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The intriguing links between prominin-1 (CD133), cholesterol-based
membrane microdomains, remodeling of apical plasma membrane protrusions,
extracellular membrane particles, and (neuro)epithelial cell differentiation
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Prominin-1 (CD133) is a cholesterol-interacting pentaspan membrane protein concentrated in
plasma membrane protrusions. In epithelial cells, notably neuroepithelial stem cells, prominin-1
is found in microvilli, the primary cilium and the midbody. These three types of apical membrane
protrusions are subject to remodeling during (neuro)epithelial cell differentiation. The protru-
sion-specific localization of prominin involves its association with a distinct cholesterol-based
membrane microdomain. Moreover, the three prominin-1-containing plasma membrane protru-
sions are the origin of at least two major subpopulations of prominin-1-containing extracellular
membrane particles. Intriguingly, the release of these particles has been implicated in (neuro)epi-
thelial cell differentiation.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

During development of the mammalian central nervous system
(CNS), neurons, astrocytes and oligodendrocytes arise from a com-
mon pool of neuroepithelial (NE) cells, the primary neural stem
cells, and their derivative progenitor cells [1,2]. Neural stem and
progenitor cell proliferation and their generation of specific, differ-
entiated cell types is a fundamental issue, and various aspects of
the underlying cell biology have been in the focus of recent inves-
tigations, including cell–cell signalling, cell polarity and cell divi-
sion. NE cells undergo mitosis at the ventricular (apical) surface
while keeping contact to the basal lamina [3–6]. At early stages
in development, i.e. before neurogenesis, NE cells found in the neu-
ral plate and neural tube proliferate to generate more NE cells.
These proliferative divisions are symmetric in that one NE mother
cell gives rise to two NE daughter cells, resulting in an exponential
increase in NE cell number. Upon the onset of neurogenesis, a ris-
ing proportion of NE cells and their derivative radial glial cells (col-
lectively referred to as apical progenitors) switch to differentiating
divisions which are thought to be asymmetric in that one apical
progenitor generates one apical progenitor and one post-mitotic
neuron or neuronally committed basal (intermediate) progenitor
[1,2].
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From a cell biological perspective, the switch of apical progeni-
tors from proliferative to neurogenic divisions is associated with (i)
a change in the distribution of apical domain constituents (proteins
of the apical cell cortex, apical junctional complexes and apical
plasma membrane) from a symmetric to an asymmetric inheri-
tance by the daughter cells [7–9], and (ii) the release of membrane
particles derived from apically protruding structures such as
microvilli, primary cilium and midbody [10,11]. Furthermore, con-
comitant with the switch, apical progenitors reduce the size of
their apical domain [7]. These findings have raised the interest in
apical domain constituents, notably those of the apical plasma
membrane proper, in the context of apical progenitor cell division.
Here, we review the characteristics of the apical plasma membrane
of apical progenitors, concentrating on one of its key constituents,
prominin-1/CD133, and discuss its membrane dynamics in light of
the cell biology of physiological neural stem and progenitor cells as
well as cancer stem cells.

2. Apical plasma membrane of neuroepithelial cells

2.1. Apical-basal polarity

A hallmark of the pseudostratified neuroepithelium is its apical-
basal polarity. As is the case for other polarized epithelial cells, a
characteristic feature of NE cells is the organization of their plasma
membrane into two major domains, the apical and basolateral
lsevier B.V. All rights reserved.
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domain, which exhibit a distinct protein and lipid composition
[1,5,12]. Insight into the generation and maintenance of plasma
membrane polarity has come from a large number of investiga-
tions, most of which have been carried out on classical epithelia
such as those found in kidney and intestine, and with cell lines de-
rived therefrom [13,14].

