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1 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, 2 FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United

States of America, 3 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany, 4 Stockholm Resilience Centre, Stockholm University, Stockholm,

Sweden, 5 Department of Engineering Mathematics, Merchant Venturers School of Engineering, University of Bristol, Bristol, United Kingdom, 6 Division of Molecular
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Abstract

Asymmetric segregation of damaged proteins at cell division generates a cell that retains damage and a clean cell that
supports population survival. In cells that divide asymmetrically, such as Saccharomyces cerevisiae, segregation of damaged
proteins is achieved by retention and active transport. We have previously shown that in the symmetrically dividing
Schizosaccharomyces pombe there is a transition between symmetric and asymmetric segregation of damaged proteins. Yet
how this transition and generation of damage-free cells are achieved remained unknown. Here, by combining in vivo
imaging of Hsp104-associated aggregates, a form of damage, with mathematical modeling, we find that fusion of protein
aggregates facilitates asymmetric segregation. Our model predicts that, after stress, the increased number of aggregates
fuse into a single large unit, which is inherited asymmetrically by one daughter cell, whereas the other one is born clean. We
experimentally confirmed that fusion increases segregation asymmetry, for a range of stresses, and identified Hsp16 as a
fusion factor. Our work shows that fusion of protein aggregates promotes the formation of damage-free cells. Fusion of
cellular factors may represent a general mechanism for their asymmetric segregation at division.
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Introduction

A dividing cell can deal with damaged material in two different

ways. First, the damaged material can be segregated asymmetri-

cally during division, such that it is concentrated in one of the two

newborn daughter cells, while the other cell is born clean. The

damage is then removed from the population when the cell

retaining the damaged material dies. Second, in phases of rapid

growth, damaged material can be segregated randomly, leading to

less asymmetric segregation of damage between daughters. In this

case, accumulation of damage within any cell is prevented by rapid

divisions that dilute the damaged material.

Protein aggregates are a type of damaged material, composed of

insoluble and dense protein particles [1]. These aggregates, instead

of being degraded, accumulate in the cell during stress and aging

[2–4]. Once formed, aggregates can interfere with cell cycle

progression and cell function [5] and correlate with cell death [6].

To deal with protein aggregates during cell division, Escherichia coli

and Saccharomyces cerevisiae, as well as stem cells, use asymmetric

segregation, where aggregates are retained by one cell, generating

a clean sister cell [2,3,7–10]. In E. coli, protein aggregates

accumulate at the cell poles and often segregate with the old cell

pole [3]. In the case of S. cerevisiae, asymmetric segregation of

aggregates is achieved through a combination of retention in

specialized compartments [8,11–14], active transport [8],

and limited diffusion through the bud neck [9]. However, the

mechanisms underlying aggregate segregation in eukaryotic cells

that divide symmetrically are unclear.

We have recently shown that the symmetrically dividing fission

yeast Schizosaccharomyces pombe does not show aging under favorable

conditions, which suggests that aggregates are segregated sym-

metrically [6]. After stress, however, the cells inheriting large

aggregates do age and eventually die, while their sisters with small

or no aggregates do not age [6]. How a large aggregate arises after

stress, and how the generation of aggregate-free cells is achieved,

remained unknown.

Here we study the mechanism underlying the transition from

symmetric to asymmetric aggregate segregation. By combining in

vivo quantification of aggregate nucleation, movement, fusion, and

segregation with a mathematical model, we show that under

favorable conditions aggregates fuse rarely and segregate symmet-

rically at division. Using the total amount of aggregates, measured

as the total fluorescence intensity in puncta of the GFP-tagged

Hsp104 disaggregase [6], to identify different levels of aggregation

in response to stress, our experiments show that an increase

in fusion facilitates asymmetric segregation of aggregates and

production of aggregate-free cells. These results are consistent

with the predictions of our model, which provides support for the
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conclusion that the formation of damage-free cells is promoted by

aggregate fusion.

Results

Protein Aggregate Dynamics in Vivo: Nucleation,
Movement, and Fusion

We monitored protein aggregates using the Hsp104 disaggre-

gase, a chaperone that binds and separates aggregated proteins

[15], labeled with GFP (Figure 1A, Figure S1, and Text S1). We

have shown before that Hsp104 from S. pombe is active as a

disaggregase in vitro and in vivo [6] and that the puncta of Hsp104-

GFP observed in the cytoplasm represent endogenous aggregates.

We also observed diffuse Hsp104-GFP in the nucleus (Figure 1A)

and in the cytoplasm (see Figure S2F), as shown previously in S.

cerevisiae [16]. While the lower disaggregase activity of Hsp104

from S. pombe, when compared to its S. cerevisiae homolog [6], likely

accounts for the presence of aggregates under favorable condi-

tions, deleting hsp104 resulted in increased aggregation (Figure

S1F–I) and increased cell death after stress [6], while labeling the

endogenous Hsp104 with GFP has no effect on stress recovery [6].

The Hsp104-GFP puncta are composed of aggregated proteins

and chaperones (Figure S1), as reported for other organisms [5].

To study aggregate dynamics during the cell cycle, we followed

Hsp104-associated aggregates with wide-field fluorescence micros-

copy (Materials and Methods). Aggregates nucleated equally often

in each of the two respective cytoplasmic regions (compartments)

between the nucleus and the old cell pole, and the nucleus and the

new cell pole, generated in the previous division (1.360.2

nucleation events/cell cycle, n = 162 cells; Figure S2A and S2B).

