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Adaptive particle representation of fluorescence
microscopy images
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Modern microscopes create a data deluge with gigabytes of data generated each second, and

terabytes per day. Storing and processing this data is a severe bottleneck, not fully alleviated

by data compression. We argue that this is because images are processed as grids of pixels.

To address this, we propose a content-adaptive representation of fluorescence microscopy

images, the Adaptive Particle Representation (APR). The APR replaces pixels with particles

positioned according to image content. The APR overcomes storage bottlenecks, as data

compression does, but additionally overcomes memory and processing bottlenecks. Using

noisy 3D images, we show that the APR adaptively represents the content of an image while

maintaining image quality and that it enables orders of magnitude benefits across a range of

image processing tasks. The APR provides a simple and efficient content-aware repre-

sentation of fluosrescence microscopy images.
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Developments in fluorescence microscopy1–3, labeling
chemistry4, and genetics5 provide the potential to capture
and track biological structures at high resolution in both

space and time. Such data are vital for understanding spatio-
temporal processes in biology6. Unfortunately, fluorescence
microscopes do not directly output the shapes and locations of
objects through time. Instead, they produce raw data, potentially
terabytes of 3D images7, from which the desired spatiotemporal
information must be extracted by image processing. Handling the
large image data and extracting information from the raw
microscopy images currently presents the main bottleneck7–9. We
propose that at the core of the problem is not the amount of
information contained in the images, but how the information is
encoded—usually as a uniform grid of pixels. While data com-
pression can alleviate storage issues, it does not reduce memory
usage nor computational cost as all processing must still be done
on the original, uncompressed data.

Processing bottlenecks are effectively avoided by the human
visual system, which solves a similar problem of inferring object
shapes and locations from photon counts. In part, the human
visual system achieves this by adaptively sampling the scene
depending on its content10, while adjusting to the dynamic range
of intensity variations11. This adaptive sampling works by selec-
tively focusing the attention of the eyes on areas with potentially
high information content10. This selective focus then enables the
efficient inference of information about the scene at a high
effective resolution by directing the processing capacity of the
retina and the visual cortex. As in fluorescence microscopy, the
information in different areas of a scene is not encoded in
absolute intensity differences, but in relative differences compared
to the local brightness. The human visual system maintains
effective adaptive sampling across up to nine orders of magnitude
of brightness11 by using local gain control mechanisms that adjust
to, and account for, changes in the dynamic range of intensity
variations. Together, adaptation and local gain control enable the
visual system to provide a high rate of information content using
as little as 1MB s−1 of data from the retina12. In contrast, the
information-to-data ratio in pixel representations of fluorescence
microscopy images is much lower and is governed by the spatial
and temporal resolution of the images rather than by their
contents.

In light of this, an ideal representation of fluorescence micro-
scopy images would share the features of adaptation and local
gain control with the human visual system. We posit that any
image representation aiming to achieve this should fulfill the
following representation criteria (RC):

RC1: It must guarantee a user-controllable representation
accuracy for noise-free images and must not reduce the signal-
to-noise ratio of noisy images.
RC2: Memory and computational cost of the representation
must be proportional to the information content of an image,
and not to its number of pixels.
RC3: It must be possible to rapidly convert a given pixel image
into that representation with a computational cost at most
proportional to the number of input pixels.
RC4: The representation must reduce both computational cost
and memory cost of image-processing tasks with a minimum
of algorithmic changes and without requiring use of the full
original pixel representation.

There is a rich history of multi-resolution and adaptive sam-
pling approaches to image processing, including super-pixels13,14,
wavelet decompositions15–17, scale-space and pyramid
representations18,19, contrast-invariant level-set representa-
tions20, dictionary-based sparse representations21, adaptive mesh
representations22–24, and dimensionality reduction25,26.

However, none of the existing approaches meets all of the above
representation criteria, mainly because they were developed for
different applications.

Many previous methods, such as super pixels and contrast-
invariant level-set representations, provide effective solutions
accounting for changes in spatial scales and contrast. They can
efficiently be used for specific tasks, such as image segmentation,
providing high-quality solutions at reduced memory and com-
putational costs. However, it is unclear how these methods can be
used across a wider range of processing tasks, such as image
visualization, without still requiring the original pixel image.
Alternatively, adaptive sampling methods, such as thresholded
wavelets and adaptive mesh methods, provide more general
representations that could replace pixel images while reducing
both computational cost and memory cost. However, both
approaches have not been adapted to account for local contrast
variations and are unlikely to be formed rapidly for large 3D
images without further improvements. Additionally, techniques
that require a change of basis, such as dictionary techniques and
wavelets, require the reformulation of image-processing tasks in
the transformed domain.

Inspired by the adaptive sampling and local gain control of the
human visual system, we here propose a representation of
fluorescence microscopy images: the adaptive particle repre-
sentation (APR). Combining adaptive sampling and local gain
control, the APR shares two key features of the human visual
system to alleviate current processing and storage bottlenecks in
fluorescence microscopy. While the APR reduces storage costs, as
data compression also does, it additionally overcomes memory
and processing bottlenecks, since the APR can directly be used in
processing without going back to pixels. Compression only alle-
viates storage costs, as the data need to be uncompressed again
for processing or visualization. The APR is therefore not a
compression scheme, but an efficient image representation that
can additionally also be compressed. Here, we present the APR
and show that it meets all of the above representation criteria. It,
therefore, provides a general framework, combining concepts
from the range of existing methods, resulting in an ideal candi-
date to replace pixel images in fluorescence microscopy.

Results
The adaptive particle representation. The APR adaptively
resamples an image, guided by local information content, while
using effective local gain control, representing it as a set of par-
ticles with associated intensity values. Figure 1a, b illustrates the
basic idea of adaptive sampling using a fluorescence image
acquired from a specimen of Danio rerio with labeled cell nuclei.
Particles are a generalization of pixels, i.e., points in space that
carry intensity but are not restricted to sit on a regular lattice.
Instead, particles can be placed wherever image contents requires,
and they may additionally have different sizes in different parts of
the image. These sizes define the resolution with which the image
is locally represented. The required resolution is given everywhere
by an Implied Resolution Function, which attributes high reso-
lution to image areas where the intensity rapidly changes in space
(e.g., edges), and low resolution to areas with low variation in
intensity (e.g., background or uniform foreground). The Implied
Resolution Function defines the radius of a neighborhood around
each pixel. Within this neighborhood, the image intensity can be
reconstructed at any location by taking a non-negative weighted
average of the particles contained in it.

A difficulty in adaptation is to give equal importance to imaged
structures across a wide range of intensities. This is achieved by
local gain control as illustrated in Fig. 1c–f. Without local gain
control, adapting effectively to both bright and dim regions in the
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same image is not possible (Fig. 1d). The APR provides local gain
control by guiding the adaptation with a local intensity scale
(Fig. 1e). As seen in Fig. 1f, this samples dim and bright objects at
comparable resolution, giving them equal importance. At the core
of this problem is determining the largest possible neighborhood
around each pixel such that the reconstructed intensities are
guaranteed to be closer to the original intensities than a user-
defined threshold E, while taking into account a spatially varying
Local Intensity Scale σ. We call this the Reconstruction
Condition, requiring that the following inequality holds

jI � Îj � Eσ; ð1Þ

for all original pixel locations with intensity I in the original
image and intensity Î reconstructed from the particles within the
pixel’s local neighborhood.

