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ABSTRACT We develop a theoretical foundation for a time-series analysis method suitable for revealing the spectrum of diffu-
sion coefficients in mixed Brownian systems, for which no prior knowledge of particle distinction is required. This method is
directly relevant for particle tracking in biological systems, in which diffusion processes are often nonuniform. We transform
Brownian data onto the logarithmic domain, in which the coefficients for individual modes of diffusion appear as distinct spectral
peaks in the probability density. We refer to the method as the logarithmic measure of diffusion, or simply as the logarithmic
measure. We provide a general protocol for deriving analytical expressions for the probability densities on the logarithmic
domain. The protocol is applicable for any number of spatial dimensions with any number of diffusive states. The analytical
form can be fitted to data to reveal multiple diffusive modes. We validate the theoretical distributions and benchmark the accu-
racy and sensitivity of the method by extracting multimodal diffusion coefficients from two-dimensional Brownian simulations of
polydisperse filament bundles. Bundling the filaments allows us to control the system nonuniformity and hence quantify the
sensitivity of the method. By exploiting the anisotropy of the simulated filaments, we generalize the logarithmic measure to rota-
tional diffusion. By fitting the analytical forms to simulation data, we confirm the method’s theoretical foundation. An error anal-
ysis in the single-mode regime shows that the proposed method is comparable in accuracy to the standard mean-squared
displacement approach for evaluating diffusion coefficients. For the case of multimodal diffusion, we compare the logarithmic
measure against other, more sophisticated methods, showing that both model selectivity and extraction accuracy are compa-
rable for small data sets. Therefore, we suggest that the logarithmic measure, as a method for multimodal diffusion coefficient
extraction, is ideally suited for small data sets, a condition often confronted in the experimental context. Finally, we critically
discuss the proposed benefits of the method and its information content.
SIGNIFICANCE Determining molecular diffusion coefficients is essential for understanding transport in biomolecular
systems. There are many biological systems in which molecules display multiple modes of diffusion. For example, multiple
molecular species may be mixed or a single species may undergo diffusive state transition. Unfortunately, it is often not
possible to label the molecules in a way that directly indicates their diffusive states. Thus, there is a need for novel methods
for revealing mixed-mode diffusion coefficients. We introduce a data analysis method for extracting a spectrum of diffusive
states directly from molecular trajectory data, for which distinct labeling is not required. The method is general, easy to
apply, and is fundamentally grounded on a theoretical foundation.
INTRODUCTION

Single-particle/molecule tracking (SPT/SMT) provides a
powerful tool for revealing discrete dynamics in many bio-
logical systems. Although there is still room for further
development of detection and tracking algorithms, the field
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of SPT/SMT software is well matured, and comparisons be-
tween many methods can be found in the literature (1–3).
Unlike the development of the tracking algorithms them-
selves, techniques for the analysis of the time-series data
generated by these algorithms will remain an area of active
development. Owing to the diversity of the fields of interest
for SPT/SMT, there will be a long-lasting interest in the
development of novel analysis techniques.

One area for which SPT/SMT is ideally suited is in the
study of Brownian motion, which is a key transport
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mechanism in biological cells and many other molecular
systems. Often in such systems, we are confronted with
nonuniform mixtures of diffusing particles and molecules.
The different modes of diffusion present in a sample may
be the result of mixing multiple molecular species, or they
may be due to the action of diffusive state transitions by a
single molecular species. When analyzing nonuniform
Brownian data, such as one might obtain using SPT/SMT,
it is difficult to discern the distinct diffusive modes in mixed
systems unless one can distinctly label the molecules by
state or by species. Recently, one of the authors (I.H.) has
shown that by first transforming nonuniform Brownian
data to the logarithmic domain, one can accurately evaluate
the underlying spectra of diffusion coefficients (4–7). This
logarithmic measure of diffusion reveals multiple modes
of dynamics without the need for distinct labeling. Applied
to the study of DNA transport in the presence of a substrate
surface, a logarithmic measure of the distribution of individ-
ual molecular diffusion coefficients was key in disentan-
gling the mixed-mode surface absorption versus near-
surface diffusion effects (4). By analyzing total internal
reflection fluorescence microscopy data, the authors showed
that there is a correlation between the temporal length of a
molecular trajectory and its resultant diffusion coefficient.
Longer-lived trajectories were more likely to interact with
the substrate surface and hence transition into a lower diffu-
sive mode. A logarithmic analysis of the distribution of in-
dividual DNA molecule diffusion coefficients, decomposed
over trajectory lifetimes, quantitatively revealed the distinct,
state-dependent diffusive modes. When applied to the
Brownian displacements of nanoparticles confined by laser
trapping, the logarithmic measure revealed a simultaneous
reduction of diffusion due to the trapping and an enhanced
motion due to the constant input of scattering forces (5).
The distinct diffusive modes were spatially organized in
response to the trapping force field and were therefore not
species dependent; thus, distinct labeling was not an option.
Presented in the linear domain, the nonuniformity would be
indistinguishable. The logarithmic measure also proved use-
ful for identifying tracking errors in SPT/SMT algorithms
due to the false-linking effects (6), thus minimizing the
use of trial and error when selecting appropriate algorithm
parameters. Additional examples include the identification
of nanoparticle crystallization precursors (8), the character-
ization of material nonuniformity in dense aqueous cellu-
lose nanofiber dispersions (7), and the characterization of
large regions of structural order in dispersed nanoparticle
mixtures (9). Taken together, these case studies indicate
that the logarithmic measure of diffusion provides a simple
but powerful tool for understanding phenomena in which
nonuniform diffusion occurs. However, currently there is
still no theoretical foundation for this method.

Other methods exist for detecting nonuniformity in SPT
trajectories. These include the subtrajectory analysis
methods, which locally resolve particle trajectories into
2 Biophysical Journal 120, 1–15, February 16, 2021
transient segments of bound, subdiffusive, diffusive, and
superdiffusive behavior (10–12). These segmentation
methods characterize varying complex behavior typical of
biological systems and particles embedded in active media
(13,14) and employ mean squared displacements (MSDs)
to classify dynamic characteristics along a particle trajec-
tory. By necessity, these methods require long trajectories,
which are not always accessible. More sophisticated
methods include the hidden Markov models (15–20), which
determine the diffusion coefficients for distinct diffusive
states and the transition rates between states but often
only consider a predefined fixed number of states, and other
advanced trajectory segmentation methods (21). Advanced
Bayesian methods (22) and combined hidden Markov
model-Bayesian methods (20) can learn both the number
of diffusive states and the transition rates but require a
high degree of computational proficiency on behalf of the
user. Finally, one can employ recent deep learning tech-
niques with impressive results (23); however, here neural
network training is required, which typically requires access
to large training data sets.

The purpose of this work is to provide a rigorous founda-
tion for a method that represents a set of benefits that are
unique in comparison to these other methods. In the limit
case of monomodal diffusion, our method proves to be as
accurate as the MSD-based methods for small data sets,
i.e., few trajectories, which we show to be true for both short
and long trajectories. For large data sets, the number of
distinct diffusive states can be determined without prior
knowledge and in many instances does not require any
fitting or the implementation of advanced computational
analysis tools. More generally, our method can be adapted
to provide a model selection for N-state diffusion. To imple-
ment model selection, one does not require advanced
Bayesian methods or machine learning techniques but sim-
ply the analytic results provided in this work and a generic
fitting algorithm provided by most standard numerical anal-
ysis packages. In summary, we provide a theoretical founda-
tion for a Brownian data transformation scheme that is
comparable to the MSD approaches in accuracy for evalu-
ating diffusion coefficients and evaluates Brownian multi-
modality in an easy-to-implement way with results that
are comparable with the most advanced and sophisticated
methods.