Remarkably, upon transition from the neural plate to the neural
tube stage, NE cells down-regulate occludin and lose functional
tight junctions [15], which are known to prevent the lateral diffu-
sion of membrane proteins between the apical and basolateral do-
mains, but nonetheless maintain a polarized distribution of certain
membrane constituents, notably prominin-1, an integral mem-
brane protein expressed on their apical surface as described in de-
tail below [16]. In contrast to occludin, expression of ZO-1, a
peripheral membrane protein found on tight as well as adherens
junctions, is up-regulated from the neural plate to the neural tube
stage. Similarly, the expression of N-cadherin increases concomi-
tant with the disappearance of occludin [15]. During the same
transitional period, a down-regulation of the polarized delivery
to apical plasma membrane proteins is observed [17]. This raises
the question as to the mechanism that underlies the maintenance
of the apical localization of certain membrane constituents such as
prominin-1 upon down-regulation of tight junctions. An answer to
this question appears to lie in the existence of plasma membrane
subdomains.

2.2. Apical plasma membrane subdomains

A distinct feature of the apical plasma membrane of NE cells is
the existence of protruding subdomains, notably microvilli, the pri-
mary cilium and the midbody (Fig. 1A). As in the case of absorptive
epithelial cells such as those found in kidney proximal tubules and
small intestine [18], NE cells show apical actin-based microvilli
which are separated by planar domains [16]. The apical surface
of NE cells also forms a primary cilium [11], a microtubule-based
structure common to most eukaryotic cells that acts as a sensory
organelle [19,20]. Remarkably, the abundance of apical microvilli
and the length of the primary cilium decrease with the onset of
neurogenesis [10,11]. In this context, it is interesting to note that
two signaling pathways known to regulate the proliferation versus
differentiation of progenitors have been linked to ciliary function,
sonic hedgehog (shh) and wnt signaling [5,20]. In addition, a third
membrane-enveloped structure protruding from the apical surface
is the midbody – a thin cytoplasmic bridge connecting the nascent
daughter cells that is formed at the late stage of cytokinesis as a re-
sult of cleavage furrow ingression and that contains the remnants
of the central spindle and contractile ring (Fig. 1A) [21]. It is
intriguing that on completion of cell division, the central cytoplas-
mic structure of the midbody, the so-called midbody ring, is inher-
ited asymmetrically by one of the daughter cells [22,23].

Prominin-1 is concentrated at all these three apical protruding
structures, a phenomenon observed even when NE cells have lost
functional tight junctions [10,11,16]. This indicates that other
fence mechanisms are operational in order to maintain the protru-
sion-specific localization of prominin-1 [24].

2.3. Apical plasma membrane microdomains

To gain further insight in this regard, and given that the apical
plasma membrane is one key feature of epithelial cells and accord-
ingly has been implicated in the proliferation versus differentiation
of NE cells [7], we have dissected the biochemical and morpholog-
ical properties of the prominin-1 in apical plasma membrane sub-
domains, notably microvilli and the primary cilium.

Prominin-1 is the first member of a novel evolutionarily con-
served pentaspan membrane glycoprotein family [16,25,26].
Although broadly expressed in various tissues [16,27,28], several
organ-specific somatic stem and cancer stem cells have been iden-
tified and isolated based on prominin-1 expression [29,30]. The
physiological function of prominin-1 remains elusive.

How is prominin-1 selectively retained within apical plasma
membrane protrusions of polarized epithelial cells? We have ad-
dressed this issue in two epithelial cell models, prominin-1-trans-
fected MDCK cells [24] and the human colon-carcinoma-derived
Caco-2 cells, which express prominin-1 endogenously [31], as
these cell lines are easy to manipulate and, importantly, reproduce
the morphological features of native epithelia expressing promi-
nin-1 [16]. Applying new chemical tools to preserve and detect
protein–lipid interactions, we have shown that the retention of
prominin-1 in the microvillar membrane reflects its association
with a novel cholesterol-based membrane microdomain in
which prominin-1 directly interacts with plasma membrane cho-
lesterol [32]. The latter interaction was demonstrated by photo-
affinity labeling using a photoactivatable analogue of cholesterol
[33].

Cholesterol-based membrane microdomains (also referred to as
lipid rafts) are thought to reflect liquid-ordered domains that are
more tightly packed than the surrounding phase of the membrane
bilayer [34]. They are enriched in sphingolipids and sterols present
in the exoplasmic membrane leaflet. Membrane cholesterol ap-
pears to be an essential structural player [35]. Such membrane
microdomains have been suggested to play a role in signal trans-
duction and a variety of membrane trafficking events (e.g. apical
delivery, membrane budding and fission) [36,37]. The classical bio-
chemical method used to determine the association of a given
membrane protein with such membrane microdomains is based
on its resistance to extraction with certain non-ionic detergents
(e.g. Triton X-100) at 4 �C [38,39]. Proteins associated with deter-
gent-resistant membrane complexes will float to low buoyant den-
sity fractions upon density gradient centrifugation in a cholesterol-
dependent manner [40].

