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Abstract

Contemporary scientific simulations require vast computing power to solve
complex problems in natural and life sciences. High-performance comput-
ing (HPC) enables fast execution of scientific simulation codes by par-
allelizing the computational workload across processing elements (PEs).
This is usually done by decomposing the computational domain into smaller
subdomains and assigning each subdomain to a PE. The subdomains en-
capsulate computational elements such as computational meshes or par-
ticles. The workload of each PE is defined by the number of operations
done using these computational elements.

In many scientific simulations, the initial load balance is not preserved
during the course of simulation. Outside factors (e.g., congestion in the
cluster network) as well as simulation dynamics (e.g., movement of par-
ticles in the computational domain) may alter the loads of PEs and may
cause load imbalance. In such situations, overloaded PEs require more
time to finish their tasks while underloaded PEs remain idle and wait
for the overloaded PEs. This protracts simulation runtime and results
in redundant energy consumption and wasting resources, which we would
like to avoid to the extend possible. To handle these load imbalance sit-
uations efficiently, dynamic load balancing (DLB) techniques have been
developed. In DLB, one is interested in making fast corrections to the
load imbalance. As opposed to static load balancing, DLB tries to avoid
a brand new subdomain-to-PE assignment.

III



In this thesis, we investigate DLB solutions for parallel particle methods.
First, we look at domain-decomposition-based [5] parallel simulations. We
analyze different models used in the literature to model computational
loads (i.e., subdomain costs). We argue that considering the loads indivis-
ible and real valued is the best way to model loads since subdomain costs
are closely related to wall-clock times of PEs, which are measured and
stored as real numbers. Following that, we discuss how a DLB protocol
could be designed such that it offers a scalable and fast solution to redis-
tributing loads across PEs. In this context, we analyze distributed DLB
protocols based on Balancing Circuit Model (BCM) [6] and develop theo-
retical bounds on the expected load imbalance when indivisible, real valued
loads need to be balanced. Further, we explain several distributed DLB
protocols, which can be employed to solve the load imbalance problem ef-
ficiently. By combining best features of these DLB protocols, we come up
with a HybridBalancer which can reduce an initial load imbalance by 3x
in just a few DLB iterations in a network of more than a million PEs.

Second, we take a particular numerical method and investigate possible
DLB solutions that it can benefit from. Particle filters (PFs) [7–10] are
sequential Monte Carlo methods (SMC) [11–13] developed to solve es-
timation problems optimally in nonlinear and non-Gaussian state-space
models using particles as main data structure. Here, we focus on tracking
of sub-cellular objects in biological images and discuss several parallel PF
algorithms that would allow us to use HPC systems to tackle these prob-
lems faster.

Parallel PF algorithms suffer from two types of load imbalance, namely,
particle imbalance and particle weight imbalance. In this work, we improve
existing parallel PF algorithms by discussing advanced DLB strategies.
These DLB methods help us increase tracking efficiency by more than 20x
and runtime performance by 9%. Later, we introduce a new parallel PF
called Box Exchange Method (BEM), which reduces communication over-
head in the DLB step and accelerates parallel execution of a PF. BEM
outperforms the fastest parallel PF algorithm by more than 2x. Moreover,
a detailed look at the classical PF algorithm allows us to develop an ap-
proximation algorithm (pcSIR), which provides on par tracking accuracy
but offers remarkable performance improvements of up to several orders
of magnitude.
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Kurzfaßung

Moderne wissenschaftliche Simulationen erfordern große Rechenleistung,
um komplexe Probleme in Natur- und Lebenswissenschaften zu lösen.
High-Performance Computing (HPC) ermöglicht eine schnelle Ausführung
von wissenschaftlichen Simulationen durch Parallelisierung der Rechenlast
auf Rechenelementen (REs). Dieses kann in der Regel durch Teilen des
Rechengebietes in kleinere Subdomains und Zuordnung jeder Subdomain
auf eine RE erreicht werden. Die Subdomains beinhalten Rechenelemente
wie Gitter oder Partikel. Die Rechenlast der einzelnen REs wird durch
die Anzahl von Operationen unter Verwendung dieser Rechenelementen
definiert.

In vielen wissenschaftlichen Simulationen kann der anfängliche Lastaus-
gleich im Verlauf einer Simulation nicht erhalten werden. Sowohl äußere
Faktoren (z.B. Staus in dem Cluster-Netzwerk) als auch Simulationsdy-
namiken (z.B. die Bewegung der Partikel im Rechengebiet) können die Las-
ten von REs verändern und dadurch ein Lastungleichgewicht verursachen.
In solchen Situationen benötigen die überlasteten REs mehr Zeit, um ihre
Aufgaben zu beenden. Währenddessen bleiben die unterbelasteten REs
untätig und warten auf die überlasteten REs. Dadurch verlängert sich die
Simulationslaufzeit und es erzeugt einen redundanten Energieverbrauch
und eine Verschwendung von Ressourcen, die wir auf ein Minimum re-
duzieren wollen. Um mit diesem Lastungleichgewicht effizient umzugehen,
wurde die dynamische Lastverteilung (DLV) entwickelt. Im Gegensatz zu
der statischen Lastverteilung versucht DLV eine neue Subdomain-zu-RE
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Zuordnung zu vermeiden.

In dieser Doktorarbeit untersuchen wir DLV für parallele wissenschaftliche
Simulationen. Zunächst betrachten wir parallele Simulationen basierend
auf Domain-Dekomposition [5]. Wir analysieren verschiedene Modelle aus
der Literatur, um die Rechenlast, bzw. Kosten der Subdomain, zu mod-
ellieren. Wir argumentieren, die beste Art die Rechenlast zu modellieren,
ist sie als unteilbare und reellwertige Zahl zu definieren. Da die Subdo-
mainkosten eng mit den gemessenen RE-Zeiten, die auch als reelle Zahlen
gespeichert sind, verknüpft sind, ist es natürlich, die Lasten als unteilbare
und reelle Zahlen zu speichern. Danach besprechen wir, wie ein DLV-
Protokoll geplant werden sollte, um eine schnelle skalierbare Lösung für
einen neuen Lastausgleich zu finden.

In diesem Zusammenhang analysieren wir die verteilten DLV-Protokolle
basierend auf dem Balancing Circuit Model (BCM) [6] und entwickeln the-
oretische Grenzen für das erwartete Lastungleichgewicht, wenn unteilbare
und reellwertige Lasten auf REs ausbalanciert werden müssen. Weiter-
hin erklären wir mehrere verteilte DLV-Protokolle, die angewandt werden
können, um das Lastungleichgewichtsproblem effizient zu lösen. Durch
die Kombination der besten Eigenschaften dieser DLV-Protokolle entwick-
eln wir einen HybridBalancer, der das anfängliche Lastungleichgewicht in
einem Netzwerk von mehr als einer Million REs in wenigen DLV-Schritten
dreimal verringern kann.

Zweitens nehmen wir uns ein sequenzielles Monte-Carlo-Verfahren [11–
13], die Partikel-Filter, als Beispiel und diskutieren, wie es von den DLV-
Protokollen profitieren kann. Diese Partikel-Filter (PF) [7–10] sind en-
twickelt worden, um Zustandschätzungsprobleme in nichtlinearen und nicht-
Gaußschen Zustandsraummodellen unter Verwendung von Partikeln als
Hauptdatenstruktur zu lösen. Hier konzentrieren wir uns auf die Ver-
folgung von subzellulären biologischen Objekten in Bildern. Wir disku-
tieren mehrere parallele PF-Algorithmen, die die Verwendung von HPC-
Systemen ermöglichen, um solche Verfolgungsprobleme schneller lösen zu
können.

In parallelen PF-Algorithmen gibt es zwei Arten vom Lastungleichgewicht:
Das Partikel-Ungleichgewicht und das Partikelgewicht-Ungleichgewicht. In
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dieser Arbeit verbessern wir zunächst die schon bestehenden parallelen PF-
Algorithmen, indem wir fortschrittliche DLV-Strategien einbauen. Diese
DLV-Methoden helfen uns die Verfolgungseffizienz um das 20-fache zu
erhöhen und die Laufzeit der Simulationen um 9% zu kürzen. Später
stellen wir einen neuen parallelen PF, die Box Exchange Methode (BEM),
vor. Diese Methode reduziert den Kommunikationsaufwand in der DLV-
Phase, wodurch sich die Ausführung eines parallelen PFs beschleunigt.
Es übertrifft den vormals schnellsten parallelen PF um mehr als das 2-
fache. Desweiteren gibt uns ein detaillierter Blick auf den klassischen PF-
Algorithmus die Möglichkeit eine Annäherungsmethode für PF, die pcSIR,
zu entwickeln. Die pcSIR bietet eine sehr ähnliche Verfolgungsgenauigkeit
wie der originale PF, liefert jedoch Laufzeitverbesserungen bis auf mehrere
Größenordnungen.
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Introduction

Since the advent of the first programmable computer Colossus [14], which
was designed and constructed by mathematician Alan Turing and his col-
leagues in England in late 1943, we have witnessed an ever-increasing role
of computers in science and engineering. Rising up as the third pillar
of scientific investigation alongside theory and lab experimentation, this
younger field of science is termed as computational science or scientific
computing. Computational science is concerned with the reconstruction or
prediction of physical phenomena and technical processes of scientific in-
terest by developing mathematical models and quantitative analysis tech-
niques, which are later tested and validated with the help of computer
simulations.

Over the past decades, computer simulations boosted the quest of answer-
ing many scientific questions and paved the way to discovering invaluable
insight into numerous engineering challenges, which would not have been
tackled otherwise with traditional experiments. Success stories of numeri-
cal simulations range across scales and disciplines, e.g., down from atomic
scale (e.g., protein folding in molecular biology [15]) up to macroscopic
scale (e.g., studies of perturbations of planetary systems [16]).

The advancements in simulation codes has closely followed the break-
throughs in microchip technology. For considerable time, they enjoyed
“free speedup” as the chip performance of computers doubled almost ev-
ery 18 months in line with Moore’s Law [17, 18]. Back then, the trend was
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buying new, more advanced hardware to have a faster execution of legacy
codes and improving the sequential performance of simulation codes by
introducing faster algorithms. However, with the inception of multicore
processors and later many-core processing units (e.g., graphics processing
units (GPUs)) in mid-2000s, a paradigm shift happened: It became clear
that future simulations need to exploit parallel hardware infrastructure to
further shorten application runtime since clock rates of cores stagnated.

The emergence of parallel systems has again emphasized an important
recipe for a fast parallel code design, which can be summarized in two fun-
damental engineering principles: (i) Algorithm engineering is concerned
with improving an existing algorithm or developing a new algorithm, which
offers a much lower computational (i.e., runtime and/or space) complex-
ity; (ii) implementation engineering deals with efficient implementation
of an algorithm such that it utilizes the underlying hardware. Exploiting
the synergism of both algorithm and implementation engineering princi-
ples usually leads to a better hardware-software co-design [19] and thus,
shorter runtime of simulation codes and less energy consumption, which is
a vital issue in future HPC systems [20, 21].

In parallel scientific numerical applications, computational tasks or data
are distributed across participating PEs. Despite initial equal workload
sharing, the workloads of PEs may however become easily uneven as the
simulation progresses. This situation forces underloaded PEs to remain
idle and wait for overloaded PEs to finish their tasks. This load imbal-
ance wastes energy and computational resources. With the upcoming
emergence of exascale systems1, we cannot afford such energy-wasting sit-
uations in the future and novel solutions need to be researched.

As a remedy to load imbalance in parallel simulations, dynamic load bal-
ancing [22] (DLB) has been introduced for distributed-memory systems.
The idea is to execute a fast DLB protocol to make the loads on PEs
as even as possible in shortest possible time. This would help to reduce
redundant use of computational resources and help scientists obtain their
simulation results much faster.

1Large computer systems that can execute 1018 floating point operations per second.
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In this thesis, we discuss various DLB protocols that one can employ in
two main types of parallelization techniques for scientific codes. In par-
allel applications, two typical domain decomposition schemes are used to
parallelize the workload. The first one is called geographic domain decom-
position approach where the initial computational domain is divided into
smaller subdomains, which are later assigned to PEs. The second approach
is usually termed as non-geographic domain decomposition where compu-
tational elements are shared by the participating PEs. This thesis explores
ideas how to apply DLB in both domain decomposition approaches effi-
ciently. An overview of the thesis can be seen in Fig. 1.

In this work, we first discuss distributed DLB protocols one can employ
in generic parallel scientific numerical simulations based on a geographic
domain-decomposition approach [5]. A vast majority of scientific numeri-
cal simulations adopt this approach to exploit parallel computers. In this
approach, the computational domain is decomposed into smaller subdo-
mains and each PE is given a set of these subdomains to operate on.
During the course of a simulation, the computational cost of these sub-
domains may change and a DLB step may be required to balance the
workloads amongst PEs. This thesis focuses on distributed DLB protocols
to overcome such load imbalance problems in parallel simulations and an-
alyzes performances of several such DLB protocols. Later, we investigate
a specific particle method, namely particle filters (PFs), which are based
on non-geographic domain decomposition approach and discuss how one
can solve two different types of load balancing problem efficiently.

We present a number of scientific applications, which are solved numer-
ically using particles as main computational element, and explore possi-
bilities to make these simulation codes run faster by applying algorithm
and implementation engineering principles with a DLB perspective. Be-
fore explaining the details of our contributions, we would like to give some
preparatory information on the key concepts such as particle methods,
domain decomposition, and distributed DLB algorithms, which constitute
the backbone of this thesis.
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Figure 1: This thesis investigates DLB solutions to scientific simulation
codes that are parallelized based on (non)-geographic domain decomposi-
tion approaches.
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Figure 2: Four “kingdoms” of simulation models with their representative
applications are shown [23].

Particle Methods

Many simulated systems belong to a subclass of so-called spatiotempo-
ral systems. They can be distinguished mainly in two independent di-
mensions: discrete - continuous and deterministic - stochastic. Different
modeling techniques and therefore different computational methods are
available depending on characteristics of the chosen system. An overview
of most common modeling techniques along with examples of spatiotem-
poral systems are given in Fig. 2.

All numerical simulations that aim to investigate a spatiotemporal system
numerically, employ at least one, or several types of computational ele-
ments to discretize the problem in space. The computational complexity
of a simulation mainly depends on the number of the employed compu-
tational elements and also, on the mathematical operations they undergo
throughout the course of the simulation. Prominent types of computa-
tional elements in such simulations are computational lines (e.g., Finite
difference method [24]), surfaces (e.g,, Finite element method [25]), vol-
umes (e.g., Finite volume method [26]), and particles [27, 28]. A com-
putational mesh is composed of vertices and edges connecting them. The
nodes usually carry some properties, i.e., a function value specific to the
scientific problem at hand. Additionally, the adjacency information (i.e.,
neighborhood information) of the nodes is given explicitly.
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Figure 3: Illustration of a regular Cartesian mesh (left) and particles
(right). The neighborhood in a mesh is explicitly given, whereas particles
need to search for neighboring particles. In this example, the neighborhood
range of the blue particle is shown by a black circle. Three red particles
are marked as the neighbors of the blue particle.

Computational particles are data structures that have a location in some
space and may carry one or several properties. They can move, evolve, and
interact with other computational particles. Local searches are required
to find other neighboring particles. A pictorial overview of meshes and
particles is shown in Fig. 3.

Particle methods provide a unifying computational framework for simula-
tions of continuous and discrete systems. They facilitate seamless analysis
of such systems, both stochastically and deterministically. In continuous
deterministic models, we investigate the temporal and spatial evolution
of a smooth field (e.g., velocity, electric charge density, etc.), which are
usually modeled by the partial differential equations (PDEs). For exam-
ple, in computational electromagnetism, quasi-static Maxwell equations
are used to model the electromagnetic phenomena. In such applications,
differential operators and the electric field are discretized over a set of par-
ticles [29]. In computational fluid dynamics (CFD) applications, e.g., in
wave simulations [30], the Navier-Stokes equations are discretized again
over particles. In these examples, particles present a data structure that
acts as a discretization point that moves, evolves, and interacts with other
particles according to the application specifications. In discrete stochastic
systems, particles have usually correspondence to real-world entities (e.g.,
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atoms in a molecular dynamics simulation [31]) or to samples generated
randomly from a probability distribution over the domain in a Monte Carlo
simulation [32]. Irrespective of the chosen system, particles can be seen
as a prevalent data structure, which has been already adopted in many
scientific simulations due to its simplicity and versatility.

In this thesis, special focus is given to a particle method called particle fil-
tering. Particle filters (PFs) [7–10] are SMC methods [11–13] developed to
solve estimation problems optimally in nonlinear and non-Gaussian state-
space models. More precisely, they serve as a helpful computational tool
to accurately estimate unknown quantities in noisy measurements, which
occur commonly in various real-world applications and research efforts
including, but not limited to computer vision [33–36], robotics [37–41],
transportation systems and urban logistics [42–44], econometrics and fi-
nance [45–49], renewable energy research [50], sports [51], target track-
ing [52–59] among many others.

Unlike the Kalman filter [60] and its variants [61], particle filters (PF) do
not use a fixed functional form of the posterior probability density function
(PDF). Instead, they employ a finite number of points, called “particles”,
to discretely approximate PDF in state space [62]. Being the main data
structure in PFs, particles carry application-specific properties and they
evolve as the simulation progresses.

In this work, we focus particularly on the tracking of sub-cellular objects
in biomedical images. This operation is concerned with the detection of
bright spots in the images, tracking their motion over time, and recon-
structing their trajectories.

Domain Decomposition Approach and Distributed
DLB

Years of interplay between advancing computing systems and the demand
for studying scientific problems of greater complexity gave rise to exploit-
ing hardware parallelism (e.g., multi-core computer systems) to handle
ever-increasing computational complexity of the simulation codes. How-
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ever, this fact led to several difficulties, so-called gaps [5], in parallel HPC:
(i) Performance gap: Difficulty of sustaining a high computational per-
formance of parallel scientific simulations on high-end supercomputing
clusters, (ii) knowledge gap: The protracted development of hardware-
aware simulation codes for distributed computer architectures, (iii) reli-
ability gap: The mean-time between failures is getting shorter than the
runtime of a simulation as computer systems get larger, and (iv) data gap:
Increasing difficulty of handling large simulation data.

To minimize the above-mentioned gaps, many parallel software libraries
and frameworks are introduced to provide abstractions at different levels
to reduce the code development time, and to enable efficient, fast execu-
tion of simulations on computer clusters. On the low-level abstraction,
OpenMP [63] and pthreads [64] are libraries used for shared-memory par-
allelism, whereas the Message Passing Interface (MPI) [65] and MapRe-
duce [66] are popular programming models for simulations and data pro-
cessing on distributed-memory systems. Middle-level libraries usually uti-
lize the low-level libraries but hide most of the implementation difficulties
arising using these low-level libraries. Still, a certain amount of knowl-
edge about parallel computing is required to fully optimize the runtime
of simulations. Some examples include the Parallel Particle-Mesh Library
(PPM) [67, 68], PETSc [69], Trilinos [70], POOMA [71], NWChem [72],
and NAMD [73]. Lastly, high-level abstraction libraries such as Swarm [74]
and FFTW [75] come with a collection of domain-specific numerical solvers
or tools to accelerate the code development.

Learning efficient parallel programming and then applying it in a specific
domain of science takes years of expertise. Middleware libraries such as
the PPM library are designed and implemented to make this process as
quick as possible, allowing non-computer scientists to develop their par-
allel numerical codes rapidly and run them on large computing systems
efficiently. They provide portable and transparent interfaces for develop-
ing particle and/or mesh-based numerical methods on parallel distributed-
memory computers.

The vast majority of scientific numerical simulations is parallelized using a
domain-decomposition approach [5]: The simulation starts with an initial-
ization phase during which the computational domain is decomposed into
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disjoint subdomains that are then distributed across processing elements
(PEs). The initialization step is followed by a time-step loop or a series
of iterations, executed in parallel by each PE on its corresponding subdo-
main(s) until an application-specific termination criterion is reached. At
the end of each iteration or time step, PEs communicate with their neigh-
bors to ensure solution continuity across subdomain boundaries.

The parallel efficiency of such a numerical simulation is determined by
the communication overhead between PEs and by the global load balance.
While the former is defined by the employed numerical solver and the ge-
ometry of the subdomains, the latter depends on the simulated dynamics.

Each subdomain contains a (large) number of computational elements,
such as mesh cells and/or computational particles. Together with the al-
gebraic operations to be executed on them, this defines the computational
cost of each subdomain. During initialization of a simulation, subdomains
are distributed to PEs such as to balance the computation wall-clock time
across PEs. The goal of this static load balancing (SLB) is to ensure that
all PEs finish a single iteration of the simulation in about the same time,
so that no PE needs to wait for another one before they can exchange the
boundary information and enter the next time step. The graph describ-
ing this inter-process communication (IPC) is defined by the assignment
of subdomains to PEs and can be used to optimize the communication
schedule. This initialization phase is typically handled efficiently by scien-
tific simulation libraries, such as PPM, NAMD, and PETSc.

As the simulation steps forward through iterations or time, the initial load
balance may worsen due to both intrinsic and extrinsic factors. Intrinsic
factors include the migration of computational elements (e.g., particles)
from one subdomain to another due to, e.g., a simulated flow. Other in-
trinsic factors are particle birth/death processes or the dynamic refinement
or coarsening of meshes in order to adapt to the evolving numerical so-
lution. Extrinsic factors that worsen load balance include fluctuations in
the background load of the machine and network congestion. An emerg-
ing load imbalance is typically quantified by the absolute load difference
between the most overloaded (i.e., slowest to complete a time step) and
the most underloaded PE.
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Since a growing discrepancy deteriorates the parallel efficiency of the sim-
ulation, it is necessary to periodically re-balance the load assignment. One
way to re-assign the loads is to stop the simulation and a fresh domain
decomposition is executed. This, however, requires global communica-
tion across all PEs, limiting scalability of this load balancing scheme to
very large machines. DLB protocols aim to avoid this overhead by delay-
ing re-initialization to the extent possible. A DLB protocol operates on
the existing domain decomposition and is only allowed to migrate (i.e.,
re-assign) subdomains from one PE to another, without changing the sub-
domains as such. Yet, the communication overhead generated by a DLB
protocol is not zero, since the contents (mesh nodes and/or particles) of a
migrating subdomain need to be communicated between the two involved
PEs. In addition, every DLB protocol requires consensus between all PEs
about how to migrate subdomains.

Distributed DLB protocols have emerged as a viable solution to DLB prob-
lems in parallel computing. In such protocols, the need for a global com-
munication is removed by allowing each PE to communicate with its immi-
nent neighboring PEs. Instead of a global communication, several rounds
of these local communications are executed. Distributed DLB protocols
offer a more scalable parallel execution of scientific codes than centralized
DLB protocols and thus need to be analyzed more in detail.

Motivation

The overall aim of this thesis is to help improve the parallel performance of
scientific numerical simulations on distributed-memory systems by means
of DLB techniques.

We first discuss distributed DLB techniques for general parallel scientific
computing based on a domain-decomposition approach [5]. Later, we have
a closer look at parallel particle filters and present several DLB algorithms
that help relax the particle imbalance and particle weight imbalance prob-
lems. In addition, analyzing PF algorithms enables us to develop faster
approximate PF algorithms. A summary of our contributions is as follows:

(i) Theoretical investigation of DLB schemes

(ii) Empirical analysis of distributed DLB protocols in massively parallel
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simulations

(iii) A novel fast approximation algorithm for particle filtering (pcSIR)

(iv) Analysis of existing distributed resampling algorithms (DRAs)

(v) Improved versions of existing DRAs

(vi) A novel and more efficient parallel particle filtering algorithm

(vii) A new parallel particle filtering (PPF) library that implements all
new and old DRAs efficiently on parallel computers
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Outline

Chapter 1 The importance of scalable DLB strategies is discussed and
several distributed DLB protocols are compared with each other. Promis-
ing DLB candidates are then benchmarked in typical massively parallel
simulation setups that reflect realistic load imbalance situations in scien-
tific numerical simulations with more than one million PEs.

Chapter 2 This chapter explains the theory behind particle filters be-
fore we discuss DLB ideas for parallel particle filtering algorithms. It in-
troduces Bayesian filtering and Monte Carlo methods with a special focus
on statistical inference. The chapter concludes with a general description
of the particle filtering algorithm.

Chapter 3 In this chapter, we introduce a novel approach to classic
particle filtering, where an approximation based on the piecewise constant
representation of a likelihood function is introduced. This new algorithm
(pcSIR) improves the runtime of sequential PF algorithm and keeps the
accuracy of the PF intact.

Chapter 4 Here, we give an insight into existing DRAs that are used in
parallel PFs and the DLB problems that they suffer from. Moreover, we
introduce our novel software, the PPF library, which implements all these
DRAs along with new ones introduced in the next chapter.

Chapter 5 In this chapter, we discuss our DLB contributions to the
existing DRAs as well as a novel parallel PF algorithm called BEM, which
reduces communication overhead during the DLB step and outperforms
fastest parallel PF algorithm to date.

Chapter 6 This chapter summarizes the contributions of this thesis in
research areas of DLB, parallel particle filtering, and the PPF library.