We validate the theoretical foundation presented in this
work by comparing it with numerical data generated using
Brownian dynamics simulations of gelated filament bundles.
There are multiple reasons for choosing this system. The first
is that it has direct biological relevance with broad implica-
tions in the study of cellular biology and biological soft-mat-
ter physics. Bundles of filamentous polymers, including
actin, microtubules, and intermediate filaments, are pervasive
in biological cells, providing the foundation of the cellular
cytoskeleton (24), the actomyosin cortex (25), the machinery
responsible for chromosome segregation during cell division
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(26), and other cellular structures (27). Many of these sys-
tems are active, being driven away from equilibrium by a
range of molecular motor proteins (28), including kinesin
(29,30) and dynein (31,32) in the case of microtubules and
myosin (33) in the case of actin. As well as providing me-
chanical forces to drive cellular processes, molecular motors
and other passive protein molecules provide cross-linking
tether interactions between filament pairs. These tethering
bonds connect filaments into larger networked material struc-
tures. The novel active and passive material properties of
these filamentous materials have generated much interest in
the soft-matter physics community (34–37). Other novel fila-
mentous materials, such as cellulose nanofibers, are gaining
traction in the engineering community for their potential as
environmentally sustainable and renewable ‘‘wonder mate-
rials’’ (38,39). Thus, by modeling the diffusion of bundled fil-
aments, we are generating data representative of biophysical
and engineering systems alike. Furthermore, progression to
the study of general diffusivities, such as subdiffusive and
superdiffusive processes, is natural in the context of filamen-
tous gels. A second reason for choosing bundled filaments
rather than, say, polydisperse suspensions of spherical parti-
cles is that because of the intrinsic anisotropy of the fila-
ments, we have access to additional diffusive degrees of
freedom, which we can use to further validate our theoretical
results. As we will see, the generalized protocol presented
here for representing the logarithmic measure of diffusion
can reveal nonuniformity in both one-dimensional (1D) rota-
tional diffusion and two-dimensional (2D) translational diffu-
sion, confirming the method’s generality. Finally, we mention
that by bundling filaments with cross-linking interactions the
nonuniformity in the system arises because of particle inter-
actions, rather than by direct construction. Owing to this
additional complexity in our choice of the simulation model,
the agreement between theoretical and numerical results is an
additional testament to the validity of the former.

The outline of this work is as follows: we first review a
collection of relevant methods for calculating diffusion co-
efficients from SPT/SMT time-series data. We then develop
the theoretical foundation for generating the logarithmic
measure of diffusion in normal monomodal and bimodal
translational diffusion, referring to a generalized protocol
included in Appendix A. We then introduce the filament
bundle simulation method and compare numerical results
with theoretical results. Finally, we apply the methods
developed here to the case of the 1D rotational diffusion
of the anisotropic filament bundles and discuss the implica-
tion of our results for the study of nonuniform diffusion.
METHODS

Methods for calculating diffusion coefficients

We review several methods of interest for determining diffusion coefficients

from SPT/SMT data and discuss their relevance in the context of evaluating
diffusive nonuniformity. Note that because the purpose of this work is to

establish a theoretical foundation for the logarithmic transformation

method, we do not account for measurement errors in this treatment. We

address this limitation again in the Conclusions.

The standard method for evaluating diffusion coefficients is to use the

mean-squared displacement:

DMSD ¼ lim
t/N

1

2ndNt

PN
i¼ 1

jriðtÞ � rið0Þj2; (1)

where ri(t) is the position of the ith particle at time t, nd is the number of

spatial dimensions, and N is the number of molecules or particles in the

sample. DMSD is defined in the infinite time limit. However, in practice it

must be approximated in finite time. For our discussion, it is important to

note that Eq. 1 cannot evaluate polydispersed diffusion coefficients without

some prior knowledge of particle states or distinct particle labeling.

Typically, there are two alternative formulas for evaluating finite-data

representations of the diffusion coefficient. The first is to calculate a

frame-based average coefficient:

DFB ¼ 1

2ndDt
PNI

i¼ 1ðNFi � 1Þ
XNI

i¼ 1

XNFi�1

j¼ 1

jriðtjþ1Þ � riðtjÞj2:

(2)

NI is the number of individual detected particles and NFi is the number of

sequential frames over which the ith particle is detected. ri(tj) is the position

of the ith particle in the jth frame, with Dt being the time interval between

frames. All displacements are evenly weighted so that DFB represents the

mean of all displacements squared, divided by the time interval. A second

approach is to calculate an individual-based average:

DIB ¼ 1

NI

XNI

i¼ 1

"
1

2ndDtðNFi � 1Þ
XNFi�1

j¼ 1

jriðtjþ1Þ� riðtjÞj2
#

(3)

Here, the mean of the displacements squared is first calculated for each

particle, then the average of the means is calculated over all particles. Thus,

the contributions from all displacements are not evenly weighted in the final

value. In the presence of nonuniformity, Eqs. 2 and 3 will not be equivalent.

Comparisons between DFB and DIB have therefore been used to quantify

nonuniformity in systems that exhibit diffusive state transitions (4,40).

There is no need for prior knowledge of the diffusive state of a particle.

Furthermore, because particle lifetimes can vary, one can analyze DFB

and DIB in subsets of trajectory lengths. Such a decomposition provides

additional information about system nonuniformity. For instance, in the

context of surface absorption processes detected in a total internal reflection

fluorescence microscopy field, particles with longer trajectories are more

likely to contribute smaller values to DIB because they are more likely to

interact with the surface. Such individuality will have less of an impact

on DFB; hence, the two quantities will not, in general, be equal.

A third quantity, which we refer to throughout this work as the diffusion

element, is given by

Sij ¼ 1

2ndDt
jriðtjþ1Þ � riðtjÞj2: (4)

Sij is not an averaged quantity like the diffusion coefficients discussed

above. It is simply the normalized displacement squared per particle per

time step. Because we divide by the time element Dt, Sij has units of diffu-

sion. However, it is not a diffusion coefficient. In fact, DFB is the mean of

Sij-values. Recently, it was shown that by plotting the distribution of the log-

arithm of Sij-values, one can clearly distinguish between true particle dis-

placements and displacement artifacts introduced by tracking algorithms
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(6). It has been proposed that distinct diffusive modes in a Brownian data set

can also be revealed as distinct spectral peaks in the distribution of the log-

arithm of Sij-values, hence revealing nonuniformity. In the following, we

provide a theoretical foundation for this proposal and benchmark the results

using numerical simulation.
The logarithmic measure of diffusion

We start by developing an analytic expression for the logarithmic measure

of the diffusion of a monomodal population of Brownian particles in 2D.

We follow the steps of the generalized procedure outlined in Appendix

A. Then, we provide an analytic expression for the logarithmic measure

of diffusion for a 2D bimodal mixture of Brownian particles.

Monomodal system

Brownian displacements in 2D are given by two independent and iden-

tically distributed (IID) random variables dx and dy, with Gaussian

probability densities of zero mean and variance s2:

f ðdx; sÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

�
� dx2

2s2

�
;

f ðdy; sÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

�
� dy2

2s2

�
:

(5)

We introduce a new variable, Z ¼ dx2 þ dy2, which is a bivariate trans-

formation of the displacements. The corresponding diffusion element in 2D

is then

Sðdx; dyÞ ¼ dx2 þ dy2

4Dt
; (6)

or simply S¼ Z/(4Dt). Our aim is to find the probability density of the quan-

tity log10[S(dx, dy)].
Following step 3 in Appendix A, an initial pair of random variable trans-

formations map dx / X and dy / Y according to gX(dx) ¼ dx2 ¼ X and

gY(dy) ¼ dy2 ¼ Y, where g indicates a transformation, with inverse transfor-

mations g�1
X;5 ¼ 5

ffiffiffiffi
X

p
and g�1

Y;5 ¼ 5
ffiffiffi
Y

p
and derivatives dg�1

X;5= dX ¼ 5

1=ð2 ffiffiffiffi
X

p Þ and dg�1
Y;5=dY ¼ 51=ð2 ffiffiffi

Y
p Þ. The transformations of the prob-

ability densities f(dx; s) / F(X; s) and f(dy; s) / F(Y; s) are therefore

given by

FðX; sÞ ¼
X
i¼þ;�

f
�
g�1
X;i ; s

�����dg�1
X;i

dX

���� ¼ 1

s
ffiffiffiffiffiffiffiffiffi
2pX

p exp

�
� X

2s2

�

FðY; sÞ ¼
X
i¼þ;�

f
�
g�1
Y;i ; s

�����dg�1
Y;i

dY

���� ¼ 1

s
ffiffiffiffiffiffiffiffiffi
2pY

p exp

�
� Y

2s2

�
:

(7)

F is c2 distributed with one degree of freedom. We write F as a c2 dis-

tribution in terms of gamma functions:

FðX; sÞ ¼ 1�
2s2

	1
2

X
1
2�1

G



1

2

� exp

�
� X

2s2

�

FðY; sÞ ¼ 1�
2s2

	1
2

Y
1
2�1

G



1

2

� exp

�
� Y

2s2

�
;

(8)
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where by identity Gð1=2Þ ¼ ffiffiffi
p

p
. Because of the additivity of c2 distribu-

tions, the probability density of Z ¼ X þ Y is also c2 distributed with two

degrees of freedom:

FðZ; sÞ ¼ 1

2s2
exp

�
� Z

2s2

�
; (9)

where we have used the identity G(1) ¼ 1.

