we used
Sobolev-gradient approximations.
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B.2. PROTON EMISSION PATTERNS
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Figure B.1: Three comparisons of RC and DRS segmentations for images
of fluorescently labeled mitrochondria in 2D. (a,g,m) The image data of
size 1024× 1024 pixels (image: Kathy Ushakov, Dept. of Cell Physiology
and Metabolism, University of Geneva Medical School). (b,h,n) Contours
of the RC segmentation. (c,i,o) Contours corresponding to the 0.5 iso-
level of the DRS probability map. (d,j,p) Close-up of the data image.
(e,k,q) Close-up of RC’s contours. (f,l,r) Close-up of the 0.5 DRS’ confi-
dence contour.
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Figure B.2: Segmentations of proton emission patterns. (a,d,g) Raw data
(image: Josefine Metzkes, Bussmann group, Helmholtz Center Dresden
Rossendorf). (b,e,h) Piecewise smooth segmentations using RC. (e,f,i)
Skeletons of (b,e,h).
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Point-spread function measurement

We measure PSFs from images of micro-beads. We first detect the beads in
the image I using the centroid detection algorithm introduced by Sbalzarini
and Koumoutsakos (2005). The image is then densely sampled in the vicin-
ity of the centroid for different (r, z) pairs, where r and z are the distances
from the centroid in lateral and axial directions, respectively. We therefore
consider the PSF to be rotationally symmetric w.r.t. the axial direction.
We aggregate values from I into a PSF map. Figure C.1 illustrates the
intensity sampling procedure and shows an example result. If there are
multiple samples for one (r, z)-entry, the values are averaged. Empty PSF-
map entries are interpolated using bi-linear interpolation.

Note that in 3D fluorescence microscopy the PSF depends on the axial
position of the emitting light source. This effect is neglected here.

The procedure has been implemented as a plugin for the open-source image-
processing platform ImageJ (Schneider et al., 2012).
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APPENDIX C. POINT-SPREAD FUNCTION MEASUREMENT

r

z

z

r

Figure C.1: Left: Illustration of the PSF measurement. We assume ro-
tational symmetry around the optical axis. Right: an example of a high-
resolution PSF map measured from images of fluorescent 100nm beads
acquired with a confocal microscope.
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forward problem, 18
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function approximation, 151
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geometry representation, 8
Gibbs

distribution, 37
sampling, 124
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ill-posed, 2
image formation, 18
image-formation model, 2
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implicit
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implicit shape representation, 8
importance sampling, 151
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inner product, 60
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inverse problem, 2, 18
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ITK, 120, 169

joint optimization, 31
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Kullback-Leibler divergence, 59

label
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image, 52

length regularization, 38
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function, 9
method, 9
related work, 46

likelihood, 20
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MAP, 2
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property, 96
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approximation, 32
Mumford-Shah model, 20
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microscopy, 21
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source, 157

off-boundary sampling, 109
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parallel
sampling, 146
tempering, 147

parametric models, 8
particle, 52
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reference count, 53

partitioning, 2
Pearl

algorithm, 64
periodicity, 98

photometric
subproblem, 131

photometry, 21
piecewise constant, 20
piecewise smooth, 20
posterior, 2, 17
posterior ratio, 102
potential, 37
preconditioning, 61
prior, 18
proposal
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biasing, 115
discrete distribution, 110
discrete mass function, 110
weight function, 110

proposals
floating particles, 113

protein quantification, 139
PSF

measurement, 181

quantum efficiency, 157

random measure, 151
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recurrence, 98
region

definition, 47
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space, 61

soft-membership function, 9
split, 59
state, 95
state space, 107
stationarity, 98
step size, 102
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stochastic relaxation, 165
stratified sampling, 116
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topological number, 13
transition graph, 105
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W. H. Richardson. Bayesian-based iterative method of image restoration.
J. Opt. Soc. Am., 62(1):55–59, Jan 1972. doi: 10.1364/JOSA.62.000055.

G. Roberts and J. Rosenthal. Coupling and ergodicity of adaptive Markov
chain Monte Carlo algorithms. Journal of applied probability, 44(2):458–
475, 2007.

J.-L. Rose, C. Revol-Muller, D. Charpigny, and C. Odet. Shape prior
criterion based on Tchebichef moments in variational region growing. In
Image Processing (ICIP), 2009 16th IEEE International Conference on,
pages 1081 –1084, November 2009. doi: 10.1109/ICIP.2009.5413477.

B. Sandberg, S. H. Kang, and T. Chan. Unsupervised multiphase segmen-
tation: A phase balancing model. IEEE Trans. Image Process., 19(1):
119 –130, jan. 2010. ISSN 1057-7149. doi: 10.1109/TIP.2009.2032310.

P. Sarder and A. Nehorai. Deconvolution methods for 3-d fluorescence
microscopy images. Signal Processing Magazine, IEEE, 23(3):32 – 45,
may 2006. ISSN 1053-5888. doi: 10.1109/MSP.2006.1628876.

I. F. Sbalzarini and P. Koumoutsakos. Feature point tracking and trajec-
tory analysis for video imaging in cell biology. J. Struct. Biol., 151(2):
182–195, 2005.

I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis,
and P. Koumoutsakos. PPM – a highly efficient parallel particle-mesh
library for the simulation of continuum systems. J. Comput. Phys., 215
(2):566–588, 2006.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ:
25 years of image analysis. Nat. Methods, 9(7):671–675, 2012.