After nucleation, aggregates typically remained in the same

compartment (only 3.261.5% of aggregates moved between the

compartments, n = 126 cells). Aggregates moved and contact

between them resulted in their fusion (94/100 contacts resulted in

fusion; 0.4060.06 fusion events/cell cycle, n = 200 cells; Figure 1A,

Movie S1). Fission of aggregates was rare (0.00660.005 events/

cell cycle), and disappearance of aggregates was not observed

(n = 498 cells). We tracked individual aggregates on time scales

from milliseconds to tens of minutes and observed dynamics

suggesting diffusive motion (Figures 1B and S2C–F and Movie S2).

To test whether aggregate movement was diffusive and not

linked with the movement of other subcellular components, we

performed a combination of tests, which confirmed that aggregates

(1) move according to Stokes diffusion (Figure 1B, inset), (2) do not

co-localize with the cytoskeleton (actin or microtubules) or a wide

range of lipid structures (cellular membrane, endosomes, Golgi,

vacuoles, and nuclear membrane) (Figure S2G and S2H), and (3)

still undergo diffusion and fusion when the cytoskeleton is

depolymerized (Figures S2I–K; see also Text S1).

We next studied how aggregates are segregated between cells

at division. Because aggregates nucleate and move randomly,

we hypothesized that sister cells arising from a morphologically

symmetrical division inherit the same number of aggregates on

average. Indeed, the aggregates did not segregate specifically to a

cell inheriting the new or the old pole (Figure S2B; the small bias

can be a consequence of the displacement of aggregates towards

the old pole by the nucleus during anaphase). In the wild type, the

two equally sized sister cells inherited on average the same number

of aggregates (Figure 1C and 1D). Because asymmetric cell

division may lead to biased segregation of aggregates towards the

larger sister cell, we enforced asymmetry in cell division by using a

Dpom1 mutant, in which the division plane is displaced off-center,

resulting in two cells of different size [17]. We observed that cells

were up to 70% larger than their smaller sisters, and larger cells

retained correspondingly more aggregates (Figure 1C and 1D and

Movie S3). These results show that aggregate segregation in S.

pombe is unbiased. We conclude that aggregate nucleation and

movement is random, resulting in random aggregate segregation

at division.

The Stochastic Aggregation Model Predicts Unbiased
Aggregate Segregation at Cell Division

Based on our experimental observations, we developed a

stochastic aggregation model (Figure 2A) that allows for the

simulation of aggregate size distributions (Figure 2B), which can be

compared with the experimentally observed size distributions

(measured by the intensity of Hsp104-GFP in each puncta, a.u.). A

key feature distinguishing the proposed model from other models

[18–20] is that aggregate segregation asymmetry is an output

rather than an input of our model.

Three key processes operate on size distributions of aggregates

in each of the two compartments of a cell (Figure 2A): (1)

generation of the smallest size aggregates at rate r; (2) fusion of

aggregates of sizes i and j at rate K(i,j) to create an aggregate of size

i+j; and (3) random segregation of aggregates to two new

compartments at division. We use the Brownian kernel:

K i,jð Þ~k i1=3zj1=3
� �

i{1=3zj{1=3
� �

=4, ð1Þ

where k = K(1,1) is a parameter to be determined. This well-

established kernel [21,22] can be derived from Brownian

diffusion of aggregates with Stokes friction, a fusion rate

increasing in proportion to the sum of the aggregates’ radii,

and aggregate packing such that size (volume) is proportional to

radius cubed. In this manner, the effect of spatial diffusion on

fusion rate is incorporated into the model, without explicitly

simulating spatial diffusion [9]. We introduce a visibility threshold

n below which aggregates cannot be detected by wide-field

fluorescence imaging (Figure S3A). A visible nucleation event

occurs when two nondetectable aggregates fuse, forming a

detectable one.

Generation and fusion of aggregates within compartments were

simulated with a stochastic aggregation algorithm [23], which in

turn was embedded within another algorithm that implemented

random aggregate segregation among compartments at division

(Text S1). The testable predictions of our model are (i) large

aggregates are rare, while small ones are more abundant; (ii) an

Author Summary

During their lifetime, cells accumulate damage that is
inherited by the daughter cells when the mother cell
divides. The amount of inherited damage determines how
long the daughter cell will live and how fast it will age. We
have discovered fusion of protein aggregates as a new
strategy that cells use to apportion damage asymmetri-
cally during division. By combining live-cell imaging with a
mathematical model, we show that fission yeast cells
divide the damage equally between the two daughter
cells, but only as long as the amount of damage is low and
harmless. However, when the cells are stressed and the
damage accumulates to higher levels, the aggregated
proteins fuse into a single clump, which is then inherited
by one daughter cell, while the other cell is born clean.
This form of damage control may be a universal survival
strategy for a range of cell types, including stem cells,
germ cells, and cancer cells.
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increase in the number of aggregates at cell birth gives rise to a

decrease in aggregate nucleation and (iii) to an increase in fusion;

(iv) at cell division, the pattern of aggregate segregation into the

daughter cells is between a completely symmetric and a random

one; and (v) aggregate fusion increases their segregation asymme-

try at cell division and promotes the birth of aggregate-free cells.

These model predictions are general features of the model

behavior and are not dependent on specific parameter values.

We will now compare predictions i–iv with our experimental

results. Prediction v will be tested in the response-to-stress

extension of the model described below.