Chapter 7 Lastly, this chapter points to possible directions for future
research and concludes the thesis.

XXXIV



CHAPTER

ONE

Distributed dynamic load balancing in

massively parallel scientific numerical
simulations

1.1 Introduction

In a typical parallel numerical simulation, the computational domain is
decomposed into smaller subdomains, which are later assigned to proces-
sors. This task has to be carried out carefully such that the computational
load on each processor is even and the communication overhead amongst
the processors is minimized. If particles move or the mesh gets refined
during the simulation, initial domain decomposition may get invalidated.
This would then require re-decomposition of the computational domain
and redistribution of computational elements.

One way to handle growing load discrepancy is to use a static load bal-
ancing (SLB) technique. In a SLB approach, the simulation is halted and
re-initialized as soon as the accumulated load imbalance justifies the cost
of determining a new domain decomposition and distributing the resulting
subdomains across PEs afresh. Several heuristics, such as the Stop-At-
Rise method [76], are available to determine when the overhead of re-
initialization is amortized by the expected future gain in load balance. All
of them, however, require global communication across all PEs, limiting
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their scalability to very large machines.

On the other hand, DLB protocols aim to solve the load imbalance problem
by introducing smaller perturbations. With all these small “corrections”
to the load imbalance, DLB tries to avoid a complete re-distribution of
subdomains. A DLB protocol operates on the existing domain decompo-
sition and is only allowed to migrate (i.e., re-assign) subdomains from one
PE to another, without changing the subdomains as such. Yet, the com-
munication overhead generated by a DLB protocol is not zero, since the
contents (mesh nodes and/or particles) of a migrating subdomain need to
be communicated between the two involved PEs. In addition, every DLB
protocol requires consensus between all PEs about how to migrate subdo-
mains. In literature, there are three main types of DLB strategies that
deal differently with this communication overhead.

1.1.1 Dynamic Load Balancing Strategies

DLB strategies are classified into three categories depending on the com-
munication protocol used to guarantee consensus about subdomain migra-
tion. The first DLB category uses a centralized paradigm [22, 77], where
one master PE collects the load information from all other PEs, determines
the subdomain migration plan, and broadcasts this plan to all PEs. Upon
receiving the plan, all PEs start exchanging subdomains in parallel. This
incurs an additional serial fraction in the program, as the migration plan
is determined sequentially by a single PE, and requires global communi-
cation. The scalability of centralized DLB schemes is hence limited.

The second category comprises hierarchical DLB strategies [78–81], where
the PEs are hierarchically clustered into groups and a centralized DLB
protocol is executed in parallel within each group. Although several issues
of centralized DLB protocols are relaxed by hierarchical strategies, perfor-
mance may be hampered by excessive data collection at the bottom of the
hierarchy and by redundant work done at multiple levels [82].

The third DLB category uses a decentralized, distributed communication
protocol, where each PE communicates only with a bounded number of
neighbors that is independent of the total number of PEs. This implies
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that consensus has to be reached based on local information only. Dis-
tributed DLB schemes hence require several rounds of local communica-
tion to achieve load balance, but they are in theory scalable to arbitrarily
large numbers of PEs.

Distributed DLB protocols come in two flavors with either one-to-one
or one-to-all nearest-neighbor communication. In diffusion-based algo-
rithms [83, 84], the load of a PE is balanced concurrently with all neigh-
bors. One-to-one protocols include dimension exchange [83] and the match-
ing model [85], where each PE selects a single neighbor in each round, and
loads are balanced in these isolated pairs. This is formalized by the balanc-
ing circuit model (BCM), which has been shown to asymptotically produce
better local load balance than diffusion-based models [6].

1.1.2 Load Models

In scientific numerical simulations, the computational costs of the sub-
domains can be considered statistically independent of each other. This
renders the DLB problem tractable, as it is not reducible to graph parti-
tioning.

The complexity analysis of distributed DLB algorithms (i.e., diffusion-
based, matching model, and BCM) covers substantial ground in theoreti-
cal computer science. For theoretical analysis, loads are usually modeled
as either (i) divisible, real-valued loads in the continuous load model or (ii)
indivisible, unit-token loads in the discrete load model. Applied to numer-
ical simulations, the former assumes that subdomains carry real-valued
computational costs and each subdomain can be arbitrarily subdivided
during the DLB process. The latter load model considers integer subdo-
main costs that are multiples of a load unit that cannot be further divided.

Theoretical analysis of the continuous load model in diffusion-based DLB
schemes has been done using spectral analysis of Markov processes on
graphs [86, 87]. The analysis has also been extended to distributed gos-
sip algorithms that reach a consensus [88] or perform a collective opera-
tion (e.g., averaging) in the network [89]. Similar analysis also applies to
the discrete load model [85, 90]. Some authors used randomized round-
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ing to quantify the difference between the continuous and the discrete
cases [86, 91, 92]. Sauerwald and Sun [93] showed tight bounds on the
deviation between the continuous and the discrete models in the BCM.

While these two load models paved the way for theoretical analysis of DLB,
they do not accurately describe the situation in scientific numerical simu-
lations. While the costs of subdomains change from time step to time step,
they are constant during the DLB process as such. The main reason for
using DLB, as opposed to re-initialization followed by SLB, is to reuse the
existing domain decomposition. While in principle, one could also allow a
DLB scheme to shift subdomain boundaries, hence enlarging some subdo-
mains and shrinking others, this would potentially invalidate topological
requirements of the domain decomposition and change subdomain neigh-
borhood relations, hence invalidating the communication schedule of the
simulation. Determining a new schedule would again require global com-
munication. This discourages the use of the continuous load model. The
discrete model would be applicable if loads were to be balanced in terms
of the numbers of particles and/or mesh points per PE. These are discrete,
indivisible tokens. However, in practical applications loads are to be bal-
anced in terms of wall-clock execution times, since different mesh nodes or
particles may require different operations to be evaluated on them. This
renders the cost a real-valued variable with no indivisible atom.

We hence consider the loads to be indivisible and real-valued [94] in a net-
work of homogeneous PEs that all have the same clock rate and memory
size. Furthermore, we neglect background fluctuations in machine load
that may affect the costs. In this fixed load model, subdomains are not
altered or subdivided by the DLB protocol and their costs are directly
defined as the wall-clock execution times. An illustration of the three load
models is shown in Fig. 1.1. As shown in Appendix A, the theoretical
bounds derived for the discrete load model [93] also apply to the fixed
load model in a BCM framework.
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Discrete Continuous Fixed

Figure 1.1: Illustration of different load models in DLB analysis. In the
discrete load model (left), all loads (solid lines) are integer multiples of an
indivisible load unit (dashed lines). The continuous load model (middle)
assumes loads to be real numbers that can be arbitrarily subdivided during
DLB. The fixed load model (right, considered here) assumes all loads to
be real numbers that cannot be subdivided or changed during the DLB
process.
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1.2 Contributions

Here, we study the fixed load model as a realistic model for subdomain
costs in scientific numerical simulations based on domain-decomposition
parallelism. Using analysis techniques developed earlier [93], we derive the
expected discrepancy (i.e., the load difference between the heaviest and the
lightest PEs) between the fixed load case and the continuous case. With
some modifications to the original theoretical framework, we show similar
tight bounds for the discrepancy of balancing indivisible, real-valued loads
in a BCM protocol.

Following that, we use numerical experiments of the proposed model to
compare the performance and communication overheads of three simple
DLB protocols: Greedy, SortedGreedy, and Gradient. We empirically
show that SortedGreedy balances loads faster than a classical Greedy

method, requiring fewer iterations of the DLB protocol. Moreover, SortedGreedy
achieves a better load balance than Greedy. Gradient yields less balanced
load distributions than SortedGreedy, but requires much fewer subdomain
migrations, hence reducing the communication overhead.

In order to assess the performance based on both the load balance and the
induced communication overhead, we introduce a metric S that accounts
for the quality of the resulting load balance and for the number of load
migrations required to achieve it. We compare three DLB protocols in a
local setting where two nodes with different total loads undergo the DLB
phase. We observe that SortedGreedy and Gradient are favorable algo-
rithms to solve this local load difference problem.

We then combine these two algorithms into a HybridBalancer and test
it for realistic DLB problems in simulations of a large-scale network with
one million PEs forming realistic communication topologies as found in
numerical simulations. The results show that after a few iterations of
SortedGreedy, an initial load imbalance is reduced by up to a factor of
three. While Gradient can reduce the initial load imbalance only by 50%,
it yields a much smaller communication overhead, resulting in up to a
factor of seven better S over SortedGreedy. We observe that the load
imbalance decreases rapidly during the first few iterations of the scheme,
and that the following iterations contribute less. Based on this observa-
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tion, we propose HybridBalancer for practical application in massively
parallel numerical simulations. In the first DLB round, HybridBalancer
uses SortedGreedy to reduce the load imbalance as much as possible. For
the subsequent rounds, it switches to Greedy in order to limit the commu-
nication overhead.

1.3 DLB Algorithms for Locally Balancing Loads

In BCM, each PE in the IPC graph selects a single neighboring PE in
parallel at a time. These pairs of PEs are called a matchings (see also
notation and terminology in Appendix A). The goal in each matching is to
distribute the loads between those two PEs as evenly as possible. In order
for all matchings in the IPC graph to be able to operate concurrently, they
need to be independent, i.e., no PE must occur in more than one matching
at a time. Such matchings can efficiently be found using a near-minimal
edge coloring of the IPC graph. In many parallel numerical simulations,
such a coloring is already available from the communication schedule used
by the PEs to exchange boundary information [67] and it can be directly
re-used at no additional cost. Otherwise, such a coloring can be efficiently
computed using an approximation algorithm [95].

A good DLB protocol should minimize the load imbalance independently
in each matching. This local balancing problem can be formalized as an
offline balls-into-bins problem [96, 97] with two bins (see Appendix B).
Here, balls represent subdomains, the non-negative ball weights represent
subdomain costs, and the two bins are two PEs of the matching.

The classical balls-into-bins problem [98, 99] considers sequential place-
ment of m balls into n bins such that the bins are maximally balanced.
Historically, the problem is categorized by the type of balls (e.g., uni-
form [100, 101] vs. weighted [102–105]), by the number of bins a ball can
choose from (e.g., single-choice vs. multi-choice [91]), and by the number
of balls (e.g., m = n [96] vs. m > n or m � n [97]). In applications
such as load balancing, hashing, and occupancy problems in distributed
computing [97, 102, 106] the d-choice variant and its subproblem, the two-
choice variant have been the main focus. In the present case of balls having
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individually different weights, Talwar and Wieder [103] have shown that
as long as the weight distribution has finite second moment, the weight
difference between the heaviest and the average bin is independent of m.
Peres et al. [104] introduced the (1 + β)-choice process analysis, and for
β = 1, the discrepancy has a bound of Θ(log log n) even for the case of
weighted balls. Dutta et al. [105] introduced the IDEA algorithm, which
provides a constant discrepancy with high probability even in the heavily
loaded case (m� n).

In the offline version of the problem, we are given the complete set of balls
(i.e., the loads on matching PEs) a priori. We define the discrepancy as
the weight difference between the heaviest and the lightest bin. We do
not restrict the distribution from which the balls sample their weights.
For simplicity, we assume that a ball can be placed into either bin, thus
d = n = 2. As shown in Appendix B, the discrepancy is expected to
decrease by the mean weight W̄ of all balls in each iteration. The final
discrepancy remains larger than 2W1−W̄m for a total of m assigned balls
with W1 the weight of the heaviest ball.

1.3.1 Greedy Method

An online version of the Greedy algorithm has been previously proposed [100,
101] and later extended to the case of weighted balls [103]. In the offline
version, two matching PEs u and v exchange the costs of all of their sub-
domains, such that both of them have complete information about all local
loads, and all subdomains are dissociated from their previous PEs. Then,
Greedy linearly iterates though the loads (subdomains) and assigns each
load to the PE with the so far smallest total load. The n-bin version of
Greedy is given in Algorithm 1.

1.3.2 SortedGreedy Method

SortedGreedy sorts the balls in order of descending weights before apply-
ing Greedy, hence assigning the heaviest ball first and proceeding to lighter
and lighter balls. If the ball weights (i.e., subdomain costs) are samples
from a uniform probability density function, the final discrepancy Gm af-
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Algorithm 1 Greedy algorithm

1: procedure Greedy[n](U1...N , W) . Given are a set W of m balls
and the bin arrays U1...N

2: U1[1]← W[1]
3: p2...n ← 1 . Initialize the pointers for all bins
4: p1 ← 2 . First bin has already one ball in it.
5: for i = 2→ m do . Give remaining m− 1 balls sequentially to

lightest bin
6: idx ← findLightestBin(U1...N ) . Find the ID of the lightest

bin which is the one with least current sum
7: Uidx[pidx]← W[i]
8: pidx ← pidx + 1
9: end for

10: return U1...N

11: end procedure

9
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ter placing all m balls is bounded from below by: Gm ≥W1 −
∑m
i=2Wi ≥

2W1−
∑m
i=1

1
i , where Wi is the weight of ball i (see Appendix B). Moreover,

since the balls are sorted in order of descending weights, Wm is the mini-
mum ball weight and fluctuations in the discrepancy decrease as i→ m.As
shown in Appendix B, the final discrepancy obtained by SortedGreedy

decreases as m increases. A sufficiently fine granularity of the domain de-
composition is hence important for achieving good load balance in a BCM.

If the subdomain costs are sampled from a uniform distribution over the
interval (0, 1], we can use a distribution-based sorting algorithm, such as
bucketsort, Proxmap-sort [107], or flashsort [108]. Since these algorithms
are not comparison-based, the Ω(m logm) lower bound for comparison-
based sorting does not apply to them. For example, Proxmap-sort [107]
has an average time complexity of O(mk) = O(m), where k < m is the
content number of the “buckets” used for sorting. For flashsort, k = 0.42m
is found a good value in empirical tests [108].

For non-uniform or unknown weight distributions, we resort to efficient
comparison-based sorting algorithms, such as mergesort or quicksort [109],
which have an average time complexity in O(m logm). Depending on
the specific sorting algorithm, the worst-case complexity can also be in
O(m logm). Highly optimized implementations of these algorithms are
commonly available. The pseudocode of SortedGreedy is given in Algo-
rithm 2.

Algorithm 2 SortedGreedy algorithm

1: procedure SortedGreedy[n](U1...N ,W ) . Given are a set W of m
balls, and the bin arrays U1...N

2: sortedW ← quicksort(W ) . Sort the array in descending order
(e.g. using quicksort)

3: return Greedy[n](U1...N ,sortedW)
4: end procedure

10



1.3. DLB Algorithms for Locally Balancing Loads

1.3.3 Gradient Method

Gradient expands upon SortedGreedy by accounting for the previous
subdomain-to-PE assignment in order to keep the number of subdomain
migrations low, hence reducing the communication overhead incurred by
the DLB protocol. The price one has to pay for this decrease in commu-
nication overhead is a less well-balanced load distribution after DLB. In
every matching of Gradient, the heavier node, say u, transfers some of
its loads to v, such that the load difference between u and v is minimized.
Intrinsically, the heavier node finds the minimum number of loads to send
in order to maximize load balance. For this, the heavier PE u sorts its
local loads in order of decreasing weights and sends as many loads to v
as necessary to decrease its total weight to around (plus/minus one load)
the expected mean weight. The pseudocode of Gradient is shown in Al-
gorithm 3.

1.3.4 Simulation Experiments on Locally Balancing Loads

We empirically compare the three offline balls-into-bins algorithms Greedy,
SortedGreedy, and Gradient in computer simulations. We test how well
they balance loads between two PEs, i.e., we consider only a single match-
ing. We then extend the analysis to whole IPC graphs in the subsequent
section.

We test cases where each PE locally has up to 100 subdomains initially
(i.e., up to 200 loads per matching), hence reflecting different granulari-
ties of the domain decomposition. Each subdomain cost is sampled from
a uniform distribution over the interval [0, 1]. All tests are repeated 500
times each. Neighboring PEs may have unequal numbers of subdomains
initially, and the average initial load imbalance increases as the total num-
ber of subdomains is increased.

We quantify the goodness of load balancing by

S =
disc

α
, (1.1)
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Algorithm 3 Gradient algorithm

1: procedure Gradient(u, v, loads) . Compute each node’s total
load; maximum number of elements in loads is l

2: utotal ← sum(loads[u,:])
3: vtotal ← sum(loads[v,:])
4: dif ← abs(utotal − vtotal) . The load difference should be

non-negative
5: if utotal > vtotal then . Heavier node sends some loads to the

other one
6: sender ← u
7: receiver ← v
8: else
9: sender ← v

10: receiver ← u
11: end if
12: sortedLoads ← quicksort(loads[sender,:]) . Sort the sender array

in descending order
13: newLoads[sender,:] ← sortedLoads
14: nonzero ← nnz(loads[receiver,:]) . Find the number of non-zero

elements in receiver
15: for i = 1→ nonzero do
16: newLoads[receiver,i] ← loads[receiver,i]
17: end for
18: skip ← nonzero + 1
19: for i = 1→ l do
20: if sortedLoads(i) < 2∗dif & sortedLoads(i) 6= 0 then
21: newLoads[receiver,skip] ← sortedLoads(i) . receiver gets

the heaviest load from sender
22: dif ← dif −2∗sortedLoads(i)
23: skip ← skip + 1
24: sortedLoads(i) = [ ]
25: end if
26: end for
27: return newLoads
28: end procedure
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where disc is the ratio between the initial discrepancy (i.e., initial load
imbalance before DLB) and the final discrepancy achieved by the DLB
protocol, and α is the total number of subdomain migrations required.
When comparing a DLB algorithm, we use SortedGreedy as a baseline
and define the relative figure of merit Srel with respect to SortedGreedy

as:

Srel =
S

SSortedGreedy
. (1.2)

This measures the relative performance of a DLB protocol over SortedGreedy
based on the communication overhead and the final load balance. This
metric is independent of the specific implementation of the DLB algo-
rithms and can hence be determined in simulations of the DLB process.

We consider two different load mobility models: (i) full mobility, where
all subdomains are allowed to freely move within each matching, and (ii)
partial mobility, where some subdomains cannot move arbitrarily from one
PE to another. While the former is closer to the theoretical analysis pre-
sented above, the latter models more realistically a practical application.
In scientific numerical simulations, we require the DLB protocol to not
change the IPC graph, as otherwise global communication would become
necessary and a new edge coloring would have to be determined. This ef-
fectively restricts the mobility of certain subdomains in order to preserve
the original PE neighborhood relations.

1.3.4.1 Full and Partial Load Mobility Models

The full load mobility model represents the ideal case considered in the the-
oretical analysis. In this free-flowing model of subdomains, SortedGreedy
and Gradient stand out as viable DLB protocols within the considered
framework. Greedy transfers as many loads as SortedGreedy, but pro-
duces worse final load balances.

To assess a more realistic situation, we restrict 25% of the local loads to
remain on their previous PE and allow the DLB protocols try to balance
the loads between two PEs of a matching using only the movable loads.
Again, SortedGreedy outperforms the other two protocols in terms of the
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final load balance (Fig. 1.2). Compared to the full load mobility model,
the ratio of the total number of transferred loads between SortedGreedy

and Gradient drops to 1.7, which is expected since fewer loads are eligible
to move in the partial load mobility model. In the case of partially mobile
loads, SortedGreedy requires slightly less load movements than Greedy.
Again, the relative performance of SortedGreedy over Gradient increases
when more subdomains are available on the PEs (Fig. 1.3). The results of
the full mobility model are omitted since their outcome is very similar to
those of the partial mobility model.

Taken together, the simulation results show that Gradient causes a smaller
communication overhead, but produces less good a load balance than
SortedGreedy. For a single matching, the relative performance of SortedGreedy
is always better than that of Gradient, and it is growing with increasing
granularity of the domain decomposition.

1.4 DLB Algorithms in Parallel Numerical
Simulations

Based on the results from the previous section, we do not consider Greedy
any further. We empirically compare SortedGreedy with Gradient in sim-
ulations of realistic IPC graphs of parallel numerical simulations. The se-
quence of matchings is given by an approximate minimum edge-coloring of
the IPC graph, computed using Brélaz’s algorithm [95]. In many practical
applications, such an edge coloring is already available from the communi-
cation schedule with which the PEs exchange boundary information [67],
and it can directly be re-used at no additional cost. Pseudocode for the
overall parallel distributed DLB protocol is given in Algorithm 4.

1.4.1 Numerical Simulation Types

In practical numerical simulations, the computational elements (mesh nodes
and/or particles) move as governed by the simulated dynamics. Here, we
exemplarily consider two prototypical situations in 2D: A linear flow where
the computational elements are advected from one side of the computa-
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Figure 1.2: Simulation results for DLB of indivisible, real-valued loads
with 75% mobility on a matched edge in the BCM. Three algorithms are
compared by (a) their resulting final discrepancy (i.e., maximum load dif-
ference) and (b) the required number of load movements to reach that
final load balance: SortedGreedy (×) produces the highest-quality load
balancing, outperforming Greedy (◦) by a factor of up to 80 and Gradient

(O) by a factor of up to 140. SortedGreedy moves about 1.7-fold more
loads than Gradient. The results for full load mobility are omitted as they
produce very similar plots.
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Algorithm 4 Distributed DLB algorithm

1: procedure DLB(L,Ecolored,algorithm,s) .
Given are the global load vector L, the list of edges to visit Ecolored,
an algorithm to balance the loads L(u) and L(v) on a selected edge,
and the number of iterations of DLB: s

2: for i = 1→ s do
3: for j = 1→ length(Ecolored do
4: {u, v} ← getV ertices(Ecolored[j]) . Find which vertices are

connected by that edge
5: if algorithm == SortedGreedy then
6: [L(u), L(v)] ← SortedGreedy(u,v,L(u),L(v))
7: else if algorithm == Greedy then
8: [L(u), L(v)] ← Greedy(u,v,L(u),L(v))
9: else if algorithm == HybridBalancer then

10: if i==1 then
11: [L(u), L(v)] ← SortedGreedy(u,v,L(u),L(v))
12: else
13: [L(u), L(v)] ← Greedy(u,v,L(u),L(v))
14: end if
15: end if
16: end for
17: end for
18: end procedure
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Figure 1.4: Load imbalance caused by a linear flow (left) and by a shock
wave propagating from the center of the domain (right). The rectangles
represent the subdomains, and the color shows the computational cost
density (red: high, blue: low). The situation at an arbitrary time point of
the simulation is depicted.

tional domain to the other, and the propagation of a shock wave originating
from the center of the computational domain. In the latter case, the sim-
ulation mesh is adaptively refined and coarsened to track the evolution of
the high gradient at the shock front. Both situations mimic realistic load
imbalance evolutions in scientific simulation using particles and/or meshes
to discretize the governing equations. A pictorial representation of the cost
density for both simulation types is shown in Fig. 1.4.

1.4.2 IPC Topologies

We consider three different IPC topologies that are typical for numeri-
cal simulations (Fig. 1.5). The four-neighbor topology is representative
for mesh-based simulations where stencils are to be evaluated at all mesh
nodes and boundary layers (ghost layers) need to be communicated be-
tween neighboring PEs across edges. The eight-neighbor topology also
includes the corners of the ghost layers, as is typical in particle-based
simulations where each particle interacts with all other particles within
a certain radius. The k-neighbor topology (here, 2 ≤ k ≤ 8) represents
the case of unstructured-mesh simulations, or of domain decompositions
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Discrete Continuous FixedFigure 1.5: Three representative IPC topologies of numerical simulations:
four-neighbor topology (left), eight-neighbor topology (middle), and k-
neighbors topology (right) with 2 ≤ k ≤ 8.

with adaptively varying subdomain sizes, where communication layers are
needed on some edges, but not on all. Notice that these are the IPC
topologies of the numerical simulation application, and not the network
interconnect topologies of the computer the simulation is running on.

1.4.3 Simulation Setup

Similar to the local load balancing simulations of Sec. 1.3, each load is
given a uniformly random value in the interval (0, 1]. In order to ensure
sufficient granularity for DLB, practical domain decompositions produce
significantly more subdomains than there are PEs in the computer [5, 67].
Each PE is initially assigned the same number of subdomains (e.g., 10 or
30) by SLB.

In order to preserve the initial IPC graph, and avoid global communi-
cation and re-coloring, a subdomain is only allowed to move to another
PE if that move does not change the initial IPC graph, i.e., does not alter
the neighborhood relationships between PEs. This inherently prevents the
DLB algorithm from reaching optimal load balance. A schematic example
of eligible and forbidden subdomain moves is shown Fig. 1.6.

We explore a variety of different DLB situations by varying the IPC topol-
ogy (i.e., four-neighbor, eight-neighbor, or k-neighbor), the initial number
of loads per PE (i.e., 10 or 30), and the changing sizes of the PE network
(e.g., 4’096, 65’536, and 1’048’576). This allows us to compare the DLB al-
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Figure 1.6: Illustration of allowed subdomain moves. Three PEs in blue,
green, and red comprise an IPC as shown in the upper row. The middle
row shows an allowed subdomain move from the blue PE to the green PE.
However, both black-framed red subdomains (bottom row) are forbidden
to move to the red PE, as that would create a new edge in the IPC graph.

gorithms at different network scales. Each simulation is repeated 50 times
for different realizations of the random initial load assignment.