We introduce the new variable h ¼ log10(S) and perform a second trans-

formation Z / h, such that gh(Z) ¼ log10(Z) � log10(4Dt) ¼ h, with trans-

formation inverse g�1
h ¼ 4Dt10h and derivative dg�1

h /dh ¼ 4Dtln(10)10h.

Finally, we transform the probability density F(Z; s) / H(h; s) such that

Hðh; sÞ ¼ F
�
g�1
h ; s

�����dg�1
h

dh

���� ¼ l10hexp

�
� 2Dt10h

s2

�
;

(10)

where l ¼ 2ln(10)Dt/s2. H(h)is the distribution of the logarithmic measure

of diffusion elements S given by Eq. 6. The so-defined diffusion coefficient

DS follows the normal relationship with the variance s2 ¼ 2DSDt.

Bimodal mixture

Thedisplacement variablesdx anddyand the numberof degreesof freedomare

the same as in the monomodal system. However, from the generic form for the

probability densities given inEq.A1, the densities for the bimodalmixtures are

f biðdx; s1; s2Þ ¼ af ðdx; s1Þ þ ð1� aÞf ðdx; s2Þ
f biðdy; s1; s2Þ ¼ af ðdy; s1Þ þ ð1� aÞf ðdy; s2Þ: (11)

Here, f(dx; sk) and f(dy; sk) are given by Eq. 5, with distinct modal var-

iances s21 and s
2
2. a gives the proportion of mixing for a binary system. S is

given by Eq. 6. Following the procedure outlined above, we find that the

probability density for Z in a bimodal mixture

FðZ; s1; s2Þ ¼ a

2s2
1

exp

�
� Z

2s2
1

�
þ 1� a

2s2
2

exp

�
� Z

2s2
2

�
:

(12)

Subsequently, we generate the logarithmic measure:

Hðh; s1; s2Þ ¼ al110
hexp

�
� 2Dt10h

s2
1

�
þ ð1�aÞl210hexp

�
� 2Dt10h

s2
2

�
; (13)

where l1 ¼ 2ln(10)Dt/s21 and l2 ¼ 2ln(10)Dt/s22. Again, we can relate the

diffusion coefficients to the variances: s21 ¼ 2DS1Dt and s22 ¼ 2DS2Dt.
Brownian simulation of filament bundles

All of the simulation data presented in this work are generated using 2D

Brownian dynamics simulations of permanently cross-linked rigid-filament

colloids, which we refer to as gelated filament bundles. In this section, we

present the technical details of the simulation method. Filaments are

described by a center-of-mass position vector ri(t) and an orientation unit

vector buiðtÞ, where i ¼ 1, 2, ., N, and N is the total number of filaments.

All filaments have constant length L and diameter d and exhibit anisotropic

drag with three drag coefficients given by (41)

gk ¼ 2pzL

lnðL=dÞ; gt ¼ 4pzL

lnðL=dÞ; gr ¼ pzL3

3lnðL=dÞ; (14)



FIGURE 1 A schematic representation of filament interactions. Two

cross-linked filament bundles of size 2 are shown to be interacting via pair-

wise steric interactions and cross-linking bonds. We indicate all interaction

line parameters. To see this figure in color, go online.
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where z is the solvent viscosity. The coefficients gjj and gt are for drag par-

allel and perpendicular to the filament long axis, respectively, and gr is the

coefficient for rotational drag. Correspondingly, we can define three diffu-

sion coefficients Djj ¼ kBT/gjj, Dt ¼ kBT=gt, and Dr ¼ kBT/gr, where kB
is the Boltzmann constant and T is the absolute temperature. In 2D, the

diffusion coefficient for the total center of mass will be D ¼ (Djj þ Dt)/2.

The equations of motion describing filament dynamics are

dri ¼ G�1
i ,

"XN
jsi

Ff
ij þ

XN
jsi

XNa

a¼ 1

Fcl
ij;a

#
dt þ drBi

dbui ¼ 1

gr

"XN
jsi

�
Ff
ij � lijbui

	þXN
jsi

XNa

a¼ 1

�
Fcl
ij;a � εij;abui

�#
dt

� bui þ dbuB
i :

(15)

Here, drBi and dbuB
i are the Brownian displacements and rotations, respec-

tively (42). These terms satisfy the fluctuation-dissipation relation such that

hdrBi ðtÞdrBi ðt0Þi ¼ 2kBTG
�1
i dðt�t0Þdt and hdbuB

i ðtÞdbuB
i ðt0Þi ¼ 2kBTðI �buibuiÞdðt � t0Þdt=gr

i , where Gi ¼ gtbuibui þ gjj(I � buibui) is the anisotropic

friction tensor and I is the identity matrix. Ff
ij is the purely repulsive

steric interaction force between two filaments i and j, calculated along

the line of shortest interaction between the two filaments. The contact

locations for pairwise steric interaction forces between two filaments are

given by a pair of line parameters: �Li/2 % lij % Li/2 for the point of

contact on filament i due to an interaction with filament j and �Lj/2 %
lji % Lj/2 for the point of contact on filament j due to an interaction with

filament i. The direction of a steric force is given by the vector connecting

the two points of contact, and the magnitude is given by the standard

Weeks-Chandler-Andersen (WCA) interaction (43), where the Lennard-

Jones distance is given by the filament diameter and the energy is equal

to 1kBT.

Fcl
ij;a is a permanent tether bond cross-linking two filaments i and j. For

each cross-linked filament pair, there are Na bonds, indexed by a. The sites

for the ath tethering contact between filaments i and j are given by a pair of

line parameters: �Li/2 % 3ij,a % Li/2 and �Lj/2 % 3ji,a % Lj/2 (44). The

direction of a bond force is taken from the vector between the two bond

sites. The magnitude of the force is calculated using a spring potential

uðdijÞ ¼ 1
2
kðdij � d0Þ2, where dij is the distance between the two binding

sites, d0 is the equilibrium spring length, and k is the stiffness of the

spring. A schematic representation of the filament interactions is shown

in Fig. 1.