Here, we present a problem formulation, namely the use of a
Resolution Bound and Particle Cells, which together allow us to
derive a new algorithm, called the Pulling Scheme, which
efficiently finds optimal solutions to the Reconstruction Condi-
tion (see Methods). The Pulling Scheme efficiently finds a set of
particles, i.e., their locations and intensities, using the magnitude
of the intensity gradient of the image and a computed Local
Intensity Scale as input, such that the required resolution is
guaranteed to satisfy the Reconstruction Condition everywhere.
This results in a content-adaptive representation of the image
with full user control over the representation quality.

If lossless representation is required, the APR places one
particle at each pixel, in which case it becomes equivalent to the
original pixel representation. However, fluorescence microscopy
images are typically sparse, such that the number of particles can
be orders of magnitude less than the number of pixels if small
intensity deviations (e.g., within the imaging noise) are allowed.
The computational and storage costs of the APR are proportional
to the number of particles, and no longer to the number of
pixels. By focusing on informative image areas, the APR reduces
storage and computational costs and increases the information-
to-data ratio.

A didactic introduction to the APR in 1D and details on the
formal description, theory, and algorithms can be found in the
Methods section and the Supplementary Notes.

Validation benchmarks. We validate the APR using noisy syn-
thetic benchmark data in 3D. Supplementary Note 15 and Sup-
plementary Fig. 26 detail the synthetic data generation pipeline.
The key advantage of synthetic data is that all relevant image
parameters can be controlled and the ground truth image is
known. Synthetic images are generated by placing a number of
blurred objects into the image domain and corrupting with
modulatory Poisson noise. We study the influence of image size,
content, and noise level on the performance of the APR. Spherical
objects are used for simplicity unless otherwise indicated. Sup-
plementary Note 16 provides a detailed description of each
benchmark and the parameters used. All benchmarks use the
open-source C++ APR software library LibAPR (available at
https://github.com/cheesema/LibAPR) compiled with with gcc
5.4.0 and OpenMP 4.0 shared-memory parallelism on a 10-core
Intel Xeon E5-2660 v3 (25 MB cache, 2.60 GHz), 64 GB RAM,
running Ubuntu Linux 16.04. Details of the pipeline imple-
mentation are given in the Methods section.

In addition to synthetic benchmarks, we also present results for
a corpus of 19 exemplar volumetric fluorescence microscopy
datasets of different content and imaging modalities, ranging in
size from 160 MB to 4 GB. The datasets and parameters used are
described in Supplementary Tables 3 and 4 and summary
statistics are given in Table 1. Supplementary Figure 33 shows a
cross-section of the APR for exemplar dataset 7, and Supple-
mentary Video 1 illustrates the Implied Resolution Function and
APR reconstruction for exemplar dataset 1. A comparison of the
APR with Haar wavelet thresholding for natural scene images27 is
given in Supplementary Note 12.

We experimentally confirm that the APR satisfies the
Reconstruction Condition in Eq. 1 in the absence of noise.

Figure 2a shows the empirical relative error E� ¼ IðyÞ�ÎðyÞ
σðyÞ
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Fig. 1 Spatially adaptive representation of images. a Example image of fluorescently labeled zebrafish cell nuclei (exemplar dataset 7, courtesy of Huisken
Lab, MPI-CBG & Morgridge Institute for Research25), represented on a regular grid of pixels. b The APR of the same image. Particles are shown as dots
with their color indicating fluorescence intensity and their size reflecting the local resolution of the representation. c–f Adaptively representing objects of
different intensity requires accounting for the local brightness levels. c Two regions of labeled cell nuclei (exemplar dataset 6, courtesy of Tomancak Lab,
MPI-CBG) with different brightnesses. d Adaptive representation based on the absolute intensity. f The APR accounting for the Local Intensity Scale of the
image as shown in e. In f, all objects are correctly resolved across brightness levels. Scale bars indicate 10 pixels
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locations in the original image and σ(y) the Local Intensity Scale
(brightness) of the image. In all cases, E* < E, as required by the
Reconstruction Condition. As expected, the number of particles
used by the APR to represent the image decreases with increasing
E (right axis). The results are unchanged when using more
complex objects than spheres or different reconstruction methods
(Supplementary Fig. 29). Figure 2c provides examples of the

quality of APR reconstruction at different E, compared to ground
truth. In the absence of noise, the APR satisfies the Reconstruc-
tion Condition everywhere, guaranteeing a reconstruction error
below the user-specified threshold and fulfilling the first part
of RC1.

In real applications, images are corrupted by noise. We find
that the introduction of noise introduces a lower limit on the
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Fig. 2 Validation of the APR on synthetic data. All results are shown with mean (lines) and standard deviation (bands). a Observed reconstruction error E*

(solid lines, left axis) between the ground truth and the piecewise constant APR reconstruction for noise-free images, and number of particles used by the
APR (dashed lines, right axis) for different user-defined error bounds E (original image, number of pixels N= 1283≈2.1×106). Results are shown for images
of different sharpness (blur). The APR reconstruction error is below the specified bound in all cases (dotted line). More accurate APRs require more
particles. b Peak signal-to-noise ratio (PSNR) of the APR relative to the PSNR of the original pixel image for different error bounds E and image noise levels.
For low E, the APR has a better PSNR than the input images. c APR reconstructions of the medium-blur noise-free test image at different E compared to the
ground truth. d Examples of test images of spherical objects with different noise levels used in the benchmarks, comparing the original noisy images with
their APR reconstructions for E= 0.1, illustrating the inherent denoising property of the APR. e PSNR ratio (solid lines, left axis) and number of particles
used (dashed lines, right axis) for images containing different numbers of objects, i.e., different information content, for E= 0.1. In all cases, the PSNR of the
APR is better than that of the input image, and the number of particles scales at most linearly with image information content (original image, number of
pixels N= 3003= 2.7 × 107). f Number of APR particles (solid lines, left axis) and the fixed number of input image pixels N (black dashed line, right axis)
for images of different sizes containing a fixed number of objects (E= 0.1). The number of particles plateaus as soon as the objects in the image are well
resolved. Scale bars indicate 10 pixels. For additional details, see Supplementary Note 16. g Visual comparison of a medium-blur, medium-noise image
containing six objects (left) with its piecewise constant APR reconstruction (right) for E= 0.1. Note axis units are arbitrary unless otherwise given

Table 1 Performance benchmarks on synthetic and exemplar images

Computational
ratio (CR)

Raw image
size (GB)

Compressed
APR (GB)

MCR of APR MCR of APR-
WNL, q= 2

MCR of pixels-
WNL, q= 2

Pipeline
time (s)

Pulling Scheme
Runtime (s)

CR5 5.63 (0.02) 1.024 0.129 (0.0006) 7.9 (0.04) 19.6 (0.97) 5.4 (0.36) 2.34
(0.086)

0.104 (0.002)

CR20 19.7 (0.13) 1.024 0.036 (0.0002) 28.4 (0.19) 64.4 (2.03) 5.69 (0.62) 2.01 (0.07) 0.04 (0.003)
CR100 93.9 (1.6) 1.024 0.007 (0.0001) 139.9 (2.1) 282 (66.4) 5.85 (0.75) 1.87 (0.08) 0.027 (0.005)
Exemplars Mean 51.1 (89.3) 1.869 (1.38) 0.051 (0.053) 129.5 (284) 297.8 (593) 95.8 (166) 3.65 (2.19) 0.10 (0.08)
Exemplars
Median