The novel characteristic of the apically restricted, prominin-1-
containing membrane microdomains was revealed by our observa-
tion that this prominin-1 is solubilized in Triton X-100 but,
remarkably, recovered as detergent-resistant membrane com-
plexes upon extraction using another mild non-ionic detergent,
Lubrol WX, in the cold [32]. Mild cholesterol depletion performed
by adding methyl-b-cyclodextrin (mbCD) [41] was found to lead to
the fragmentation of the Lubrol WX-resistant membrane com-
plexes (as revealed by differential centrifugation) and to their loss
of buoyancy [32].

Because the results obtained from detergent-based analyses
may not necessarily reflect the native state of membrane microdo-
mains [42], we have complemented our biochemical data by mor-
phological investigations using light and transmission electron
microscopy [24,32]. In vivo cholesterol depletion performed in
the cold caused a striking redistribution of prominin-1 from an
exclusively microvillar localization to a more homogeneous distri-
bution over the entire apical plasma membrane. The effect of cho-
lesterol depletion was reversible since the re-feeding of cells with
cholesterol-loaded-mbCD restored the proper localization of prom-
inin-1 [32].

These observations suggest that membrane cholesterol is an
essential component of a distinct, prominin-1-containing mem-
brane microdomain, which plays an important role in the retention
of prominin-1 within plasma membrane protrusions [32]. This may
explain why prominin-1 maintains its polarized distribution in NE
cells at the neural tube stage, when tight junction function is
down-regulated. The solubility of prominin-1 in Triton X-100 is
not unique to this membrane protein since it was previously dem-
onstrated for numerous microvillar-associated hydrolytic enzymes
[43]. By contrast, certain apical membrane constituents such as



Fig. 1. Schematic representation of the current view on the apical plasma membrane of neuroepithelial cells and its remodelling during the process of cell differentiation.
Apical plasma membrane is depicted before (A) and after (B) the onset of neurogenesis. Three types of membrane protrusions (microvilli, primary cilium, midbody) and
possible pathways of formation of prominin-1-containing P2 and P4 membrane particles are indicated. Dashed lines in (B) indicate the site of membrane fission. Red indicates
prominin-1-containing membrane microdomains. Purple indicates adherens junctions.
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placental alkaline phosphatase, a glycosylphosphatidylinositol
(GPI)-anchored protein [44], are insoluble in Triton X-100 [32],
indicating that certain apical membrane microdomains are pre-
served in this detergent. In MDCK cells expressing both promi-
nin-1 and placental alkaline phosphatase, their morphological
segregation from each other was observed, with the latter protein
being excluded from the prominin-1-containing microvillar subdo-
mains and concentrated in the planar portions of plasma mem-
brane [32]. Thus, the differential biochemical behaviour of these
membrane proteins has its morphological counterpart in their seg-
regation within the apical plasma membrane.

How many subtypes of membrane microdomains co-exist with-
in the apical plasma membrane? Our hypothesis that the plasma
membrane of protrusions contains a specific subtype of choles-
terol-based membrane microdomains distinct from those in its
planar portions has recently been substantiated by analyzing the
co-distribution of prominin-1 with two membrane microdomain-
associated gangliosides, GM1 and GM3, [43,45,46]. Specifically,
GM1 (as probed with cholera-toxin B subunit), but not GM3, co-
localized with prominin-1 on microvilli [47]. The exclusion of
GM3 from the prominin-1-containing microvillar subdomain sug-
gests its localization in the planar areas of the plasma membrane,
as described above for placental alkaline phosphatase [47]. In
agreement with this notion, an earlier report demonstrated by
immunolabelling electron microscopy that GM3 is found in the pla-
nar regions of the MDCK plasma membrane [48]. Strikingly, and in
contrast to the microvillar membrane, the analysis of the primary
cilium indicated that both, GM1 and GM3, are present in the latter
protrusion [47]. Thus, GM3 appears to be enriched in the primary
cilium, but not in microvilli, whereas both membrane protrusions
contain prominin-1 [11,49]. The co-localization of prominin-1
and GM1 in microvilli and the primary cilium suggests that they
may physically interact. The presence in the first extracellular do-
main of prominin-1 of a potential ganglioside-binding motif is con-
sistent with this hypothesis [50].