196



BIBLIOGRAPHY

B. Schrader, S. Reboux, and I. F. Sbalzarini. Discretization correction of
general integral PSE operators in particle methods. J. Comput. Phys.,
229:4159–4182, 2010.

F. Ségonne. Segmentation of Medical Images under Topological Con-
straints. PhD thesis, Massachusetts Institute of Technology (MIT), De-
cember 2005.

Y. Shi and W. C. Karl. A real-time algorithm for the approximation of
level-set-based curve evolution. IEEE Trans. Image Process., 17(5):645–
656, 2008.

J. Sibarita. Deconvolution microscopy. Adv. Biochem. Eng. Biot., 95:
201–243, 2005. doi: DOI10.1007/b102215.

I. Smal, K. Draegestein, N. Galjart, W. Niessen, and E. Meijering. Particle
filtering for multiple object tracking in dynamic fluorescence microscopy
images: Application to microtubule growth analysis. IEEE Trans. Med.
Imag., 27(6):789–804, June 2008. doi: 10.1109/TMI.2008.916964.

A. F. M. Smith and G. O. Roberts. Bayesian computation via the Gibbs
sampler and related Markov chain Monte Carlo methods. Journal of
the Royal Statistical Society. Series B (Methodological), 55(1):pp. 3–23,
1993. ISSN 00359246.

B. Song and T. Chan. A fast algorithm for level set based optimization.
CAM-UCLA, 02-68, 2002.

J. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming stan-
dard for heterogeneous computing systems. Computing in science &
engineering, 12(3):66, 2010.

G. Sundaramoorthi, A. Yezzi, and A. Mennucci. Sobolev active contours.
In Variational, Geometric, and Level Set Methods in Computer Vision,
number 3752 in Lecture Notes in Computer Science, pages 109–120, Hei-
delberg, Germany, 2005. Springer.

G. Sundaramoorthi, A. Yezzi, and A. C. Mennucci. Sobolev active contours.
Int. J. Comput. Vis., 73(3):345–366, 2007.

197



BIBLIOGRAPHY

Z. Tu and S. Zhu. Image segmentation by data-driven Markov chain Monte
Carlo. IEEE T. Pattern. Anal., 24(Ieee Transactions On Pattern Anal-
ysis and Machine Intelligence):657–673, 2002.

G. M. P. van Kempen, L. J. Van Vliet, P. J. Verveer, and H. T. M. Van
Der Voort. A quantitative comparison of image restoration methods
for confocal microscopy. Journal of Microscopy, 185(3):354–365, 1997.
ISSN 1365-2818. doi: 10.1046/j.1365-2818.1997.d01-629.x.

R. Veltkamp and M. Hagedoorn. 4. state of the art in shape matching.
Principles of visual information retrieval, page 87, 2001.

L. A. Vese and T. F. Chan. A multiphase level set framework for image
segmentation using the Mumford and Shah model. Int. J. Comput. Vis.,
50:271–293, 2002. ISSN 0920-5691. 10.1023/A:1020874308076.

C. R. Vogel. Computational Methods for Inverse Problems. SIAM, 2002.

C. Vonesch and M. Unser. A fast thresholded Landweber algorithm
for wavelet-regularized multidimensional deconvolution. IEEE Trans.
Image Process., 17(4):539 –549, april 2008. ISSN 1057-7149. doi:
10.1109/TIP.2008.917103.

C. Xu and J. Prince. Snakes, shapes, and gradient vector flow. IEEE
Trans. Image Process., 7(3):359 –369, mar 1998. ISSN 1057-7149. doi:
10.1109/83.661186.

C. Xu, J. Yezzi, A., and J. Prince. On the relationship between para-
metric and geometric active contours. In Signals, Systems and Com-
puters, 2000. Conference Record of the Thirty-Fourth Asilomar Confer-
ence on, volume 1, pages 483 –489 vol.1, 29 2000-nov. 1 2000. doi:
10.1109/ACSSC.2000.911003.

L. Yu, Q. Wang, L. Wu, and J. Xie. Mumford-Shah model with fast
algorithm on lattice. In Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on, vol-
ume 2, page II, May 2006. doi: 10.1109/ICASSP.2006.1660434.

J. Zartman, S. Restrepo, and K. Basler. A high-throughput template
for optimizing Drosophila organ culture with response surface methods.
under revision in Development, 2012.

198



BIBLIOGRAPHY

D. Zhang and G. Lu. Review of shape representation and description
techniques. Pattern Recognition, 37(1):1–19, 2004.

S. Zhu and A. Yuille. Region competition: Unifying snakes, region grow-
ing, and Bayes/MDL for multiband image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 18(9):884–900, September 1996.

199



BIBLIOGRAPHY

200



Publications

Refereed publications during PhD studies:

• Grégory Paul, Janick Cardinale, Ivo F. Sbalzarini, Coupling image
restoration and segmentation - A generalized linear model/Bregman
perspective, 2013, Int. J. Comp. Vis., accepted.

• Janick Cardinale, Grégory Paul, Ivo F. Sbalzarini, Discrete region
competition for unknown numbers of connected regions, IEEE Trans.
Image Process., 21(8), 2012, 3531-3545

• Grégory Paul, Janick Cardinale, Ivo F. Sbalzarini, An alternating
split Bregman algorithm for multi-region segmentation, 2011, Proc.
45th IEEE Asilomar Conf. Signals, Systems, and Computers, 426-
430

• Janick Cardinale, Alexander Rauch, Yves Barral, Gabor Székely,
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