The experimentally measured size distribution of aggregates

shows that small aggregates are found more frequently than

large ones (Figure 2B), confirming prediction i. Whereas the

experimentally measured number of fusion events increases

with the total number of aggregates (Figure 2C), the number of

nucleation events shows the opposite trend (Figure 2D),

confirming predictions ii and iii. The model therefore shows

that in the presence of a high number of visible aggregates, an

invisible aggregate is increasingly likely to fuse with a visible

aggregate rather than fusing with another invisible aggregate

to create a visible aggregate, which is observed as nucleation.

Parameter values were then fitted (Figure S3A) to obtain

quantitative as well as qualitative consistency for these three

predictions (Text S1). The parameter values were additionally

corroborated by theoretical arguments (Text S1).

The parameterized model predicts a pattern of aggregate

segregation at cell division by aggregate number that is between

completely symmetric segregation, where the difference in the

aggregate number is the minimal possible, and fully random

segregation, where each aggregate can segregate to either of

the two newborn cells, corresponding to the model without

compartmentalization. The experimentally measured segregation

pattern closely matches that predicted by the model, thereby
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Figure 1. Aggregates move by diffusion and segregate proportionally to the cell volume. (A) Aggregate movement and fusion in control
cells and after cytoskeleton depolymerization (Latrunculin B and MBC); kymographs (space-time plots, right). The fusion of two aggregates (arrows at
09) is marked by an asterisk. (B) Mean squared displacement (MSD) of aggregates in control cells grouped by area (see labels) and a weighted fit
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confirming prediction iv (Figure 2E). Thus, our results do not

support a biased segregation (by compartment) of aggregates in

fission yeast.

Aggregates Fuse Before Segregating Asymmetrically
Under Stress Conditions

If the average aggregate amount formed per cell cycle is

substantially less than the amount which affects cell growth (death

threshold ‘‘d’’, 5 a.u.) [6], symmetric segregation at division is

sufficient to dilute the aggregates and allow survival, but if the

average amount is more than what would be required to kill both

daughter cells, asymmetric segregation may be necessary for one

of the daughter cells to survive.

We tested the effect of a range of aggregate levels on segregation

dynamics and on cell viability. To increase the aggregate amount,

we used stress conditions such as oxidative stress (H2O2) and

transient or continuous heat stress (T = 40uC) (Figure 3A). Both

types of stress increased the number of aggregate nucleation and

fusion events (Figure 3B). As in the control situation, aggregate

movement after heat stress was consistent with Stokes diffusion

(Figure S4A and S4B) and 97 out of 103 aggregate contacts

resulted in fusion. During recovery from stress, aggregates did not

co-localize significantly with actin structures or microtubules

(Figure S4C). As under control conditions (Figure S2J), nucleation

and fusion of aggregates after stress occurred also in the absence of

actin or microtubule structures (for cells treated with Lat.B or

MBC, 94/102 or 90/97 contacts resulted in fusion, respectively;

Figure S4D). Remarkably, fusion converted the aggregates into

a single large one within the first few cell cycles after stress

(Figure 3A). This single aggregate was asymmetrically segregated

to one of the sister cells at division (Figure 3A), while the other

sister cell was born without aggregates (segregation was not biased

towards the old or the new cell pole; Figure S4E). Cells with an

aggregate amount greater than d typically died (28/49 cells),

whereas their sisters survived (48/49 cells), indicating that the

clearance of aggregates through asymmetric segregation is

or
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important for viability. To address whether the aggregate number

has an effect on the cell cycle [7] of cells born with similar aggregate

amounts, we compared the division time of cells inheriting only one

aggregate with that of cells inheriting two or more aggregates

(Figure S4F). We observed no significant difference in the division

time of cells containing one or more aggregates (Figure S4F), which

agrees with our previous observation that the total aggregate

amount correlates more strongly with cell death than aggregate

number [6].

To test whether the transition to asymmetric segregation could

be reproduced theoretically, we introduced stress into the model,

using the parameters fitted for control conditions. We raised the

aggregate generation rate r to obtain the experimentally observed

aggregate nucleation upon heat stress (Figure 3B) in one simulated

cell cycle, and then returned r to the control value and simulated

for another cycle before the first cell division (r values are shown in

Figure S3A), to account for the duration of the experimental

stress recovery. The experimentally observed size distributions

(Figure S4G), dependence of fusion on the number of aggregates

(Figure S4H), and aggregate segregation patterns (Figure S4I) were

consistent with the model including stress, indicating that the

model is robust. The model shows a 10-fold increase in the

number of fusion events compared to the control situation, which

is explained by the increased aggregate number (Figure S4H).

Fusion causes a shift toward large aggregate sizes after stress, and

faster recovery to the control size distribution for small aggregate

sizes at division 2, in both model predictions and experimental

results (Figure S4G). Thus, the stochastic aggregation model is

consistent with the observed aggregate behavior after stress.

To understand which segregation modes maximize daughter

cell survival for a given total aggregate amount, we model the

effect of the segregation asymmetry on cell survival by assuming

that, as observed experimentally [6], a cell dies if it has a total

aggregate amount at birth above the death threshold d. This leads

to three distinct optimal segregation regimes that maximize the

number of surviving cells: (1) any segregation asymmetry when the
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total aggregate amount at division is below d, (2) low segregation

asymmetry when the amount is between d and 2d, and (3) high

asymmetry when the amount is above 2d (Figure 3C, scheme and

corresponding gray regions in graph).