22.7 1.258 0.027 36.8 107.1 33.1 2.19 0.066

Results are shown for synthetic images with fixed CR= 5,20,100 and for 19 real-world exemplar datasets (see Supplementary Table 3). For the exemplars, we report the means, standard deviations
(brackets), and medians of the values over all exemplar images. For the synthetic fixed-CR benchmarks, the effective CR and the Memory Compression Ratios (MCR) are averaged over image sizes from
2003 to 8003 (standard deviations in brackets) and the values for absolute runtimes and storage requirements are given for images of size 8003. For comparison, we also report the MCR using lossy
within-noise-level (WNL) compression30 of both the APR and the pixel images for the same compression parameter value (q= 2, see Supplementary Note 20). We also show the time taken to
transform the images to the APR on the benchmark machine and the runtime of the Pulling Scheme alone
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error E* that can be achieved (see Supplementary Fig. 30A). This
observation agrees with theoretical analysis (Supplementary
Note 7). This lower bound is entirely due to the noise in the
pixel intensity values, while the adaptation of the Implied
Resolution Function is robust to noise. This is demonstrated in
Supplementary Fig. 30B, where noisy particle intensities are
replaced with ground truth values for the reconstruction step.
Adaptation is still done on the noisy pixel data. Then, E* can be
made arbitrarily small, indicating that the construction of the
APR is robust against imaging noise. This result also agrees with
the theoretical analysis of the impact of errors on the Implied
Resolution Function (Supplementary Note 7).

To understand how to best set E in the presence of noise, we
compute the observed peak signal-to-noise ratio (PSNR) of the
reconstructed image and compare with the PSNR of the original
image. Figure 2d provides examples of the different noise levels
used. Figure 2b shows that decreasing E to zero does not
maximize the PSNR. Instead, for medium to high quality input
images, the PSNR is highest between an E of 0.08 and 0.15. For
low-quality input images, we find a monotonic relationship
between the PSNR and E, as de-noising from downsampling
dominates. Also, for E < 0.2 the reconstruction error is always less
than the noise in the input image, reflected in a PSNR ratio
greater than one. Therefore, for noisy images with medium to
high quality, there is an optimal range for E between 0.08 and
0.15. In this range, the reconstruction errors are less than the
imaging noise, and the signal-to-noise ratio of the APR is better
than that of the input pixel image, fulfilling also the second part
of RC1.

The noise distribution over the particles in the APR depends
on the original noise distribution of the pixel image and on the
method used to interpolate the particle intensities from the pixels.
In Supplementary Note 7, we provide both numerical and
theoretical results for the interpolation scheme used here. We
consider both Gaussian and Poisson noise on the input pixel
image. The variance of the noise scales inversely proportional
with the Particle Cell level l (see Methods for definition). For
Gaussian noise, the noise remains Gaussian on each level with
variance scaled by a factor of 2dðl�lmaxÞ, where d is the image
dimension. This is expected, as coarser levels correspond to more
averaging and hence noise reduction.

In Fig. 2e we show how the APR adapts to image content. This
adaptation is manifested in the linear relationship between the
number of objects (spheres) randomly placed in the image and
the number of particles used by the APR (right axis). Adaptation
is linear despite the brightness of the objects randomly varying
over an order of magnitude. Image quality is maintained
throughout (left axis). Figure 2g shows an example of a
medium-quality input image and its APR reconstruction.
Figure 2f shows that the number of particles used by the APR
to represent a fixed number of objects becomes independent of
image size. Also, if pixel resolution and image size are increased
proportionally, the APR approaches a constant number of
particles (Supplementary Fig. 31). These results show that the
APR adapts proportionally to image content, independent of the
number of pixels, fulfilling RC2.

So far, we have not directly assessed the validity of the Local
Intensity Scale σ. In order to do this, we need a ground truth
reference. In Supplementary Note 16 we introduce the perfect
APR, and the Ideal Local Intensity Scale σideal that can be
calculated for synthetic data. This ground truth representation is
then used to benchmark the APR. The results in Supplementary
Tables 1 and 2 show that the Local Intensity Scale we use is
effective over a wide range of scenarios. However, for crowded
images with large contrast variations (two orders of magnitude or
more), we find that the Local Intensity Scale overestimates the

dynamic range of dim regions that are close to bright regions.
This effect is most pronounced in high-quality images, where
alternative formulations of the Local Intensity Scale could provide
better results.

Performance benchmarks. Next, we assess the performance of
the APR. The APR is adaptive. Therefore, its computational and
memory costs depend on image content through the number of
particles. We define the Computational Ratio (CR) as:

CR ¼ number of input pixels
number of output particles

: ð2Þ

We assess the performance of the APR for synthetic images
with numbers of objects roughly corresponding to CR= 5, 20,
100, representing high, medium, and low complexity images
(Supplementary Fig. 32, Supplementary Note 17). For these, the
APR achieved effective CR values of 5.63, 19.7, and 93.9,
respectively. The results are given in Table 1.

Determining the APR of an image requires approximately 2.7
times (for 16-bit images) the size of the original image in
memory. The maximum image size is only limited by available
main memory (RAM) of the computer and by the ability to
globally index the particles using an unsigned 64-bit integer. Our
pipeline has been successfully tested on datasets exceeding 100GB
(Supplementary Fig. 35). To test on very large data, exemplar
dataset 17 was tiled 200 times to create a 320GB image. Using the
same parameters as for the original image resulted in an APR of
4.08GB and a CR of 20.2.

On our benchmark system, we find linear scaling in N and an
average data rate of 507MB s−1 for transforming images to their
APR. This rate corresponds to 3.9 s to form the APR from an
input image of size N= 10003. On the exemplars, execution times
range from 0.37 to 8.14 s, with an average of 3.65 s. Table 1
summarizes the results. We find the following distribution of
computation time: the Pulling Scheme on average takes <3.5% of
the total time, while the computation of the intensity gradient
magnitude using smoothing B-splines dominates the execution
time, taking up 59% of the total time. For details see
Supplementary Note 19.

Our software pipeline shows efficient parallel scaling
(Amdahl’s Law, parallel fraction= 0.95) on up to 47 cores,
achieving data rates of up to 1400MB s−1 (Supplementary
Fig. 35). This enables real-time conversion of images to the
APR, as it is faster than the acquisition rate of current
microscopes28,29.

We conclude that images can be rapidly converted to an APR
with a cost that scales at most linearly with image size, fulfilling
RC3.

For the fixed-CR datasets, we observe an average Memory
Compression Ratio (MCR= (size of the input image file in
bytes)/(size of the compressed APR file in bytes)) of 1.4 times the
CR. The median MCR of the exemplars is 36.8, and the mean is
129.5. This corresponds to an average size of the input images of
1.87 GB and 51 MB on average for the compressed APR files.
Table 1 summarizes the results and Supplementary Table 4
provides the image details.