All simulations are performed in 2D squares with periodic boundary

conditions. The equations of motion in Eq. 15 are numerically approxi-

mated using a forward Euler time integration scheme with a time step

size of 5 ms. Particle tracking follows the filament center-of-mass trajec-

tories, which in 2D are given by ri(t) ¼ (xi(t), yi(t)). The time increment

between successive points in the time-series analysis, Dt, is generally

greater than the simulation time step, except in the calculation of mean-

square displacements in Fig. 3 a. For each set of parameters, we run 50

independent simulations, each running for 2000 s of simulated time,

such that the total simulation time per parameter set is 1 � 105 s. The con-

stant length and diameter of the filaments are L ¼ 1 mm and d ¼ 25 nm,

respectively. For all simulations, T ¼ 300 K and z ¼ 1 Pa , s. For the

cross-linker interactions, we use a spring stiffness of k ¼ 0.3 pN/nm

and an equilibrium length of d0 ¼ 80 nm, which are parameters represen-

tative of an Eg-5 kinesin molecular motor (28). All cross-link bonds are

formed as an initial condition. Subsequently, no bond is either created

or destroyed throughout the simulation. We use bundle sizes of 1, 2, 5,

10, 15, 20, and 30 filaments. Monodispersed systems contain bundles of

only one size. We show an example of a monodispersed system in
Fig. 2 a. Permanent bundles of two filaments are held together by

cross-linking bonds. Filaments will diffuse and interact according to

Eq. 15 and Fig. 1. The inset shows a detailed magnification of a small

group of bundles. Note that the bundles are in general sparsely distributed

owing to the low overall filament concentration. For higher concentrations,

steric interactions become more frequent, and filaments exhibit subdiffu-

sive dynamics. In the high concentration limit, systems exhibit caging ef-

fects and jamming. We maintain a low concentration throughout to avoid

these high-density effects. For binary mixtures, we mix bundles of size 2,

5, 10, 15, 20, and 30 with populations of single, unbound filaments. We

show an example of a binary mixture in Fig. 2 b. Here, we have two bun-

dles, each containing 30 filaments, surrounded by a population of freely

diffusing, unbound single filaments. The inset shows a magnification of

an example bundle structure. All simulations are performed in 2D periodic

squares with dimensions Lx � Ly ¼ 30 mm � 30 mm. Typically, we use a

total of 120 filaments per simulation, except for the case of investigating

variations in mixing parameter a.

All simulations were performed using custom software implemented

in Cþþ, and analysis was performed using custom MATLAB

(The MathWorks, Natick, MA) scripts. Simulation software can be down-

loaded by following this link: https://mosaic.mpi-cbg.de/?q¼downloads/

filament_bundles.
RESULTS AND DISCUSSION

To establish the validity of the theoretical results developed
in The logarithmic measure of diffusion, we begin by
considering monomodal systems. We simulate cross-linked
filament bundles and calculate collective bundle diffusion
coefficients as a function of bundle size. We compare results
obtained using Eq. 10 with results calculated using the MSD
given by Eq. 1. Fig. 3 a shows the MSD calculated over nine
decades of time for bundles of size 1, 2, 5, 10, 15, 20, and
30. There appear to be three dynamic regimes: an approxi-
mately diffusive regime for timescales less than 10�2 s, a
subdiffusive regime between 10�2 s and 100 s, and a second
diffusive regime for larger timescales. The subdiffusive
regime dominates as the filaments sample the harmonic po-
tential introduced by the cross-linking bond interactions.
The contribution of subdiffusive dynamics becomes more
pronounced for larger bundle sizes. This is because the
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FIGURE 2 Brownian dynamics simulation of cross-linked filament bun-

dles in 2D. Filaments are shown in black, and cross-linking bonds are

shown in red. (a) A monodispersed, uniform system with bundles of size

2 is shown. (b) A bimodal, nonuniform mixture containing bundles of

size 30 interacting with single, unbound filaments is shown. To see this

figure in color, go online.
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filaments near the center of a cluster experience erratic in-
creases in confinement because of fluctuations in cluster
filament density. At shorter timescales, the filaments
explore, on average, the region of the potential where the
bond force is insignificant compared with thermal forces.
Varying the spring stiffness parameter k will vary the transi-
tion timescale between these two dynamic regimes. At
larger timescales, we see the collective diffusion at which
individual bundles migrate as a whole. To evaluate the col-
lective diffusion coefficient of a bundle, we therefore
consider only the MSD on large timescales. This region is
indicated by the t1 dashed line in Fig. 3 a. For each of the
bundles, we fit a linear function to this region of the MSD
and calculate the effective bundle diffusion coefficient
from the slope. The results for the collective diffusion coef-
ficients DMSD calculated in this way are shown in Fig. 3 d.
Although we have analytic expressions for a single, un-
bound filament (see Eq. 14), no such expressions are avail-
able for bundles. Therefore, we use the diffusion coefficients
6 Biophysical Journal 120, 1–15, February 16, 2021
calculated using the MSD as a baseline for comparison
throughout this work.

Next, we investigate the validity of Eq. 10 for monomodal
systems. In Fig. 3 b, we show the distributions of S-values
for the same data used to calculate DMSD. The distributions
are calculated by accumulating normalized histograms. We
use time increments Dt ¼ 2.5 s. This is a reliable step size
for probing the larger timescales of collective bundle diffu-
sion and avoiding the effects of the bond interactions. Plot-
ting the distributions of S on a logarithmic scale reveals an
almost exponential behavior for all bundle sizes, as is ex-
pected from Eq. 9. In principle, one could directly fit these
data with the appropriate functional form to reveal the vari-
ance and hence the diffusion coefficient. Alternatively,
instead of plotting the distribution of S, we can plot the dis-
tribution of h ¼ Log10(S). Then h becomes the independent
variable, representing a two-step transformation from the
original displacement data. Thus, we accumulate data into
histograms with evenly spaced bins on the domain of h,
with the histogram bin width here Dh ¼ 0.1. The logarith-
mic measure of diffusion, calculated in this way, is plotted
in Fig. 3 c. The colored points represent the histogram
data for different bundle sizes. We compare the data with
our theoretical result by fitting the functional form of Eq.
10 to the histogram data. The solid lines in Fig. 3 c show
the results of the fitting. The peaks are emphasized in the
log inset. The analytic form of Eq. 10 allows us to directly
quantify the diffusion coefficients from the histograms.
Therefore, we solve for the variance and calculate DS ¼
s2/2Dt. In Fig. 3 d, we plot these values for the diffusion co-
efficients extracted by fitting the logarithmic measure and
compare against the values obtained using the MSD. For
the monodispersed system, the two methods are in agree-
ment, confirming that Eq. 10 is an appropriate functional
form for the logarithmic measure of monomodal diffusion
providing a complementary method for evaluating mono-
modal diffusion coefficients. As has recently been shown
(6), the location of a peak hp directly coincides with the
diffusion coefficient of a diffusive mode. Visual inspection
of H(h)can therefore reveal the underlying diffusion coeffi-
cient because DS ¼ 10hp . This means that in practice, a full
fit is not necessary.

We compare the errors associated with the application of
Eq. 10 and the MSD by considering only the simplest case
of unbound filaments, i.e., a bundle size of 1. In Fig. 3 e,
we show the dependence of the diffusion coefficient ex-
tracted by fitting Eq. 10 as a function of the histogram bin
width. Bin widths less than Dh ¼ 0.5 are suitable. We are
interested in the accuracy of the different methods depending
on track length. In Fig. 3 f, we show standard deviations
(SDs) for the distributions of diffusion coefficients calculated
for individual filaments as a function of trajectory length
(NT). Note that the method for evaluating errors in the diffu-
sion coefficient via the MSD is different from Qian et al.
(45). Here, for each MSD associated with an individual
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FIGURE 3 Analysis of monomodal systems. (a) MSD for a range of filament bundle sizes is shown. The large-timescale diffusive regime is indicated with

a dashed line that is linear in t. The color scheme for the bundle sizes, indicated in the legend, is used throughout this figure. (b) Normalized histograms for the

distribution of S plotted on a log-linear scale are shown. (c) The same data as in (b) are shown with histograms accumulated over the h domain. The black

lines are fits using Eq. 10. The log inset shows the distribution peaks, which we use to evaluate the diffusion coefficients. (d) Comparison of the diffusion

coefficients calculated using the MSD in (a) and the fit of the logarithmic measure Eq. 10 in (c) is given. (e) Histogram bin width dependence for fitting Eq. 10

(bundle size 1) is shown. The dashed line is the ground truth for a single filament given by Eq. 14. (f) The SD for single-filament diffusion coefficients calcu-

lated by three different methods as a function of trajectory length (NT) is shown. Sample size Ns ¼ 3000 trajectories. The variance is calculated against the

ground truth. (g) Fitting robustness is expressed as the mean of the L2-norm per fitting data point hL2 � normi/Nfit, calculated for each filament with NT ¼ 5,