The model predicts that fusion facilitates asymmetric segrega-

tion in response to different levels of stress, where high asymmetry

is optimal (Figure 4C, filled circles). This behavior was also

observed experimentally for a range of stresses (Figure 4C, filled

squares). We observed that in divisions 2 and 3 after stress, the

percentage of cells born without aggregates was higher for

stress conditions that originated in a higher aggregate amount

(Figure S4J). This phenomenon can be explained by the higher

number of fusion events observed for high stress levels (e.g., heat

stress as opposed to oxidative stress; Figure 3B), which can result

in the faster generation of a single large aggregate. Once large

aggregates are formed, nucleation of aggregates decreases in

favor of the growth of the large aggregates: as observed for

unstressed cells (Figure S4C), the nonvisible aggregates have a

higher probability to fuse with large preexisting aggregates.

We conclude that in response to increased aggregate amount,

an increase in fusion leads to fewer aggregates and thus more

asymmetric segregation, which promotes the formation of

aggregate-free cells.

Hsp16-Mediated Aggregate Fusion Facilitates
Asymmetric Segregation

The model predicts that reducing fusion decreases segregation

asymmetry (Figure 3C, empty circles). To test the prediction, we

needed to identify a molecular factor that would reduce fusion.

Small heat shock proteins are a special class of chaperones, which

bind and sequester misfolded proteins [24]. The fission yeast small

heat-shock protein 16 (Hsp16) was described to co-aggregate with

misfolded proteins during stress [25]; therefore, we hypothesized

that Hsp16 has a role in the fusion of aggregated proteins in vivo.

Indeed, we observed that when we deleted Hsp16, the number of

aggregate contacts resulting in fusion decreased (Figure 4A and

4E) and aggregate fusion per cell cycle also decreased (Figure 4B),

which correlated with an increase in the number of cells

containing aggregates in the population (Figure S4M). Aggregate

nucleation (Figure 4C) and fission (Figure 4D) per cell cycle was

not significantly altered in the absence of Hsp16. The total amount

of aggregates was unaffected by the deletion of Hsp16 (Figure

S4L), which argues against the possibility that in the absence of

Hsp16 there are generally more damaged proteins. Thus, Hsp16 is

primarily an aggregate fusion factor.

The decrease in fusion efficiency was specific to Hsp16 deletion,

as deleting Hsp40 or Hsp70, molecular chaperones that partici-

pate in protein disaggregation [26], did not interfere with fusion or

fission significantly (Figure 4A, 4B, and 4D). Contrary to Hsp16

deletion, deleting Hsp40 or Hsp70 caused an increase in aggregate

nucleation (Figure 4C) and total amount per cell (Figure S4L),

whereas an increase in total aggregate number per cell was

observed in all three deletions (Figure S4M). Taken together, these

results suggest that the increase in the number of aggregates in

Dhsp16 cells compared to the wild type is a consequence of

reduced fusion.

We proceeded to test the prediction of the model in the strain

deleted for Hsp16. We observed that decrease in fusion resulted in

a decrease in the segregation asymmetry of aggregate amount

(Figure 4F and 4G), as expected from the model where, as a

qualitative approximation, aggregates were not allowed to fuse

after stress (Figure 3C). The model including aggregate fusion also

precisely predicted the fraction of cells born without stress-induced

aggregates at each division after stress in the wild type (Figure 4H).

Remarkably, in spite of the fact that 10 aggregates on average

were formed after stress (Figure 3B), by the second and third

division, ,15% and 50% of the cells were born clean of

aggregates, respectively (Figure 4H). Importantly, when the

aggregates were not allowed to fuse in the model including stress,

the fraction of cells born free of aggregates was halved (Figure 4H).

Parameter sensitivity analysis shows that the fraction of cells born

clean after stress is highly sensitive to the strength of the fusion

process during recovery (k), and is also decreased by a faster

generation of aggregates (r) during stress (Figure S3B), as would be

intuitively expected. The average number of aggregates per cell

immediately after stress is increased by generation during stress (r)

and decreased by fusion combining aggregates together (k) (Figure

S3C). Both the fraction of cells born clean and the number of

aggregates after stress are insensitive to the generation rate and

fusion rate before stress was applied, as well as to the number of

aggregates with which the first cells in the simulations were

initialized.

As predicted by the model without fusion, we observed in the

experiments a ,50% decrease in the fraction of aggregate-free

cells in Dhsp16 compared to wild-type cells (Figure 4H), which

correlated with an increase in the fraction of dead cells after heat

stress (1762% in Dhsp16 versus 961% in wild type, mean 6

SEM, n = 123 and 140 cells, respectively). We conclude that fusion

facilitates asymmetric damage segregation and accelerates the

generation of cells clean of stress-induced aggregates, as stated in

prediction v described above.