When the APR is stored as a compressed file, on average 89%
of the bytes are used to store the particle intensities, implying that
the APR data structures occupy 11% on average. In addition, the
APR particle intensities can be compressed further in a lossy
manner using existing lossy image compression algorithms. This
is shown in Table 1, where we also report the MCR using the
within-noise-level (WNL) compression algorithm for large
fluorescence images30 for both the APR and original pixel image.
Details on the implementation and benchmarks on synthetic data
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are provided in Supplementary Note 20. On synthetic data, we
find that the APR and pixel images provide the same image
quality after lossy compression, but the APR increases the
compression ratio five fold. This indicates that the APR data
structures are better suited for further compression using existing
compression techniques.

In summary, the APR can be efficiently compressed with a file
size proportional to image content, fulfilling RC2. Unlike
compression techniques, the APR is an image representation
that can be leveraged to accelerate downstream processing tasks,
including compression, without reverting to the original pixel
image.

Image processing using the APR. Image-processing methods are
always developed with a certain interpretation of images in mind.
Just like pixels, one can also interpret and use the APR in dif-
ferent ways, depending on the processing task. These inter-
pretations align with those commonly used in pixel-based
processing. Figure 3a–d outlines the four main interpretations of
the APR: collocation points, continuous function approximations,
trees, and graphs. Figure 3e–h highlights that while particles store
fluorescence intensity, like pixels, they also provide additional
information adapted to the image content.

The APR can accelerate existing algorithms in two ways: first,
by decreasing the total processing time through reducing the
number of operations that have to be executed. Second, by
reducing the amount of memory required to run the algorithm.
The relative importance of the two, and the degree of reduction,
depends on the specific algorithm and its implementation. We
quantify the improvements for different algorithms and input
images.

We analyze two low-level and one high-level image-processing
tasks, namely, neighbor access and filtering as low-level tasks, and
image segmentation as a high-level task. The low-level tasks
represent a lower bound on the benefits of the APR due to their

simple operations and access patterns, which are best suited for
processing on pixels. The segmentation task, in contrast, provides
a representative practical example of microscopy image analysis.

For these three benchmarks, we provide results for the
computational and memory metrics for three fixed-CR datasets
with input images from N= 2003 up to N= 10003, and for all
real-world exemplar datasets. The results of all benchmarks are
summarized in Table 2. Supplementary Note 22 describes the
benchmark protocols.

The first evaluation metric relates to the computational
performance of the algorithm. For a given algorithm and
implementation, we define the speed-up (SU) as:

SU ¼ Processing time of the algorithm on pixels
Processing time of the algorithm onAPR

: ð3Þ

It is insightful to relate the SU to the CR by SU= CR * (Pixel-
Particle Speed Ratio) (PP), where PP= (Time to compute the
operation on one pixel)/(Time to compute the operation on one
particle). The value of PP depends on many factors, including
memory access patterns, data structures, hardware, and the
absolute size of the data in memory. Consequently, even for a
given algorithm running on defined hardware, the PP is a
function of the input image size N. For tasks with PP < 1, as in
some low-level vision tasks, there is a minimum value of CR
above which the algorithm is faster on the APR than on pixels.
For tasks with PP > 1, processing on the APR is always faster than
on pixels.

For an algorithm on a pixel image, the Memory Cost (MC) in
bytes usually scales linearly with the number of pixels N and the
number of required temporary and output variables (i.e., copies of
the image), as MC= (Number of variables)×(Data type in
bytes)×N. The memory cost of the APR is: MC=Np×((Number
of variables)×(Data type in bytes)+ (Cost of APR data structure
per particle)), where Np is the number of particles. We find an
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volumes
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(fp,xp)
Graph Tree structure

R *(y )

Continuous reconstruction

a b

c d

Intensity Particle cell level

Particle cell type Particle cells

e f

g h

y

Fig. 3 Interpretations of the APR for image processing. a The APR can be interpreted as a spatial partition defined by the Particle Cells or by the set
of particles with positions xp. This interpretation relates to the concept of super-pixels13. b The APR can be interpreted as a continuous function
approximation where the intensity value can be reconstructed at each location y, also between particles and pixels, relating to smooth particle function
approximations31. c The APR can be interpreted as a graph, where the particles are vertices and edges link neighboring particles (Supplementary Note 21).
This relates the APR to graphical models of pixel images32. d The APR can be interpreted as a pruned binary tree (quadtree in 2D, octree in 3D) with links
between parent and children Particle Cells. This relates the APR to wavelet decompositions17, image pyramids19, and tree-based methods33. e–h While
particles store local fluorescence intensity, just like pixels (e), they also provide additional information that is not available on the pixels. This includes the
Particle Cell level containing information about the local level of detail in the image (f), the Particle Cell type encoding the structure of the image (g), and
the Particle Cell membership providing a content-adaptive disjoint partition of the image domain (h). (See Methods section for definitions; original image:
exemplar dataset 1034,35)
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estimated average of 8 bits per particle overhead for the sparse
APR data structure. As the number of algorithm variables
increases, the overhead of the APR is amortized, so that the
reduction in memory cost approaches the CR.

The first task of low-level neighbor access involves averaging
the intensities of all face-connected neighbors of a particle or
pixel. In the APR, neighbors are defined by the particle graph, as
shown in Fig. 3c and described in Supplementary Note 21. We
benchmark two forms of neighbor access: linear iteration loops
over all neighbors in sequential order; random access visits
neighbors in random order, irrespective of how they are stored
in memory.

For linear iteration, the APR shows low SU. It is even slower
than pixel operations for the synthetic images with CR= 5 and
for four of the exemplar datasets (Table 2, group 1). This is
because linear iteration is well suited to pixel images. However,
the APR provides consistently higher SU for random neighbor
access, especially for high CRs. This is likely due to the smaller
overall size of the APR improving cache efficiency.

The total memory cost of the APR reflects the CR of the
dataset. This provides significant memory cost reductions across
all benchmark datasets for both the linear and random neighbor
access patterns (see Table 2).

Second, we consider the task of filtering the image with a
Gaussian blur kernel. We exploit the separability of the kernel
and perform three consecutive filtering steps using 1D filters in
each direction. On the APR, this requires locally evaluating the
function reconstruction. The benchmark results are shown in
Table 2, group 3. Directly filtering the APR consistently
outperforms the pixel-based pipeline, both in terms of memory
cost and execution time.

In Supplementary Note 22, we analyze the results in detail and
find that the APR is most appropriate in cases where the filtered
image has a similar structure as the original image, such that the
same set of content-adapted particles is suitable to represent both
images. Supplementary Figure 40 illustrates this, showing that for
a weak blur the APR filter has higher PSNR than the pixel filter.
For stronger blurs this is reversed, because the specific APR

adapted to the input image is no longer optimal to represent the
filtered image.

Finally, we perform binary image segmentation by graph cuts,
using the method and implementation of ref. 32. to compute the
optimal foreground/background segmentation for both APR and
pixel images. When computing the cut energies, we exploit the
additional information provided by the Particle Cell level, type,
and local intensity range (see Methods section for definitions).
To allow direct comparison with pixel-based segmentation, we
interpolate all energies calculated on the APR to pixels and
determine the cuts over the pixel image using the same energies.
For both APR and pixel images, a face-connected neighborhood
graph is used. Given the energy calculations are identical, we
benchmark the execution time and memory cost of the graph-cut
solver. The results are shown in Table 2, group 4. For the APR we
find that the SU directly reflects the CR.