1.5 Simulation Results

The results of the simulations are presented in terms of Srel. The results
for the linear flow simulation are shown in Fig. 1.7, those for the shock
wave propagation in Fig. 1.8. We average all cases (i.e., number of sub-
domains per PE, different IPCs, etc) in one figure in order to show an
average DLB situation for that specific network size.

In all simulations, SortedGreedy produces better load balance than Gradient.
The initial discrepancy is reduced up to three-fold by SortedGreedy and
up to 50% by Gradient. HybridBalancer uses SortedGreedy for the first
DLB round and Gradient for all subsequent rounds. It achieves similar fi-
nal load balance as SortedGreedy, but at a much reduced communication
overhead. All algorithms achieve their biggest improvements in S during
the first few DLB rounds and quickly reach steady state. In practice, 2 to
3 rounds of a local BCM scheme are hence sufficient.

The relative performances of Gradient and HybridBalancer over SortedGreedy
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Figure 1.7: Discrepancy vs. DLB round when SortedGreedy, Gradient,
and HybridBalancer are applied in the linear flow simulation on different
numbers of PEs. SortedGreedy and HybridBalancer provide the largest
decrease in discrepancy in the first DLB round. After a few rounds, steady
state is reached.
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Figure 1.8: Discrepancy vs. DLB round when SortedGreedy, Gradient,
and HybridBalancer are applied in the shock wave simulation on different
numbers of PEs. An increasing gap between Gradient and the other
methods can be seen as the number of PEs grows.
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are presented in Figs. 1.9 and 1.10 for the flow and shock-wave simulations,
respectively. In all cases, Gradient outperforms SortedGreedy by a factor
of at least three. This is in contrast to what we saw for a single matching in
the previous section, where SortedGreedy always outperformed Gradient.
In a complete simulation with a realistic IPC graph, the reduced commu-
nication overhead of Gradient in every matching sums up to amortize the
final loss in load balance compared with SortedGreedy. HybridBalancer
gives favorable results for large network sizes and connectivities. Only for
the small network (4’096 PEs) with four neighbors per PE (i.e., k = 4),
SortedGreedy provides better performance than HybridBalancer. The
graphs for 64k and 1M PEs are virtually indistinguishable, indicating that
the performance differences reach an asymptotic plateau for large ma-
chines.

1.6 Conclusions

Efficient and scalable distributed DLB schemes are crucial for scientific
numerical simulation on petascale machines and beyond. We analyzed the
typical case of a numerical simulation based on a domain decomposition.
The computational cost of each subdomain was defined as the wall-clock
execution time required to perform all calculations for one simulation time
step in that subdomain. This can be easily measured in a practical simu-
lation by timing the main iteration loop. In order for the DLB scheme to
provide a significant benefit over re-initializing the simulation, we required
that DLB does not trigger any global communication. This requires using
a distributed DLB scheme and preserving the IPC graph of the applica-
tion. While this restricts the mobility of some loads, and disallows further
dividing existing subdomains, it allows us to re-use the existing edge col-
oring of the IPC graph. In this model, the loads thus are indivisible and
real-valued.

We provided a theoretical analysis of distributed DLB protocols for in-
divisible, real-valued loads. Closely following the analysis presented in
Ref. [93], we showed that the bounds for the load imbalance are the same
as for the discrete load model.

22



1.6. Conclusions

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

S
re

l

Number of DLB rounds

# PEs: 4096, Flow Simulation

 

 

30 loads, k=4

30 loads, k=8

30 loads, 2<=k<=8

30 loads, k=4

30 loads, k=8

30 loads, 2<=k<=8

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

S
re

l

Number of DLB rounds

# PEs: 65536, Flow Simulation

 

 

30 loads, k=4

30 loads, k=8

30 loads, 2<=k<=8

30 loads, k=4

30 loads, k=8

30 loads, 2<=k<=8

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

S
re

l

Number of DLB rounds

# PEs: 1048576, Flow Simulation

 

 

30 loads, k=4

30 loads, k=8

30 loads, 2<=k<=8

30 loads, k=4

30 loads, k=8

30 loads, 2<=k<=8

Figure 1.9: Relative performance of Gradient (red) and HybridBalancer

(black) over SortedGreedy (dashed line at Srel = 1) in the linear flow
simulation on different numbers of PEs and for different IPC topologies
and numbers of subdomains per PE.
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Figure 1.10: Relative performance of Gradient (red) and HybridBalancer

(black) over SortedGreedy (dashed line at Srel = 1) in the shock-wave
simulation on different numbers of PEs and for different IPC topologies
and numbers of subdomains per PE.
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DLB algorithms based on the balancing circuit model (BCM) are well
suited to address system-wide load imbalance. In the BCM, each PE in
the network is matched with a single nearest neighbor at a time and tries
to minimize the local load imbalance with that neighbor. The order of
matchings is usually given by an edge-coloring algorithm, which is executed
during initialization of the simulation when setting up the IPC graph. We
compared the three protocols Greedy, SortedGreedy, and Gradient us-
ing an analogy with the offline balls-into-bins problem. The theoretical
analysis showed that Greedy cannot be trusted to locally balance loads.
SortedGreedy overcomes this problem, but potentially moves a large num-
ber of loads between neighboring PEs. This communication overhead is
relaxed in the heuristic Gradient. To assess the performances of DLB
methods, we introduced the metric S. Simulations have shown that in a
single matching, SortedGreedy consistently outperformed Gradient.

In realistic simulations of whole IPC graphs, however, Gradient almost
consistently outperformed SortedGreedy. We considered three prototyp-
ical IPC topologies as found in domain-decomposition numerical simula-
tions of two kinds (linear flow and circular shock-wave propagation). We
analyzed simulations on more than one million PEs. After only a few (2 to
3) iterations of the DLB protocol, Gradient outperformed SortedGreedy

up to seven-fold. Based on the observation that SortedGreedy achieved
the largest decrease in load imbalance during the first DLB round, we de-
signed a hybrid method called HybridBalancer, which uses SortedGreedy
in the first round and Gradient in all subsequent rounds. HybridBalancer
has been shown in our simulations to achieve similar final load balance
as SortedGreedy, but at a much lower communication overhead. Thus,
HybridBalancer showed the best figure of merit S, especially for large
networks and high IPC graph connectivities. Only for 4-connected small
(<4096 PEs) networks, Gradient outperformed HybridBalancer. In large
machines, HybridBalancer is a good DLB candidate that can reduce ini-
tial load imbalance up to three-fold in few DLB rounds requiring only local
communication among neighboring PEs.

We neglected the specifics of the computer system and the parallel appli-
cation implementation, in favor of generalizable results. While this ren-
ders our results somewhat generic, it also disregards several optimizations
and implementation “tricks” one would leverage in a concrete implemen-
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tation. We also did not distinguish between communication latency and
bandwidth, but simply assigned a unit communication cost to each load
transfer. In a practical implementation, one would pack several loads into
a single message in order to reduce latency.
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CHAPTER

TWO

Bayesian Filtering

2.1 Introduction

Before understanding dynamic load balancing problems in parallel particle
filtering algorithms, we would like to give an introduction to Bayes’ rule
and Bayesian filtering to constitute the theoretical background of particle
filtering algorithms.

In many real-world applications, we are interested in learning about a
quantity (i.e., state) xt via a measurement yt at time t. This effort, as
depicted in Fig. 2.1, is complicated by the fact that xt is usually hidden in
the obtained yt and in most cases, extracting xt is not trivial. The quest of
discovering xt is called estimation or inversion problem1. Unfortunately,
there are two major factors that hamper the estimation problem. The
first factor is concerned with real-world measurements, which are rarely
clean. They usually contain random noises and are subject to observa-
tional errors due to technical limitations of the employed sensors. The
second factor stems from a lack of in-depth understanding of the underly-
ing phenomenon, which would have helped us otherwise to interpret mea-
surements better and find out more about the unknown state. The desire
to tackle these difficulties has led to the development of modern statisti-

1Both terms are used interchangeably in the text.
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Figure 2.1: In optimal Bayesian filtering problems, the actual quantities of
interest x are hidden in y due to noisy measurements, which are common
in practical applications.

cal signal processing techniques, i.e., Bayesian filters that are rooted in a
probabilistic framework, namely, Bayesian theory [110, 111].

Bayesian theory is a versatile probability law that governs processes of
logical inference. It is based on Bayes’ rule [112]. Following its intro-
duction in 1763, French mathematician Pierre-Simon Laplace built upon
Bayes’ rule and established the foundations of modern Bayesian statis-
tics [113–115], which is now considered an important branch of statistical
inference [116, 117].

Mathematically, Bayes’ rule describes the relationships between the prob-
ability density functions2 (pdf) of x and y, p(x) and p(y) and also, the
conditional pdfs (pdf) p(x|y) and p(y|x) between them. Bayes’ rule is
formulated as follows:

p(x|y) =
p(y|x) p(x)

p(y)
. (2.1)

The goal in Bayesian filtering [118–122] is to extract information about a
quantity of interest at time t by using all data available up until t using
Bayesian theory, which is incorporated by Bayesian filtering into this in-
version problem. This makes the problem in hand a statistical inversion
problem where Bayesian filters try to compute posterior distribution of x
given the measurements y. This is enabled by modeling the system using
a probabilistic state-space representation (see Appendix C for a detailed

2The conditional pdf p(x|y) is read as how likely x is to happen given that y has
occurred.
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discussion).

Reformulating a statistical inversion problem in the Bayesian framework
gives rise to recursive Bayesian estimation, which is based on two assump-
tions [120]:

• Each state xi∈[0,...,t] follows a first-order Markov process3

p(xt|x0:t−1) = p(xt|xt−1) , (2.2)

where x0:t−1 := {x0, . . . ,xt−1}.

• The measurements Yt := y0:t are conditionally independent of the
given states x0:t and p(xt|y0:t) denotes the conditional pdf of xt.

Following these assumptions and using Bayes’ rule with the given observa-
tions, the recursive Bayes’ theorem for the posterior distribution p(xt|Yt)
of the statistical inversion problem can be derived as

p(xt|Yt) =
p(Yt|xt) p(xt)

p(Yt)

=
p(yt,Yt−1|xt) p(xt)

p(yt,Yt−1)

=
p(yt|Yt−1,xt) p(Yt−1|xt) p(xt)

p(yt|Yt−1) p(Yt−1)

=
p(yt|Yt−1,xt) p(xt|Yt−1) p(Yt−1) p(xt)

p(yt|Yt−1) p(Yt−1) p(xt)

=
p(yt|xt) p(xt|Yt−1)

p(yt|Yt−1)
. (2.3)

Recursive, also called sequential, estimation using Bayes’ theorem is the
keystone of Bayesian filters. It facilitates numerical solutions of online
estimation problem where observations arrive sequentially in an online
manner. As shown in Eq. 2.3, the posterior p(xt|Yt) consists of three
terms: the prior, the likelihood, and the evidence/normalizer :

3A Markov process satisfies the Markov property that the conditional pdfs of states of
the process depend solely upon the immediately preceding state and thus, that Markov
process is a first-order Markov chain [123, 124].
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• Prior (dynamics model): The prior distribution p(xt|Yt−1) com-
bines all knowledge of the model:

p(xt|Yt−1) =

∫
p(xt|xt−1) p(xt−1|Yt−1) dxt−1 , (2.4)

where p(xt|xt−1) is the probability distribution of the transition from
state xt−1 to xt.

• Likelihood (measurement/observation model): The likelihood
p(yt|xt) tells how probable it is to observe yt given xt. In other
words, how does yt depend upon xt. In real-world applications, the
noise model is incorporated into the likelihood.

• Evidence/Normalizer: The evidence, or the normalizer, is the
total probability of the measurement, which is written in integral
form as:

p(yt|Yt−1) =

∫
p(yt|xt) p(xt|Yt−1) dxt . (2.5)

It is constant because it does not depend on x and thus, it can be
substituted for a coefficient, which is often done in practical applica-
tions. In practice, it is almost never possible to compute this integral
because the integration is over all possible x and the space of x is
generally very large and cannot be explored.

Recursive Bayesian estimation using Eq. 2.3 aims to find the optimal es-
timate given all prior knowledge and observations. Here, the estimation
problem involves calculating the integrals occurring in the prior and like-
lihood models. Since only in a few cases the estimation problem can be
solved analytically, we need to clarify what it is meant by “optimal” fil-
tering.

In Bayesian filtering, there are two types of optimality: The first one is con-
cerned with whether the integrals can be solved analytically. If closed-form
solutions exist, then a Bayesian filter can solve the problem in a mathe-
matically optimal way. The second optimality is the statistical optimality.
Since closed-form solutions to most of these models are computationally
intractable, the integrals involved in these models require numerical in-
tegration approximations, which are not mathematically optimal based
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on the definition given above. However, depending on the chosen crite-
rion (e.g., Minimum mean-squared error (MMSE), maximum a posteriori
(MAP), etc.) to describe the quality of the solution obtained by a Bayesian
filter, we can speak of statistically optimal [125] solutions.

Arguably, the most famous mathematically optimal Bayesian filter is the
Kalman Filter (KF) [60, 126], which is obtained as the analytical solu-
tion to linear Gaussian estimation problems. The KF provides an optimal
solution to estimation problems where linear dynamics and linear obser-
vation models are perturbed by Gaussian noise. In practice, the KF and
its statistically-optimal extension to nonlinear problems (i.e., extended
KF [127]) are much celebrated and have been applied in various applica-
tions such as tracking objects (e.g., hands [128], faces [129], missiles [130]),
analysis of time-series in econometrics [131, 132], navigation [58, 133] and
numerous computer vision applications such as data fusion [134, 135] and
depth estimation [136].

Except for few cases (e.g., linear Gaussian and conjugate approaches for
some nonlinear non-Gaussian systems), finding an analytical solution to
the integrals appearing in the dynamics and observation models is in-
tractable. Solving the estimation problem then requires numerical inte-
gration, for which many techniques have been introduced. Some approx-
imation methods are illustrated in Fig. 2.2 and a shortlist of examples
includes [120]:

• Gaussian/Laplace approximation methods [127, 137, 138]

• Iterative quadrature [139, 140]

• Multigrid method [141–143] and point-mass approximation [141, 144,
145]

• Moment approximation [146, 147]

• Histogram approximation [148]

• Riemann sum approximation [149]

• Gaussian mixture approximation [150, 151]
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• Deterministic sampling approximation (e.g., unscented Kalman Fil-
ter [61, 152, 153])

• Quasi-Monte Carlo methods [154–156]

• Monte Carlo sampling approximation [157, 158]

In this thesis, we emphasize the latter, namely, the class of Monte Carlo
sampling methods, of which particle filters are a part. From a computer
science point of view, these methods use particles as the main data struc-
ture to solve the estimation problem. In the following, we give the theo-
retical background of Monte Carlo sampling approximations with a focus
on importance sampling and sequential importance sampling. These lead
us to the sequential importance resampling algorithm, which is the core of
particle filters.

2.2 Monte Carlo Methods

Many physical phenomena and complex systems cannot be understood
or analyzed thoroughly by pure mathematical techniques. Shortly after
their inception in statistical physics [32, 159], Monte Carlo methods have
become one of the most celebrated approximation methods that offer pow-
erful analysis of complicated problems. Roughly speaking, Monte Carlo
methods have two main categories: (i) Monte Carlo sampling is concerned
with estimation of a mathematical problem by statistical sampling; (ii)
Monte Carlo optimization [160, 161] deals with using Monte Carlo tech-
niques for optimization problems over non-/convex or non-/differentiable
functions. In the scope of this thesis, we solely focus on Monte Carlo sam-
pling methods.

In spite of the variety in real-world applications, particles provide a com-
mon data structure for all Monte Carlo methods. Particles have positions
and carry some properties. The evolution of particle properties depends
on the application, which is the main source of the diversity in Monte
Carlo methods. Next, we explain the fundamental idea behind Monte
Carlo sampling with an example of integral evaluation and then extend it
to Bayesian inference problems.
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posterior pdf at n− 1 can be represented as

p(zn−1|y0:n−1) =
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and the prediction and filtering equations are further de-
rived as
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Nz∑
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n|n =
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∑Nz

j=1 wj
n|n−1p(yn|zj

n)
. (54)

If the state space is continuous, the approximate-grid based
method can be similarly derived (e.g. [19]). Namely, we
can always discretize the state space into Nz discrete cell
states, then a grid-based method can be further used to
approximate the posterior density. The grid must be suf-
ficiently dense to obtain a good approximation, especially
when the dimensionality of Nx is high, however the increase
of Nz will increase the computational burden dramatically.
If the state space is not finite, then the accuracy of grid-
based methods is not guaranteed. As we will discuss in
Section VII, HMM filter is quite fitted to the grid-based
methods. The disadvantage of grid-based method is that
it requires the state space cannot be partitioned unevenly
to give a great resolution to the state with high density
[19]. Some adaptive grid-based methods were proposed to
overcome this drawback [65]. Given the predefined grid,
different methods were used to approximate the functions
and carry out the dynamic Bayesian estimation and fore-
casting [62], [258], [271], [424], [373], [372].

In studying the nonlinear filtering, Bucy [62] and Bucy
and Senne [63] introduced the point-mass method, which
is a global function approximation method. Such method
uses a simple rectangular grid, spline basis, step function,
the quadrature methods are used to determine the grid
points [64], [475], [271], the number of grid points is pre-
scribed to provide an adequate approximation. The density
is assumed to be represented by a set of point masses which
carry the information about the data; mesh grid and direc-
tions are given in terms of eignevalues and eigenvectors of
conditional error covariance; the floating grid is centered at
the current mean estimate and rotated from the state co-
ordinate frame into the principal axes of error ellipsoid (co-
variance); the grid along the axes is chosen to extend over
a sufficient distance to cover the true state. For the multi-
modal density, it is suggested to define a grid for each mode

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Illustration of non-Gaussian distribution approximation: (a)
true distribution; (b) Gaussian approximation; (c) Gaussian sum ap-
proximation; (d) histogram approximation; (e) Riemannian sum (step
function) approximation; (f) Monte Carlo sampling approximation.

rather than for the entire density. Even so, the computa-
tion of multigrid-based point-mass approximation method
is nontrivial and the complexity is high (see [271]).

Another sophisticated approximation method, based on
the piecewise constant approximation of density, was pro-
posed in [271], [258]. The method is similar but not iden-
tical to the point-mass approximation. It defines a sim-
ple grid based on tiling the state space with a number of
identical parallelepipeds, over each of them the density ap-
proximation is constant, and the integration is replaced by
a discrete linear convolution problem. The method also al-
lows error propagation analysis along the calculation [271].

D. Moment Approximation

Moment approximation is targeted at approximating the
moments of density, including mean, covariance, and higher
order moments. The approximation of the first two mo-
ments is widely used in filtering [367]. Generally, we can
empirically use the sample moment to approximate the true
moment, namely

mk = E[xk] =

∫

X

xkp(x)dx =
1

N

N∑

i=1

|x(i)|k

where mk denotes the m-th order moment and x(i) are
the samples from true distribution. Among many, Gram-
Charlier and Edgeworth expansion are two popular higher-
order moment approximation approaches. Due to space
constraint, we cannot run into the details here, and re-
fer the reader to [ ] for more information. The applica-
tions of higher-order moment approximation to nonlinear
filters are found in [427]. However, the computation cost of
these approaches are rather prohibitive, especially in high-
dimensional space.

Figure 2.2: Illustration of non-Gaussian integral approximation methods
as shown in [120]: (a) An example of a “true” posterior distribution; (b)
Gaussian approximation; (c) Gaussian mixture approximation; (d) his-
togram approximation; (e) Riemannian sum approximation; (f) Monte
Carlo sampling approximation.
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2.2.1 Integral Approximation with Monte Carlo

To show an example of how Monte Carlo approximation works, we solve
a well-known statistical problem of estimating a mean, E[f(X)], where f
is an integrable function in a given d-dimensional space Ω ⊂ Rd and X is
a random variable with support Ω.

The mean, i.e., expectation of f(X), E[f(X)], can be written as

E[f(X)] =

∫

x∈Ω

f(x)p(x)dx , (2.6)

where p(x) is the probability density function of x. Monte Carlo ap-
proximation of the mean starts with the selection of N i.i.d.4 samples
{x1, . . . , xN} from X. Then, we compute the mean of f(·) using these
samples, we get an unbiased Monte Carlo estimate of E[f(X)] as follows

E[f(X)] ≈ f̂N (x) =
1

N

N∑

i=1

f(x(i)) . (2.7)

Assuming that E[f(X)] exists, we can use the Weak Law of Large Numbers
(i.e., Khintchine’s law [162]) to show that

lim
N→∞

Pr
(∣∣∣f̂N (x)− E[f(X)]

∣∣∣ ≥ ε
)

= 0 . (2.8)

This implies that as N gets larger, the Monte Carlo approximation con-
verges to true E[f(X)]. The convergence rate is guaranteed by the Central
Limit Theorem as

√
N(f̂N (x)− E[f(X)]) ∼ N (0, σ2) , (2.9)

where σ2 is the variance of f(x). The theoretical convergence rate is there-
fore O

(
N−0.5

)
irrespective of the dimensionality of the state-space. Since

the convergence of Monte Carlo methods do not depend on the dimension-
ality of the state-space, they have a practical advantage in many real-world
problems over other numerical schemes. Despite their success, there are

4Independent and identically distributed.
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1.3. Importance Sampling

p(x,Yt)

π(x,Yt)

p(x,Yt)

π(x,Yt)

Figure 1.5: Particle weights are drawn from an importance distribution
⇡(x|Yt), which is an approximation to the actual posterior pdf. Bigger
circles stand for “heavy” particles. The choice of ⇡(x|Yt) is crucial for the
overall estimation success of IS.

as

E[g(x)|Yt] ⇡
NX

i=1

w̃(i)g(✓(i)) , (1.15)

where the importance weights w̃ are defined as

w̃(i) =
1

N

p(✓(i)|Yt)

⇡(✓(i)|Yt)
. (1.16)

One small disadvantage of IS is that the weights of samples cannot be
known exactly in the beginning since they are not drawn from the ac-
tual prior distribution but from an importance distribution, which is an
approximation to that. Some corrections to the weights are usually re-
quired. Another disadvantage of IS stems from the mandatory evaluation
of p(✓(i)|Yt) such that it can be applied directly in Eqn. 1.16 to compute
the importance weights.

To compute p(✓(i)|Yt), we formulate first the Monte Carlo approximation
in Bayesian framework.

p(✓(i)|Yt) =
p(Yt|✓(i))p(✓(i))R
p(Yt|x)p(x) dx

. (1.17)
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p(x,Yt)

π(x,Yt)

p(x,Yt)

π(x,Yt)

Figure 1.4:

problem is due to the di�culty of sampling directly from the posterior
distribution p(x|Yt), which is not possible in a typical real-world problem.
While direct Monte Carlo methods try to sample directly from the poste-
rior distribution, this sampling process is challenged by the complicated
functional form of the posterior distribution. To tackle this problem, IS
has been introduced. The objective of IS is to sample from an importance
distribution ⇡ (i.e., proposal distribution), which is an approximation to
the actual posterior distribution.

By substituting the posterior distribution p(x, Yt) for p(x) in Eqn. 1.7 and
incorporating the equation in Bayesian estimation problem, we show that
the main idea behind importance sampling is the decomposition of the
expectation over p(x, Yt) as follows

Z
g(x)p(x|Yt) dx =

Z 
g(x)

p(x|Yt)

⇡(x, Yt)

�
⇡(x, Yt) dx , (1.13)

where the importance distribution ⇡(x, Yt) needs to have at least as big
support as p(x, Yt) has. The bracketed term in the analytical expression
is the expectation over the importance distribution ⇡(x, Yt), which can be
approximated by N Monte Carlo samples

✓(i) ⇠ ⇡(x|Yt), i 2 {1, . . . , N}, (1.14)
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Figure 2.3: An illustration of direct Monte Carlo sampling is shown. We
are interested in approximating the posterior p(x|Yt). A direct Monte
Carlo method tries to sample directly from the posterior, which is only
possible in rare cases. Further, since particles are sampled randomly, suf-
ficient approximation of the posterior may require an excessive amount of
particles. Theoretically, the approximation error is halved when the total
number of particles is quadrupled.

also reports [163, 164] where the “curse of dimensionality” has been seen
in practical applications of Monte Carlo methods.

2.2.2 Monte Carlo Approximation in Bayesian Filters

In Bayesian filtering, Monte Carlo methods, also called direct Monte Carlo
methods [122], draw N samples directly from the posterior distribution as

x(i) ∼ p(x|Yt), i ∈ {1, . . . , N}, (2.10)

and following the Eq. 2.7, p(x|Yt) can be approximated by

p(x|Yt) ≈
1

N

N∑

i=1

δ(x− x(i)), (2.11)

where δ(·) is the Dirac delta function. An illustration of such a sampling
is given in Fig. 2.3. Again, the theoretical convergence of a Monte Carlo
method is independent of the dimensionality of the state-space and has
the rate of O

(
N−0.5

)
, which means that to halve the approximation error

one needs to quadruple the sample size.
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2.3 Importance Sampling

Importance sampling (IS) [165–167] has been introduced to address two
main problems of direct Monte Carlo methods. The first one is concerned
with reducing the variance of the estimator [168]. The second problem is
due to the difficulty of sampling directly from the posterior distribution
p(x|Yt), which is not possible in many real-world problems.