20. dD is the variation imposed on the diffusion coefficient for the calculation of residuals in the norm such that dD¼ 0 indicates the optimal fit L2-norm. Error

bars indicate the SD of the L2-norm over the set of individual filaments. (h) Sensitivity is given, represented as the curvature of the robustness curves in (g),

i.e., the second derivative at dD ¼ 0. To see this figure in color, go online.
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filament trajectory, we use linear regression over some
selected subrange of the MSD. We use the gradient of the
linear fit to calculate the single-filament diffusion coefficient.
We determine a mean and SD from the distribution of diffu-
sion coefficients calculated in this way over a population of
Ns ¼ 3000 trajectories. We use internal averaging for each
MSD such that for a single trajectory, all displacements
over a given time lag contribute to the MSD (3,45). In Ap-
pendix B, we discuss the dependence of the errors for the
MSD approach on the choice of MSD filtering for the linear
fit. If eN is the maximal time lag used for filtering the MSD,
where eN % NT, then we show that the scaling of the errors, as
a function of trajectory length, depends on our choice of eN .
In Fig. 3 f, we show two such selections. Naively, one can seteN ¼ NTand use the full MSDwithout filtering. Alternatively,
one can use a fraction of the full MSD—for example, the first
20%—such that eN ¼ NT/5. The former represents a lower
bound on the quality of the errors. The latter represents a
more practical choice. In both instances, we see that the error
in the MSD approach is constant as a function of trajectory
length. In the case of the H(h) method, the errors scale pro-
portionally to 1/

ffiffiffiffiffiffi
NT

p
, with no filtering required. In Fig. 8 of
Appendix B, we show that for some choices of eN , the errors
associated with the MSD also approach 1/

ffiffiffiffiffiffi
NT

p
. Additionally,

in Fig. 3 f, we show that by directly fitting Eq. 12 for F(Z), we
achieve similar results as the H(h) method.

We also consider the fitting sensitivity of the MSD and
H(h). For the optimal fit of the MSD and H(h), we
calculate the L2-norm using the root mean squared (RMS)
residual. To evaluate fitting robustness, we impose a varia-
tion dD on the optimal diffusion coefficient D0 and recalcu-
late residuals with Dres ¼ D0(1 þ dD). In Fig. 3 g, we show
the means and SDs for the distributions of L2-norms calcu-
lated over the population of Ns ¼ 3000 filaments as a func-
tion of dD. For the MSD approach, we show results foreN ¼ NT/5. We assume a quadratic dependence on dD for
small variations and hence define the fitting sensitivity
from the curvature of the curves in Fig. 3 g, which we quan-
tify using second derivatives. In Fig. 3 h, we show the fitting
sensitivity over a range of track lengths for H(h) and the two
implementations of the MSD approach (eN ¼ NT and NT/5).
With appropriate filtering, the MSD is more sensitive to var-
iations in fitting parameters. However, the H(h) method out-
performs the naive implementations of the MSD. Overall,
Biophysical Journal 120, 1–15, February 16, 2021 7
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our results suggest that the accuracy of the H(h) method is
comparable to the various methods that employ the MSD
for evaluating diffusion coefficients. There are, however,
many ways to filter and extract diffusion coefficients from
the MSD (discussed in Appendix B), such that the relative
accuracy between the MSD and H(h) methods depend
strongly on this choice. In the case of theH(h) method, there
is little ambiguity in the implementation.

More importantly, the approach of extracting diffusion
coefficients using the logarithmic measure can be extended
to nonuniform systems. Having established that the dy-
namics of individual filaments depend on the size of the
bound network to which they contribute, we now mix bun-
dles of controlled sizes to create Brownian systems with
multiple diffusive modes. In Fig. 2 b, we show an example
of a bimodal system with one population of bundled fila-
ments and a second population of unbound filaments. In
Fig. 4 a, we show the distributions of h for six example bi-
nary mixtures. We consider bundles of size 2, 5, 10, 15, 20,
and 30, and in each case, we create a binary mixture by add-
ing a population of single unbound filaments. For all sys-
tems, we use a total of 60 bound filaments and 60
unbound filaments. Therefore, the mixing ratio is a ¼ 1/2.
The colored points are for the normalized histograms of h,
and the solid lines show fits of Eq. 13 fitted to the histogram
data. For bundle sizes 2 and 5, it appears to be difficult to
distinguish multiple peaks in the distributions. An analysis
of the second derivative of Eq. 13
d2Hðh; s1; s2Þ
dh2

¼ 6aDt

s2
1

lnð10Þ10h
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s2
2

� (16)
reveals a critical separation of variances at which an addi-
tional mode appears, indicating the onset of an inflection
point in the bimodal form of H(h). For all larger differences,
there are two roots. Analyzing Eq. 16 with a ¼ 1/2
and a fixed fast mode with s1 ¼ 0.096 (corresponding
to a single-filament diffusion coefficient DS1 ¼ 1.8 �
10�3 mm2 s�1), we find that an additional mode
emerges with an inflection point at approximately
h ¼ �2.73 for s2 ¼ 0.048 (corresponding to DS2 ¼ 4.6 �
10�4 mm2 s�1). This can be clearly seen in the figure as
the emergence of a second distinct peak as we increase
the size of the slower-mode bundle. In Fig. 4 b, we compare
the values of the diffusion coefficients extracted by fitting
Eq. 13 to the monomodal MSD values. Even with the min-
imal separation of dynamics, we are able to accurately
extract the diffusion coefficient of the slower mode. For
8 Biophysical Journal 120, 1–15, February 16, 2021
all other mixtures, we obtain an accurate evaluation of
both the faster and slower modes. These results confirm
that Eq. 13 is an appropriate functional form for the logarith-
mic measure of normal bimodal diffusion in 2D. Further-
more, we are able to support the proposal that, when
transformed to the h domain, the distribution of SPT
displacement data clearly reveals multiple modes of diffu-
sion, which can be simply discerned by locating the spectral
peaks. This is not possible for small separations of modes
because the functional inflection point vanishes in the region
between the two corresponding peak h-values. However, in
most experimental contexts, the separation of modes is typi-
cally much greater than this (5,6).

To further test the ability of our method for detecting bi-
nary modes, we vary the relative population size in a
mixture while keeping the modes constant. We fix DS1 ¼
1.8 � 10�3 mm2 s�1 and DS2 ¼ 6.5 � 10�5 mm2 s�1 by mix-
ing a single bundle of size 30 with unbound filaments. We
vary a by varying the population size of the unbound fila-
ments. In Fig. 4 c, we show normalized histograms on the
h domain and the corresponding fits of Eq. 13. The distinct
modes of diffusion are observable over a wide range of a.
We analyze the inflection points in Eq. 13 and find a critical
value of approximately a ¼ 0.925. For higher values of a,
the inflection point associated with the two peaks vanishes,
corresponding to a saturation of the mass fraction of the un-
bound filaments. The insets show the value of the diffusion
coefficients extracted by fitting the data. We compare the
extracted values with the monomodal value for each cluster
size and find the fits to be robust over the entire range of a.
We note that for the slow mode, extracting the peak by vi-
sual inspection is slightly inaccurate. However, the simple
approach of associating peaks with diffusion coefficients
is still practical and insightful.