Using the APR, all exemplar images can be segmented without
problems, while pixel images can only be segmented for sizes
N≤5503 on our benchmark machine with 64 GB RAM,
illustrating the benefits of the reduced memory cost of the APR.

We validate the APR segmentations by comparing both the APR
and pixel-based segmentations to ground truth using the Dice
coefficient38. Across datasets, we find that the Dice coefficients are
not statistically significantly different (p-value: 0.92, Welch’s t-test).
We provide a representative example in Supplementary Video 2
and show a 3D rendering of a segmentation in Fig. 4e.

The APR provides additional information about the image that
is not contained in pixel representations. This information can be
exploited in existing image-processing algorithms, as illustrated in
the segmentation example above. In addition, it can also be used to
design entirely novel, APR-specific algorithms. For example, we
define a discrete filter over neighboring particles in the APR
particle graph. Since the distances between neighboring particles
vary across the image, depending on image content, this amounts
to spatially adaptive filtering with the filter size automatically
adjusting to the content of the image. On the APR, this only
requires linear neighbor iteration, while an adaptive pixel
implementation would be significantly more complex.

Table 2 Processing benchmarks on synthetic and exemplar images

Speed up Time APR (s) Time pixels (s) PP MC pixels (GB) MC APR (GB) MRR

Linear neighbor iteration
CR5 0.55 (0.02) 1.86 (0.07) 1.02 (0.0002) 0.097 (0.003) 3.072 (0) 0.599 (2.7) 5.12 (0.02)
CR20 1.9 (0.09) 0.54 (0.03) 1.02 (0.002) 0.096 (0.004) 3.072 (0) 0.181 (1.0) 16.9 (0.09)
CR100 7.1 (0.5) 0.14 (0.009) 1.02 (0.007) 0.076 (0.005) 3.072 (0) 0.053 (0.0005) 60.2 (2.3)
Exemplars mean 4.06 (5.7) 0.86 (0.5) 1.83 (1.3) 0.094 (0.01) 5.61 (4.2) 0.278 (0.28) 37.5 (56)

Random neighbor access
CR5 0.71 (0.03) 15.4 (0.2) 11.0 (0.4) 0.126 (0.005) 3.072 (0) 0.599 (2.7) 5.12 (0.02)
CR20 3.52 (0.3) 3.23 (0.05) 11.4 (0.8) 0.178 (0.01) 3.072 (0) 0.181 (1.0) 16.9 (0.09)
CR100 24.8 (0.8) 0.44 (0.01) 11.01 (0.3) 0.26 (0.007) 3.072 (0) 0.053 (0.0005) 60.2 (2.3)
Exemplars mean 11.57 (23.6) 7.29 (10.1) 21.4 (16) 0.17 (0.05) 5.61 (4.2) 0.278 (0.28) 37.5 (56)

Image filtering
CR5 7.36 (1.2) 1.36 (0.009) 8.02 (0.2) 1.26 (0.2) 4.10 (0) 0.93 (0.003) 4.38 (0.04)
CR20 14.82 (3.7) 0.76 (0.01) 8.07 (0.3) 0.77 (0.2) 4.10 (0) 0.30 (0.002) 12.82 (0.9)
CR100 31.10 (13) 0.57 (0.003) 7.96 (0.3) 0.35 (0.15) 4.10 (0) 0.09 (0.0002) 36.85 (6.7)
Exemplars mean 12.27 (3.0) 1.24 (0.93) 14.13 (9.8) 0.51 (0.33) 7.48 (5.5) 0.36 (0.28) 24.49 (19)

Image segmentation
CR5 5.10 (0.7) 1.87 (0.02) 8.86 (0.09) 0.86 (0.04) ≈68.5* (0) 12.57 (0.08) 5.51 (0.14)
CR20 18.30 (2.6) 0.48 (0.003) 8.83 (0.08) 0.95 (0.07) ≈68.5* (0) 3.75 (0.02) 18.18 (0.3)
CR100 85.3 (12) 0.10 (0.001) 8.78 (0.09) 0.97 (0.06) ≈68.5* (0) 0.80 (0.003) 84.09 (2.9)
Exemplars mean N/A 6.99 (5.9) N/A N/A ≈385* (286) 13.54 (11.7) 39.72 (40)

For the exemplars, we report the means (standard deviation in brackets) of the values over all exemplar images. For the synthetic fixed-CR datasets, the speed-ups (SU), Pixel-Particle Speed Ratios (PP),
and Memory Reduction Ratios (MRR)= (Memory Cost Pixels)/(Memory Cost APR) are averaged over image sizes from 2003 to 10003; absolute timings and Memory Cost (MC) are given for images of
size 8003. Graph-cut segmentation on pixels was not possible for 8003 images, as the memory requirement exceeded the 64 GB available on the benchmark machine. The corresponding entries in the
table (marked with *) are extrapolated from benchmarks run on smaller images and the SU, PP, and pixel timing for the exemplars could not be determined in this case (N/A). See main text and
Supplementary Note 22 for a detailed descriptions of the benchmarks

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07390-9 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5160 | DOI: 10.1038/s41467-018-07390-9 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Supplementary Figure 42 shows synthetic results for an adaptive
blurring filter, and Supplementary Fig. 43 for a filter that adaptively
estimates the intensity gradient magnitude. In both examples, the
adaptive APR-filtered results have higher PSNR than results from
corresponding non-adaptive pixel filters, as shown in Fig. 4c.

Images represented using the APR can directly be visualized
without going back to pixels. APR images can be visualized using
both traditional and novel visualization methods. We provide
examples of three visualization methods. Figure 4a and
Supplementary Video 1 show examples of a slice-wise APR
reconstruction in comparison with the pixel images. Figure 4b
and Supplementary Video 3 show a perspective APR maximum-
intensity projection in comparison with the same ray-cast of the
original pixel image. The resulting visualizations are visually
indistinguishable. APR raycasting only requires storing and
computing on the APR, reducing memory and computational
costs proportionally to the CR of the image, enabling full-scale
visualization of large images. Lastly, we can directly visualize the
particles of an APR as glyphs both in 2D, see Figs. 1, 6, and 3 and
in 3D, see Fig. 4e and d and Supplementary Videos 4 and 5
(images from refs 39 and 25, respectively, and rendered using the
open-source 3D visualization software Scenery36).

In summary, the APR reduces memory and computational
costs of downstream processing tasks without requiring going
back to the full pixel image, fulfilling RC4.

Discussion
We have introduced a content-adaptive image representation
for fluorescence microscopy, the APR. The APR is inspired
by how the human visual system effectively avoids the data
and processing bottlenecks that plague modern fluorescence
microscopy, particularly for 3D imaging. The APR combines
aspects of previous adaptive-resolution methods, including
wavelets, super-pixels, and equi-distribution principles in a
way that fulfills all Representation Criteria (RC) set out in the
introduction. The APR is computationally efficient, suited for
real-time applications at acquisition speed, and easy to
implement.

We presented the ideas and concepts of the APR. The APR
resamples an image by adapting a set of particles to the content of
the image, taking into account the Local Intensity Scale, similar to
gain control in the human visual system. The main theoretical
and algorithmic contribution that made this possible with a
computational cost that scales linearly with image size is the
Pulling Scheme. The Pulling Scheme guarantees image repre-
sentations within user-specified relative intensity deviations.