Instead of directly sampling from the (potentially unknown) posterior, IS
samples from an importance distribution π (i.e., proposal distribution),
which is an approximation to the actual posterior distribution (Fig. 2.4).
By substituting the posterior distribution p(x,Yt) for p(x) in Eq. 2.6 and
incorporating the equation in a Bayesian estimation problem, we show
that the main idea behind importance sampling is the decomposition of
the expectation over p(x,Yt):

∫
f(x)p(x|Yt) dx =

∫ [
f(x)

p(x|Yt)
π(x,Yt)

]
π(x,Yt) dx , (2.12)

where the importance distribution π(x,Yt) needs to have support that is
at least as large as the support of p(x,Yt). The bracketed term in the
analytical expression is the expectation over the importance distribution
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as

E[g(x)|Yt] ⇡
NX

i=1

w̃(i)g(✓(i)) , (1.15)

where the importance weights w̃ are defined as

w̃(i) =
1

N

p(✓(i)|Yt)

⇡(✓(i)|Yt)
. (1.16)

One small disadvantage of IS is that the weights of samples cannot be
known exactly in the beginning since they are not drawn from the ac-
tual prior distribution but from an importance distribution, which is an
approximation to that. Some corrections to the weights are usually re-
quired. Another disadvantage of IS stems from the mandatory evaluation
of p(✓(i)|Yt) such that it can be applied directly in Eqn. 1.16 to compute
the importance weights.

To compute p(✓(i)|Yt), we formulate first the Monte Carlo approximation
in Bayesian framework.

p(✓(i)|Yt) =
p(Yt|✓(i))p(✓(i))R
p(Yt|x)p(x) dx

. (1.17)
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Figure 2.5: Particle weights are drawn from an importance distribution
π(x|Yt), which is an approximation to the actual posterior pdf. Bigger
orange circles stand for “heavier” particles. The choice of π(x|Yt) is crucial
for the overall estimation success of IS, since bad approximation of the
posterior would yield inaccurate estimation.

π(x,Yt), which can be approximated by N Monte Carlo samples

x(i) ∼ π(x|Yt), i ∈ {1, . . . , N}, (2.13)

as

E[f(x)|Yt] ≈
N∑

i=1

w̃(i)f(x(i)) , (2.14)

where the importance weights w̃ are defined as

w̃(i) =
1

N

p(x(i)|Yt)
π(x(i)|Yt)

. (2.15)

An exemplary IS is shown in Fig. 2.5. A disadvantage of IS is that the
weights of samples cannot be known exactly in the beginning, since they
are not drawn from the actual posterior distribution but from the im-
portance distribution. Some corrections to the weights are usually re-
quired. Another disadvantage of IS stems from the mandatory evaluation
of p(x(i)|Yt) such that it can be applied directly in Eq. 2.15 to compute
the importance weights.

To compute p(x(i)|Yt), we first formulate its Monte Carlo approximation
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in a Bayesian framework:

p(x(i)|Yt) =
p(Yt|x(i))p(x(i))∫

p(Yt|x)p(x) dx
. (2.16)

As seen from the equation, the prior distribution p(x(i)) and the likelihood
p(Yt|x(i)) can be directly evaluated but the normalizer in the denominator
is intractable. To tackle this, one can also apply importance sampling as an
approximation to the normalizer. The approximation of the expectation
integral can be derived as [122]:

E[f(x)|Yt] =

∫
f(x)p(x|Yt) dx

=

∫
f(x)p(Yt|x)p(x) dx∫

p(Yt|x)p(x) dx

=

∫ [p(Yt|x)p(x)
π(x|Yt)

f(x)
]
π(x|Yt) dx

∫ [p(Yt|x)p(x)
π(x|Yt)

]
π(x|Yt) dx

≈
1
N

∑N
i=1

p(Yt|x(i))p(x(i))
π(x(i)|Yt)

f(x(i))

1
N

∑N
j=1

p(Yt|θ(j))p(θ(j))
π(θ(j)|Yt)

=

N∑

i=1

w(i)f(x(i)) , (2.17)

where the importance weight wi of particle i is defined as

w(i) =

p(Yt|x(i))p(x(i))
π(x(i)|Yt)

1
N

∑N
j=1

p(Yt|θ(j))p(θ(j))
π(θ(j)|Yt)

. (2.18)

Formally, we can write the resulting posterior approximation using the
Dirac delta function δ(·) as

p(x|Yt) ≈
N∑

j=1

w(i)δ(x− x(i)) . (2.19)
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Algorithm 5 Importance Sampling (IS)

1: procedure IS
2: S ← 0
3: for i = 1→ N do
4: x(i) ∼ π(x|Yt) . Draw a sample from importance distribution

5: w̃(i) ← p(Yt|x(i))p(x(i))
π(x(i)|Yt)

. Calculate its unnormalized weight

6: end for
7: for i = 1→ N do . Normalize weights

8: w(i) ← w̃(i)∑N
j=1 w̃

(j)

9: S ← S + w(i)f(x(i))
10: end for
11: E[f(x)|Yt] ≈ S
12: end procedure

To increase the efficiency of the sampling scheme, several algorithms such
as Gibbs sampling [169, 170] and Metropolis-Hastings sampling [13, 171,
172] are regularly adopted and commonly used in practice. To summarize
the derivations explained above, we give a pseudo-code for IS in Algo-
rithm 5.

2.4 Sequential Importance Sampling

While importance sampling is a good method for estimating the poste-
rior distribution, the choice of the importance distribution plays an in-
tegral role in determining overall success of the estimator [173, 174]. In
many problems with high-dimensional state-spaces, finding a good impor-
tance/proposal distribution is a challenging task. Sequential importance
sampling (SIS) [8, 9] has been introduced as a remedy to such problems by
constructing sequential importance samplers as more data become avail-
able. Inherently, SIS adopts the notion of time in its generic state-space
model

xt ∼ p(xt|xt−1) , (2.20)

yt ∼ p(yt|xt) , (2.21)
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where xt ∈ Rn is the state at time t and yt ∈ Rm is the observation
at t. SIS uses a set of weighted particles (i.e., samples) as the main data
structure. Each particle carries a weight and a sample from the importance
distribution

x
(i)
0:t ∼ π(Xt|Yt) , (2.22)

where Yt = {y1, . . . ,yt} and Xt = {x0, . . . ,xt}. Note that Xt includes the
state x0, which is available before the first measurement y1 is made. Sim-
ilar to IS, the SIS estimation of the posterior distribution can be written
as

p(xt|Yt) ≈
N∑

j=1

w
(i)
t δ(xt − x(i)

t ) . (2.23)

However, these weights are computed in a different way compared to IS
importance weights. To formulate the SIS importance weights, we con-
sider the full posterior distribution of states Xt given the observations Yt.
Recursive Bayesian estimation again uses a recursive formulation of the
posterior distribution. By assuming a hidden Markov process (Eq. 2.2),
we can derive the following formulation for the recursive posterior distri-
bution [122]:

p(Xt|Yt) ∝ p(yt|Xt,Yt−1) p(Xt|Yt−1)

= p(yt|xt) p(xt|Xt−1,Yt−1) p(Xt−1|Yt−1)

= p(yt|xt) p(xt|xt−1) p(Xt−1|Yt−1) . (2.24)

By applying similar techniques as presented in the previous section, we
compute the importance weights as

w(i) =
p(yt|x(i)

t ) p(x
(i)
t |x(i)

t−1) p(x
(i)
0:t−1|Yt−1)

π(x
(i)
0:t|Yt)

. (2.25)

To get a recursive formula for the importance weight computation, we can
write the recursive formulation of the importance distribution for xt as

π(Xt|Yt) = π(Xt|Xt−1,Yt)π(Xt−1|Yt−1) . (2.26)

Following similar derivation steps as given in [122], the recursive formula-
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tion for the importance weights can be then derived as

w
(i)
t =

p(yt|x(i)
t ) p(x

(i)
t |x(i)

t−1)

π(x
(i)
t |x(i)

t−1,Yt)
w

(i)
t−1 . (2.27)

By incorporating the new weight update scheme, the pseudo-code for SIS
is given in Algorithm 6. One thing to notice in Algorithm 6 is line 8,
where a sample is drawn from the importance distribution. We assume a
Markovian importance function such that

π(xt|Xt−1,Yt) = π(xt|xt−1,Yt) . (2.28)

Since we assume that each state xt follows a first-order Markov process,
using the same assumption for importance sampling is fine and in fact,
saves us from storing the full history of importance functions. This en-
ables a faster execution of the SIS algorithm.

One thing to notice here is that the weights (Eq. 2.27) suffer from the weight
degeneracy problem as depicted in Fig. 2.6, which is due to the unstable
nature of the sequential Monte Carlo sampling. In SIS, the importance
weights usually have an increasing variance, which builds up with each
time step and causes an inaccurate estimate [173, 175]. Several techniques
have been proposed to deal with the degeneracy problem [7, 176].

2.5 Sequential Importance Resampling

Particle filtering (PF) algorithms are based on sequential importance re-
sampling [7–9, 177] (SIR) and are also called SMC methods. They address
the weight degeneracy problem of SIS by introducing an additional resam-
pling step for weight equalization. The resampling step ensures that most
of the particles remain active and a lot of computational resources are
saved.

Resampling in SIR is done by sampling a new set of N particles from the
discrete distribution represented by old particle weights, and discarding
the old particle set. This enables duplicating “heavy” particles and get-
ting rid of “light” ones. While the discrete distribution is still the same,
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Algorithm 6 Sequential Importance Sampling (SIS)

1: procedure SIS
2: for i = 1→ N do . Initialization, t=0

3: w
(i)
0 ← 1/N

4: x(i) ∼ π(x0) . Draw a sample from the prior
5: end for
6: for t = 1→ T do
7: for i = 1→ N do . SIS step

8: x
(i)
t ∼ π(xt|xt−1,Yt) . Draw a sample from importance

distribution

9: w̃
(i)
t ← w

(i)
t−1

p(yt|θ(i)t ) p(θ
(i)
t |θ

(i)
t−1)

π(x
(i)
t |x

(i)
t−1,Yt)

. Update its weight

10: end for
11: for i = 1→ N do . Normalize the weights

12: w
(i)
t ← w̃

(i)
t∑N

j=1 w̃
(j)
t

13: end for
14: end for
15: end procedure
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t :

t - 1 :

t + 1 :

Figure 2.6: The weight degeneracy problem of SIS. Initially, all particles
have the same weight. However, the particles (red) with heavier weights
will become more and more dominant with time. This causes the weight de-
generacy problem, where computations are wasted for almost trivial (zero)
particle weight updates. In this example, the particles in the middle region
have almost zero weights at time t + 1 and contribute almost nothing to
the solution.
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the choice of selecting particles for duplication may entail additional vari-
ance to the obtained estimates. A good choice for resampling is stratified
resampling [177], which is optimal with respect to added variance. A gen-
eral discussion on resampling algorithms can be found in [178].

The resampling phase, as depicted in Fig. 2.7, is typically executed after
every m-th sampling step (i.e., fixed resampling schedule) and importance

weights of particles w
(i)
t are reset as

w
(i)
t =

1

N
, (2.29)

after each resampling. Defining a criterion when to do resampling is an
important issue since resampling adds computational cost to the SIS algo-
rithm and thus, it needs to be executed smartly. Luckily, a more advanced
resampling strategy becomes handy here. The adaptive resampling uses a
criterion called “effective number of particles” [179] to monitor the variance
of the particle weights. Whenever it falls below a threshold Nthreshold, the
resampling step is launched. The effective number of particles is computed
as follows

N̂eff =
1

∑N
i=1

(
w

(i)
t

)2 . (2.30)

With the inclusion of the resampling step, the SIR algorithm is shown in
Algorithm 9.

The algorithmic complexity of particle filters depend on the number of em-
ployed particles. Since the convergence rate of particle filters is O

(
N−0.5

)
,

a large number of particles is typically required to obtain a satisfactory
estimation accuracy. Depending on the application, this may have an ad-
verse affect on the execution time of a particle filter. Thus, faster execution
of such applications is much desired and one can again apply algorithm and
implementation engineering principles. In the next chapter, we give an ex-
ample how we address the computational bottleneck of the SIR algorithm
by using an algorithmic improvement in the particle weight update phase.
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Algorithm 7 Sequential Importance Resampling (SIR)

1: procedure SIR
2: for i = 1→ N do . Initialization, t=0

3: w
(i)
0 ← 1/N

4: x(i) ∼ π(x0) . Draw a sample from the prior
5: end for
6: for t = 1→ T do
7: for i = 1→ N do . SIS step

8: x
(i)
t ∼ π(xt|x(i)

t−1,Yt) . Draw a sample from discrete
importance distribution

9: w̃
(i)
t ← w

(i)
t−1

p(yt|θ(i)t ) p(θ
(i)
t |θ

(i)
t−1)

π(x
(i)
t |x

(i)
t−1,Yt)

. Update its weight

10: end for
11: for i = 1→ N do . Normalize the weights

12: w
(i)
t ← w̃

(i)
t∑N

j=1 w̃
(j)
t

13: end for
14: N̂eff ← 1/

∑N
j=1(w

(j)
k )2 . Calculate the effective sample size

15: if N̂eff < Nthreshold then . Resampling step
16: Sample a set of indices {s(i)}i=1,...,N distributed such that

Pr[s(i) = l] = w
(l)
k , l = 1→ N .

17: for i = 1→ N do . Reset the weights

18: x
(i)
t ← x̃

s(i)
k

19: w
(i)
k ← 1/N

20: end for
21: end if
22: end for
23: end procedure
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Figure 2.7: A resampling step is executed after updating the importance
weights in SIS. During resampling, heavy particles (red) generate new par-
ticles close to their locations and light particles disappear. This helps dis-
covering the modes of the hidden pdf faster. After resampling, all weights
are reset to 1/N .
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CHAPTER

THREE

Piecewise Constant Sequential Importance

Resampling

1A standard PF algorithm consists of two parts: (i) SIS and (ii) resam-
pling [9]. A popular combined implementation of these two parts is the
SIR algorithm, which is explained in detail in the previous chapter. De-
pending on the application, SIR may need a large number of particles to
adequately sample the state space. This demands substantial computa-
tional resources that scale linearly with the number of particles and may
hinder actualization of many practical real-time applications. In this work,
we aim to apply algorithm engineering principle to PF to make it run faster
and thus, allow more precise estimation results and/or real-time evalua-
tion of medium-sized estimation problems.

Here, we introduce the piecewise constant SIR (pcSIR) algorithm, which
reduces the computational cost of SIR while providing tracking accuracy
comparable to standard SIR. The main idea behind pcSIR is to group
particles in state space (i.e., creating bins) and to represent each group of
particles by a single representative particle. Only the weight of this repre-
sentative dummy particle is then updated. We choose the dummy particle
to sit in the center of mass of the group of particles it represents and

1This work has been done together with Dr. Ihor Smal who helped designing test
cases and co-developed the pcSIR algorithm.
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to carry the mean properties of all the particles in the respective group.
This is inspired by first-order multipole expansions from particle function
approximation theory [180]. Once the weight of the dummy particle is
computed, all other particles in the same group receive the same weight,
which is copied from the dummy instead of being re-computed through
the likelihood model for each individual particle, as in the original SIR.
This way, a pcSIR-based PF can outperform a classical SIR-based PF by
orders of magnitude in overall runtime in applications where evaluation of
the likelihood is computationally expensive. Expensive likelihoods are par-
ticularly common when tracking objects in images, where each likelihood
evaluation entails a numerical simulation of the image-formation process
(see, e.g., Ref. [57]).

We outline the mathematical roots of pcSIR and derive an upper bound
on the expected approximation error with respect to the chosen bin (i.e.,
Cartesian mesh cell in 2D) size. This error stems from the point-wise ap-
proximation of the likelihood function and is quantified using mid-point
Riemann-sum error analysis [181, 182]. We numerically quantify the er-
rors in the state estimates (based on the posterior distribution) obtained
by SIR and pcSIR as a function of the number of particles used, and show
that there is almost no difference between SIR and pcSIR in terms of track-
ing accuracy. Furthermore, with a focus on biological image processing,
we show that relating the bin size to the pixel size of an image provides
satisfactory, and sometimes even higher-quality results in pcSIR compared
with standard SIR.

3.1 Related Works

Recent years have seen great interest in challenging tracking problems
where the targets usually have non-linear and/or non-Gaussian dynam-
ics. Two nonparametric algorithms, namely the histogram filters (HF)
and PFs, stand out amongst others as main classes of algorithms that suc-
cessfully tackle difficult tracking problems [62]. In both variants, posterior
distributions are approximated by a finite set of values.

In HF, the state space is decomposed into smaller – usually rectangular –
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boxes and only a single value is used to represent the cumulative posterior
in each box. In a mathematical sense, HFs can be seen as piecewise con-
stant approximations to a posterior distribution. The size and the number
of the boxes affect the computational runtime and tracking accuracy of an
application.

In PF, random samples (i.e., point particles) are drawn from the impor-
tance distribution, which is an approximation to the posterior distribution.
Typically, a large number of particles is required to track targets success-
fully. This increases the computational resources needed, and many PF-
based applications are limited by their computational cost.

Combining ideas from PF and HF, the box particle filter (BPF) [183] uses
box-shaped particles. While BPF resembles HF with mobile boxes, these
box particles are propagated based on interval analysis [184], which is
fundamentally different from PF and HF. BPF is especially useful in situ-
ations where imprecise measurements yield wide posterior densities [185].
Despite its advantages, however, BPF is not well understood and lacks im-
portant theoretical background, such as a proof of convergence and insight
into the resampling step based on interval analysis [185]. Also, its exact
computational cost yet remains to be investigated and compared with tra-
ditional HF and PF.

3.2 The Piecewise Constant SIR

In classical SIR, all particle weights are updated according to the likeli-
hood, which may impart a high computational load. Moreover, the com-
putational cost scales linearly with the number of particles. Therefore,
depending on the application, the likelihood evaluation often constitutes
the most time-consuming part of a PF.

To address this problem, we propose the pcSIR algorithm, which aims at
reducing the computational cost of importance weight update by exploiting
the nature of the particle function approximation underlying SIR [180]. We
do this by grouping the particles into non-overlapping multi-dimensional
bins (i.e., Cartesian mesh cells in higher dimensions), which are then rep-

49



Chapter 3. Piecewise Constant Sequential Importance
Resampling

resented by only a single dummy particle positioned at the center of mass
of the real particles in that bin. The center of mass is computed using the
state vectors and weights of all particles within the bin and is solely used
to represent that bin by a single dummy particle. This amounts to a first-
order multipole expansion of the pdf approximated by the particles [180].
Higher-order approximations are easily possible by storing on the dummy
particle not only the mean, but also higher-order moments of the particle
distribution in the bin. However, the overall error of a PF is dominated
by the Monte-Carlo sampling error, which is of order 1/2. A first-order
function approximation is hence sufficient.

The importance weight update is then only applied to the dummy particle.
All other particles in the same bin are assigned the same weight that
the dummy particle received. Thus, we approximate the likelihood by a
mixture of uniform pdfs and bypass the costly likelihood update step for all
particles. The pcSIR algorithm differs from SIR only in the SIS part, where
the particles are binned and several averaging operations are performed.
This makes it straightforward to implement pcSIR in any existing SIR
code. The detailed pseudo-code is given in Algorithm 8.

The final function approximation used in pcSIR is related to BPF, where
the box support is also approximated by a mixture of piecewise constant
functions [186]. However, the theoretical motivation and the algorithmic
implementation of this piecewise constant approximation is very different
in pcSIR and in BPF. Gning et al. [185, 186] used interval analysis [184]
to show that the uniform PDF approximation of the posterior becomes
more accurate as the number of intervals increases. In pcSIR, the piece-
wise constant approximation of the likelihood is rooted in particle function
approximation theory and can be understood as a first-order multipole
expansion [180]. This dispenses with the need for interval analysis and
provides a different algorithmic implementation and error analysis.

Unlike BPF, pcSIR still uses point particles. Thus, state estimation prob-
lems that result in narrow posterior densities can easily be handled by
pcSIR, which is not the case for BPF. With pcSIR, we provide a simple
way of using uniform PDFs to approximate the likelihood function, which
eventually results in a satisfactory posterior representation through the
Bayesian formulation. Moreover, it requires only few modifications to the
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Algorithm 8 Piecewise Constant Sequential Importance Resampling (pc-
SIR)

1: procedure pcSIR
2: for i = 1→ N do . Initialization, t=0

3: w
(i)
0 ← 1/N

4: θ(i) ∼ π(x0) . Draw a sample from the prior
5: end for
6: Create B bins of equal size I1,...,B
7: for k = 1→ K do
8: for i = 1→ N do . piecewise constant SIS step

9: θ
(i)
t ∼ π(xt|θ(i)

t−1,Yt) . Draw a sample from discrete
importance distribution

10: Assign θ
(i)
k to a bin

11: end for
12: for j = 1→ B do . Visit all bins
13: . Create a representative particle that has the mean values of the

state vector of all particles in the same bin

14: θdum ← mean{θ(1)
k , . . . , θ

(NIj
)

k }
15: wdumk

← wdumk−1

p(yt|θdum)p(θdum|θ(i)k−1)

π(xdum|θ(i)k−1,Z
k)

. Update

importance weights

16: for all θ̃
(i)
k in bin Ij do

17: w
(i)
k ← wdumk

18: end for
19: end for
20: N̂eff ← 1/

∑N
j=1(w

(j)
k )2 . Calculate the effective sample size

21: if N̂eff < Nthreshold then . Resampling step
22: Sample a set of indices {s(i)}i=1,...,N distributed such that

Pr[s(i) = l] = wlk, l = 1→ N .
23: for i = 1→ N do
24: θ

(i)
k ← θ

s(i)
k

25: w
(i)
k ← 1/N . Reset the weights

26: end for
27: end if
28: end for
29: end procedure
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classical SIR, which makes pcSIR an attractive choice for practical imple-
mentations.

3.3 Theoretical framework

The pcSIR algorithm is a function-approximation algorithm. It divides
the d-dimensional state space into d-dimensional bins. In each bin, a suf-
ficiently differentiable likelihood function is approximated by a constant
value. The error analysis of such piecewise constant approximations is well
understood on the basis of Taylor’s theorem for multivariate functions.

For the sake of example, we present the theoretical framework of pcSIR
with a focus on image processing. When processing a sequence of 2D im-
ages, the likelihood function p(yt|xt) is typically a two-dimensional func-
tion that is discretized over a finite set of particles. In SIR, the likelihood
is approximated by N particles, where the particle number N defines the
accuracy for the specific application. Therefore, the approximation error
of SIR is denoted ESIR(N).

With pcSIR, in the considered application, only the positions of the par-
ticles play a role in the likelihood update. This allows pcSIR to bin the
state space. Therefore, the approximation error in p(yt|xt) depends on
both the number of particles N and the maximum lengths of the bins lx
and ly in both dimensions. Hence, the overall approximation error of pc-
SIR is denoted EpcSIR(N, lx, ly).

First, we analyze the effect of bin size on EpcSIR(N, lx, ly). For that pur-
pose, we consider two cases: The first considers bins of varying rectangular
shapes (i.e., lx 6= ly). In this setting, we fix N and let the approximation
error depend on the bin lengths in both dimensions, hence EpcSIR(lx, ly).
In the second case, all cells are squares of edge length l. The pcSIR ap-
proximation error can then be expressed as EpcSIR(l).

Second, we compare SIR with an pcSIR in which each bin corresponds
to a single pixel in a “pseudo”-tracking test case (see Section 3.5) In this
comparison, we assume Gaussian and uniform priors of different sizes. A
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smooth likelihood function is approximated by SIR and pcSIR and later
applied to the prior. Thus, we obtain the estimation errors for the state.
We call this experiment “pseudo”-tracking, since by eliminating the ex-
plicit dynamics pdf, we can focus on the approximation error and its con-
vergence with increasing N .

3.4 The effect of cell size on EpcSIR

The particle locations in a cell cannot be determined a priori since the
movement of the particles depends on the data. We hence assume that for
small cells and statistically large numbers of particles, we have a uniform
particle distribution within a cell. The approximation errors introduced
by the pcSIR algorithm in 2D are described in detail in the Appendix D.

In pcSIR, the state space is decomposed into non-overlapping cells. Choos-
ing an appropriate cell size is hence crucial for pcSIR. Similar to histogram
filters [62], the accuracy of pcSIR is determined by the cell size. In the
highest possible resolution, there is one particle per cell, which recovers
the classical SIR algorithm.

In image processing, it is convenient to choose the image pixels as the cells
of pcSIR. This constitutes a good choice since in typical image-processing
applications, the pixel size already reflects the sizes of the objects repre-
sented in the image in order not to under-sample the objects and not to
store unnecessary data. We call pcSIR with single-pixel cells pcSIR-1x1.
Due to the characteristics of the likelihood function, however, there may
be cases where sub-pixel resolution or higher accuracy is needed. There-
fore, we also investigate pcSIR-2x2, where each pixel is divided into four
cells. In the following Section, we empirically benchmark the effect of cell
size on pcSIR performance and accuracy.