So far, we have generated nonuniformity by controlling
the size of bundles and their mixing proportions. This
approach is representative of many experimental contexts
in which various species of molecules are mixed or when
the dynamics of a single species disperses due to environ-
mental interactions, such as spatial dispersion in the envi-
ronment of a focused laser trap (5). The distinct modes
indicate the elementary dynamics. When fitting the profiles,
the mixing proportion of a can be used to find relative con-
centrations. In systems in which a single species exhibits
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FIGURE 4 (a) Normalized histograms and fits of Eq. 13 for the logarith-

mic measure of bimodal bundle mixtures. For comparison, data are also

shown for the uniform system of free filaments. The figure legend indicates

the bundle sizes in the binary mixtures. (b) The bimodal diffusion coeffi-

cients as extracted by fitting the logarithmic measure are given. Slow modes

are compared with values obtained via the MSD in Fig. 3. Fast modes are

compared with the uniform system of free filaments. Both the slow mode

and the fast mode for each pair are plotted using the slow-mode bundle

size as the independent variable. (c) Bimodal analysis with fixed modes

over a range of a is shown. The color legend indicates a. The insets

show the diffusion coefficients extracted by fitting Eq. 13 to the histogram

data compared with the MSD values. To see this figure in color, go online.
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dynamic diffusive state transitions, the same analysis of a
gives an indication of the transition rates. However, one
must be careful to either ensure that Dt is greater than the
characteristic state transition times or to modify the
displacement densities to include transient behavior. In
this way, our method can provide an alternative to the hid-
den Markov model analysis methods (15–19), which cap-
ture diffusive state transitions and the corresponding
transition state rates.

To benchmark our method, we compare against the so-
phisticated variational Bayesian SPT analysis method
(vbSPT) of Personn et al. (20). The vbSPT is capable of
learning both the number of distinct diffusive states in
Brownian data as well as the transition rates for particles
that transition between states. We consider the case of a bi-
nary mixture with a ¼ 0.5 containing free filaments and
bundles of size 30. We wish to compare the model selection
capabilities of the two methods and compare the accuracy in
the case of small track lengths as a function of sample size
(Ns). In this context, a single sample is defined as a pair of
short trajectories: one contribution from a free filament
and one from a bundle-embedded filament. For each sample
size, we extract diffusion coefficients from 1500 individual
repetitions, which we compile for distributions of diffusion
coefficients and hence calculate means and SDs. We expect
some likelihood that for small sample sizes, both methods
will select a single-mode model. For large sample sizes,
we expect that both methods will certainly select a two-
mode model and accurately evaluate the diffusion coeffi-
cients associated with the distinct modes. In Fig. 5 a, we
show the model selection success for the vbSPT method, ex-
pressed as the percentage of samples detected as bimodal.
The detection success saturates for larger samples sizes.
For small sample sizes, the model selection varies greatly
depending on the strength of the diffusion coefficient prior
rD, an input parameter to the Bayesian analysis scheme.
In the small Ns limit, the dependence on rD is nonmono-
tonic, which is evident when considering Ns ¼ 1, as shown
in Fig. 5 b. This indicates that for small samples, there is a
limit to the model selection capability of the vbSPT method.
To implement an a priori model selection scheme for using
H(h), we fit both Eqs. 10 and 13 for each sample in a pop-
ulation and select for the minimal fitting residual with the
data. We introduce a selection threshold e to allow for a de-
gree of filtering. When R2/R1 % e, where R1 and R2 are the
fitting residuals for Eqs. 10 and 13, respectively, we impose
a selection that is in favor of a single-mode model. In Fig. 5,
c and d, we see that when e¼ 1, we achieve a bimodal detec-
tion success of almost 100%. We can filter the data by vary-
ing e and hence impose success rates equivalent to the
vbSPT model. The peak success for the vbSPT model
with the smallest sample size is �70% for rD ¼ 0.25.
Setting e ¼ 0.95, we achieve an equivalent success rate. In
Fig. 5 e, we compare the accuracy of the two diffusion co-
efficients extracted by each method for rD ¼ 0.25 and
Biophysical Journal 120, 1–15, February 16, 2021 9
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e ¼ 0.95 over a range of sample sizes for samples of two
different trajectory lengths. For equivalent detection power,
the accuracies of the two methods are in good agreement,
with the vbSPT method exhibiting lower variation overall
and a slightly more accurate evaluation of the slow mode.
From this, we can confirm that our method is comparable
with more sophisticated methods. In the case of larger
data sets, the complexities associated with fitting and model
selection can be avoided, and our method can be reduced to
the essential features of peak identification in the logarith-
mic spectra. A key advantage here is the removal of the
considerable implementation barriers required for sophisti-
cated methods such as the vbSPT.

For one final example, inwhichwe explore the generality of
the method, we investigate the case of one-dimensional rota-
tional diffusion, which is an intrinsic feature of our simulation
system owing to our choice of anisotropic particles. We
analyze the dynamics of the angle of filament orientation,
which is given by the unit vector bu in Eq. 15. This is an
example of diffusion in one dimension with angular displace-
ments dq. For the uniform, monomodal systems, the probabil-
ity density of the angular displacements f(dq;s) is the simplest
form given by the generic density Eq. A1. We seek the proba-
bility density of hq¼ log10(Sq), with Sq¼ dq2/2Dt. Following
the general protocol, we map dq / Q such that gQ(dq) ¼
dq2 ¼ Q, with domain decomposition dq� ˛ [�p/2, 0], dqþ
˛ (0, p/2). These finite domains, introduced because of peri-
odicity, impose an upper limit on possible values ofDt. Using
the inverse transformations g�1

Q;5 ¼ 5
ffiffiffiffiffi
Q

p
and derivatives

dg�1
Q;5=dQ ¼ 51=2
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Q

p
, we obtain the probability density
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p exp
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� Q

2s2

�
: (17)

The second transformation Q / hq has inverse g�1
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¼
2Dt10hq and derivative dg�1
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lows that the logarithmic measure of rotational diffusion is
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where lq ¼ ln(10)
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p
and the rotational diffusion co-

efficient is Dq ¼ s2/2Dt. Likewise, it can be shown that the
logarithmic measure for bimodal rotational diffusion is
given by
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where lq1 ¼ ln(10)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt=ps21

p
and lq2 ¼ ln(10)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
,

with s21 ¼ 2Dq1Dt and s22 ¼ 2Dq2Dt.
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In Fig. 6 a, we show the distributions of hq from simulation
data for monomodal and bimodal rotational diffusion, with
the corresponding fits of Eqs. 18 and 19. The functional forms
are accurate. Fig. 6 b shows the spectral decomposition of the
diffusive modes, with the bold points representing the mono-
modal coefficients and the open symbols the bimodal coeffi-
cients. We have confirmed the presence of multiple diffusive
and subdiffusive dynamic regimes on different timescales
due to the cross-linking bond interactions. We consider the
regime in which bundles rotate with collective rotational dy-
namics. It is difficult to compare with the corresponding
MSD results because for timescales beyond�50 s, rotational
displacements can be greater than p rads. This will introduce
artifacts that affect the calculation of the linear MSD. How-
ever, for single filaments, we can compare experimental
values to the theoretical value given by Eq. 14, which is
Dq ¼ 0.0135 rad2 s�1. This value is indicated by the dashed
line in the figure, indicating that the constant fast mode is ac-
curate. Taken together, the results in Fig. 6 show that the
method of extractingmultimodal diffusion coefficients using
the logarithmic measure is directly applicable to the rota-
tional diffusion of anisotropic particles, further validating
the generality of the method.

The 1D logarithmic measure for rotational diffusion also
allows us to discuss the implications of the general method
of representing Brownian data with the logarithmic mea-
sure. When the number of dimensions of the diffusion pro-
cess is greater than 2, the scalar transform from
displacements to S reduces the dimensionality of the anal-
ysis. The situation is otherwise in the case of 1D. Thus, in
the case of 1D, we can consider the value of transforming
to the logarithmic domain, rather than simply fitting a multi-
modal Gaussian sum in the natural domain. In Fig. 7, we
show the probability densities of 1D, bimodal rotational
diffusion. We take the variances from the values given in
Fig. 6 b for bundle size 30, mixed with unbound filaments.
We show the distribution of displacements on the natural
scale f(dq; s1, s30) and the same data transformed to the log-
arithmic domain H(hq; s1, s30). In both representations, it is
clear that there are multiple modes present. When analyzing
in the natural domain, one would first guess the degree of
modality and then fit the corresponding sum of Gaussians.
For systems of lower signal/noise ratio, guessing the number
of modes becomes difficult. Furthermore, fitting two param-
eters per mode becomes less reliable when the signal/noise
ratio is low. When analyzing in the logarithmic domain, as
in Fig. 7 b, the situation clarifies because one can read the
number of modes from the number of peaks in the logarith-
mic spectrum. Moreover, as we have discussed, we can
approximate the underlying diffusion coefficients from the
locations of the peaks. Often, this approximation is suffi-
cient, such that no further fitting is required. In the case of
Fig. 7 b, the fast mode is located at hq ¼ �1.88, indicating
a diffusion coefficient of Dq1 ¼ 10�1.88 rad2 s�1 ¼ 0.0135
rad2 s�1. The slow mode is located at hq¼�3.38, indicating
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FIGURE 5 Comparison with the vbSPT method. (a) Bimodal detection success for the vbSPT method is shown over a range of sample sizes and diffusion