Discussion

In this study, we show that fusion of aggregated proteins into a

single large unit is sufficient to establish asymmetric segregation of

damage, thereby generating a cell clean of aggregates. Below we

Figure 4. Hsp16 is required for efficient aggregate fusion, which facilitates asymmetric segregation and generation of cells clean of
aggregates. (A) Quantification of the percentage of contact events between two aggregates which resulted in fusion. Nucleation (B), fusion (C), and
fission (D) events per cell cycle in the wild-type strain and in the strains in which Hsp16, Hsp40, or Hsp70 was deleted (statistical difference between
wild type and mutants: **p,0.01). (E) Time-lapse of aggregate movement in the wild type and the strain where Hsp16, Hsp40, or Hsp70 was deleted
(arrows mark aggregates, magenta indicates contact between aggregates, green corresponds to fusion). In the kymographs, fusion events are visible
as the merging of two aggregates (two traces merge into one thicker trace; magenta lines on top correspond to time interval depicted in panels). In
the Dhsp16 mutant, a contact event does not give rise to fusion, and the aggregates remain separated. (F) Aggregate segregation in wild-type and
hsp16 deleted strains, under control and heat stress conditions. (G) Aggregate amount of asymmetry in wild-type and a Dhsp16 strain (in which
fusion was reduced; see labels and regions 1–3 depicted in Figure 3C). Error bars on the control data are not visible because they are smaller than the
circles representing the data. (H) Fraction of cells born without aggregates at the first three divisions after stress (see labels). The data in (A–D), (G),
and (H) are mean 6 SEM; number of aggregate contact events or cell cycles from .3 independent experiments are given in the graphs. In (E) and (F)
thin lines encircle cells; scale bars, 1 mm. (I) Summary: stress increases nucleation of aggregates, leading to an increased number of aggregates per
cell. Fusion decreases the total aggregate number to a single large aggregate, forcing its asymmetric segregation. This results in the birth of a clean
cell. See also Figure S4.
doi:10.1371/journal.pbio.1001886.g004
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explore how fusion compares to other mechanisms described to

establish asymmetric segregation at cell division, and how fusion

might represent a general strategy for asymmetric segregation of

cellular components.

Asymmetry in Response to Damage
We have demonstrated that the symmetrically dividing cells of

S. pombe undergo a transition to highly asymmetric segregation of

protein aggregates, which is facilitated by aggregate fusion. As we

observed that aggregates occur in the absence of Hsp104, both

under favorable and stress conditions (Figure S1F–H), fusion is

likely occurring for aggregated proteins in general, and is not

specific of Hsp104-associated aggregates.

In response to increased aggregate nucleation, two distinct

mechanisms—stochastic movement and chaperone-mediated

fusion of aggregates—combine to generate a single large unit of

damage, which has to be segregated asymmetrically, resulting in

the birth of a damage-free cell (Figure 4I). Creation of a single

large unit requires extensive fusion, which is promoted by an

increase in the number of aggregates and a higher Hsp16

chaperone level (Figure S1F), as a consequence of heat stress [27].

It is possible that fusion has a cytoprotective effect [28] by merging

the aggregates in a single unit, such as during the first two

cell cycles following stress recovery, before a clean cell is born.

However, irrespective of the number of aggregates, if the cell is

born with a total aggregate amount above the death threshold, this

cell is likely to die [6].

Due to the geometry of cell division in S. pombe, the asymmetry

in segregation can only be established at the second division after

stress. This becomes clear when considering the extreme scenario

where all aggregates fuse into a unit in both cell compartments

within the first cell cycle after stress. In this case, each sibling

receives one large aggregate after the first division. In the second

division, 50% of cells inherit this single aggregate, while their

sisters are born clean. This, however, occurred only in a smaller

percentage of the cells. The cells took, on average, one extra cell

cycle to generate an aggregate-free cell, at the third division. This

delay may be because the frequency of aggregate fusion events

decreases over the first and second division, as the total number of

aggregates is reduced. It is likely that the activated stress response

promotes survival of cells with a high total aggregate amount for

more than two divisions after stress, to ensure survival until cells

with nonlethal amounts of aggregates are generated.

Fusion as a Conserved Mechanism of Damage
Segregation

How do protein aggregate dynamics and segregation in S. pombe

compare to those in other organisms? In S. cerevisiae and in kidney

and ovary cells, aggregates are anchored to or transported by the

cytoskeleton [8,10,29,30] and localize to functionally distinct

protein quality control compartments [11,13,31,32], which may

also be involved in the asymmetric segregation of aggregates

[11,12]. In budding yeast, the sorting of misfolded proteins into

these compartments is dependent on a small heat-shock protein,

Hsp42 [12,14,31]. Hsp42 carries an N-terminal extension, which

may promote anchoring of aggregates to the cytoskeleton [14]

or membrane compartments [11], thus ensuring their selective

retention in the mother cell. Small heat-shock proteins in S. pombe,

however, lack this N-terminal domain and do not interact with the

cytoskeleton or organelles, which agrees with our observation that

aggregate movement is random. The specific role of Hsp16 in

aggregate fusion and cell survival after stress [6] suggests that

fusion is a regulated process that is essential for the cell, as opposed

to the consequence of an unregulated aggregate seeding process,

observed in cells lacking Hsp40 or Hsp70. Taken together,

these findings suggest that an organisms’ mode of cell division—

morphologically symmetric versus asymmetric—generates specific

evolutionary constraints, which may be counterbalanced by the

invention or refinement of molecular pathways for concentrating

and inheriting protein aggregates.

While in S. cerevisiae [11–13] and mammalian neurons [29]

aggregates associate with subcellular structures, in E. coli and

neuroblast cells aggregates localize to nucleoid-free [33] or organelle-

free cytoplasmic regions [34], respectively. A common aspect of

aggregate behavior in all these different systems is movement—

either by diffusion [9,28,31,35] or active transport [8,29]—which

may allow for contacts and fusion between aggregates to occur.

Therefore, fusion might be a conserved mechanism that contributes

to asymmetric segregation of aggregates.