3.5 Experimental Results

We study the performance of pcSIR by considering a biological image-
processing application: the tracking of sub-cellular (here, “cell” refers to
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the biological cell being imaged and is not to be confused with the pcSIR
bin cells) objects imaged by fluorescence microscopy [187–189]. There, in-
tracellular structures such as endosomes, vesicles, mitochondria, or viruses
are labeled with fluorescent dyes and imaged over time with a confocal
microscope. Many biological studies start from analyzing the dynamics
of those structures and extracting parameters that characterize their be-
havior, such as average velocity, instantaneous velocity, spatial distribu-
tion [190, 191], motion correlations, etc.

3.5.1 Dynamics Model

The motion of sub-cellular objects can be represented by a variety of dy-
namics models, ranging from random walks to constant-velocity models
to more complex dynamics where switching between motion types oc-
curs [56, 192].

Here, we use a nearly-constant-velocity model, which is frequently used in
practice [193? ]. The state vector in this case is x = (x̂, ŷ, vx, vy, I0)T ,
where x̂ and ŷ are the x- and y-positions of an object, (vx, vy) its velocity
vector, and I0 its fluorescence intensity.

3.5.2 Likelihood / Appearance Model

Many sub-cellular objects are smaller than what can be resolved by the
microscope, making them appear in a fluorescence image as diffraction-
limited bright spots with an intensity profile given by the impulse-response
function of the microscope, the so-called point-spread-function (PSF) [56,
57, 189].

In practice, the PSF of a fluorescence microscope is well approximated
by a 2D Gaussian [194, 195]. Object appearance in a 2D image is hence
modeled as:

I(x, y;x0, y0) = I0 exp

(
− (x− x0)2 + (y − y0)2

2σ2
PSF

)
+ Ibg, (3.1)
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where (x0, y0) is the position of the object, I0 is its intensity, Ibg is the
background intensity, and σPSF is the standard deviation of the Gaus-
sian PSF. Typical microscope setups yield images with pixel edge lengths
corresponding to 60 to 200 nm real-world length in the imaged sample.
For the images used here, the pixel size is 67 nm and the microscope has
σPSF = 78 nm (or 1.16 pixels). During image acquisition, the “ideal” in-
tensity profile I(x, y) is corrupted by measurement noise, which in the case
of fluorescence microscopy has mixed Gaussian-Poisson statistics. For the
resulting noisy image yt = Yt(x, y) at time point t, the likelihood p(yt|xt)
is:

p(yt|xt) ∝ exp


− 1

2σ2
ξ

∑

(xi,yi)∈Sx
[Yt(xi, yi)− I(xi, yi; x̂, ŷ)]

2


, (3.2)

where σξ controls the peakiness of the likelihood, (xi, yi) are the integer
coordinates of the pixels in the image, (x̂, ŷ) are the spatial components
of the state vector xt, and Sx defines a small region in the image centered
at the object location specified by the state vector xt. Here, Sx = [x̂ −
3σPSF, x̂+ 3σPSF]× [ŷ − 3σPSF, ŷ + 3σPSF].

3.5.3 Experimental Setup

We focus on single sub-cellular object tracking (a problem which is related
to the “track-before-detect” problem [196]) and compare pcSIR with SIR
in two test cases, which differ in the size of the tracked object. We consider
two different object sizes in order to compare cases where the likelihood is
computationally cheap to evaluate with cases where this is more costly. 20
synthetic image sequences of different quality (i.e., signal-to-noise ratios,
SNR) are generated by simulating a microscope. Each sequence is com-
posed of 50 frames of size 512×512 pixels. The movies show a single object
moving according to the dynamics model. Examples are shown in Fig. 3.1.

The two object sizes correspond to σPSF = 1.16 and σPSF = 13, and are
named “small object tracking” and “large object tracking”, respectively
(Fig. 3.1(a-c)). The positions and directions of motion of the objects are
randomly chosen within the image plane. The speed (i.e., the displacement
in pixels per frame) is drawn uniformly at random over the interval [2, 7]
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for large objects and over [2, 4] for small objects. The SNR of the images
of large objects is 2 (ca. 6 dB), that for small objects is 4 (ca. 12 dB).
We use the SNR definition for Poisson noise [197]. In the literature on
sub-cellular object tracking, a SNR of 4 is considered critical, as for lower
SNRs many of the available tracking methods fail [194].

Knowing the ground-truth object positions and those estimated by the PF,
we quantify the tracking accuracy by the root-mean-square error (RMSE)
in units of pixels. The likelihood kernel for the large objects has a support
of 65×65 pixels and is correspondingly costly to evaluate. The kernel for
the small objects has a support of 9×9 pixels and is cheaper to evaluate.
Examples of noise-free and noisy object profiles, together with their likeli-
hood kernels, are shown in Fig. 3.2.

Using double-precision arithmetics, a single PF particle requires 52 B (i.e.,
six doubles and one integer) of computer memory. The particles are ini-
tialized at the ground-truth location and all tests are repeated 50 times for
different realizations of the image-noise process on a single core of a 12-
core Intel R© Xeon R© E5-2640 2.5 GHz CPU with 128 GB DDR3 800 MHz
memory on MPI-CBG’s MadMax computer cluster. All algorithms are im-
plemented in Java (v. 1.7.0 13) within the PPF library [2]. The results are
summarized in Figs. 3.3 and 3.4 for large and small objects, respectively.

3.5.4 Results

When tracking large objects (Fig. 3.3), both pcSIR versions provide sig-
nificant speedups over the classical SIR algorithm. For 12’800 particles,
pcSIR-1x1 is more than two orders of magnitude faster than SIR with a
2.4% loss in tracking accuracy. pcSIR-2x2 provides an up to 5.8% bet-
ter tracking accuracy than SIR while running over 50 times faster. Since
SIR is also an approximation of the actual posterior distribution, in some
cases pcSIR may provide a better representation of the posterior and thus
a higher tracking accuracy. This phenomenon has been previously de-
scribed [198].

When tracking small objects, the likelihood support requires sub-pixel res-
olution and the effect of bin size is more visible (Fig. 3.4). pcSIR-1x1 uses

56



3.5. Experimental Results

(a) (b) (c)

(d) (e)

Figure 3.1: Examples of object appearance for different object sizes and
SNR: (a) σPSF = 1.16, SNR=2, (b) σPSF = 1.16, SNR=4, (c) σPSF = 13,
SNR=2. (d/e): Typical object trajectories generated using the nearly-
constant-velocity dynamics model.
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(b) (c) (d)

(f) (g) (h)

(i) (j) (k) (l)

(a)

(e)

Figure 3.2: Examples of likelihood profiles. The noise-free objects are
shown in (a, e), and the noisy (SNR=2) object in (i) with σPSF = 1.16.
We show the corresponding likelihood kernels (b, f, j), the approximated
likelihoods used by pcSIR-1x1 (c, g, k), and the approximated likelihoods
used by pcSIR-2x2 (d, h, l). In (b, c, d), the parameter σξ is 30, for the
rest σξ = 10. The distance between the grid-lines corresponds to the size
of the image pixel.
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rather coarse bins compared to the likelihood support (Fig. 3.2), resulting
in a pronounced loss of tracking accuracy. Visually, however, the trajecto-
ries produced by SIR and pcSIR-1x1 are virtually indistinguishable, since
the tracking accuracy of pcSIR-1x1 is still in the sub-pixel regime (about
0.27 pixel). When finer bins (pcSIR-2x2) are used, the tracking accuracy
of pcSIR is again better than that of SIR, and pcSIR runs more than five
times faster than SIR.

3.5.5 Convergence of SIR and pcSIR

Both SIR and pcSIR employ particle approximations of a smooth, differ-
entiable function, the order of accuracy of which depends on the number
of particles N . In order to eliminate uncertainties resulting from the dy-
namics model, we assume the prior p(xt|yt−1) to be either a uniform dis-
tribution over 3×3 or 5×5 pixels, or a Gaussian with σprior = {0.5, 0.8},
respectively. We then evaluate the likelihood in Eq. (3.2) with σξ = 20
using both SIR and pcSIR. We call this a “pseudo”-tracking experiment.
The object is a single PSF (Eq. (3.1)) with σPSF = 1.16. Visualizations of
the object, likelihood, and prior are shown in Fig. 3.5.

We compare two versions of pcSIR, which differ in the placement of the
dummy particles: In pcSIR-CoC, the dummy particles are placed at the
geometric centers of the bins, whereas in pcSIR-CoM, the centers of mass
of the state vectors of all particles inside that bin are used. Each conver-
gence experiment is repeated 1’000 times for different realizations of the
random process, and the number of particles is increased up to 100’000.
We quantify the RMSE of the state estimation as a function of the number
of particles used. The resulting convergence plots for pcSIR and SIR are
shown in Fig. 3.6.

We observe no significant differences between SIR and the two pcSIR
variants. The error of pcSIR-CoM is always slightly lower than that of
pcSIR-CoC. SIR is generally the most accurate, but is outperformed by
pcSIR-CoM in some cases, confirming our experimental tests as well as the
findings in Ref. [198]. As N increases, the errors of all methods decrease at
the same rate. In all cases, however, the runtimes of both pcSIR variants
were significantly less than that of SIR.
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Figure 3.3: Runtime performance and tracking accuracy of pcSIR-1x1 (×)
and pcSIR-2x2 (O) compared with SIR (◦) for a 65 pixel wide likelihood
kernel. The number of particles used starts from 100 and is doubled for
each case until 12’800. The timings of all three methods are presented
in log-log scale (upper left), whereas the relative speedups of the pcSIR
methods over SIR are shown in the upper-right plot. The accuracy loss
(lower right) of pcSIR-1x1 drops rapidly as the number of particles in the
system is increased. Error bars show standard deviations across the 50
repetitions of each experiment.
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Figure 3.4: Runtime performance and tracking accuracy of pcSIR-1x1 (×)
and pcSIR-2x2 (O) compared with SIR (◦) for a nine-pixel wide likelihood
kernel. The number of particles used starts from 8’000 and is doubled for
each case until 1’024’000. The timings of all three methods are presented
in log-log scale (upper left), whereas the relative speedups of the pcSIR
methods over SIR are shown in the upper-right plot. For the accuracy
comparisons (lower left), we show only the results for pcSIR-2x2 and SIR,
since pcSIR-1x1’s coarse bin resolution results in a 150% worse tracking
accuracy than SIR. Error bars show standard deviations across the 50
repetitions of each experiment.
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(a) (b) (c) (d) (e) (f)

Figure 3.5: The “pseudo”-tracking experiment: (a) the object with σPSF =
1.16, SNR=2; (b) the corresponding likelihood with σξ = 20; (c) a uniform
prior of support 5×5 pixel; (d) a Gaussian prior with σprior = 0.5; (e) a
uniform prior of support 3×3 pixel; (f) a Gaussian prior with σprior = 0.8.
Thin white lines indicate the image pixel grid.

3.6 Conclusions

We proposed a fast approximate SIR algorithm, called pcSIR. pcSIR is
based on spatially binning particles in cells and representing each cell by
a single dummy particle at the center of mass of the cell’s particle distri-
bution, carrying the average state vector of all particles in that cell. This
approximates the likelihood by a first-order multipole expansion [180]. pc-
SIR significantly reduces the computational cost of SIR and enables tack-
ling larger problems as well as tackling mid-size problems in real time. In
some configurations, especially when sub-pixel resolution is used for the
bins, pcSIR may yield more accurate results than SIR.

We performed both theoretical and experimental error analysis of pcSIR.
We showed that the error in the posterior decreases as the number of
particles increases. Moreover, pcSIR converges at the same rate as SIR,
since the Monte-Carlo sampling error masks the error from the function
approximation. We presented theoretical upper bounds on the likelihood
approximation error as a function of cell size in pcSIR.

We experimentally tested the tracking accuracy and runtime performance
of two pcSIR variants for image processing: pcSIR-1x1 and pcSIR-2x2.
In our benchmarks, pcSIR showed significant speedups over SIR. As more
particles are used, the relative speedup over SIR seems to grow exponen-
tially for large-object tracking scenarios, where the likelihood is costly to
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Figure 3.6: The “pseudo”-tracking experiment results for the Gaussian
prior with σprior = 0.5 and the uniform prior with 3×3-pixel support (left),
and for the Gaussian prior with σprior = 0.8 and the uniform prior with
5×5-pixel support (right). The state estimation errors of pcSIR relative to
SIR range between −12% . . .+6%. The difference between pcSIR and SIR
decreases as N increases. Both pcSIR and SIR converge with increasing
number of particles. The RMSE error is reduced by about 30% every time
the number of particles doubles, corresponding to a convergence order of√
N , as expected for a Monte Carlo method. Error bars are below symbol

size.
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evaluate. In the presented benchmarks with 12’800 particles, SIR required
5 minutes to track the large object through a 50-frame 2D image sequence.
pcSIR-1x1 needed only 2.3 seconds to accomplish the same task at the ex-
pense of a 2.4% smaller accuracy. pcSIR-2x2 completed the task in 5.3 sec-
onds with a 5.8% better tracking accuracy than SIR. This improvement
stems from the fact that for some posterior distributions, the piecewise
constant likelihood approximate of pcSIR may be a more regular repre-
sentation than that generated by SIR. This is a known phenomenon [198].
The relative speedups of the two pcSIR variants over classical SIR were
130 -fold and 57 -fold for 12’800 particles, respectively. For larger numbers
of particles, we expect even larger speedups.

For small-object tracking, both pcSIR variants showed an average 5-fold
improvement in execution time for the largest tested particle number.
However, the tracking accuracy of pcSIR-1x1 is greatly reduced, since the
likelihood function has a narrow support that is not well sampled by the
coarse bins. While the errors are in the range of 150%, they are barely
visible in the final trajectories since the average RMSE is only about 0.27
pixels. Interestingly, pcSIR-2x2 shows improvements both in overall run-
time (5-fold) and in tracking accuracy (1%), which suggests that pcSIR-2x2
may be a good algorithm for tracking small objects.

We believe that pcSIR can be used in many PF applications that require
large numbers of particles, costly likelihood evaluations, or real-time per-
formance. When tracking accuracy is not critical, pcSIR-1x1 can offer
orders of magnitude speedup in image-processing applications. If a loss in
tracking accuracy is undesired, pcSIR-2x2 still offers significant speedups
while in some cases even improving accuracy over SIR. In other applica-
tions, one can adjust the size of the averaging bins according to the desired
accuracy. Future improvements could involve adaptive bin sizes.
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CHAPTER

FOUR

Distributed Resampling Algorithms and

Parallel Particle Filtering Library

4.1 Introduction

1A main drawback of the PF is its inherently high computational cost,
which scales with the number of particles (i.e., samples) used to approxi-
mate the posterior distribution. In the past, high-precision real-time ap-
plications have been a great challenge to the PF algorithms. Due to their
computational cost, many PF applications remain limited to small prob-
lems or require long execution times. To address this problem, several
algorithmic improvements have been proposed [1, 199, 200].

As computer clusters became more accessible, redesigning PF algorithms
to take advantage of such parallel computing systems appeared a natural
progress in PF research. The parallelization of PF codes is achieved via
non-geographic domain decomposition approach where each PE is given
only a portion of the available workload (i.e., particles). Thus, the overall
computational cost per PE is reduced and the execution of the PF applica-
tion is accelerated. Faster PF codes enable developers to tackle problems
of larger size in real time, which may have a big impact in many research

1This work has been done in collaboration with Dr. Ihor Smal who co-designed and
co-developed the Parallel Particle Filtering library.
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and application areas. As a major attempt in that direction, Bolić et al.
introduced two distributed algorithms in their seminal work [201]: (i) The
distributed resampling algorithm with proportional allocation (RPA) and
(ii) the distributed resampling algorithm with non-proportional allocation
(RNA). These algorithms enabled the development of PF applications that
efficiently use modern multi-core and multi-processor hardware, such as
computer clusters.

In this chapter, we recapitulate recent developments in parallel PF re-
search with a particular focus on DRAs, namely, RPA and RNA. We give a
detailed explanation of the distributed design of these algorithms. Follow-
ing the summary, we introduce the PPF library [2], which provides efficient
implementations of these DRAs on hybrid shared-/distributed-memory ar-
chitectures based on non-geographic domain decomposition.

4.2 Parallel Particle Filtering Algorithms

A generic PF algorithm consists of two parts: (i) SIS and (ii) resam-
pling [202]. A popular combined implementation of these two parts is the
SIR algorithm [202].

Recursive Bayesian importance sampling [203] of an unobserved and dis-
crete Markov process {xt}t=1,...,T is based on three components: (i) the
measurement vector Yt = {y1, . . . ,yt}, (ii) the dynamics (i.e., state-transition)
model, which is given by a probability distribution p(xt|xt−1), and (iii)
the likelihood (i.e., observation model) p(yt|xt). Then, the state posterior
p(xt|Yt) at time t is recursively computed as:

p(xt|yt)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(yt|xt)

prior︷ ︸︸ ︷
p(xt|Yt−1)

p(yt|Yt−1)︸ ︷︷ ︸
normalization

, (4.1)

where the prior is defined as:

p(xt|Yt−1) =

∫
p(xt|xt−1) p(xt−1|Yt−1) dxt−1. (4.2)

66



4.3. Distributed Resampling Algorithms

PFs approximate the posterior at each time point t by N weighted sam-

ples (i.e., particles) {x(i)
t , w

(i)
t }i=1,...,N . This approximation is achieved by

sampling a set of particles from an importance function (proposal) π(·) and
updating their weights according to the dynamics and observation models.
This process is called sequential importance sampling (SIS) [202]. How-
ever, SIS suffers from weight degeneracy, whereby small particle weights
become successively smaller and do not contribute to the posterior any
more. To address this problem, a resampling step is performed [202]
whenever the number of particles with relatively high weights falls below
a specified threshold. The complete SIR algorithm is given in Algorithm 9.

In order to parallelize the SIR algorithm, one only needs to focus on the
resampling step, since all other parts of the SIR algorithm are local and
can trivially be executed in parallel. Here, the particle data is parallelized
and each PE work on the same input. An example from biological image
processing and how the particle data is distributed across PEs is shown in
Fig. 4.1.

Algorithm 9 Sequential Importance Resampling (SIR)

1: (P) Propagate all particles according to the transition prior: x
(i)
t ∼

p(xt|x(i)
t−1), i = {1, . . . , N}

2: (U) Update the weights taking into account the measurements at time

t, yt, as w̃
(i)
t = p(yt|x(i)

t )w
(i)
t−1

3: Renormalize the weights as w
(i)
t = w̃

(i)
t /

∑N
j=1 w̃

(j)
t

4: Compute the estimate x̂t =
∑N
i=1 w

(i)
t x

(i)
t

5: Compute Neff = (
∑N
i=1(w

(i)
t )2)(−1)

6: Resample if Neff < Nthresh using Systematic Resampling [177]

4.3 Distributed Resampling Algorithms

Existing DRAs can be classified into three groups: The first one includes
multiple particle filter (MPF) algorithms [204], which is a bank of truly
independent PFs with no communication during and/or after local resam-
pling. This renders MPF an embarrassingly parallel approach, in which
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Particle FiltersParallel Particle Filtering

Data parallelism

ParticlesImage 

PE - 1

PE - 2

PE - 3

PE - 1
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Resampling can be parallelized!

18

Figure 4.1: Two possible ways of data parallelism is shown for a target
tracking application from biology. One possible way to provide data par-
allelism is to divide the input data into smaller chunks and assign them to
PEs (left). In DRAs however, particle data is parallelized. All PEs work
on the same image (right). A combination of both data parallelism is also
possible but not included in this work.
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every process essentially runs a separate PF. The only communication in
this case is sending the local estimates of the state to a master node that
forms a combined estimate. However, this low communication complexity
comes at the cost of a reduced statistical accuracy due to problems when,
for example, some of the independent PFs diverge during the sequential
estimation and introduce large errors into the combined estimate. If some
of the independent PFs happen to explore the same area of state space,
the approach is also computationally wasteful. Using a global resampling
scheme, which incurs global communication between the processes, accu-
racy and efficiency can be improved.

4.3.1 Classical RPA

The second class of DRAs contains RPAs [201]. They are based on strati-
fied sampling [9, 177] with proportional allocation, which means that par-
ticles with larger weights are resampled more often. Similarly, PEs with
low-weight particles will have even fewer particles after resampling. There
is no difference between SIR and RPA except the fact that the resampling
step is done in parallel on every PE.

Initially, particle data is divided into K disjoint strata and each stratum
is given to a PE. However, each PE generates different number of particles
after resampling and therefore, a particle imbalance occurs. To overcome
this problem, the classical RPA requires adaptive DLB schemes for particle
routing (Fig. 4.2), where the number of communication links is minimized
in order to reduce the latency in the network.

4.3.2 Classical RNA

The third DRA category includes RNA [201] and local selection (LS) al-
gorithms [205]. These algorithms are designed to minimize inter-process
communication. In RNA, the sample space is divided into disjoint strata,
and each of them is assigned to a different process. The number of particles
per PE to partially approximate the posterior is fixed. In a distributed-
memory computer system with M PEs, the resampling step in RNA is
performed locally by each PE. Thus, the number of particles per PE hence
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Figure 4.2: A particle imbalance situation in RPA is depicted. A dynamic
particle balancing protocol is required to balance the number of particles
among PEs.

remains constant and ensures perfect particle balance. However, the weight
distribution across PEs can become unbalanced leading to a particle weight
imbalance across PEs. This requires particle routing (i.e., DLB) in which
every PE moves a constant fraction of its particles to another PE, such
that the particle weights become more evenly mixed. A popular choice is
to migrate 10%–50% of the particles of each process to the neighboring
process after resampling [206, 207]. A pseudocode for RNA is shown in
Algorithm 10 and an exemplary particle routing is given in Fig. 4.3. The
neighborhood between processes is defined by a process topology, which
usually is taken to be a ring. Using such a simple, static DLB scheme
shortens application development time.

Bolić et al. [201] describe three methods for particle routing in RNA. Re-
grouping method creates groups of PEs, in which PEs use the resampling
algorithm with proportional allocation (RPA) to balance their particle
weights. Once a load balance in the groups are achieved, new groups are
formed where the PEs belonging previously to different groups are put into
the same one. While this method is easy to implement, it does not benefit
from the knowledge about particle weights in groups.

Adaptive regrouping improves over the previous method by grouping the
most overloaded PE with the most underloaded one. As in the regrouping
method, the RPA method is employed. The problem of adaptive regroup-
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Figure 4.3: Particle weight imbalance situation in RNA is shown. RNA
ensures that all PEs hold the same number of particles. However, total
particle weights on PEs may differ greatly and a dynamic weight balancing
protocol is typically required to balance the particle weights among PEs.
Here, a fixed percentage (e.g., 25%) of particles are circled in each time
step.

ing method is that it does not utilize PE locality.

The local exchange method uses a fixed number of Np = N/M particles
on each PE and also fixes the number Nex of particles to be exchanged.
In this RNA configuration, the PEs are arranged in a ring topology and
each PE sends Nex particles to its (counter-)clockwise neighbor in the
ring. Since each PE only communicates with its neighbor, several rounds
of communications are required until the weights are approximately evenly
distributed and the accuracy of the particle representation of the posterior
p(xk|Yt) is recovered. Detailed information on RNA with LS can be found
in Ref. [206].

The local exchange method with a particle-exchange ratio of 10% or 50%
is a popular choice when implementing RNA [201, 206, 207]. This avoids
the need for application-dependent DLB schedules. Fixing Nex in the local
exchange method, the DLB scheme is easier and faster to design and im-
plement. Moreover, the PEs are arranged in a ring and only communicate
with their adjacent neighbors. A processing element Pm randomly selects
Nex (out of its Np) particles and sends them to Pm+1 where 1 < m < M .
Concurrently, it receives Nex new particles from Pm−1.

In the following, we present our novel software library that implements
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Algorithm 10 Resampling with Non-proportional Allocation (RNA)

1: for t = 1→ T do
2: Exchange Nex of particles with neighboring PEs

3: Renormalize weights as w
(m,i)
t−1 = w

(m,i)
t−1 /Wt−1

4: Perform (P) and (U) steps of SIR to get s
(m)
t

5: Compute the estimate x̂
(m)
t and the sum of unnormalized weights

W
(m)
t

6: Resample s
(m)
t using the locally normalized weights w̃

(m,i)
t =

w
(m,i)
t /W

(m)
t

7: Set the i-th weight to w
(m,i)
t = W

(m)
t

8: Send x̂
(m)
t and W

(m)
t to the master PE

9: The master PE computes x̂t and Wt and broadcasts the result to
all PEs

10: end for
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RNA and RPA efficiently such that PF applications can benefit from com-
puter clusters effectively.

4.4 Parallel Particle Filtering Library

PFs have been applied to a wide spectrum of signal-processing applica-
tions. Despite their advantages, the inherently high computational cost
of PF limits their practical application, especially in real-time problems.
This challenge has been addressed by algorithmic improvements [200], effi-
cient shared-memory [208] and many-core [209–211] implementations, and
scalable distributed-memory solutions [207, 212].