We verified accuracy and performance of the APR using syn-
thetic benchmark images. The analysis showed that all theoretical
results hold in practice, and that the number of particles used by
the APR scales with image content, while maintaining image
quality (RC1). Further, we showed that although image noise

APR raycast

Pixel raycast
Adaptive APR filter
gradient magnitude

Original image gradient
magnitude

(finite differences)

Input image APR
reconstructed

Segmentation
rendering

a
b

ed

c

Direct APR
particle

rendering

Fig. 4 Image processing using the APR. a Comparison of an example image (exemplar dataset 725) with its piecewise constant APR reconstruction.
b Comparison of the maximum-intensity projection of a direct 3D APR raycast with the maximum-intensity projection of the pixels for exemplar dataset 17
(full image see Supplementary Fig. 45). c Comparison of the intensity-gradient magnitude estimated using the Adaptive APR Filter and using central finite
differences over the pixels for exemplar dataset 6 (Tomancak Lab, MPI-CBG). d Direct 3D particle rendering of zebrafish nuclei (exemplar dataset 737)
using Scenery. (Raw images in a, b, d, e courtesy of Huisken Lab, MPI-CBG & Morgridge Institute for Research.) Scale bars indicate 10 pixels. Additional
details can be found in Supplementary Note 22. e APR volume rendering of a 3D image-segmentation result, colored by depth using the open-source
visualization tool Scenery36, computed using graph-cut segmentation directly on the APR, as described in Supplementary Note 22 (exemplar dataset 1337).
Segmentation on the APR took 5.5 s. Segmentation on the pixel image was impossible on our benchmark machine due to memory overflow
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places a limit on representation accuracy, there exists an optimal
range for the relative error threshold. In this range, the recon-
struction error for noisy images is always well within the imaging
noise level (RC1). Moreover, we found that the number of par-
ticles is independent of the original image size, with computa-
tional and memory costs of the APR instead proportional to the
information content of the image (RC2). We showed how pixel
images can rapidly be transformed to the APR, and efficiently
stored both in memory and in files (RC3). We have demonstrated
that the APR benefits, both in terms of execution time and
memory requirements, can be leveraged for a range of image-
processing tasks without ever returning to a pixel image, with
minimal changes to existing algorithms (RC4). Across all
benchmarks and exemplar datasets, other than the worst-case
example of linear neighbor access, processing directly on the APR
resulted in lower execution times and memory costs. Moreover,
in the examples of visualization and segmentation, the memory
cost reduction of the APR enabled processing of data sets that
would not otherwise have been possible on our benchmark
machine.

The APR has a range of interpretations that align with those of
pixel images, allowing direct application of established image-
analysis frameworks to the APR. For algorithms that require a
locally isotropic neighborhood, the anisotropic local neighbor-
hood of the APR graph can be hidden by using a particle-wise
isotropic patch reconstruction, enabling also these algorithms to
directly run on the APR with minimal changes. In many cases,
however, the additional information about the structure of the
image provided by the APR can improve existing algorithms, as
shown here for segmentation, and it can be used to design novel
algorithms, such as content-adaptive filters (shown here), adap-
tive variational models40, and Laplacian graph-based image
processing methods41.

When designing APR-based algorithms, it may be important to
account for the noise distribution42. As expected, the noise dis-
tribution on the particles is different from that of the original
pixels, transformed by the interpolation scheme used to compute
particle intensities, and it naturally decomposes by resolution
level (see Supplementary Note 7). Therefore, noise terms or
regularizers in image-processing models may have to be adjusted
or designed accordingly. However, the noise distribution in
content-rich areas, notably around edges in the images, is largely
unchanged. For image-analysis methods that focus on these areas,
such as segmentation methods, the same noise models as on
pixels may thus still be used.

Taken together, the APR meets all four representation criteria
set out in the Introduction. We believe that the gains of the APR
will in many cases suffice to relax the current processing bottle-
necks. In particular, image-processing pipelines using the APR
would be well suited for high-throughput experiments and real-
time processing, e.g., in smart microscopes9,39. However, the APR
is sub-optimal with respect to the number of particles used. This
sub-optimality results from the conservative restrictions required
to derive the efficient Pulling Scheme, and from the generality of
the Reconstruction Condition. It is proven by the fact that the
APR particle properties can be represented by a Haar wavelet
transform17 with a number of non-zero coefficients that is either
equal to or less than the number of particles in the APR, while
allowing exact reconstruction of the APR particle properties
(Supplementary Note 12).

The use of adaptive representations of images22–24 and its
motivation by the human visual system13,18 are not new. While
the adaptive placement of the particles in the APR bears visual
similarity to half-toning methods and techniques based on the
Floyd-Steinberg error-diffusion algorithm43, the mathematical
foundations and the algorithms themselves differ fundamentally.

The APR does, however, share several concepts with established
adaptive representations. The Resolution Function R(y) of the
APR, e.g., is related to the oracle adaptive regression method44,
and the derivation and form of the Resolution Bound are related
to ideas originally introduced in equi-distribution methods for
splines45–47, which also inspired the work here48. The Recon-
struction Condition for a constant Local Intensity Scale relates to
infinity-norm adaptation for wavelet thresholding as used in
adaptive surface representations49. Finally, powers-of-two
decomposition of the domain is central to many adaptive-
resolution methods17,19,33,50 and its use here was particularly
inspired by ref. 51. Despite these relations to existing methods, the
APR uniquely fulfills all representation criteria and extends or
links many of the previous concepts.

Core novelties of the APR include the spatially varying Local
Intensity Scale, the broad class of reconstruction methods avail-
able, “backwards compatibility” to pixel images by on-the-fly
local patch reconstruction, guaranteed theoretical bounds on the
representation accuracy, and the ability to combine existing
compression schemes with the APR. Moreover, the computa-
tional efficiency of the APR enables real-time workflows where
images are transformed at acquisition rate.

The APR has the potential to replace pixel-based image-pro-
cessing pipelines for the next generation of fluorescence micro-
scopes. We envision that the APR is immediately formed,
possibly after image enhancement52, on the acquisition computer
or even on the camera itself. Following this, all data transfer,
storage, visualization, and processing can be done on the APR,
relaxing downstream bottlenecks. In cases where regulatory
requirements or statistical noise analyses require the raw pixel
data to be archived, this is best done by archiving the difference
image between the raw pixel data and the APR. Since the APR
captures all imaged structures, the difference image is typically
very sparse and can effectively be compressed using lossless
methods. All processing can then still be done on the APR from
which the raw pixel data can exactly be reconstructed using the
archived difference image whenever needed.

The full realization of APR-based pipelines requires further
algorithm and software development, including GPU accelera-
tion, block-wise APR transforms for images that exceed available
computer memory, and integration with current microscope
systems, image databases53, and image-processing tools54. This
integration is enabled through wrappers of the provided C++
Library LibAPR (see Methods section).

Here, we presented a particular realization of an APR pipeline.
We foresee alternative pipelines, e.g., using deep learning
approaches55 to improve estimation of the Local Intensity Scale,
of the image intensity gradient, and smooth image reconstruc-
tions. Just as in space, the APR can also be used to adaptively
sample time. Such temporal adaptation can lead to a multi-
plicative reduction in memory and computational costs compared
to those presented here. Further, the APR can be extended to
allow for anisotropic adaptation using rectangular particle cells,
local affine transformations, and anisotropic particle distributions
within each cell.