Fusion as a General Mechanism for Asymmetry
Fusing a number of molecules/components in a cell represents

an opportunity to segregate asymmetrically. In mathematical

terms, fusion increases the difference between the number of

aggregates inherited by daughter cells at segregation. While low

numbers of a component that is randomly segregated at division

assures a higher variability in individual cells in the population, the

formation of a unitary component assures a complete asymmetry

in segregation that might be important when minimizing damage

or maximizing resources. Fusion might also be a mechanism to

establish asymmetry in the localization of aggregated functional

molecules within the cell [36,37], as an increase in the size of the

aggregate will lower its diffusion or cause it to be physically

trapped between large organelles. The concept of fusion as a

mechanism to achieve asymmetry may extend to other phase-

partitioned molecules, such as prions [38], metabolic enzymes

[39,40], or RNA granules [41]. In general, fusion of cellular

factors may represent a general mechanism to achieve asymmetric

localization and segregation at cell division.

Materials and Methods

Fission Yeast Culture and Genetic Manipulation
Cells were grown as described before [42]. For imaging, cells

were transferred to a MatTek dish (MatTek, Ashland, USA) and

imaged in liquid media (YE5 or EMM) or covered with a solid

agarose pad (YE5-4% Agarose, SeaKem, Hessisch Oldendorf,

Germany) at 30uC. For stress resistance, assays cells were treated

with water, as a control, or oxidative stress with 1 mM H2O2

(Sigma-Aldrich, Hannover, Germany) followed by growth at

T = 30uC (70% of cells undergo mitosis, n = 30), heat stress of 40uC
for 30 min followed by growth at T = 30uC (67% of cells undergo

mitosis, n = 30), or continuous heat (stress of 40uC for 1 h followed

by growth at 37uC, 53% of cells undergo mitosis, n = 30). Under

favorable conditions, 99.7% of cell complete mitosis successfully

[6]. Strains were constructed using a PCR-based gene targeting

technique [43], where the label was inserted in the C-terminal

region of the target gene in the native genomic locus, keeping it

under the control of native expression regulators.

Imaging Protein Aggregates Labeled with Hsp104-GFP
Cells were imaged in a DeltaVision core microscope, with

a motorized XYZ stage (AppliedPrecision, USA). An Olympus

UPlanSApo 1006 1.4 NA Oil (R.I. 1.516) immersion objective

was used (Olympus, Tokyo, Japan). The illumination was provided

by a LED (transmitted light) and Lumicore solid-state illuminator

(SSI-Lumencore, fluorescence), and the images were acquired with

a Cool Snap HQ2 camera (Photometrics, Tucson, AZ, USA) and
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the SoftWorx software (AppliedPrecision, USA), using 262 pixel

binning, to minimize light exposure (pixel size = 0.1288 mm). For

long-term time lapse imaging, Z-stacks for 6–12 nonoverlapping

imaging areas in the sample were acquired every 10 min

(total time = 20 h) and in short time-lapses every minute (total

time = 1–3 h). For single Z-stacks cells were imaged with

exposure = 0.05–0.20 s, 2%–50% transmission, depending on

the protein and fluorescent label. As a control for photo-toxicity,

cell cycle duration and protein aggregate number were measured

and found similar in the presence and absence of continuous

illumination.

To quantify the total number of aggregates and to visualize

small fast-moving aggregates and fusion events, we used highly

inclined and laminated optical sheet microscopy (HILO) [44] with

a high laser power, on a total internal reflection fluorescence

(TIRF) microscopy setup. Whereas TIRF illuminates up to

200 nm from the surface of the coverslip, HILO allowed us to

image deeper in the cytoplasm, up to a depth of about 1.5 mm

[44]. An Olympus-IX71 (Olympus, Tokyo, Japan) inverted

microscope was used. Incidence angle of a DPSS 491 nm laser

was changed to allow for excitation of the fluorophores in the

sample up to 1 mm deep (1/3 of the cell volume was illuminated).

Cells close to the glass surface of a MatTek dish (MatTek, Ashland,

USA) were imaged, one at a time, with continuous excitation and

laser power of 80% for fast imaging (200 frames/s, duration 20 s)

and 10% for slow imaging (10 frames/s). An Olympus PlanApo

10061.45 NA TIRFM objective (Olympus, Tokyo, Japan) and an

Andor iXon EM+ DU-897 BV EMCCD (Andor, Belfast, UK)

camera were used. Images were acquired while incubating the

cells in EMM at 25uC, in order to decrease autofluorescence.

Co-Localization Between Protein Aggregates and
Subcellular Structures

Protein aggregates and subcellular structures were imaged

simultaneously to test for co-localization and coordinated move-

ment using bright field, a complementary set of fluorescent

proteins (GFP, RFP, or mCherry) and dyes (Phalloidin and FM-

464). We labeled protein aggregates indirectly with Hsp104-GFP

or Hsp104-mCherry. Bright field was used to directly visualize cell

poles and the division plane. Actin was indirectly labeled in vivo by

expressing a calmodulin domain coupled to an N-terminal GFP

(GFP-CHD) and directly labeled ex vivo in formaldehyde fixed

cells with 2.5 mM phalloidin. Microtubules and the microtubule

nucleating center (the spindle-pole body, SPB) were directly

labeled using two structural components, atb2-mCherry and sid4-

RFP, respectively. The nuclear membrane was directly labeled

with bqt4-mCherry, an integral nuclear membrane protein.

Incubating cells in 1 mM FM-464 for 10 h resulted in the direct

labeling of several lipid structures [45] (cellular membrane,

vacuoles, endosomes, and the Golgi complex).