Here, we present a parallel software library for particle filtering, called
the PPF library, which aims at providing application developers with an
easy-to-use and scalable platform to develop PF-based parallel solutions
for their applications. The main contributions of the PPF library are a
highly optimized implementation and the extension of distributed resam-
pling algorithms [201] to hybrid shared-/distributed-memory systems.

The library is written in Java and has an object-oriented architecture.
It exploits a hybrid model of parallelism where the MPI [213] and Java
threads are combined. The framework relies on the recent Java bindings of
Open MPI [65, 214] for inter-process communication, and on Java threads
for intra-process parallelism. Java is an emerging language in HPC offer-
ing new research opportunities [215].

The PPF library includes implementations of different strategies for DLB
across processes, and a checkerboard-like thread balancing scheme within
processes. Inter-process DLB is used in the resampling phase of a PF,
whereas thread balancing (i.e., intra-process balancing) is used through-
out the entire library. Non-blocking point-to-point MPI operations are
exploited wherever the chosen DLB strategy allows for them. Furthermore,
the framework has interfaces for ImageJ [216], Fiji [217], and imagescience [218],
allowing these popular image-processing applications to directly access
PPF’s application programming interface (API). The proposed framework
can be used to facilitate implementation of other computationally demand-
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ing PF based techniques such as pMCMC [219], SMC2 [220], and SMS-
(C)PHD [221].

The PPF library uses MPI [213] for inter-process communication, which
is the de facto standard for parallel high-performance computing. The
Open MPI team [65] recently started providing a Java interface based on
mpiJava [222], which covers all MPI 1.2 functions and is currently main-
tained on provisional basis in the development trunk of Open MPI [223]2.
While there exist several Java bindings for OpenMP, such as JOMP [224]
or JaMP [225], they come either as an additional compiler on top of the
Java Virtual Machine or require preprocessing before the actual Java code
is produced. Moreover, they do not provide the full flexibility one can
have with Java threads. Therefore, we employ Java threads for shared-
memory parallelization. The PPF library also provides built-in support for
ImageJ [216], Fiji [217], and imagescience [218] for file I/O, image anal-
ysis, and image editing. A schematic of the structure of the PPF library is
shown in Fig. 4.4.

The library consists of five modules: (i) actors, (ii) models, (iii) particle,
(iv) tools, and (v) interfaces. The actors module encapsulates function-
ality that is common to PF algorithms (e.g., resampling) and provides
support for parallel PFs via its communication, data distribution, and
DLB sub-modules. The models module includes dynamics and observation
models. By default, the library includes simple standard models that can
be sub-classed to include application-specific models. The particle mod-
ule contains the particle data structure and related methods (e.g., particle
generation). The tools module contains a set of helper methods for sorting,
statistical calculations, efficient particle neighbor lists, etc. The interfaces
module provides APIs to link the PPF library to ImageJ [216], Fiji [217],
and imagescience [218]. This allows ImageJ/Fiji plugins to access the
functionality provided by the PPF library, but it also allows PPF methods
to use functions provided by ImageJ/Fiji, such as functions for image pro-
cessing, file I/O, and graphical user-interface building.

A client code that implements a parallel PF application can directly call

2While writing this thesis Open MPI released v1.8 stable series that contain also
Java bindings based on MPI 1.2 standard.
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•Dynamics
•Appearance / 
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•Particle
•ParticleFactory
•StateSpaceCell

•CellList
•Helpers
•Sorter
•Statistics

•ImageJ
•ImageScience

The PPF Library

Figure 4.4: Software structure of the PPF library. The library is divided
into five modules and hides the complexity of MPI and multithreading
from the application programmer. It also supports using imagescience

classes, as well as functions from ImageJ and Fiji.

the PPF API. Most of the intricacies arising from parallel programming and
code optimization are hence hidden from the application programmer. Sit-
ting as a middleware on top of MPI and Java threads, the PPF library makes
the parallelization of PF applications on shared- and distributed-memory
systems easier. Below, we highlight some of the features of the PPF library.

4.4.1 Multi-level Hybrid Parallelism

As HPC systems grow in size, multi-level hybrid parallelization techniques
emerge as a viable tool to achieve high parallel efficiency in scalable sci-
entific applications. Many applications [226] realize hybrid parallelization
strategies by combining MPI with OpenMP [227]. In order to have full
thread control and also enable job-level multi-threading, we here follow
the trend of combining MPI for inter-process communication with native
threads for intra-process parallelism. We employ Java’s native thread con-
currency model in the PPF library, which provides full thread control and
avoids additional software/compiler installation and maintenance. Fur-
thermore, we provide an intra-process load-balancing scheme for threads
specifically designed for PF applications, whose implementation using Java
threads is straightforward and easy to extend.
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Figure 4.5: Two possible ways to use hybrid parallelism with MPI and Java
threads (JT) in PPF: On the left, each MPI process is bound to a CPU
(blue squares), and each JT is assigned to a core (orange circles). On the
right, there is one MPI process per node/computer (green rectangle), and
again one JT per core. The PPF library implements both models and lets
the application developer choose which one to use for a specific application.

The PPF library lets the user choose between two different concurrency
models, as illustrated in Fig. 4.5: In the first model (left panel), the num-
ber of MPI processes is equal to the number of available CPU chips, and the
number of threads per process is equal to the number of cores per CPU.
Compared to an all-MPI paradigm, this allows benefitting from shared
caches between cores and reduces communication latency.

The second model (right panel) uses a single MPI process per node/computer
and and one Java thread for each core. This hybrid model keeps the shared
memory on the node coherent and causes a lower memory latency than an
all-MPI implementation [228]. Which model one chooses for a particu-
lar application depends on the specific hardware (cache size, number of
memory banks, memory bus speed, etc.) and application (data size, com-
putational cost of likelihood evaluation, etc.)

4.4.2 Non-blocking MPI Operations

During execution of DLB strategies in RPA, we use non-blocking point-to-
point MPI operations in order to overlap communication with computa-
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tion. This is especially useful during the DLB phase, where a sender sends
its message to a receiver and then immediately carries on with generating
new local particles.

4.4.3 Input-space Domain Decomposition

In the PPF library, MPI-level parallelization is done at the particle-data
level. This means that each MPI process has full knowledge of the input,
e.g. the image to be processed, but only knows a part of the particles in
state space. At the thread level, we then also decompose the input (e.g.,
image) into smaller subdomains. This provides a convenient way of intro-
ducing thread-level parallelism. For images, the pixels containing particles
are directly assigned to local threads. Thus, both the state space is dis-
tributed via MPI, and the input space is distributed across threads.

4.4.4 Thread Balancing

Thread-level load balancing is as important as process-level DLB. When
using PFs for object tracking, for example, once an object is found and
locked onto, many particles are drawn to the vicinity of that object. This
worsens thread load-balance, since if consecutive pixels belong to the same
thread, that thread becomes overloaded while others are idle.

The PPF library hence uses an adaptive checkerboard-like load balancing
scheme for threads, as illustrated in Fig. 4.6. Depending on the number
of threads and the support of the posterior distribution, the size of the
checkerboard patch is automatically adjusted.

4.4.5 Image Patches

When using PFs for image processing, the likelihood computation involves
image data and may be computationally costly due to, e.g., invoking a nu-
merical simulation of the image-formation process. Performance improve-
ments in the likelihood calculation hence have the largest impact on the
overall performance of a PF in an image-processing application.
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Figure 4.6: Big boxes represent the binned state space (where in the case
of images the pixels can be used as bins) and the colors represent which
part of the state space will be processed by which thread. Once particles
concentrate around an object to be tracked, i.e. the posterior approxi-
mation converged, thread balancing accelerates the computations. The
PPF library implements a checkerboard-like thread balancing scheme with
patch sizes that depend on the support of the posterior distribution and
on the number of threads. Two examples are shown here: In the 2×2
scheme (upper row), the area covered by the posterior (white circle) is
distributed across four threads (upper right corner). Similarly, the 2×4
thread-balancing scheme (lower row) distributes a larger posterior (white
ellipse) across eight threads.
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In many image-based applications, a separate likelihood estimation is car-
ried out for each particle, where the full image is loaded and then the
likelihood kernel is applied. In image-based likelihood computations, these
kernels are typically symmetric (e.g., Gaussian) and local (i.e., span only
a few pixels). Thus, it is sufficient to visit pixels one by one and only load
the image patch centered at the visited pixel. The size of the patch is given
by the likelihood kernel support, which is typically much smaller than the
whole image. Once a patch is loaded, computing the particle weights in
the central pixel requires less time. In fact, if there are Npix pixels in the
image and N particles in state space, the overall computational complexity
of the likelihood calculation is reduced from O(NNpix) to O(N), which is
usually a significant reduction.

Since threads are distributed in a checkerboard-like fashion, only one
thread needs to load an image patch and all neighboring threads can sim-
ply access the patch data from shared cache. This results in better cache
efficiency.

4.4.6 Piecewise Constant Sequential Importance Resampling

The PPF library also provides an implementation of a fast approximate
SIR algorithm that uses a piecewise constant approximation of the like-
lihood function to estimate the posterior distribution faster. This pcSIR
algorithm can offer significant speedups [1].

4.5 Conclusions

We presented two classical distributed resampling algorithms (i.e., RNA
and RPA) and a novel PPF library that enables parallel particle filtering
applications on commodity as well as on high-performance parallel com-
puting systems. The library uses multi-level hybrid parallelism combining
Open MPI with native Java threads. The PPF library reduces parallel
runtimes of the RNA and RPA methods by integrating dynamic load bal-
ancing with thread balancing and also implements PF-specific algorithmic
improvements such as domain decomposition, image patches, and piece-
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wise constant sequential importance resampling (pcSIR). The PPF library
renders using parallel computer systems easier for application developers
by hiding the intricacies of parallel programming and providing a simple
API to design parallel PF applications.

As a proof of concept for the recently developed Open MPI Java bindings,
we created the PPF library to enable parallel computing in PF application.
In the next chapter, we show the capability of the PPF library in a biological
imaging application. There, PF is used to track sub-cellular objects in 2D
images and videos. This example compares the performances of traditional
DRAs with our newly introduced DRAs, which are all implemented as a
part of the PPF library.
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CHAPTER

FIVE

New and Improved Algorithms for

Parallel Particle Filtering

1Traditional distributed resampling algorithms such as RPA and RNA
enable parallel processing of particle filtering algorithms. This is accom-
plished by parallelizing the resampling step and introducing an additional
information exchange phase. This information exchange step is important
since both RNA and RPA cause some type of load imbalance amongst PEs.
In RPA, a particle imbalance occurs, meaning that PEs generate uneven
number of new particles in resampling phase. Since the overall runtime of
a PF algorithm depends on the number of particles, this particle imbalance
affects the parallel performance of RPA. On the other hand, in RNA, the
load imbalance is due to particle weight imbalance. While the number of
particles on each PE is fixed in RNA, the weights may differ a lot and PF
accuracy may degrade greatly.

In this chapter, we discuss how these DRAs can be further improved by ac-
counting different DLB schemes that deal with particle imbalance and par-
ticle weight imbalance. Our first effort leads to the adaptive RNA (ARNA),
which improves the tracking accuracy and runtime performance of RNA.
Further, we analyze different DLB schemes one can employ for particle

1This work has been done in collaboration with Dr. Ihor Smal who co-designed and
co-developed DLB algorithms for RNA, RPA, and BEM.
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balancing in RPA. Finally, we introduce a new DRA called Box Exchange
Method (BEM) that establishes itself as a new class of DRA algorithms
and provides favorable parallel PF performance over other DRAs. All
these methods are implemented in our PPF library and compared with
each other in an application where PF is used to track sub-cellular objects
in bio-images.

5.1 Tracking sub-cellular objects

We demonstrate the capabilities of the PPF library and the implemented
DRAs by using them to implement a PF application for tracking sub-
cellular objects imaged by fluorescence microscopy [187, 188]. In this ex-
ample from biological microscopy imaging, sub-cellular structures such as
endosomes, vesicles, mitochondria, or viruses are fluorescently labeled and
imaged over time with a microscope. Many biological studies start from
analyzing the dynamics of those structures and extracting parameters that
characterize their behavior, such as average velocity, instantaneous veloc-
ity, spatial distribution, motion correlations, etc. First, we describe the
dynamics and appearance models implemented in the PPF library for this
biological application, and then we explain the technical details of the ex-
perimental setup.

5.1.1 Dynamics Model

The motion of sub-cellular objects can be represented using a variety of
motion models, ranging from random walks to constant-velocity models
to more complex dynamics where switching between motion types oc-
curs [56, 192].

Here, we use a near-constant-velocity model, which is frequently used in
practice [57, 193]. The state vector in this case is x = (x̂, ŷ, vx, vy, I0)T ,
where x̂ and ŷ are the estimated x- and y-positions of the object, (vx, vy)
its velocity vector, and I0 its estimated fluorescence intensity.
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5.1.2 Observation Model

Many sub-cellular objects are smaller than what can be resolved by a
visible-light microscope, making them appear in a fluorescence image as
diffraction-limited bright spots, where the intensity profile is given by the
impulse-response function of the microscope, the so-called point-spread
function (PSF) [56, 57, 189, 190].

In practice, the PSF of a fluorescence microscope is well approximated
by a 2D Gaussian [194]. The object appearance in a 2D image is hence
modeled as:

I(x, y;x0, y0) = I0 exp

(
− (x− x0)2 + (y − y0)2

2σ2
PSF

)
+ Ibg, (5.1)

where (x0, y0) is the position of the object, I0 is its intensity, Ibg is the
background intensity, and σPSF is the standard deviation of the Gaussian
PSF. Typical microscope cameras yield images with pixel edge lengths
corresponding to 60 to 200 nm physical length in the specimen. For the
images used here, the pixel size is 67 nm, and the microscope has σPSF =
78 nm (or 1.16 pixels). During image acquisition, the “ideal” intensity
profile I(x, y) is corrupted by measurement noise, which in the case of
fluorescence microscopy has mixed Gaussian-Poisson statistics. For the
resulting noisy image yt = Yt(x, y) at time point t, the likelihood p(yt|xt)
is:

p(yt|xt) ∝ exp


− 1

2σ2
ξ

∑

(xi,yi)∈Sx
[Yt(xi, yi)− I(xi, yi; x̂, ŷ)]

2


, (5.2)

where σξ controls the peakiness of the likelihood, (xi, yi) are the inte-
ger coordinates of the pixels in the image, (x̂, ŷ) are the spatial compo-
nents of the state vector xt, and Sx defines a small region in the image
centered at the location specified by the state vector xt. Here, Sx =
[x̂− 3σPSF, x̂+ 3σPSF]× [ŷ − 3σPSF, ŷ + 3σPSF].
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Figure 5.1: Examples of low SNR synthetic images used in the exper-
iments. Left: The first 512 × 512 frame from a movie sequence of 50
frames, showing the typical object appearance due to the Gaussian PSF
model. Right: Trajectories of the moving bright objects, generated using
the nearly-constant-velocity dynamics model, overlaid with the first image
frame.

Figure 5.2: Another view at the examples of synthetic images used in
the benchmarks. Left: One frame of a typical 2D image sequence with
SNR=2, containing the small, bright objects of interest. Zoomed insets
show noisy object appearance, modeled using a 2D Gaussian intensity
profile corrupted with Poisson noise. Right: Typical object trajectories,
generated according to the nearly-constant-velocity model.
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5.1.2.1 Experimental Setup

We consider a single-object tracking problem where σPSF = 1.16 pixels
and the images have an SNR of 2 (equivalent to 6 dB). An example of an
input image is shown in Fig. 5.1 (left). It is a synthetic image showing
a number of bright PSF spots moving according to the above-described
dynamics and appearance models. The task considered here for the PF is
to detect the spots and track their motion over time, reconstructing their
trajectories. The ground-truth trajectories used to generate the synthetic
movies are shown in Fig. 5.1 (right). Comparing PF tracking results with
them allows quantifying the tracking error. For other applications, the PPF
library can easily be extended to include also other dynamics and obser-
vation models.

Using double-precision arithmetics, a single particle requires 52 B (i.e.,
six doubles and one integer) of computer memory. The particles are ini-
tialized uniformly at random and all tests are conducted with different
random synthetic movies on the MadMax computer cluster of MPI-CBG,
which consists of 44 nodes each having two 6-core Intel R© Xeon R© E5-2640
2.5 GHz CPU with 128 GB DDR3 800 MHz memory. All algorithms are
implemented in Java (v. 1.7.0 13), and Open MPI (v. 1.9a1r28750) is used
for inter-process communication.

We test RNA, ARNA, and RPA algorithms with different problem sizes,
DLB strategies, and computer system sizes up to 384 cores. Next, we dis-
cuss improved versions of RNA and RPA.

5.2 Adaptive RNA

We propose the ARNA algorithm [3], which improves classical RNA by
using dynamically adaptive particle-exchange ratios and randomized ring
topologies. These two features help reducing particle weight imbalance
among PEs faster and increase tracking efficiency of the parallel PF.

85



Chapter 5. New and Improved Algorithms for Parallel
Particle Filtering

5.2.1 Adaptive Particle-Exchange Ratio

The traditional RNA uses a fixed particle exchange ratio that need to be
set by the user. We relax this constraint by making Nex/Np dynamically
adaptive, allowing it to vary between 0 . . . 50% as:

Nex = Np

[
0.5− 0.5(PEeff − 1)

M − 1

]
, (5.3)

where Np is the number of total particles on a PE. Hence, Nex is negatively
correlated with the tracking efficiency PEeff, which is defined as:

PEeff =

(∑M
m=1

∑N
i=1 w

(m,i)
t

)2

∑M
m=1

∑N
i=1(w

(m,i)
t )2

, (5.4)

where w
(m,i)
t is the weight of i-th particle on m-th PE. PEeff measures

the percentage of PEs that have already located the object and track it
successfully.

The adaptive exchange rate in ARNA frees the user of fixing this pa-
rameter, and helps reduce communication-network congestion and thus
increases the parallel performance. The advantage of this adaptive ap-
proach becomes more pronounced for high tracking accuracies, i.e., in the
tracking case, where the PF is converged to its target and tracks it through
input space. In such tracking case, all local PFs have converged to an
equally good approximation of the posterior. The exchange of particles
between PEs would then not be necessary anymore, but is still wastefully
performed in RNA. It is also not clear what the optimal percentage of
migrating particles should be. For applications requiring high precision,
the number of particles that need to be communicated may also become
too large, limiting the scalability of RNA.

5.2.2 Randomized Ring Topology

While the ring topology leads to a simple communication schedule in RNA,
it also has the lowest conductance (i.e., speed of information spreading)
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from a graph-theory point of view. Thus, the information of “good” parti-
cle weights is shared only slowly across PEs. Furthermore, the performance
of this DLB scheme in the ring topology degrades as the number of PEs
increases [229].

In a complete graph, information can be shared between any two PEs in
single communication step. However, such all-to-all communication limits
the parallel scalability of the algorithm. We introduce an improved (in the
sense of faster mixing) DLB scheme for ARNA that has the same com-
munication cost as the original RNA, i.e., the same number of send and
receive operations per PE.

We exploit the power of randomization methods, which are well-established
for approximately solving NP-complete problems, such as the present one.
As a simple change to RNA, we randomize the vertex labeling in the ring
topology. This is equivalent to having a complete graph and selecting dif-
ferent, random Hamiltonian paths (i.e., paths that visit each node exactly
once) in this graph. Projecting the complete graph onto a ring topology
via a Hamiltonian path, each PE only communicates with two other PEs,
as in the classical RNA. We use Fisher-Yates shuffling [230] to efficiently
compute randomized ring topologies. One could also apply other regu-
lar graphs with low maximum degree, but such topologies would require
knowledge about the hardware network connecting the PEs in the actual
machine. With no prior knowledge about process-to-PE assignment and
hardware network topology, the present random ring labeling provides
a simple tool to increase the efficiency of information spread in ARNA.
ARNA only requires a few minor modifications to RNA in steps 1 and 2.
A pseudocode for ARNA is given in Algorithm 11.

5.2.3 Benchmarks

We benchmark improvements of the proposed ARNA over RNA using an
application from object tracking in fluorescence microscopy imaging [187,
231]. The goal here is to track the motion of small structures that are
labeled with fluorescent dyes. From this, one can then characterize the
dynamics of those objects and quantify, e.g., their velocity, spatial distri-
bution [190], motion correlations, etc.
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Algorithm 11 Adaptive RNA (ARNA)

1: Randomize the PE topology using Fisher-Yates shuffle [230]
2: Update the particle-exchange ratio Nex/Np according to Eq. 5.3. This

requires a global communication in order to compute PEeff.
3: Exchange Nex of particles with neighboring PEs

4: Renormalize weights as w
(m,i)
t−1 = w

(m,i)
t−1 /Wt−1

5: Perform (P) and (U) steps of SIR to get s
(m)
t

6: Compute the estimate x̂mt , and the sum of unnormalized weights W
(m)
t

7: Resample s
(m)
t using the locally normalized weights w̃

(m,i)
t =

w
(m,i)
t /W

(m)
t

8: Set the i-th weight to w
(m,i)
t = W

(m)
t

9: Send x̂
(m)
t and W

(m)
t to the master PE

10: The master PE computes x̂t and Wt and broadcasts the result to all
PEs
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We use the same previous sequential implementation of SIR [56, 57] inside
both RNA and ARNA. The dynamics model assumes nearly constant ve-
locity, and the appearance model approximates each object by Gaussian
intensity profile in the final microscopy image. These are standard models
that adequately describe biological fluorescence microscopy[56, 57]. The
state vector in this case is x = (x̂, ŷ, vx, vy, I0)T , where x̂ and ŷ are the
estimated x- and y-positions of the object, (vx, vy) its velocity vector, and
I0 its estimated fluorescence intensity. An example image of object track-
ing in fluorescence microscopy imaging is shown in Fig. 5.2.

For the performance evaluation, 10 different, synthetically generated im-
age sequences are used, each containing 50 frames of size 512× 512 pixels.
The tracking performance is evaluated for two different modes: tracking
and information sharing. In the first mode, all PEs contain particles that
are initialized at the true object state. In the second scenario, the parti-
cles are uniformly randomly initialized in state space on all but one PE.
On one PE, the particles are initialized at the true state. This models
the situation that one PE has discovered and converged on the object and
needs to efficiently share this information with the other PEs. After that,
the two distributed SIR implementations (one with ARNA and one with
RNA) are used to locate the object in the subsequent frames and continue
with accurate tracking and position estimation.

We compare ARNA against RNA with 0%, 10%, and 50% particle-exchange
ratios. The memory footprint of a single particle is 52 B (i.e., six doubles
and one integer). The six doubles are the five components of the state
vector and the particle weight. The integer is the process ID of where that
particle belongs). All tests of tracking are repeated 50 times for statistical
significance. For information sharing, we benchmark the recovery curve
of PEeff on five different synthetic image sequences, each test repeated 10
times. All experiments are run on the MadMax computer cluster of MPI-
CBG, Dresden, which is equipped with 128 GB DDR3 800-MHz memory
per node and two Intel R© Xeon R© E5-2640 six-core processors per node
with a clock speed of 2.5 GHz. Both ARNA and RNA are implemented
in Java (v. 1.7.0 13) in the PPF library [232]. We use Open MPI’s Java
bindings (v. 1.9a1r28750) for inter-process communication [223].
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5.2.3.1 Tracking performance

We initialize 19.2 million particles at the location of the targeted object
and thus we ensure high-accuracy tracking. In such a scenario, if correct
dynamics and observation models are used, inter-process communication
is virtually unnecessary since all PEs independently track the object. The
classical RNA model, however, is oblivious to the mode of the applica-
tion, as the process topology and the particle-exchange ratio are fixed. In
ARNA, the particle exchange ratio Nex/Np is negatively correlated with
the tracking efficiency. PEs do not exchange any particles if PEeff is above
99%. The runtime results of the benchmarks are shown in Fig. 5.3. The
tracking accuracy of ARNA is comparable to that of RNA with 50% par-
ticle exchange. When exchanging only 10% of the particles in RNA, the
accuracy drops. Visually, however, all resulting trajectories are indistin-
guishable, as the Root Mean Square Error (RMSE) of the tracking is below
0.1 pixel in all cases.

5.2.3.2 Information Sharing Performance

In applications with no prior information about the initial state of the
system, it is common practice to initialize the particles uniformly at ran-
dom throughout the state space. This helps explore the state space and
first detect the object to be tracked. At some point, one of the PEs will
(stochastically) detect the object to be tracked and the particles on the
PE converge around the object. Until this point, all PEs uniformly sam-
ple the state space and communication between them does not help. Once
one PE has found the target, however, this information should be dissem-
inated among all PEs as quickly as possible, in order to allow the other
PEs to contribute to the tracking accuracy. In a parallel PF application
we want all PEs to contribute to the result (i.e., not waste computational
resources). PEeff should hence reach 100% as quickly as possible after ini-
tialization.

In ARNA, the randomized ring topology helps share the detection infor-
mation more rapidly. Figure 5.4 shows how PEeff evolves with algorithm
iterations for the different parallel algorithms, counting iterations from the
time point where one of the PEs has found the object. A theoretical anal-
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ysis of the tracking efficiency recovery is carried out in Appendix E.