Given the wide success of adaptive representations in scientific
computing, the unique features of the APR could be useful also in
non-imaging applications. This includes applications to time-
series data, where the APR could provide an adaptive regression
method44, to surface representation in computer graphics49, and
to numerically solving partial differential equations with spatial
adaptivity48,56–58.

Methods
APR theory and algorithms. We describe the basic concepts of the APR and its
components. We provide all technical details needed to reproduce or reimplement
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the APR. For simplicity, we do so using a 1D image as a didactic example (see also
Supplementary Note 11; code available from https://github.com/cheesema/
APR_1D_demo). All concepts extend to higher dimensions and to higher deri-
vatives, as shown in Supplementary Notes 1, 3, and 9.

For the APR to optimally represent a given image with intensities I(y) at pixels
y, the Implied Resolution Function should be as large as possible at every location,
while still guaranteeing that the image can be reconstructed within the user-
specified relative error E scaled by the Local Intensity Scale σ(y). The Local
Intensity Scale σ(y) is an estimate of the range of intensities present locally in the
image. Considering an arbitrary Resolution Function R(y), we can formulate the
problem as finding the largest R(y) everywhere that satisfies

jIðyÞ � ÎðyÞj � EσðyÞ; ð4Þ

for each pixel y, where ÎðyÞ is the reconstructed intensity calculated by any non-
negative weighted average over particles within R(y) distance of y. We call this the
Reconstruction Condition. For the 1D example shown in Figure 5a, b, a constant
local intensity scale σ(y)= 1 is used. Maximizing R(y) minimizes 1

RðyÞ, which is
proportional to the locally required sampling density. Therefore, maximizing R(y)
results in the minimum number of particles used. Unfortunately, finding the
optimal R(y) that satisfies the Reconstruction Condition for arbitrary images
requires a number of compute operations that is proportional to the square of the
number of pixels N. This computational cost is prohibitive even for modestly sized
images. We propose two conservative restrictions on the problem and show that
the optimal solution to the restricted problem can be computed with a total
number of operations that is proportional to N.

We outline the two problem restrictions, and how they are used to formulate an
efficient linear-time algorithm for creating the APR.

The first restriction on the Resolution Function R(y) requires that for all
original pixel locations y, it satisfies the inequality

RðyÞ � Lðy�Þ ð5Þ

for all y* with |y−y*| ≤ R(y), and LðyÞ ¼ EσðyÞ
j∇Ij . Here |∇I| is the magnitude of the

image intensity gradient, which in 1D is dI
dy

���
��� and can be computed directly from the

image. We call this inequality the Resolution Bound, and L(y) the Local Resolution
Estimate. If we assume the continuous intensity distribution underlying the image
to be differentiable everywhere and the Local Intensity Scale σ(y) to be sufficiently
smooth (see Supplementary Notes 2 and 3), satisfying the Resolution Bound
guarantees satisfying the Reconstruction Condition. In Fig. 5c, we illustrate that the
Resolution Bound in 1D requires that a box centered at y with height R(y) and
width 2R(y) does not intersect anywhere with the graph of L(y). Since the
Resolution Bound represents a tighter bound than the Reconstruction Condition,
the optimal solution to the Resolution Bound Rb(y) is always less than or equal to
the optimal solution to the Reconstruction Condition Rc(y), therefore providing the
same or a higher image representation accuracy. The dashed lines in Fig. 5d
illustrate this for the 1D example. As mentioned above, solving for the optimal
Resolution Function requires computer time ∝N2. However, we show next that the
Resolution Bound can be satisfied optimally with computer time linear in N, if we
add a second restriction.

The second restriction is that the blocks constituting the Resolution Function
must have edge lengths that are powers of 1/2 of the image edge length. The
piecewise constant Resolution Function defined by the uppermost edges of these
blocks is called the Implied Resolution Function R*(y) and is shown in black in
Fig. 5d. The blocks we call Particle Cells. They have sides of length jΩj

2l , where |Ω| is
the edge length of the image, measured in pixels. The number l is a positive integer
we call the Particle Cell Level. Each Particle Cell ci,l is therefore uniquely
determined by its level l and location i. Figure 5d inset illustrates these definitions
for a single Particle Cell (see Supplementary Note 4 for the nD formal definition).
The size of the blocks on the lowest resolution level is half the size of the image
(lmin= 1), and the highest level of resolution lmax contains boxes the size of the
original pixels. For image edge lengths that are not powers of 2, the parameter |Ω|
is rounded upwards to the nearest power of two without padding the image.

Thanks to these two restrictions, the problem of finding the optimal Resolution
Function can be reduced to finding the smallest set V of Particle Cells that defines
an Implied Resolution Function R*(y) that satisfies the Resolution Bound
(Supplementary Note 4). We call this minimal set V of Particle Cells the Optimal
Valid Particle Cell (OVPC) set. In Supplementary Note 8, we provide additional
analysis of the impact of these restrictions on the efficiency of adaptation.

In order to construct an algorithm that efficiently finds the OVPC set for a
given Local Resolution Estimate L(y), we first formulate the Resolution Bound in
terms of Particle Cells. This formulation requires arranging the Particle Cells ci,l by
level l and location i in a tree structure, as shown in Fig. 5e. In 1D this is a binary
tree, in 2D a quadtree, and in 3D an octree. When arranged as a tree structure, we
can naturally define children and neighbor relationships between Particle Cells, as
shown in green and blue, respectively, in Fig. 5e. We also define the descendants of
a Particle Cell as the set of all children and children’s children up to the maximum
resolution level lmax. Given these definitions, the Local Resolution Estimate L(y) can
be represented as a set of Particle Cells L by iterating over all pixels y, and adding

the Particle Cell with level l ¼ log2
jΩj
LðyÞ

l m
and location i ¼ 2l y

jΩj
j k

to L if it is not

already in L (assuming the lower-left boundary of the image is at zero). Figure 5f
illustrates how L relates to L(y), with L also represented in Fig. 5e in the tree
structure. We call this set of Particle Cells the Local Particle Cell (LPC) set L
(see Supplementary Note 4).

We can then represent the Resolution Bound in terms of L. A set of Particle
Cells V will define an Implied Resolution Function that satisfies the Resolution
Bound for L(y), if and only if the following statement is true: for every Particle Cell
in V, none of its descendants, or neighbors’ descendants, are in the LPC set L
(Theorem 1 in Supplementary Note 4). We call any set of Particle Cells
satisfying this statement “valid”. The OVPC set V is then uniquely defined as the
valid set for which replacing any (combination of) Particle Cells with larger Particle
Cells would result in V no longer being valid (Theorem 2 in Supplementary
Note 4).

We present an efficient algorithm for finding the OVPC set V, called the Pulling
Scheme. The name is motivated by how a single Particle Cell in L pulls the
resolution function down to enforce smaller Particle Cells across the image. The
Pulling Scheme finds the OVPC set V directly, without explicitly checking for
validity or optimality. The result is by construction guaranteed to be valid and
optimal. In order to derive the algorithm, we leverage three properties of OVPC
sets:

1. Predictable and self-similar structure: Neighboring Particle Cells never differ
by more than one level and are arranged in a fixed pattern around the smallest
Particle Cells in the set. This local structure is independent of absolute level l
and endows the set with a self-similar structure. Using this structural feature,
the OVPC set V for a LPC set L with only one Particle Cell ci,l can be
generated directly for any i and l (see Supplementary Fig 3).