Taken together, these studies indicate that two plasma mem-
brane protrusions with distinct cytoskeletal bases (actin for micro-
villi and tubulin for the primary cilium) appear to be composed of
distinct subtypes of membrane microdomains. Physiologically,
these observations suggest a critical function of the assemblies
containing prominin-1 and certain membrane lipids, notably cho-
lesterol and certain gangliosides, in maintaining a membrane-
based polarity of NE cells in the absence of functional tight
junctions.
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3. NE cell division and the symmetric versus asymmetric
distribution of apical membrane constituents

Although a possible direct contribution of prominin-1 to the
proliferation versus differentiation of stem cells remains to be
investigated, it has been shown that NE cells can symmetrically
or asymmetrically distribute specific apical constituents upon cell
division [7]. Specifically, the switch of NE cells from proliferative
to neurogenic divisions was found to be associated with a change
in the distribution of apical membrane from a symmetric to an
asymmetric inheritance by the daughter cells, rather than a rotation
of the cleavage plane from parallel to perpendicular relative to their
apical-basal axis [7]. The correlation between the switch of NE cells
to neurogenic divisions and the unequal distribution of the apical
membrane to only one daughter cell is amazing, particularly if
one considers the minute proportion that the apical membrane
constitutes relative to the entire plasma membrane, which
amounts to only 1–2% [7]. It was considered improbable that this
correlation is accidental, that is, that an equal versus unequal distri-
bution of the apical membrane makes no difference for daughter
cell fate. Instead, in agreement with the distinct nature of the apical
versus basolateral membrane of polarized epithelial cells in terms
of constituents (protein and lipid) [51], these observation raise
the possibility that certain membrane constituents with a critical
role for cell fate are concentrated within the apical domain of NE
cells. Given the specific association of prominin-1 with a distinct
membrane microdomain [32], we have therefore hypothesized
the existence of ‘‘stem cell-characteristic membrane microdomains”
containing molecular determinants that maintain stem cell proper-
ties [10]. Thus, a comprehensive characterization of prominin-1-
containing membrane microdomains, including their proteome
and lipidome, may reveal novel facets of stem cell biology.
4. Release of membrane particles containing prominin-1

Having noticed that NE cells reduce the size of their apical plas-
ma membrane concomitant with their switch from proliferative to
neurogenic divisions [7], our groups made an unexpected observa-
tion as to the possible mechanism underlying this reduction. Specif-
ically, we found that in the developing embryonic mouse brain, the
fluid in the lumen of the neural tube contains membrane particles
carrying certain apical constituents including prominin-1, with
the latter remaining associated with membrane microdomains
[10,52]. Little is known about the molecular mechanism underlying
the release of these membrane particles. However, obtaining in-
sight in this regard is not only of importance for basic cell biology,
but also for developmental biology and medicine, as several lines of
evidence suggest a link between the release of prominin-1-contain-
ing membrane particles and cell differentiation. Specifically, the re-
lease of prominin-1-containing membrane particles may
contribute to cell differentiation by reducing and/or modifying
the composition of stem and progenitor cell-characteristic mem-
brane microdomains within the apical plasma membrane [10,11].
In addition, it cannot be excluded that these vesicles may play a role
in intercellular communication as well [30].
4.1. Two major classes of membrane particles containing prominin-1

Two major size classes of prominin-1-containing membrane
particles were observed in the ventricular fluid, relative large
(0.5–1 lm) electron-dense particles with a ring-like appearance,
referred to as P2 particles, and small (50–80 nm) electron-translu-
cent vesicles, referred to as P4 particles [10]. The latter membrane
vesicles were found to be distinct from the similar-size exosomes
[53]. P2 and P4 particles appear in the ventricular fluid at the very
onset and during the early phase of neurogenesis, respectively [10].
P4 particles have a widespread distribution, being found not only
in the embryonic [10] and adult [54] cerebrospinal fluid, but also
in various external body fluids [10,49]. Until now, studies on the
release of P2 particles have been confined to NE cells [10,11]. In
the Caco-2 cell culture model, the P4-type vesicles were found to
be released into the conditioned medium – a phenomenon that oc-
curred, interestingly, upon cell differentiation [10].