5.3 DLB strategies for RPA

In RPA, after resampling every PE may generate uneven number of par-
ticles, which causes a particle imbalance. To rebalance the workload (i.e.,
number of particles) on each process, one has to use a DLB scheme. We
discuss three DLB protocols, which all start by labeling the processes as
either senders or receivers. A good DLB scheduler then minimizes the
communication overhead required for routing particles from the senders
to the receivers.

5.3.1 Greedy Scheduler

The Greedy Scheduler (GS) matches the first sender with the first receiver
and then iterates through the senders. For each sender Si with particle
surplus NSi , it moves as many particles as possible to receiver Rj . Once a
receiver is full, it moves on to the next Rj+1 until the sender is empty. The
procedure guarantees that at the end each process has the same number
of particles. The pseudocode of GS is given in Algorithm 12.

5.3.2 Sorted Greedy Scheduler

The Sorted Greedy Scheduler (SGS) [94, 204, 233] first sorts the senders
in S by their NSi

and the receivers in R by their NRj
, both in descending

order. This sorting reduces the number of required communication links.
The rest of the SGS algorithm is identical with GS, as seen in Algorithm 13.

5.3.3 Largest Gradient Scheduler

While GS and SGS aim to balance the loads perfectly, one may be inter-
ested in a faster scheduler that causes less communication overhead, but
does not guarantee optimal particle balancing. Here, we introduce the
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Figure 5.3: Left: Execution times of RNA with 50% exchange (red), 10%
exchange (blue), and 0% exchange (purple) compared with the timings for
ARNA (black). A fixed total number of 19.2 million particles is distributed
over an increasing number of PEs (strong scaling). ARNA is faster than
RNA with 10% and 50% exchange. RNA with 0% exchange (i.e., embar-
rassingly parallel RNA) defines the lower bound for this test case, where no
communication is necessary. Beyond 192 PEs, the number of particles per
processor is too small to amortize the constant communication overhead.
Right: RMSE tracking accuracy in pixels (40 particles per PE, initialized
at the target.) RNA with 50% particle exchange (red) and ARNA (black)
show comparable tracking accuracy, whereas RNA with 10% exchange
(blue) yields lower accuracy. As the total number of particles increases,
the tracking becomes more accurate in all cases.
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Figure 5.4: Percentage of PEs engaged in successful tracking of the target
(PEeff) as a function of iteration number during the information sharing
phase: ARNA (black), RNA with 10% particle exchange (blue), and RNA
with 50% particle exchange (red) on 24, 96, 192, and 384 PEs. The ran-
domized ring topology of ARNA leads to a faster spread of information
and hence a higher tracking efficiency. An upper
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Algorithm 12 Greedy Scheduler

Require: S:=the list of senders, R:=the list of receivers.
Ensure: schedule:=the list of matchings between the elements of S and

R including the number of particles to be routed.
1: procedure GreedyScheduler(S,R)
2: j ← 0
3: while S 6= ∅ do
4: while NSi

6= 0 do
5: if NSi ≥ NRj > 0 then
6: schedule← {Si, Rj , NRj}
7: NSi

← NSi
−NRj

8: NRj
← 0

9: j ← j + 1
10: else if NRj > NSi ≥ 0 then
11: schedule← {Si, Rj , NSi}
12: NRj

← NRj
−NSi

13: NSi
← 0

14: j ← 0
15: end if
16: end while
17: i← i+ 1
18: end while
19: return schedule
20: end procedure

Algorithm 13 Sorted Greedy Scheduler

Require: S:=the list of senders, R:=the list of receivers.
Ensure: schedule:=the list of matchings between the elements of S and

R including the number of particles to be routed.
1: procedure SortedGreedyScheduler(S,R)
2: S′ ← sort(S) . in descending order
3: R′ ← sort(R) . in descending order
4: return GreedyScheduler(S′, R′)
5: end procedure
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Largest Gradient Scheduler (LGS), which is such a sub-optimal heuristic.
Similar to SGS, LGS first sorts S andR such thatNS1

> NS2
> . . . > NS|S|

and NR1 > NR2 > . . . > NR|R| . After that, each sender is paired with the
corresponding receiver of same rank:

S1 → R1,

S2 → R2,

...

Smin (|S|,|R|) → Rmin (|S|,|R|).

LGS thus finds the largest gradients between S and R and limits the num-
ber of communication links to

C = min (|S| , |R|).

The pseudocode of LGS is given in Algorithm 14.

5.3.4 Results with RPA

For RPA, we compare three different DLB schemes. The tracking accuracy
is measured by RMSE and was the same for all tests (about 0.063 pixels).
All DLB schemes hence lead to results of equal quality. We use six Java
threads per MPI process, since each CPU of the benchmark machine has
six cores, and one MPI process per CPU. The wall-clock times are shown
in Fig. 5.5 for a weak scaling with 60’000 particles per process. The cor-
responding parallel efficiency is shown in Fig. 5.6. Overall, LGS provides
the best scalability, due to its linear communication complexity. Never-
theless, RPA scales less well than RNA and ARNA. For all RPA tests, we
use a hybrid parallelism model defined in Fig. 4.5 (right) where each MPI
process is assigned six Java Threads within the PPF library.

5.4 The Box Exchange Method

So far, all discussed DRAs exchange particles to sort out the particle imbal-
ance or the particle weight balance. As the number of particles N increases,
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Algorithm 14 Largest Gradient Scheduler

Require: S:=the list of senders, R:=the list of receivers.
Ensure: schedule:=the list of matchings between the elements of S and

R including the number of particles to be routed.
1: procedure LargestGradientScheduler(S,R)
2: S′ ← sort(S) . in descending order
3: R′ ← sort(R) . in descending order
4: for i = 1→ min (|S| , |R|) do
5: if NSi ≥ NRi then
6: NSi ← NSi −NRi

7: schedule← {Si, Ri, NRi
}

8: else
9: NSi

← 0
10: schedule← {Si, Ri, NSi

}
11: end if
12: end for
13: return schedule
14: end procedure
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Figure 5.5: Weak scaling runtime results with less than a second standard
deviation of a RPA run with 60K particles per MPI process. Each MPI
processes is mapped onto a single CPU with six logical cores. There are
six Java threads per MPI process. Three DLB schemes are used: Greedy
(�), SortedGreedy (?), and LGS (O).
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Figure 5.6: Strong-scaling parallel efficiencies of RPA with a constant
number of 3.84 million particles distributed across an increasing number
of processes. Three different DLB schemes are compared: Greedy (�),
SortedGreedy (?), and LGS (O). Each MPI process is pinned to one of
the two available CPUs on each node, each running six Java threads.
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these DRAs become slower since the communication volume increases pro-
portionally with N . This may limit the scalability of DRAs on large scale
problems. Here, we introduce a novel particle exchange method to balance
particle weights among PEs.

To obtain a better scalable parallel PF algorithm, one has to tackle the
problem where Nex scales up with the total number of particles N . In the
Box Exchange Method (BEM), the image domain is divided into smaller d-
dimensional subdomains where d is the dimensionality of the state space.
In each small subdomain (i.e., box) a number of particles is contained.
Similar to RNA, the user defines Nex but instead of sending real particles,
we send the d-dimensional boxes and the number of particles needed to
be generated by the receiving PE in these boxes. The boxes are chosen
smartly so that a minimum number of boxes are sent to match the required
Nex.

Each box has d dimensions where the first two or three dimensions depend-
ing on the input (i.e., 2D or 3D image) are the spatial information. In this
study, we decompose the 2D or 3D image into smaller, non-overlapping
boxes, which encompass some particles in themselves. For simplicity, we
choose square boxes for 2D and cubes for 3D input data. For the remain-
ing d − 2 (or d − 3) dimensions, the box acts like a bounding box where
each particle in a box is visited and the minimum and maximum values for
each dimension in that box is computed. Once the boxes are created, each
PE starts preparing the message that needs to be sent to a neighboring
PE. To further reduce the size of the message, we sort the boxes by the
number of particles they contain and add the most populated boxes to the
send message buffer. A schematic example of particle exchange in BEM is
presented in Fig. 5.7.

The message buffer contains the information on the total number of boxes
being sent and for each box: The ID of the box, the number of particles
in that box, minimum and maximum values of d− 2 (or d− 3) dimensions
and the average particle weight. So, assuming B boxes are being sent, the
total message size for a 2D input is B ∗ (d + 1) + 1, whereas in RNA it
is significantly more: Nex ∗ d. By doing all of these, the message size is
reduced from O(N) down to O(B), which is a significant algorithmic im-
provement in massively parallel PF applications. The algorithm for BEM
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Figure 5.7: Instead of sending actual particles, PE (left) sends the dimen-
sions and coordinates of the bounding box to the PE (right). Receiving
PE resamples new particles (uniform) randomly in the box. Thus, the
communication volume is greatly reduced.

100



5.5. Conclusions

is given in Algorithm 15.

5.4.1 Benchmarks

We compare BEM with RNA using the same synthetic images, dynamics
model, and observation model described in Sec. 5.2.3. We use five different
images and each method is run 30 times on each image using the PPF

library. The RMSE values obtained by RNA and BEM are almost identical
(below 0.1 pixels in all cases) and visually there is no difference in the
results. BEM shows significant -up to 2.3x as seen in Fig. 5.8- performance
enhancement over RNA and thus, it is a very good alternative to RNA for
parallel PF.

5.5 Conclusions

In this chapter, we presented several algorithmic improvements over exist-
ing DRAs. ARNA adopts adaptive particle exchange ratio and randomizes
inter-PE communication pattern to increase the tracking accuracy and to
handle particle weight imbalance efficiently. In our tests, ARNA showed
up to 20x better tracking efficiency and 9% faster execution over the tra-
ditional RNA.

On the RPA side, we discussed three dynamic load balancing algorithms
for solving particle imbalance problem, which happens after resampling
step. Largest Gradient Scheduler (LGS) outperforms other greedy DLB
algorithms and provides a better scalable RPA. Nevertheless, RPA has a
much lower parallel efficiency compared to RNA.

Furthermore, we introduced a novel method called Box Exchange Method
(BEM), which offers a much faster way to balance the particle weights
among PEs. The communication complexity of the RNA is reduced from
O(N) down to O(B), where B is the number of boxes. By selecting each
pixel as a box, we keep the tracking accuracy intact and accelerate the
parallel performance more than 2x in a biological target tracking problem.
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Algorithm 15 Box Exchange Method (BEM)

1: Decompose the image domain into B square boxes (done only once),
b={1,...,B}

2: for each particle i do
3: Find out which box b they belong to, increase the number of par-

ticles Nb by 1

4: Update the total particle weight in b: w
(b)
t−1 = w

(b)
t−1 + w

(m,i)
t−1

5: end for
6: Sort all boxes by Nb in descending order as sortedBoxes

7: nextBox ← 0, numBoxes ← 0
8: while Nex > 0 do
9: Compute the average particle weight in sortedBoxes[nextBox]

10: Add the sortedBoxes[nextBox], number of particles in this box
Nb, min and max values of d−2 (or d−3) dimensions and the average
particle weight

11: nextBox ← nextBox + 1
12: Nex ← Nex −Nb
13: end while
14: Exchange boxes with neighboring PEs
15: Uniformly sample a total of Nex particles in received boxes

16: Renormalize weights as w
(m,i)
t−1 = w

(m,i)
t−1 /Wt−1

17: Perform (P) and (U) steps of SIR to get s
(m)
t

18: Compute the estimate x̂
(m)
t and the sum of unnormalized weightsW

(m)
t

19: Resample s
(m)
t using the locally normalized weights w̃

(m,i)
t =

w
(m,i)
t /W

(m)
t

20: Set the i-th weight to w
(m,i)
t = W

(m)
t

21: Send x̂
(m)
t and W

(m)
t to the master PE

22: The master PE computes x̂t and Wt and broadcasts the result to all
PEs
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Figure 5.8: Runtime comparison of RNA (red) and BEM (black) both
with 10% particle exchange ratio is shown. BEM outperforms RNA by up
to 2.3x on a 192-PE simulation setup with 5.76 million particles while the
tracking accuracy remains intact.
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CHAPTER

SIX

Conclusions

Distributed DLB in massively parallel scientific numerical sim-
ulations We highlighted the importance of distributed DLB algorithms
for parallel numerical simulations on petascale machines and beyond. We
briefly described how load imbalance situations in a numerical simulation
based on a domain decomposition may occur during the course of a sim-
ulation. We argued that for efficient solutions to such load imbalance
problems one can employ distributed DLB protocols by keeping the origi-
nal inter-process communication topology intact.

Following that, we showed a theoretical analysis of several distributed DLB
protocols for indivisible, real-valued loads. We argued why these fixed
loads represent the load imbalance situation in parallel simulations better.
We formulated and compared three distributed DLB protocols, namely
Greedy, SortedGreedy, and Gradient based on their merits to balance
loads in a Balanced Circuit Model (BCM). After this assessment, we tested
SortedGreedy and Gradient in realistic simulation test cases. We consid-
ered three prototypical IPC topologies as found in domain-decomposition
numerical simulations of two kinds (linear flow and circular shock-wave
propagation). We analyzed simulations running on more than one million
PEs. Based on our findings, we developed a HybridBalancer, which is a
good DLB candidate that can reduce initial load imbalance up to three-fold
in a few DLB rounds requiring only local communication among neighbor-
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ing PEs in a setup with more than a million PEs.

We did not consider the specifics of the computer system and implemen-
tation of the parallel application. Our results are therefore general. We
also did not distinguish between communication latency and bandwidth,
but simply assigned a unit communication cost to each load transfer.

The described DLB methods are designed to be employed on large scale
systems with more than several thousand PEs. On smaller systems many
communication libraries (e.g., Open MPI) provide fast execution of global
communications. Moreover, by using a centralized DLB scheme, one can
compute a new load assignment very quickly. This eliminates the need for
distributed DLB protocols for simulations on small and mid-sized systems.

Piecewise constant sequential importance resampling (pcSIR)
We proposed a fast approximate PF algorithm called pcSIR. pcSIR is
based on spatially binning particles in cells and representing each cell by a
single dummy particle at the center of mass of the cell’s particle distribu-
tion, carrying the average state vector of all particles in that cell. With this
zeroth-order approximation, pcSIR significantly reduces the computational
cost of SIR and enables tackling larger problems, as well as mid-sized prob-
lems in real time. We discussed two variants, pcSIR-1x1 and pcSIR-2x2,
which showed speedups up to several orders of magnitude while keeping
the tracking accuracy on par with traditional SIR in synthetic test cases
mimicking sub-cellular object tracking in bio-imaging. Both pcSIR vari-
ants help reduce the execution time of an application a lot if the likelihood
update step is very costly.

In addition to the empirical tests, we performed both theoretical and ex-
perimental error analysis of pcSIR. We showed that the convergence rate
of pcSIR is the same as SIR, since the Monte-Carlo sampling error dom-
inates the general error term in the application and the error from the
function approximation does not play a big role. Moreover, we presented
theoretical upper bounds on the likelihood approximation error depending
on the cell size.

The pcSIR methods were described with a specific focus on image-based
applications from biology. If the input data is not an image, one cannot use
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pcSIR directly, since it uses (sub-)pixels as cells for likelihood approxima-
tion. In that case, an equivalent strategy (e.g., creating cells in the state
space) needs to be considered. Further, if an application is not likelihood-
intensive, meaning that likelihood computations does not constitute the
bottleneck of the application, using pcSIR may not result in large speedups
as presented in this thesis. However, typical target tracking applications
benefit from the approximation approach presented in this thesis.

We believe that pcSIR can be used in many PF applications that require
large numbers of particles, costly likelihood evaluations, or real-time per-
formance. When tracking accuracy is not critical, pcSIR-1x1 can offer
orders of magnitude speedup in image-processing applications. If a loss in
tracking accuracy is undesired, pcSIR-2x2 still offers significant speedups
while in some cases even improving accuracy over SIR. Depending on the
application in hand, one may need to try both pcSIR variants and then
pick one that is best suited to the needs.

Improved distributed resampling algorithms (DRAs) We revis-
ited existing DRAs and investigated how DLB can be used to improve
these algorithms. For RPA, we designed and compared several DLB al-
gorithms to tackle particle imbalance problem among PEs. Our largest
gradient scheduler outperformed greedy DLB approaches. On the RNA
side, we introduced an adaptive particle exchange ratio and randomized
inter-PE communication patterns to tune the communicated particle data
volume depending on the tracking efficiency. These improvements gave
ARNA up to 20x better tracking efficiency and 9% faster execution over
the traditional RNA while also improving the tracking accuracy.

Despite the fact that ARNA randomizes inter-PE communication in ev-
ery iteration, it still uses a ring topology regardless of how the PEs are
physically connected to each other. ARNA can be further advanced by
knowing the hardware specifications of the computer cluster and design-
ing a hardware-aware communication topology from the start. In line
with the implementation engineering principle discussed in the introduc-
tion, having hardware-optimized ARNA would perform much better on a
cluster.

Fast parallel particle filtering via a Box Exchange Method (BEM)
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Chapter 6. Conclusions

We introduced a novel parallel particle filtering algorithm called BEM,
which offers a faster way to balance the particle weights among PEs. The
communication complexity of the original RNA is reduced from O(N) to
O(B), where N is the number of particles and B is the number of boxes.
By selecting each pixel as a box, we keep the tracking accuracy intact
and increased the parallel performance more than 2x in a biological target
tracking problem.

Similar to ARNA, the BEM method also uses a ring topology and may
benefit as well from a better physical network-matching communication
topology, which would reduce the time to needed to communicate data with
neighboring PEs. Also, more advanced methods for defining boxes can be
researched and further computational improvements may be achieved.

The Parallel Particle Filtering (PPF) library We presented the PPF

library that enables parallel particle filtering applications on commodity
and on high-end parallel computing systems. The library uses multi-level
hybrid parallelism combining Open MPI with native Java threads. The
PPF library reduces parallel runtimes of all DRAs described in this the-
sis by integrating dynamic load balancing with thread balancing, and it
also implements PF-specific algorithmic improvements such as domain de-
composition, image patches, and piecewise constant sequential importance
resampling (pcSIR). The PPF library hides the intricacies of parallel pro-
gramming by providing a simple API to design parallel PF applications.

The library currently supports 2D image sequences fully and requires an
additional effort to also process 3D image sequences (i.e., 4D movies).
Additionally, the library cannot optimally track multiple targets all at the
same time since particle filters are designed to optimally track only a single
target [234].
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CHAPTER

SEVEN

Outlook

We present ongoing work and outline future directions of the research
topics discussed in this thesis.

DLB for domain-decomposition-based parallel numerical simula-
tions Future work is concerned with the development of a parametriz-
able DLB performance virtualization platform based on performance mod-
els, such as LogGP [235], whose parameters can be tuned to reflect the
specifics of the hardware, communication costs, number of DLB rounds,
etc. Such a platform would enable computational scientists to model the
expected performance of their parallel numerical simulations, and to op-
timize DLB schedules in advance. Moreover, the theoretical analysis of
the presented DLB algorithms can be extended to heterogeneous systems
with different clock rates and other hardware specifications. In addition to
theoretical work, the performance of HybridBalancer should be verified
in real-world applications. This work would see HybridBalancer imple-
mented in the PPM library and tested

Parallel Particle Filtering (PPF) library Java bindings of Open MPI
are relatively new and there is an ongoing project to adopt the new MPI-
3 standard in Java bindings as well. MPI-3 offers new features such as
sparse collectives and non-blocking collectives, which can be investigated
how they can be incorporated into PPF. Additionally, GPUs are common
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Chapter 7. Outlook

in laptop computers as well as in HPC clusters. We would like to extend
the PPF library to take advantage of GPUs and/or other accelerators, and
thus enable even faster parallel execution. Further, the library is currently
a stand-alone software package. Next, we would like to integrate it into
Fiji [217] and ImageJ [216]. This would encourage Fiji/ImageJ users to
benefit from high-performance computing in their research. Since the li-
brary is written in Java and already interfaced to both libraries, converting
the PPF library into a Fiji/ImageJ plug-in would be rather straightforward.

A further task would be extending and generalizing the PPF library such
that it can be used as a unified framework for a large class of Monte Carlo
simulations. PFs constitute only a single branch of Monte Carlo methods.
However, PFs use particles as the main data structure, which is common to
all Monte Carlo methods. By redefining some classes and reimplementing
some modules, the PPF library could be extended to a unifying framework
also for other types of Monte Carlo simulations, e.g., particle swarm opti-
mization algorithms [236]. This would broaden the scope of scientists, who
may use the PPF library to execute their codes on big computing systems
and obtain results quicker.

The task of object tracking is further complicated if there are multiple
objects interacting with each other and/or forming clutters. Current PF
algorithms cannot solve tracking problem optimally for all targets since
PF is not designed to handle such cases [234]. Revisiting the general PF
algorithm and designing several algorithmic and theoretical improvements
that would allow the PPF library resolve multi-target tracking problems
at occlusions and clutters. This work would entail solving ambiguities
outside the PF framework and then incorporating the findings back to the
PF framework. With these enchancements the PPF library would enable
high-performance multi-target tracking.
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APPENDIX

A

Bounds for balancing different types of

loads in arbitrary networks

A.0.1 Notation

Let G = (V,E) be an undirected and connected IPC graph consisting of
n vertices V . Following established notation [86, 93], we denote an edge
[u : v], where {u, v} ∈ E with u < v. Each matching in round t of a BCM
is represented by an n × n matrix M(t) � 0. Moreover, if [u : v] ∈ M(t),

then M
(t)
u,u = M

(t)
v,v = M

(t)
u,v = M

(t)
v,u = 1/2. If u is not matched in round t,

then M
(t)
u,u = 1 and M

(t)
u,v = 0 for all v 6= u. In BCM, two matched nodes

u and v try to balance their loads as evenly as possible in round t. L is
the total number of loads or subdomain costs.

A.0.2 Balancing Circuit Model

In BCM, a pre-determined sequence of d matchings M(1), . . . , M(d) is se-
quentially applied such that all edges in the graph are visited at least
once. The resulting round matrix M [86] is defined as M :=

∏d
s=1 M(s).

The n eigenvalues of M are denoted λ1(M) ≥ ... ≥ λn(M). Moreover,
λ(M) := max{|λ2(M)|, |λn(M)|}. We denote the product of a sequence
of matching matrices between rounds t1 and t2 by M[t1,t2] :=

∏t2
s=t1

M(s),
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Appendix A. Bounds for balancing different types of loads
in arbitrary networks

where t2 ≥ t1. We also require the Markov chain with transition matrix
M to be ergodic, i.e., λ(M) < 1. Matching matrix sequences that satisfy
this condition can be obtained by an edge coloring algorithm [237, 238],
which also provides the optimal communication schedule across PEs. The
results we show here for BCM can be extended to the random matching
model, where the matching matrices are realizations of a stochastic process.

A.0.3 Bounds for Balancing Different Types of Loads in
Arbitrary Networks

We use the theoretical analysis introduced by Sauerwald and Sun [93] to
show that similar asymptotic bounds can be derived for the invidisible,
real-valued load model. In the continuous case, where loads are arbitrar-
ily divisible, the number of rounds needed by a BCM to balance the load
in an arbitrary graph with a discrepancy of ε is less than or equal to

4d
1−λ(M) log

(
Kn
ε

)
, where K is the discrepancy in the initial load assign-

ment and d is the number of matchings M(1), . . . , M(d) ([86], Theorem 1;
[93], Theorem 2.2).

If the loads are indivisible, unit-sized tokens, the discrepancy cannot be
made arbitrarily small. Using BCM on an arbitrary graph, a discrepancy

of
√

12 log n+ 1 is reached after O
(
d · log (Kn)

1−λ(M)

)
rounds with probability at

least 1 − 2n−2 ([93], Theorem 2.14). In the present case, each load is de-
fined by a constant real number. Loads cannot be modified or subdivided,
but only moved from one PE to another.

A.0.3.1 Continuous Case

Let ξ denote the load vector and ξ(0) be initial load vector at time t = 0.
In this setting, loads can be divided arbitrarily. Thus, a perfect balance
between matching nodes u and v can be established in each round t using

the corresponding matching matrix M
(t)
u,v. As shown in [93], the evolution

of the load vector is a linear system and can be written as ξ(t) = ξ(t−1)M(t).
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Further, the evolution of the loads on node u can be formulated as follows:

ξ(t)
u = ξ(t−1)

u +
∑

v:{u,v}∈E

(
ξ(t−1)
v M(t)

v,u − ξ(t−1)
u M(t)

u,v

)
(A.1)

= ξ(t−1)
u +

∑

v:{u,v}∈M(t)

(
1

2
ξ(t−1)
v − 1

2
ξ(t−1)
u

)
. (A.2)

The evolution of the load vector is a Markov chain process and its conver-
gence speed is closely related to its spectral discrepancy (1− λ(M)).

Theorem 1 ([86], Theorem 1; [93], Theorem 2.2) Let G be any graph.
Consider the balancing circuit model with d matchings M(1),...,M(d). Then,
for any ε > 0, τcont(K, ε) ≤ d · 4

1−λ(M) · log
(
Kn
ε

)
where τcont(K, ε) is the

minimum number of rounds in the continuous case to reach a discrepancy ε
for any initial load vector ξ(0) with discrepancy at most K ([93], Definition
2.1).