Supporting Information

Figure S1 Hsp104 interacts with aggregated proteins in S. pombe,

and its disaggregase activity decreases aggregate number in vivo. (A)

Images of cells expressing Hsp104-GFP and Hsp16-, Hsp70-,

Gln1-, Gly1-, and Cts1-mCherry, respectively, under control

and heat stress (40uC for 30 min). (B) Co-localization (white,

marked with asterisks) of Hsp104 (green) and enzyme/chaperone

puncta (magenta) was .90%. (C) Percentage of Hsp104 puncta

containing a specific enzyme/chaperone or chaperone. (D) Puncta

number per cell, control (white) and heat stress (grey). (E)

Immunoprecipitation of Hsp104 with an anti-GFP antibody

targeting Hsp104-GFP. Gln1 and Cts1 specifically co-immuno-

precipitated with Hsp104 (see labels). (F) Fluorescence images

of cells expressing Hsp16-GFP or Hsp70-GFP under normal

conditions or upon heat stress (40uC for 1 h). Wild-type strains

are compared to Hsp104 deletion strains. (G) Quantification of

puncta number in cells shown in (F) (see labels). (H) Fluorescence

microscopy of cells expressing mCherry-labeled aggregation-prone

enzymes under control conditions, after heat stress and in a strain

where Hsp104 was deleted. (I) Quantification of puncta number in

cells shown in (H) (see labels). Data are shown as mean 6 SEM;

number of cells are given in the graphs. Thin lines are used to

indicate cell boundaries; scale bars, 1 mm.

(EPS)

Figure S2 Protein aggregates move by diffusion, are not

associated with the actin or microtubule cytoskeleton, and nucleate

and fuse when the cytoskeleton is absent. (A) Aggregate nucleation

(white stars) occurs in the cellular compartments on either side of

the nucleus (old pole corresponds to the larger sister cell; new pole

corresponds to the smaller sister cell). (B, Left) Average aggregate

nucleation in each cellular compartment per cell cycle and average

number of aggregates segregated to each sister cell and (Right)

segregation of the aggregate in cells that contained only a single

aggregate, to old or new pole cells. The p values for a t test are

shown. (C) MSD of the aggregates shown in Figure 1B for a longer

time scale (range of tens of minutes). The aggregates of different

size classes seem to undergo subdiffusion for longer time scales

(around 2,000s). (D) Time-lapse of Total Internal Reflected

Fluorescence (TIRF) images showing Hsp104-GFP–labeled pro-

tein aggregates, in the presence and absence of cytoskeletal

components, and the corresponding kymographs. On this fast time

scale, small aggregates (asterisk) move, whereas large aggregates

appear immobile. (E) MSD of small aggregates (corresponding to

the fraction below the visibility threshold in the model, (n) tracked

with a time resolution of 5 ms as a function of Dt. A weighted fit to

the equation MSD = 4DDt + offset (green) yielded a diffusion

coefficient (D) of 0.1 mm2/s. Fitting with a nonlinear equation

(MSD = v2(Dt)2 + 4DDt + offset, directed motion) yielded a worse fit

(adjusted r2
(linear, 0–0.1 mm2) = 0.925 r2

(nonlinear, 0–0.1 mm2) = 0.851). (F)

Small aggregates (panel; dashed circles) that are not visible by

conventional wide-field microscopy were quantified (graph; the

number of aggregates was multiplied by 3, as we imaged roughly

1/3 of the total cell volume with TIRF). (G, Left) Localization

of Hsp104-GFP aggregates (green) with respect to subcellular

structures: cell poles, bright-field image; nucleus, bqt4-mCherry;

lipid vesicles, 1 mM FM-464; actin cables, calmodulin-GFP

(GFP-CHD); actin patches, phalloidin 2.5 mM (formaldehyde

fixed cells); microtubules, atb2-mCherry; spindle pole body, sid4-

RFP. (Right) Quantification of co-localization between aggregates

and the corresponding cellular structure (1 or 2 aggregates/cell,

70,n,320 cells). (H) Time-lapse overlay of aggregates (white,

green) and subcellular structures (magenta) during the cell cycle

(as described in G). The cellular structures observed do not

move coordinately with the aggregates. (I) MSD (black dots) of

aggregates tracked with a time resolution of 1 min grouped by

size (see labels) after actin (Left) or microtubule (Right)

depolymerization, as a function of Dt. A weighted fit to the

equation MSD = 4DDt + offset (lines) yielded a better fit than a

weighted fit with a nonlinear equation (MSD = v2(Dt)2 + 4DDt +
offset, directed motion; adjusted r2

(linear, Lat.B, 2–5 mm2) = 0.950,

r2
(nonlinear, Lat.B, 2–5 mm2) = 0.947; adjusted r2

(linear, MBC, 2–5 mm2) = 0.947,

r2
(nonlinear, MBC, 2–5 mm2) = 0.477). (J, Left) Actin depolymerization after

Latrunculin B and (Right) microtubule depolymerization after MBC

treatment. The actin cytoskeleton was also disrupted upon heat stress

(see labels). (K) Quantification of nucleation and fusion events in the

absence of the actin or microtubule cytoskeleton (see labels). Data are
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shown as mean 6 SEM; number of cells are given in the graphs. Thin

lines encircle cells; scale bars, 1 mm.

(EPS)

Figure S3 Sensitivity test of the model parameters. (A)

Parameters of the model. Data are shown as mean 6 SEM;

number of cells are given in the graphs. The sensitivity of two key

model outputs, (B) the fraction of cells born clean at division 3 after

stress, and (C) the average number of aggregates per cell

immediately after stress, to variations in the parameters indicated.

Sensitivity is calculated as (% change in output/% change in

parameter).