coefficient prior strengths rD. Figure legend indicates rD. An individual sample is defined as a pair of trajectories containing one free filament and one bundle-

embedded filament. For (a)–(d), all samples have a track length of five steps. The vbSPTmethod selects an N-state diffusion model using variational Bayesian

techniques. The detection power is fully automated and is controlled with the parameter rD. (b) Bimodal detection success for the vbSPT method for a pop-

ulation of sample size Ns ¼ 1 is shown as a function of rD. The nonmonotonicity indicates an upper limit on the bimodal detection power in the small sample

limit. (c) Percentage of bimodal detection when selecting between fits of Eqs. 10 and 13 on the logarithmic domain is shown (same data as in a). Varying the

threshold parameter e imposes selection filtering. Figure legend indicates e. For e ¼ 1 (no filtering), two-state selection is �100% successful for all sample

sizes. This is clear in (d) for a sample size Ns ¼ 1, which monotonically increases from 0% to �100% as e / 1. (e) compares the accuracy of diffusion

coefficients extracted for two modes. Two example trajectory lengths are shown. For a given Ns, the diffusion coefficients are extracted over 1500 indepen-

dent repetitions of that sample size. Mean and SD (error bars) are displayed for the slow and fast modes over a range of sample sizes. Dashed line indicates

the ground truth for the fast mode (Eq. 14). To see this figure in color, go online.
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Dq2 ¼ 10�3.38 rad2 s�1¼ 4.16� 10�4 rad2 s�1. As expected,
these results agree well with Fig. 6.

In addition to ensuring that the transformations provide a
practical readout of the spectra of diffusion coefficients, it is
also important to ensure that there is no loss of information
or accuracy when switching to the logarithmic domain. We
do this by comparing the Kullback-Leibler (KL) diver-
gences between the known bimodal representations of
bimodal data, f(dq; s1, s30) and H(hq; s1, s30), and mono-
modal approximations, f(dq; sm) and H(hq; sm), that are
known to incorrectly under-represent the modality of the
data. The KL divergence tells us how well one density func-
tion can represent another. By calculating the KL divergence
between the bimodal representations and the monomodal
representations of data that are known to contain a bimodal
signal, we can quantitatively compare the penalty of misrep-
resenting the underlying modality in the two domains. If the
penalty is less in the logarithmic domain, then information
has been lost in the transformation, implying that it is quan-
titatively more difficult to represent the correct modality of
the system in this domain. We also show the monomodal ap-
proximations of the bimodal data in Fig. 7, a and b. sm is the
SD calculated in the dq data for the bimodal systems given
in Fig. 6. We provide the details for the calculation of the KL
divergences in Appendix C. We plot the values of the KL
divergence for each of the bimodal pairs in Fig. 7 c. For
all bimodal mixtures, the KL divergences in both domains
are equivalent. Thus, we can quantitatively confirm that
there is no loss of information incurred when representing
the logarithmic measure of a Brownian process.
CONCLUSIONS

The diversity of both living and inanimate systems investi-
gated using SPT/SMT ensures a need for the ongoing contri-
bution of novel analysis tools. On the one hand, tools that
employ complex analysis pipelines will take us deeper into
understanding novel molecular processes. On the other
hand, simple and easy-to-implement tools allow fast access
to characterizing novel systems, with benefits to engineers
and applied scientists. The method presented in this work
is an example of the latter. It is easy to implement and is suit-
able for the evaluation of the nonuniform dynamics present
in mixed, diffusive systems. Recent years have seen the
application of the method in the context of SPT with initial
successes. Here, we have provided a theoretic foundation
for the method. With this theoretical foundation at hand,
we could quantitatively benchmark the analysis pipeline of
transforming mixed Brownian data to the logarithmic
domain and subsequently calculating the probability density.
We provide analytical functions that can be fitted to the data
for an accurate evaluation of the underlying diffusion
Biophysical Journal 120, 1–15, February 16, 2021 11



FIGURE 7 (a) Functional form of the probability density for a bimodal

mixture of 1D rotational diffusion on the natural domain. fm is a monomodal

approximation for the known bimodal data with SD sm. Parameters are a¼
0.5, sm¼ 0.25 rad, s1¼ 0.18 rad, and s30¼ 0.04 rad. (b) Logarithmic mea-

sure of the same functions in (a) are shown. (c) KL divergence between

bimodal and monomodal representations of known bimodal data is shown.

The equivalence of the KL divergence confirms that the penalties incurred

by misrepresenting the system modality are the same in the two domains,

indicating no information loss for the logarithmic measure.

a

b

FIGURE 6 Logarithmic measure for 1D rotational diffusion of aniso-

tropic filament bundles. (a) Monomodal (top) and bimodal (bottom) distri-

butions on the h domain with fits of Eqs. 18 and 19 are given. The color

scheme is the same as in Fig. 4 a. (b) Extracted diffusion coefficients are

shown. The dashed line is the exact value for a single filament. The symbol

scheme is the same as in Fig. 4 b. To see this figure in color, go online.
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coefficients. Alternatively, one can simply display the spectra
and visually identify the modes by indicating the distinct
spectral peaks. Either approach reveals whether the Brow-
nian dynamics of the underlying molecular process is multi-
modal, without the need for prior knowledge of the
molecular states or species identities. We can extend the
analysis to systems of any dimensionality and to systems
with any number of diffusive modes, which we have verified
by considering the anisotropy inherent in our choice of simu-
lation model.

There are limitations to the method. For example, the
difference in the diffusion coefficients for different modes
must be greater than a critical difference to detect the
distinct modes. There also exists some critical ratio of
population concentrations beyond which one population
cannot be detected. Furthermore, we have made no
mention of the treatment of measurement errors. The pur-
pose of this work is to provide a rigorous theoretical foun-
dation to establish the logarithmic measure of Brownian
data, without taking into account measurement errors
such as localization error or motion blur. The impact of
the latter changes with technological developments,
whereas the former is an essential component of the phe-
nomena themselves. Our importance is placed on clari-
fying the fundamentals in the phenomena that are
independent of measurement technologies.
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Finally, it is important to note thatmany biological systems
exhibit anomalous diffusion. This is especially so in the
context of filamentous gels, which form the simulation basis
of this article. Here, we have restricted our attention to Brow-
nian systemswith Gaussian distributed displacements for the
sake of providing a complete and thorough analysis. The
applicability of our approach to systems outside the scope
of normal diffusion is also of interest from both application
and theoretical points of view. In fact, the usefulness of our
approach itself has been demonstrated empirically through
the analyses of complex phenomena dating back to its pro-
posal (4) in which the molecules of interest exhibit adsorp-
tion, and also in a recent application (5) in which we
analyze strongly confined yet excited systems. It is, however,
nontrivial to address this applicability within the theoretical
context of this work. The theoretical basis of this work is
placed on the Gaussianity of the displacement distribution.
At least, it can be said that subdiffusive systems can exhibit
Gaussian displacement distributions as well. As far as the