A.0.3.2 Discrete Case

In case of loads being indivisible, unit-size tokens the evolution of the load

vector includes an error term e
(t)
u,v for each matching M(t) in round t. The

error stems from the rounding of the real number down to the nearest
integer and can be written as follows:

e(t)
u,v :=

1

2
Odd(x(t−1)

u + x(t−1)
v ) · Φ(t)

u,v, (A.3)

where Odd(x) := x mod 2 and Φ
(t)
u,v = 1, if the excess token is given to u.

If it is assigned to v, then Φ
(t)
u,v = −1. Thus, the true load vector x(t) in

round t can be formulated as follows:

x(t) = x(t−1)M(t) + e(t). (A.4)

After solving this recursion (cf. [86]) and using the same notation as in
[93], we get:

x(t) = x(0)M(t) +

t∑

s=1

e(s)M[s+1,t] = ξ(t) +

t∑

s=1

e(s)M[s+1,t], (A.5)
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where ξ(t) is the load vector in continuous case and initially ξ(0) = x(0).
The tight bounds on the discrepancy between the discrete and continuous
cases can be found in [93].

Theorem 2 ([93], Theorem 2.14) Let G be any graph. Then, the following
statements hold:

• Let M =
〈
M(1),M(2), ..

〉
be any sequence of matchings. If x(0) =

ξ(0), then for any round t and any δ ≥ 1, it holds that

Pr

[
max
w∈V

∣∣∣x(t)
w − ξ(t)

w

∣∣∣ ≥
√

4δ · log n

]
≤ 2n−δ+1. (A.6)

• Using the balancing circuit model, a discrepancy of
√

12 log n + 1 is

reached after τcont(K, 1) = O
(
d · log (Kn

1−λ(M)

)
with probability at least

1− 2n−2.

A.0.3.3 Fixed-load Case

In fixed-load model, each load is defined by a constant real number, i.e.,
different loads can have different sizes and there is no unit token or quan-
tum, but loads are indivisible and retain their size throughout the entire
DLB process. We show the relation between the present case and the
continuous case by using a slightly modified version of the theorems from
Ref. [93]. In order for the analysis to be valid, all of the following have to
be satisfied1:

1. The maximum load is non-increasing and the minimum load is non-
decreasing during the entire DLB process.

2. The load difference between two nodes is minimized as much as pos-
sible in each matching.

3. The expected error E [eu,v] on every matching edge [u : v] ∈M(t) is
zero.

4. Lemma 2.12 of Ref. [93] holds:

1Personal communication with Dr. Thomas Sauerwald
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Lemma 1 ([93], Lemma 2.12) Fix two rounds t1 < t2 and the
load vector x(t1) at the end of round t1. For any family of non-

negative numbers g
(s)
u,v ([u : v] ∈ M(s), t1 + 1 ≤ s ≤ t2), define the

random variable Z by Z :=
∑t2
s=t1+1

∑
[u:v]∈M(s) g

(s)
u,v · e(s)

u,v. Then,

E[Z] = 0 and for any δ > 0 it holds that

Pr [|Z − E[Z]| ≥ δ] ≤ 2 · exp


 δ2

2
∑t2
s=t1+1

∑
[u:v]∈M(s)

(
g

(s)
u,v

)2


 .

(A.7)

This lemma requires condition (3): E
[
e

(s)
u,v

]
= 0,∀{u, v} ∈ M(s),

which ensures E [Z] = 0.

Under these conditions, the upper bound on the discrepancy that can be
reached by a BCM with fixed, real-valued loads is the same as the upper
bound already derived for indivisible, unit-sized tokens (Theorem 2.14 in
Ref. [93]):

Theorem 3 ([93], Theorem 2.14) Let G be any graph. Then, the following
statements hold:

• Let M =
〈
M(1),M(2), . . .

〉
be any sequence of matchings in a BCM.

If x(0) = ξ(0), then for any round t and any δ ≥ 1

Pr

[
max
w∈V

∣∣∣x(t)
w − ξ(t)

w

∣∣∣ ≥
√

4δ · log n

]
≤ 2n−δ+1. (A.8)

• Using BCM, a discrepancy of
√

12 log n+1 is reached after τcont(K, 1) ∈
O
(
d · log (Kn

1−λ(M)

)
with probability at least 1− 2n−2.

We prove the expected performance of a SortedGreedy-based DLB algo-
rithm working on indivisible real-valued loads under the above conditions.
We need the following lemmata:

Lemma 2 The error ec in every matching [u : v] is always zero in the
continuous case.
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Proof. Let ξu and ξv be the local load vectors on u and v, respectively.
The evolution of the load vector is a linear system and can be written as
ξ(t) = ξ(t−1)M(t). Further, the evolution of the loads on node u can be
formulated as:

ξ(t)
u = ξ(t−1)

u +
∑

v:{u,v}∈E

(
ξ(t−1)
v M(t)

v,u − ξ(t−1)
u M(t)

u,v

)
(A.9)

= ξ(t−1)
u +

∑

v:{u,v}∈M(t)

(
1

2
ξ(t−1)
v − 1

2
ξ(t−1)
u

)
. (A.10)

The evolution of the load vector is a Markov chain and its convergence
speed is closely related to its spectral gap (1 − λ(M)). In the continu-
ous case after a matching [u : v] both ξu and ξv will be the same. Since
ec = |ξu − ξv| = 0, we will always have a perfectly balanced state after
each matching. �

Lemma 3 Let ef denote the load imbalance in the fixed load case after bal-
ancing local loads ξu and ξv on nodes u and v, respectively. The difference
d between ef and ec after balancing a matched edge equals to ef .

Proof. From Lemma 2 we have ec = 0 for every matching, hence d =
|ef − ec| = ef . �

Lemma 4 Let the load vector l := {l1, l2, . . . , ln} with l1 ≥ l2 ≥, . . . , ≥
ln. The maximum difference |dmax| := max(|ef−ec|) obtained by SortedGreedy

is |dmax| ≤ l1
2 .

Proof. Consider the worst case where all loads are equal to each other,
l1 = l2 = . . . = ll = L. In this case, the minimum discrepancy achieved
by SortedGreedy is maximized. This is due to the fact that all loads
carry maximum possible weight compared to each other. The algorithm
places the first load on processor A, which is chosen arbitrarily. The total
weights of processors A and B hence are L and 0, respectively, for any B.
The ideal load distribution would correspond to L/2 on each processor.
Thus, the discrepancy is L/2 and it will remain at most L/2 until all loads
are placed. �
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Now, we prove that the present case and SortedGreedy fulfill all require-
ments stated above:

Proof of condition 1 : By definition, the load weights do not change during
the DLB process, since they are indivisible. Only their host PEs change. �

Proof of condition 2 : By construction, SortedGreedy balances the loads
as evenly as possible. �

Proof of condition 3 : To show that E[e
(t)
u,v] = 0, we can look at the two-bin

case between u and v. Due to the symmetry e
(t)
u,v = −e(t)

v,u, the expected
error on an edge is always zero. �

Proof of condition 4 : We need to prove that Z is concentrated around
its mean by applying an appropriate concentration inequality theorem.
We closely follow the proof given in Ref. [93], but we have to adjust the
concentration bounds for the error. In Ref. [93], unit loads are considered,

hence e
(t)
u,v ∈ {−1/2, 0, 1/2}, and errors on different edges are independent

of each other. In the present case of indivisible real-valued loads, e
(t)
u,v is

also independent of errors on other edges and, due to Lemma 4, {− lmax

2 ≤
e

(s)
u,v ≤ lmax

2 }, where lmax is the largest load in the entire network. In
words, the maximum error on any edge is bounded by the largest load in
the network. This enables us to use Lemma 2.13 from Ref. [93]:

Lemma 5 ([93], Lemma 2.13) Fix an arbitrary load vector x(0). Con-
sider two rounds t1 ≤ t2 and assume that the time-interval [0, t1] is (K, 1/(2n))-
smoothing. Then, for any node w ∈ V and δ > 1/n, it holds that

Pr
[∣∣∣x(t1)

w − x̄
∣∣∣ ≥ δ

]
≤ 2 · exp

(
−
(
δ − 1

2n

)2

/4

)
. (A.11)

Using Lemmata 1, 4, and 5, and following the same derivation as in
Ref. [93] (Lemmata 2.12 and 2.13 therein), it follows that Theorem 3 holds
for a BCM with indivisible, real-valued loads. �
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APPENDIX

B

Analogy to Balls-into-bins Problem

1We analyze the expected decrease in discrepancy per iteration of a two-bin
balls-into-bins model and derive a lower bound on the final discrepancy.
Let W1 > W2 > . . . > Wm be the weights of the m balls, and S the set of
all balls assigned to bin k. The total weight of bin k after assigning i balls
then is

U
(k)
i :=

∑

j∈S
Wj . (B.1)

We rewrite Eq. B.1 as:

U
(k)
i := i · W̄ , (B.2)

where W̄ is the mean ball weight. Further, the discrepancy after placing i
out of m balls is:

Gi = max
k

U
(k)
i −min

k
U

(k)
i . (B.3)

We put the tag “heaviest” on the heaviest bin Uheaviest and a “switch” hap-
pens if after assigning the next ball, another bin takes the tag “heaviest”.
If no switch occurs, the heaviest bin remains the same, but the discrepancy
is reduced by the weight of the next ball Wi+1. In the “switch” case Gi
can change at most by Wi+1.

We start our analysis after putting the first ball at random into either bin

1This analysis is developed with the help of Dr. Erdem Yörük.
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U (1) or U (2). Without loss of generality, we assume that U (1) is heavier
than U (2) after assigning the ith ball. The discrepancy is Gi = Uheaviest

i −
U

(2)
i . After assigning the next ball, the discrepancy becomes:

• “no switch”: Gi+1 = Uheaviest
i+1 − U (2)

i+1.

• “switch”: Gi+1 = Uheaviest
i+1 − U (1)

i+1.

We are interested in the decrease in discrepancy ∆Gi+1 = Gi − Gi+1 in
both cases:

1) “No-switch” case: We put the next ball Wi+1 in U (2). Thus, the total
weight of U (1) does not change but the discrepancy is reduced by Wi+1:

∆Gi+1 = Wi+1. (B.4)

2) “Switch” case: Let us assume that U
(1)
i has J balls in it, whereas U

(2)
i

contains K balls such that J +K = i. We put the next ball Wi+1 in U (2),
which newly becomes the heavier bin. Now U (2) contains K + 1 balls.

The total weight of U (1) did not change, U
(1)
i = U

(1)
i+1 and the discrepancy

difference is:

∆Gi+1 = U
(1)
i − U (2)

i −
∣∣∣U (1)
i+1 − U

(2)
i+1

∣∣∣ (B.5)

= U
(1)
i − U (2)

i + U
(1)
i+1 − U

(2)
i+1

= 2 · U (1)
i − U (2)

i − U (2)
i+1

= 2 · U (1)
i − 2 · U (2)

i −Wi+1

≤Wi+1. (B.6)

In terms of the average ball weight, this is:

∆Gi+1 = 2 · U (1)
i − U (2)

i − U (2)
i+1

' 2J · W̄ −K · W̄ − (K + 1) · W̄
' (2J − 2K + 1) · W̄ . (B.7)

If the ball weights are sampled from a uniform distribution, and m is large
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enough (s.t. J ≈ K), we have:

∆Gi+1 ' W̄ ≤Wi+1. (B.8)

For other distributions, the relationship between J and K depends on the
standard deviation of D. �

B.0.4 n-bin Case

The extension of two-bin problem to n-bin problem is straightforward. We
add an additional tag “lightest.” In two-bin case, the bin with the “light-
est” tag is trivial and the tag is not used. Yet, here we take advantage of
having this second tag. One important fact to consider is the existence of
other intermediate bins whose total weights lie between the heaviest and
lightest bin. The “switch” and “no-switch” of the “heaviest” tag can be
written as follows:

1) “No-switch” case: We put the next ball Wi+1 into the lightest bin
Ulightest
i . Since we have n bins, an intermediate bin might become the

lightest bin after i+1 balls or U
lightest
i is increased by Wi+1. Nevertheless,

regardless of the value of Wi+1 it holds that Ulightest
i+1 > Ulightest

i . On the
other hand, Uheaviest

i = Uheaviest
i+1 since a “switch” does not occur. Thus,

the discrepancy difference is written as follows:

∆Gi+1 = Uheaviest
i − Ulightest

i − (Uheaviest
i+1 − Ulightest

i+1 )

= Ulightest
i+1 − Ulightest

i

≤Wi+1, (B.9)

since the maximum ∆G is achieved only if the previous lightest bin gets
Wi+1 and is still the lightest. For large enough i, we can reformulate
equation B.9 by introducing a statistical upper bound on the discrepancy
difference ∆Gi+1
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∆Gi+1 = Ulightest
i+1 − Ulightest

i

' (K + 1) · W̄ −K · W̄
' W̄ , (B.10)

where K < i is the number of balls in Ulightest
i . We do a similar combi-

nation as in the two-bin case and obtain using equations B.9 and B.10:

∆Gi+1 ' W̄ ≤Wi+1. (B.11)

2) “Switch” case: Switching the “heavier” tag to another bin states that

Uheaviest
i+1 > Uheaviest

i ,

and

Uheaviest
i+1 = Ulightest

i +Wi+1. (B.12)

Moreover, a previously intermediate bin becomes the lightest bin:

U
lightest
i+1 ≥ Ulightest

i .

Yet, the relation is now

Ulightest
i+1 6= Ulightest

i +Wi+1.

Hence, the discrepancy difference is:

∆Gi+1 = Uheaviest
i − Ulightest

i − (Uheaviest
i+1 − Ulightest

i+1 )

= Uheaviest
i − Uheaviest

i+1 + Ulightest
i+1 − Ulightest

i . (B.13)

We cannot further reduce the equation B.13 since each term therein de-
pends on the specific weight sampling scored from D. However, we can
tightly bound the maximum ∆Gi+1 by considering all intermediate bins
having the same total weight as Ulightest

i after ith ball. This way, we

122



imply:

Ulightest
i+1 = Ulightest

i , (B.14)

Wi+1 ≥ Uheaviest
i − Ulightest

i . (B.15)

Thus, substituting equations B.12, B.14 and B.15 in equation B.13, ∆G is
upper bounded as follows:

∆Gi+1 = Uheaviest
i − Uheaviest

i+1 + Ulightest
i+1 − Ulightest

i

= Uheaviest
i − Ulightest

i+1

≤Wi+1. (B.16)

A statistical investigation of the upper bound on ∆Gi+1 makes a randomly
selected Wi+1 → W̄ . Therefore,

∆Gi+1 ' W̄ ≤Wi+1. � (B.17)

Lemma 6 Consider two samples of weighted balls: sample A of size m and
sample B of size m+1. All balls in A and B sample their weights from the
same uniform distribution U ∈ [0, 1]. Then, Pr[min(A) ≥ min(B)] = m

m+1 .
Thus, min(A) ≥ min(B) with high probability.

Proof. Let Ai denote a random sample in A. Then, Pr
[
Ai ≤ 1

m

]
= 1

m and

thus, Pr
[
min(A) ≤ 1

m

]
= 1. Similarly, Pr

[
min(B) ≤ 1

m+1

]
= 1. More-

over, we can say min(A) ≤ 1
m and min(B) ≤ 1

m+1 in D. Using these, let

us device another uniform distribution D′ ∈ [0, 1
m ] from D, which includes

both min(A) and min(b). Then, Pr [min(A) ≥ min(B)] = min(B)
min(A) = m

m+1 .

Taking the limit as m goes to infinity yields min(A) ≥ min(B). �

Using Lemma 6 and Eq. B.17 we can bound ∆Gm by

∆Gm ≤Wm ≤
1

m
. (B.18)
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Appendix B. Analogy to Balls-into-bins Problem

Since 1 ≥W1 ≥ m−1
m , the final discrepancy becomes

Gm ≥W1 −
m∑

i=2

Wi

≥ 2W1 −
m∑

i=1

Wi

≥ 2W1 −
m∑

i=1

1

i
. (B.19)

B.0.5 Lower Bound on Gm

Deriving an upper bound for the final discrepancy Gm is hard. However,
we can derive a non-trivial lower bound for both cases; namely, when each
thrown ball triggered a “switch” and where none of the balls caused a
“switch”:

∆G2 = G1 −G2 ≤W2

∆G3 = G2 −G3 ≤W3

...

∆Gm = Gm−1 −Gm ≤Wn





Add all ∆Gi.

This gives

G1 −Gm ≤
m∑

i=2

Wi,

where G1 = |W1| and thus,

Gm ≥W1 −
m∑

i=2

Wi ≥ 0. (B.20)

For statistically large m, we rewrite Eq. B.20 as

Gm ≥ 2W1 − W̄m ≥ 0. � (B.21)
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APPENDIX

C

State-space Representation

The term “state-space” was mentioned for the first time in the area of
control engineering [60]. A state-space representation is a mathematical
model that describes a dynamic system by a set of input, output, and state
variables, which are typically represented by vectors. This representation
allows us to show the interdependencies between input, output, and state
variables as well as their dependencies on time. An exemplary state-space
representation of a continuous, time-invariant linear system can be given
as follows:

ẋ(t) = Ax(t) +Bv(t) ,

y(t) = Cx(t) +Dv(t) ,

where x, y, and v are the state, output and input vectors, respectively.
Their corresponding matrices A, B, C, and D are the state, input, mea-
surement, and feed-through matrices, respectively. Moreover, ẋ denotes
the time derivative of x. Here, all matrices are time-invariant, meaning
their values do not change with time.

State-space models can easily be generalized to also represent nonlinear,
time-varying systems. In its generic form, the state-space representation
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Appendix C. State-space Representation

can be formulated as follows:

ẋ(t) = f(x(t),v(t), t) ,

y(t) = g(x(t),v(t), t) ,

where f and g are arbitrary (e.g., non-/linear) functions . The first equa-
tion is called the state equation and the second one is called the observation
equation.

With the natural inclusion of time in the representation, the state-space
model provides a general framework for the analysis of deterministic and
stochastic dynamical systems. Such systems can be investigated success-
fully by Bayesian filters, which employ a probabilistic state-space model:

x(0) ∼ p(x(0)) ,

x(t) ∼ p(x(t)|x(t− 1)) ,

y(t) ∼ p(y(t)|x(t)) .
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APPENDIX

D

Approximation Error of pcSIR in 2D

Approximating integrable functions by piecewise constant functions is well
understood in mathematics on the basis of Riemann integral theory [181,
182]. We formulate the approximation error EpcSIR(lx, ly) of pcSIR with
rectangular cells and then simplify it to EpcSIR(l) for square cells. All re-
sults can be extended to higher-dimensional settings.

Let the likelihood p(yt|xt) be a twice continuously differentiable function
f(x, y) within a domain D ∈ R[x0,xn]×[y0,ym], which is divided into B =
n ×m non-overlapping rectangular cells. Further, lki and lkj denote the
width (i.e., in x-direction) and the height (i.e., in y-direction) of cell Ik
in D, where D =

⋃B
k=1 Ik. The indices i and j are given by i = 1, . . . , n

and j = 1, . . . ,m, and the maximum side lengths in both dimensions are
defined as lx = maxki(lki) and ly = maxkj (lkj ) where lki = xk − xk−1 and
lkj = yk − yk−1. Then, the total approximation error EpcSIR(lx, ly) of the
likelihood in D obtained by pcSIR (Algorithm 8) is bounded by

EpcSIR(lx, ly) ≤ 1

24

[
max
[D]
|fxx| l3x ly + max

[D]
|fyy| lxl3y

]
,

where max[x0,xn] |fxx| and max[y0,ym] |fyy| are the maxima of the absolute

values of ∂2f
∂x2 and ∂2f

∂y2 in D, respectively.
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Appendix D. Approximation Error of pcSIR in 2D

This result can be derived by mid-point Riemann-sum approximation of
an integral. While the dummy particle does not have to be located at the
center of a cell, for the sake of simplicity of the derivation, we assume that
pcSIR uses the mid-point for piecewise constant likelihood approximation.
Assume that f(x, y) is twice continuously differentiable in region D ∈
R[x0,xn]×[y0,ym] and the following partial derivatives are defined: ∂2f

∂x2 =

fxx, ∂2f
∂y2 = fyy and ∂2f

∂x∂y = fxy. The approximation error EIk(lx, ly) can
be calculated by integrating the multivariate Taylor approximation

EIk(lx, ly) = f(x, y)− f(a, b)

= fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2!
[fxx(a, b)(x− a)2 + fyy(a, b)(y − b)2

+ 2fxy(a, b)(x− a)(y − b)]

(D.1)

over the two-dimensional interval Ik = [xk−1, xk] × [yk−1, yk], where a =
xk−1+xk

2 , b = yk−1+yk
2 , and D =

⋃B
k=1 Ik, hence:

EIk(B) =fx(a, b)

∫∫

Ik

(x− a) dxdy

+fy(a, b)

∫∫

Ik

(y − b) dx dy

+
1

2!

[
fxx(a, b)

∫∫

Ik

(x− a)2 dxdy

+fyy(a, b)

∫∫

Ik

(y − b)2 dxdy

+ 2fxy(a, b)

∫∫

Ik

(x− a)(y − b) dxdy

]
.

(D.2)

Substituting a and b in Eq. (D.2), we find:

EIk(lx, ly) =
1

2!

[
fxx(a, b)

∫∫

Ik

(
x− xk−1 + xk

2

)2

dxdy

+ fyy(a, b)

∫∫

Ik

(
y − yk−1 + yk

2

)2

dxdy

]
.

(D.3)
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We substitute lki = xk − xk−1, lkj = yk − yk−1 and evaluate the integrals.
Then, Eq. (D.3) becomes

EIk(lx, ly) =
1

24

[
fxx(a, b) l3ki lkj + fyy(a, b) l3kj lki

]
. (D.4)

Next, we sum the absolute values of the partial errors in all Ik regions in
order to provide an upper bound on the total approximation error in the
closed region [D] as:

E(lx, ly) ≤ 1

24

[
max
[D]
|fxx| max

ki
(lki)

3 max
kj

(lkj )

+ max
[D]
|fyy| max

kj
(lkj )3 max

ki
(lki)

]
.

(D.5)

By substituting lx and ly into Eq. (D.5), we find the total error in the
closed region [D]:

E(lx, ly) ≤ 1

24

[
max
[D]
|fxx| l3x ly + max

[D]
|fyy| lxl3y

]
. (D.6)

For equi-sized square cells, a tighter bound for the approximation error can
be derived by repeating the steps that lead to Eq. (D.4). The derivation
diverges here by taking the minimum possible value for the side lengths lki
and lkj of the small interval Ik in region D ∈ R[x0,xn]×[y0,ym], where D =⋃B
k=1 Ik. When Ik is a square with l = lki = xk − xk−1 = lkj = yk − yk−1,

we obtain the bound on EIk(l) as:

Elk(l) ≤ l
4

24
[fxx + fyy] . (D.7)

By summing the absolute values of the errors in all Ik regions, we get the
total error in closed region [D]:

E(l) ≤ l
4

24

[
max
[D]
|fxx|+ max

[D]
|fyy|

]
. (D.8)
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APPENDIX

E

Tracking Efficiency Recovery in ARNA

In information sharing performance tests, we allow only a single PE to
track the object effectively. In other words, only that PE has particles
with heavy importance weights and these “heavy” particles need to be
shared with other PEs as quickly as possible. In a perfect randomization
setting for information sharing, each heavy PE communicates with a PE,
which does not yet have heavy particles. In this ideal setting, the number
of PEs that have heavy particles grows exponentially with each round
of ARNA. Assuming a network size of M PEs, the minimum number of
required iterations k to reach 100% tracking efficiency can be calculated
as follows:

2k = M (E.1)

k = logM
log 2 (E.2)

From the above equation, we conclude that ARNA’s parallel tracking effi-
ciency scales with O(logM) and thus, it outperforms RNA, whose parallel
tracking efficiency complexity is O(M) since the locations of the PEs are
not randomized in each iteration. In RNA, heavy particles travel the whole
ring topology one neighboring PE at a time to reach perfect tracing effi-
ciency, which can be achieved only slowly.
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[3] Ö. Demirel, I. Smal, W. Niessen, E. Meijering, and I. F. Sbalzarini,
“Adaptive distributed resampling algorithm with non-proportional
allocation,” in IEEE Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP), May 4-9 2014.
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[94] Ö. Demirel and I. F. Sbalzarini, “Balancing indivisible real-valued
loads in arbitrary networks,” arXiv preprint arXiv:1308.0148, 2013.

[95] D. Brélaz, “New methods to color the vertices of a graph,” Commun.
ACM, vol. 22, no. 4, pp. 251–256, 1979.

[96] M. Raab and A. Steger, ““balls into bins”—a simple and tight analy-
sis,” in Randomization and Approximation Techniques in Computer
Science, pp. 159–170, Springer, 1998.

[97] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, “Balanced
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[232] Ö. Demirel, I. Smal, W. Niessen, E. Meijering, and I. F.
Sbalzarini, “PPF - a parallel particle filtering library,” arXiv preprint
arXiv:1310.5045, 2013.
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