(EPS)

Figure S4 Dynamics of individual protein aggregates after stress

is similar to favorable conditions. (A) Aggregate movement after

stress. Fusion events (cross) are shown in the kymograph. (B) MSD

of aggregates after stress grouped by size as a function of Dt (for

control, see Figure 3B). A weighted fit to the equation MSD = 4DDt

+ offset (lines) yielded a better fit than a weighted fit with a

nonlinear equation (MSD = v2(Dt)2 + 4DDt + offset, directed motion,

adjusted r2
(linear, 2–5 mm2) = 0.964, r2

(nonlinear, 2–5 mm2) = 0.661).

Similarly to the control situation, aggregates move by diffusion

after stress. (C) Quantification of co-localization of actin (GFP-

CHD, green, strain MC193, n = 120 aggregates, 20 cells) and

microtubules (mCherry-atb2, magenta, strain MC198, n = 132

aggregates, 20 cells) with Hsp104-associated aggregates after heat

stress. (D) Quantification of nucleation and fusion events after stress

in the absence of the actin (Lat.B) or microtubule (MBC)

cytoskeleton. Nucleation and fusion were not affected by the

absence of these cytoskeletal structures. (E, Left) Segregation of

Hsp104-GFP–associated aggregates to the new (smaller sister cell)

or old (larger sister cell) cell poles in the first and second division

after heat stress. (Right) Quantification of aggregates segregated to

the corresponding cell (see labels). (F) Correlation between

aggregate number and division time (normalized by corresponding

generation after stress; left, oxidative stress; right, heat stress),

for cells inheriting a similar amount of aggregates at birth

(nOxidative stress = 67 cells, nHeat stress = 108 cells, p values repre-

senting statistical difference between cells carrying one aggregate (1)

or more than one aggregate (.1): *p,0.05, **p.0.05). There was

no significant difference in the division time of cells born with

different aggregate number. (G) Size distributions of aggregates per

cell immediately after stress (t0), in the second division after stress

(Div.2), and in the control population (model and experiments, see

legend). (H) Number of fusion events during the first cell cycle after

stress is plotted against the number of aggregates present in the cell

immediately following stress from the experiment (n .30 cell cycles

for each point, green) and model (black). The increase in aggregate

number correlates with an increase in fusion events per cell cycle. (I)

Aggregate segregation asymmetry at the first two divisions after

heat stress (T = 40uC, 30 min), |n12n2|, as a function of the

number of aggregates at division (n1+n2), where n1 and n2 are the

numbers of aggregates in the sister cells, in the experiment and

the model. (J) Percentage of cells born without stress-induced

aggregates, after a fixed number of divisions after stress. (K)

Hsp104-GFP–labeled protein aggregates in wild-type cells and

mutants under favorable growth conditions (see labels). (L)

Aggregate amount per cell, in the wild-type cells and Hsp16,

Hsp40, and Hsp70 deletion mutants. (M) Aggregate number

distribution, per cell, in the wild-type cells and Hsp16, Hsp40, and

Hsp70 deletion mutants (p values representing statistical difference

between wild type and mutants: *p,0.05, **p,0.01). Data are

shown as mean 6 SEM; number of cells are given in the graphs.

Thin lines encircle cells; scale bars, 1 mm.

(EPS)

Movie S1 Aggregates nucleate, fuse, and grow in the same

cytoplasmic compartment during the cell cycle. Nucleation events

are shown by the appearance of puncta (Hsp104-GFP, black) and

fusion events occur by the merging of two puncta. Aggregates do

not cross over from the cytoplasmic space on one side of the

nucleus to the other during the cell cycle. The strain used for

imaging was MC19 (Table S1). On the left, a bright-field image of

the cells and on the right a maximum intensity projection of a

z-stack of 10 images, acquired every minute. Movie is displayed at

7 fps. Time is shown in minutes; scale bar, 2 mm. (avi, 0.7 MB).

(AVI)

Movie S2 Aggregates move by diffusion in the cytoplasm. The

movement of Hsp104-GFP–labeled aggregates (black dots) in short

(Left, TIRF) and long (Right, conventional wide-field) time scales

is shown. Fast moving small aggregates are visible, while large

aggregates move slower, which is indicative of diffusive movement.

The strain used for imaging was MC19 (Table S1). The movie on

the left is a maximum intensity projection of five single plane TIRF

images acquired at 200 fps. The movie on the right is a maximum

intensity projection of a z-stack of 10 images, acquired every

minute. Movies are displayed at 7 fps. Time is shown in seconds;

scale bars, 2 mm (avi, 0.7 MB).

(AVI)

Movie S3 Aggregate segregation symmetry depends on the

morphological symmetry of cell division. Hsp104-GFP–labeled

aggregates segregate at division in cells that divide off-center

(Dpom1). A higher number of aggregates (Hsp104-GFP, green)

segregated to the larger sister. The strain used for imaging was

MC75 (Table S1). An overlay between a bright-field image of the

cells and a maximum intensity projection of a z-stack of 10 images

acquired every 10 min is shown. Movie is displayed at 7 fps. Time

is shown in minutes; scale bar, 5 mm (avi, 0.5 MB).

(AVI)

Text S1 Supporting text for experimental and theoretical

procedures. (1) Supporting experimental procedures: this section

contains the specific details of the experimental methods. (2)

Supporting theoretical procedures: this section contains the

mathematical description of the model for aggregation and

aggregate segregation, including the relevant equations. A full list

containing the genotype of the strains is available in Table S1.

(DOCX)
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