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Wnt and Hedgehog family proteins are secreted morphogens

that act on surrounding cells to pattern many different tissues in

both vertebrates and invertebrates. The discovery that these

proteins are covalently linked to lipids has raised the puzzling

problem of how they come to be released from cells and move

through tissue. A synergistic combination of biochemical, cell

biological and genetic approaches over the past several years

is beginning to illuminate both the forms in which lipid-linked

morphogens are released from cells and the variety of

molecular and cell biological mechanisms that control their

dispersal.
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Introduction
Wnt and Hedgehog family proteins are secreted ligands

that control both patterning and proliferation during

normal development. The activation of their signal trans-

duction pathways is a major contributing factor to onco-

genesis [1,2]. Wnt and Hedgehog family proteins are

covalently linked to lipid [3–5], which confers a high

affinity for cell membranes. Despite this, the proteins

are released and can act on cells distant from the source of

production. In this review, I discuss recent progress in

understanding the trafficking of these proteins and the

resulting implications for tumorigenesis.

Secretion of lipid-linked morphogens
Release of Hedgehog as large multimers

Recent studies from several laboratories have suggested

different mechanisms by which lipid-linked morphogens

might be released from cells: by the formation of high

molecular weight aggregates; in association with lipopro-

tein particles; or by incorporation into exovesicular car-

riers. Sonic Hedgehog that is released into the

supernatant by cultured cell lines appears to be present

in high molecular weight aggregates that depend on lipid
www.sciencedirect.com
modification for their formation [6,7��,8��]. It has been

proposed that these represent Hedgehog multimers asso-

ciating through interactions with their lipid moieties

(Figure 1a). However, the nature of these aggregates

and whether they might also contain other proteins is

not completely clear.

Lipoprotein association of Wingless and Hedgehog

Biochemical studies in Drosophila have shown that both

Wingless (a Wnt-1 homologue) and Hedgehog associate

with lipoproteins in vivo. Although more than 90% of

these proteins are membrane-associated, virtually all the

non-membrane-associated fraction of these proteins is

bound to the Drosophila lipoprotein Lipophorin. Further-

more, a variety of glycophosphoinositol-linked proteins

can also be found on these particles [9��]. Lipoproteins

consist of a phospholipid monolayer surrounding a core of

esterified cholesterol and triglyceride, and they are scaf-

folded by one of a family of apolipoproteins [10,11]. Lipid

anchors mediating attachment to the exoplasmic face of

the membrane would also fit well into the outer phos-

pholipid monolayer of lipoproteins (Figure 1b). Knock-

down of Lipophorin shows that these particles are

required for long-range, but not short-range, signaling

activity of Wingless and Hedgehog [9��]. Although Wing-

less and Hedgehog are still found in receiving tissue of

these mutants, their distribution is abnormal: Hedgehog

accumulates in cells near the source of production, and

the amount of Wingless found outside cells is reduced.

This may suggest that these morphogens mediate long-

and short-range signaling by different mechanisms, only

one of which depends on lipoprotein association.

The presence of Wingless and Hedgehog on lipoprotein

particles has intriguing implications for the function of

low-density lipoprotein (LDL) family receptor proteins

(LRPs). A variety of LRPs have been shown to function in

both Wnt and Hedgehog signaling. Vertebrate LRP5 and

LRP6 and their Drosophila homologue, Arrow, are

required for Wnt and Wingless signaling [12]. In verte-

brates, LRP1 interacts with Frizzled receptors, and nega-

tively affects Wnt signaling [13]. Another LRP, Megalin,

has been shown to internalize Sonic Hedgehog [14], and

some of the phenotypes of megalin knockout mice are

consistent with loss of Hedgehog signaling [15]. It will be

interesting to investigate whether these receptors interact

specifically with the lipoprotein-associated forms of Wnts

and Hedgehogs.

Release of Hedgehog on vesicular particles

Sonic Hedgehog has been detected in extracellular vesi-

cular structures called nodal vesicular particles (NVPs),
Current Opinion in Genetics & Development 2006, 16:17–22
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Glossary

7-pass transmembrane proteins: Proteins comprising seven

transmembrane-domains. They often use heterodimeric G0proteins

as secondary messengers.