FIGURE 8 Errors in the population ensemble diffusion coefficient

depend on MSD-length selection. In contrast to the 1/
ffiffiffiffiffiffi
NT

p
scaling for

the length dependence of the MSD and diffusion coefficient error in sin-

gle-particle trajectories, the population errors can be constant over a range

of trajectory lengths. Depending on the range of time lags of the MSD

used for the calculation of the diffusion coefficient, the errors can

approach the 1/
ffiffiffiffiffiffi
NT

p
scaling exhibited by the H(h) method. To see this

figure in color, go online.
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timescale of confinement is limited, the use of a sufficiently
long time span yieldsGaussian displacement distributions, as
ensured by the central limit theorem. Nevertheless, there can
be diverse specifications in the category of subdiffusive sys-
tems. Such an approach may involve the moment scaling
spectrum or the calculation of Hurst exponents (46). It is
therefore nontrivial to make a brief conclusion universally
on the relations between an ensemble formalism and the
time-dependent characteristics of a system—for example,
to either subdiffusive or superdiffusive systems—and that
is therefore beyond the scope of this work.
APPENDIX A: GENERALIZED PROTOCOL FOR
THE DERIVATION OF THE LOGARITHMIC
MEASURE OF NORMAL PROCESSES

We outline a protocol for deriving analytic forms of the logarithmicmeasure

of any nd-dimensional, multimodal, normal (i.e., not anomalous) process:

1) Identify the correct form for the probability density of the displacements

in each dimension. For normal processes, the general form is

f ðdxi; s1;.; sMÞ ¼
XM
k¼ 1

ak

sk

ffiffiffiffiffiffi
2p

p exp

�
� dx2i
2s2

k

�
; (A1)
where s2k is the variance of the k
th mode in the ith dimension. Here, ak isPM
the modal weighting factor where k¼1ak ¼ 1. We assume that the

set of M variances is the same in each dimension.

2) Establish a new variable Z, which is the multivariate transformation of

the displacements in nd dimensions to a single scalar value:

Zðdx1;.; dxndÞ ¼
Xnd
i¼ 1

dx2i : (A2)

Subsequently, we introduce the diffusion element S:

Logarithmic measure of diffusion
Sðdx1;.; dxnd;DtÞ ¼
Z

2ndDt
: (A3)

The aim of the derivation outlined by this protocol is to find the appro-

priate form for the probability density of log10(S), which we refer to,
in general, as the logarithmic measure.

3) Transform variables dxi/ Xi such that gXi
ðdxiÞ ¼ dx2i ¼ Xi, where gXi

is

the transformation with defined inverse. Determine the inverse transfor-

mations g�1
Xi

and their derivatives dg�1
Xi
=dXi. In general, each transforma-

tion is a many-to-one mapping and cannot be uniquely inverted. Make

them invertible by defining one-to-one transformations in the positive

and negative domains dxi,�˛ (�N, 0], dxi,þ˛ (0,N) with inverse trans-

formations g�1
Xi ;5

¼ 5
ffiffiffiffiffi
Xi

p
and derivatives dg�1

Xi ;5
=dXi ¼51=2

ffiffiffiffiffi
Xi

p
.

4) Transform the probability densities over the decomposition of domains

f(dxi; s1, ., sm) / F(Xi; s1, ., sm):

FðXi; s1;.; smÞ ¼
X
j¼þ;�

f
�
g�1
Xi;j
; s1;.; sm

�����dg�1
Xi;j

dXi

���� : (A4)

and hence determine F(Z; s1, ., sm).

5) Establish a new variable h ¼ log10(S). Then h is the new independent
variable.

6) Transform the random variable Z/ h such that gh(Z)¼ h¼ log10(Z)�
log10(2ndDt). Determine the inverse of the transformation

g�1
h ¼ 2ndDt10

h and its derivative dg�1
h /dh ¼ 2ndDtln(10)10

h.

7) Transform the probability densities F(Z)/ H(h) to find the probability

density of h:

HðhÞ ¼ F
�
g�1
h

�����dg�1
h

dh

���� : (A5)

H(h) is the logarithmic measure of diffusion.
APPENDIX B: A COMPARISON OF POPULATION
ENSEMBLE APPROACHES TO EVALUATING
ERRORS IN THE SINGLE-MODE DIFFUSION
COEFFICIENT FROM MSDS

We consider various ensemble approaches to evaluating the diffusion coef-

ficient via the MSD. In particular, we consider the errors associated with

each approach. The choice is somewhat arbitrary. However, the resultant er-

rors are dramatically affected. Because we benchmark the errors associated

with the H(h) method against the MSD approach, it is important to clearly

indicate these possibilities.

We note the distinction between the population ensemble approach and

the length-dependent single-particle approach. The latter is discussed in

detail by Qian et al. (45). It is an estimate of the error in the diffusion co-

efficient from the MSD for a single trajectory, which scales as �1/
ffiffiffiffiffiffi
NT

p
because of internal averaging over the full set of trajectory time lags (3).

For the ensemble approaches, internal averaging may or may not be

applied. For a single trajectory of length NT, we choose an arbitrary
Biophysical Journal 120, 1–15, February 16, 2021 13
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sublength eN % NT and apply linear regression to the first eN elements of the

MSD. The gradient of the linear fit provides the diffusion coefficient. We

evaluate the diffusion coefficient in this way over a population of Ns indi-

vidual trajectories resulting in a distribution of diffusion coefficients.

In Fig. 8, we show the SD as a function of trajectory length NT for

various population ensemble calculations with Ns ¼ 3000 samples.

The figure legend indicates when internal averaging is applied. The

various curves represent different choices for eN. When we use the full

MSD (eN ¼ NT) to calculate the linear regression then the inclusion of

internal averaging does not influence the errors, which are constant in

either case. This result is in stark contrast to the expected �1/
ffiffiffiffiffiffi
NT

p
scaling of Qian et al. (45) for a single trajectory, which is a direct result

of internal averaging. Note that when we set eN to a small

value, irrespective of NT, then the population ensemble sD approaches

�1/
ffiffiffiffiffiffi
NT

p
scaling.
APPENDIX C: DETAILS OF THE KL DIVERGENCE

In 1D, a monomodal Gaussian with variance s2m and zero mean is given by

fmðx; smÞ ¼ 1

sm

ffiffiffiffiffiffi
2p

p exp

�
� x2

2s2
m

�
: (C1)

The variance s2m is calculated using the standard variance formula,

applied to the simulation data for known bimodal distributions. Then, s2m
represents a reduced-modal approximation to the data, which we know to

be inaccurate.

A bimodal Gaussian mixture characterized by two variances s2b1 and s
2
b2

is given by

fbðx;sb1; sb2Þ ¼ a

sb1

ffiffiffiffiffiffi
2p

p exp

�
� x2

2s2
b1

�
þ ð1� aÞ
sb2

ffiffiffiffiffiffi
2p

p exp

�
� x2

2s2
b2

�
; (C2)

where s2b1 and s2b2 are calculated from simulations, as described in the

main text.

Transformation of Eq. C1 to the logarithmic domain gives

Hmðh; smÞ ¼ lnð10Þ
sm

ffiffiffiffiffiffiffiffi
10h

pDt

r
exp

�
�Dt10h

s2
m

�
; (C3)

where the independent variable is h ¼ log10(x
2/Dt). Likewise, the loga-

rithmic measure for the bimodal mixture is

Hbðh; sb1; sb2Þ ¼ lnð10Þ
2sb1

ffiffiffiffiffiffiffiffi
10h

pDt

r
exp

�
� Dt

10h

s2
b1

�

þlnð10Þ
2sb2

ffiffiffiffiffiffiffiffi
10h

pDt

r
exp

�
� Dt

10h

s2
b2

�
;

(C4)

where we have used the mixing parameter a ¼ 1/2. The variances s2m,

s2b1, and s2b2 are the same is in Eqs. C1 and C2.

To numerically approximate the KL divergence for a pair of probabil-

ity densities, we use the following: for a normal process on the natural

scale,

DKLðfmj j fbÞ ¼
X
x˛Lx

fmðx; smÞlog



fmðx; smÞ
fbðx; sb1; sb2Þ

�
dx; (C5)
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whereLx is the domain over which we have sampled the displacements.

For the logarithmic measure,

DKLðHmj jHbÞ ¼
X
h˛Lh

Hmðh; smÞlog



Hmðh; smÞ
Hbðh; sb1; sb2Þ

�
dh;

(C6)

where Lh is the transformed domain of displacements.
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