2. Separability: We can find the OVPC set given a LPC set L by considering each
cell in L separately and then combining the smallest Particle Cells from all
sets that cover the image (see Lemma 1 in Supplementary Note 5).
Supplementary Figure 4 illustrates this separability property.

3. Redundancy: The redundancy property tells us that when constructing V, we
can ignore all Particle Cells in L that have descendants in L. This is because
descendants provide equal or tighter constraints on the resolution function
than their parent Particle Cells (see Lemma 2 in Supplementary Note 5 for the
proof).

These properties enable us to efficiently construct V by propagating solutions
from individual Particle Cells in L, one level at a time, starting from the highest
resolution level (lmax) of the smallest Particle Cells in L. Here, we use a simple
implementation that explicitly represents all possible Particle Cells in an image
pyramid structure. Alternative implementations are possible that do not require the
explicit storage of the full tree structure, but are not discussed here. The Pulling
Scheme is summarized in Algorithm 1 in Supplementary Note 5, and
Supplementary Fig. 7 illustrates the steps for each level. Supplementary Notes 5 and
13 provide additional details. The computational cost of the algorithm scales with
the number of Particle Cells in V. Further, computing the OVPC set V using the
Pulling Scheme incurs a computational cost that is proportional to the number of
pixels N for a fixed information-to-data ratio. A comparison of the computational
cost of the Pulling Scheme with a greedy approach is given in Supplementary
Fig. 12 and Supplementary Note 8.

Using the Equivalence Optimization (see Supplementary Note 5), the
computational and memory costs of the Pulling Scheme can be further reduced by
a factor of 2d, where d is the image dimensionality, while obtaining the same
solution. A second optimization restricts the neighborhood of particle cells to
further reduce the total number of particles used, as described in Supplementary
Note 5. We use both optimizations for the results presented in this paper.
Ultimately, the only operations that need to be computed on the full pixel image
are the simple filters for the gradient magnitude and the Local Intensity Scale.

Given the Implied Resolution Function computed by the Pulling Scheme, the
last step of forming the APR is to determine the locations of the particles P.
Locations must be chosen so that around each pixel y there is at least one particle
within a distance of R*(y). This requirement is easily satisfied by placing one
particle at the center of each Particle Cell in V. Specifically, for each Particle Cell ci,l
in V, we add a particle p to P with location yp ¼ jΩj

2l ðiþ 0:5Þ. For each particle p we
store the image intensity at that location Ip= I(yp), interpolated from the original
pixels as described in Supplementary Note 6. This way of arranging the particles
has the advantage that the particle positions do not need to be explicitly stored, as
they are determined by V.

In Fig. 6, we summarize the steps required to form the APR from an input
image. The APR can be stored as the combination fV;Pg. We represent the OVPC
set V by storing the integer level l and the integer location i for each Particle Cell. V,
therefore, defines the Implied Resolution Function R*(y) for all y in the image. P
stores the intensities of all particles.

Determining L(y) requires computing the intensity gradient ∇I over the
input image. In practice, the pixel intensities are noisy, which leads to uncertainty in
the computed L(y). In Supplementary Note 7, we provide theoretical results on how
this uncertainty imposes a lower bound on the achievable representation accuracy E.

3D fluorescence APR implementation. When implementing the APR, three
design choices have to be made: First, one has to decide how to calculate the
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intensity gradient magnitude |∇I(y)|. Second, one has to decide how to compute
the Local Intensity Scale σ(y). Third, one has to decide how to interpolate the pixel
intensities to particle locations to determine particle intensities Ip= I(yp). Full
details are given in Supplementary Note 13.

To calculate the intensity gradient magnitude over the input image, we use
smoothing cubic B-Splines59, which provide robust gradient estimation in the
presence of noise. They require setting a smoothing parameter λ depending on the
noise level, as described in Supplementary Note 13.

For the Local Intensity Scale σ(y), we use a smooth estimate of the local dynamic
range of the image, as described in Supplementary Note 13. This form of the Local
Intensity Scale accounts for variations in the intensities of labeled objects, similar to
gain control in the human visual system. We ensure that σ is sufficiently smooth
(see Supplementary Note 2) by computing it over the image downsampled by a
factor of two. Examples are shown in Figs. 1e and 6c. The size of the smoothing
window is given by a rough estimate of the half width at half maximum of the point-

spread function (PSF) of the microscope. Further, a lower threshold is introduced to
prevent resolving background noise (see Supplementary Note 13).

Two methods are combined to interpolate pixel intensities to particle locations:
for particles in Particle Cells at pixel resolution, the intensities are directly copied
from the respective pixels, while for particles in larger particle cells, we assign the
average intensity of all pixels in that Particle Cell19.

We also provide a method for reconstructing a pixel image ÎðyÞ from the APR.
A pixel image satisfying the Reconstruction Condition in Eq. 1 can be
reconstructed from the APR using any non-negative weighted average of particles
within R*(y) of pixel y. In Supplementary Note 10, we discuss possible weight
choices, providing examples of smooth, piecewise constant, and worst-case
reconstructions. For displaying figures and benchmarking, unless otherwise stated,
we use the piecewise constant reconstruction in this paper. This reconstruction sets
all pixels inside a Particle Cell equal to the intensity of the particle in that cell and
thus has the best computational efficiency.
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All design decisions have been made to optimize robustness against imaging
noise and computational efficiency. We find that the method is stable with respect
to the choice of parameters. A discussion of parameter selection for real datasets is
given in Supplementary Note 14, and the parameter values used for our test
datasets are given in Supplementary Table 3.

Appropriate data structures must be used to store and process on the APR
efficiently. Ideally, these structures allow direct memory access at low overhead.
Here, we propose a multi-level data structure for the APR, as described in
Supplementary Note 18. Each APR level l is encoded similar to sparse matrix
schemes with Particle Cell locations {ix, iy, iz}. This data structure efficiently stores
V and P by explicitly encoding only one spatial coordinate (iy) per Particle Cell,
while allowing random access. We call this data structure the Sparse APR (SA) data
structure. It relies on storing one red-black tree of Particle Cell locations iy for each
combination of {ix, iz, l}, caching access information for contiguous blocks of
Particle Cells. When storing image intensity using 16 bits, the SA data structure
requires approximately 50% more memory than the uncompressed particle
intensities alone. Simpler data structures, without the red-black tree, can be used to
reduce this overhead if random access is not required. In all results presented here,
we use the SA data structure.

We store the APR SA data structure using the HDF5 file format60 and the
BLOSC HDF5 plugin61 for lossless Zstd compression of the Particle Cell and
intensity data in the file.

Code availability. Code is available through the open-source C++ APR software
library LibAPR62 (available at https://github.com/cheesema/LibAPR), including
basic Python wrappers, and Java wrappers can be found at https://github.com/
krzysg/LibAPR-java-wrapper. Didactic MATLAB code for the APR in 1D can be
found at https://github.com/cheesema/APR_1D_demo.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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