P4 vesicles appear to originate from microvilli, the primary cil-
ium and the midbody of NE cells, as suggested by the presence of
membrane buds containing prominin-1 (Fig. 1B) [10,11]. P2 parti-
cles arise from the midbody and, accordingly, contain tubulin and
anillin (Fig. 1B) [11].

The release of the prominin-1-containing membrane particles is
likely to contribute to the morphological remodelling of the apical
plasma membrane of NE cells observed during the onset of neuro-
genesis, i.e. the reduction in the number of the apical microvilli, the
decrease in the length of the primary cilium, and the appearance of
large pleiomorphic protuberances that turn out to be cross-sec-
tioned midbodies (Fig. 1B) [10,11]. A notable exception with regard
to the lack of apical microvilli after the onset of neurogenesis is the
floorplate [10]. It may be more than a coincidence that the floor-
plate acts as signaling center [55,56]. Finally, the release of these
membrane particles may well contribute to the reduction in the
apical surface of NE cells that occurs concomitant with their switch
from proliferative to neurogenic divisions [7].

4.2. Membrane microdomains and the release of extracellular
membrane vesicles

Because prominin-1 is endogenously expressed by Caco-2 cells
[31], we used these cells as a model to study the mechanism
underlying the release of the small, P4 type prominin-1-containing
vesicles from their presumptive donor membrane, the microvilli,
which are highly abundant in these cells ([52]). Given the choles-
terol-binding capacity of prominin-1 and its association with a dis-
tinct cholesterol-based membrane microdomain, it was of obvious
interest to explore the possibility that the release of P4 vesicles
from microvilli is affected by the plasma membrane cholesterol le-
vel. Indeed, cholesterol reduction (performed at physiological tem-
perature using lovastatin and mbCD), which was previously shown
to reduce the size of the Lubrol WX-resistant membrane com-
plexes containing prominin-1 [32], was found to significantly en-
hance P4 vesicle release from differentiated Caco-2 cells [52].

At the level of the donor membrane, the morphological corre-
late of this increased vesicle release was a transition in the struc-
ture of the microvilli from a tubular shape to a pearling state,
with multiple membrane constrictions all along their length [52].
The latter were found at an equal distance from one another
(�50–100 nm) that matched the size of the resulting P4 vesicles.
When a microvillus showed only a single membrane constriction,
it was typically found near its tip, indicating that this was the site
where pearling was initiated [52]. These data suggest that changes
in membrane microdomain organization may be (part of) the
mechanism underlying P4 vesicle release. In agreement with this
model, the biochemical properties of prominin-1 within the P4
vesicles were found to be identical to those in microvilli, i.e. exhib-
iting (i) the same differential solubility/insolubility in Triton X-100
versus Lubrol WX and (ii) a specific interaction with membrane
cholesterol [52].
5. Perspectives

Our observations on the cholesterol-binding membrane protein
prominin-1 and the membrane microdomains it is associated with
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suggest significant roles of these molecular units in the organiza-
tion of apical plasma membrane protrusions of epithelial cells
and, in particular, NE stem cells. These results set the stage for a
more detailed dissection of the molecular biology of prominin-1/
membrane lipid assemblies. Moreover, there are several open
questions, to be addressed in the future, that are related to the
prominin-1-containing membrane particles. What is their fate
(are they subject to endocytosis)? What is their protein and lipid
composition? And, more importantly, what is their function? Our
hypothesis that the release of prominin-1-containing membrane
particles is somehow linked to cell differentiation may have signif-
icant biomedical implications, e.g. with regard to human disease
linked to epithelial cell de-differentiation such as cancer, and with
regard to the control of neural stem cell proliferation versus differ-
entiation, the study of which led to their discovery.
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