Epistasis analysis: This technique determines the relative order —

whether they operate upstream or downstream — of two gene

products in a signaling pathway, by analyzing the phenotype of

combinations of gain-of-function and loss-of-function mutations.
which are located on the surface of the ventral node

during mouse embryonic development [16]. These par-

ticles also contain retinoic acid. Live imaging studies in

which NVPs are labeled by diI (3,30-dioctadecylindocar-

bocyanine) suggest that they are transported leftward

across the node by cilia-dependent fluid flow, and that

they are fragmented during the process. In the electron

microscope, NVPs appear as multiple lipophilic granules

surrounded by an outer membrane (Figure 1c) and some

images suggest that they are generated from swellings in

apical microvilli. Could the lipophilic granules inside

NVPs correspond to lipoprotein particles? Their ultra-

structural appearance is not dissimilar. Lipoprotein par-

ticles might provide an ideal environment for retinoic acid

— in fact, the insect lipoprotein Lipophorin appears to

transport hydrophobic molecules such as retinoids, juve-

nile hormone and phermone hydrocarbons [17–20]. Alter-

natively, these Hedgehog-containing particles may be

completely different cell biological entities.

Transfer of morphogens through direct contact

Cells in tissue generate a variety of protrusions, enabling

direct membrane contacts between widely separated

cells. If lipid-linked morphogens were localized to such

protrusions, they might be transferred to more distant

cells by trans-endocytosis. In support of this idea,

Patched-expressing tissue culture cells can internalize a

transmembrane-domain-linked Hedgehog from adjacent
Figure 1

Proposed forms for secreted Hedgehog. (a) Hedgehog forms multimers

by aggregation through lipid anchors. (b) Hedgehog associates with the

phospholipid monolayer of lipoprotein particles through its lipid anchors.

(c) Hedgehog buds from microvilli on membranous vesicles containing

lipophilic granules.
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cells [21]. Cells of the Drosophila wing imaginal disc

construct long apical protrusions, termed cytonemes, that

extend towards the Decapentaplegic (Dpp)-secreting

cells at the anterio-posterior (A–P) boundary, and towards

the Wingless-secreting cells at the dorso-ventral (D–V)

boundary [22��]. Cytonemes contain vesicles bearing the

Dpp receptor Thickveins (Tkv), suggesting that Dpp

internalization may occur there [22��]. It is unknown

whether direct contact between cytonemes and Wing-

less-producing cells might enable Wingless uptake. Ima-

ginal disc epithelia also produce numerous basal filopodia

[22��,23]; their role in morphogen transfer should also be

investigated.

These experiments have suggested that Hedgehog may

be released from the cell membrane in three different

ways: as high molecular weight aggregates; on lipoprotein

particles; and as lipophilic granules within membranous

parcels (Figure 1). It also seems plausible, although it has

not been demonstrated, that direct, protrusion-mediated

physical contact could release lipid-linked morphogens to

other cells. Although some of the apparently dissimilar

characteristics of released Hedgehog in these studies may

resemble the alternative descriptions of the elephant

provided by the proverbial blind observers — one, feeling

the trunk, thought it was a snake; another, feeling the leg,

thought it was a tree — the ability to present morphogens

in different physical contexts could certainly expand the

different types of signals transmitted to receiving tissue.

Morphogens that are present on particles or on the plasma

membrane might be accompanied by other proteins that

alter their function. For example, other constituents of

lipoprotein particles, such as glycophosphoinositol-linked

proteins or even apolipophorin, might help to co-activate

or cross-link a different set of receptors than do more

homogeneous morphogen aggregates. Yet different con-

sequences might result from presenting morphogens in

the context of either plasma membrane or exovesicle

proteins. The release of Hedgehog in a variety of forms

with different inherent ranges might generate positional

information as effectively as a morphogen gradient, and

would also have the potential to increase tissue-specificity

of signaling readouts.

Trafficking of Wnt and Hedgehog proteins
in receiving tissue
Once secreted, Drosophila Wingless and Hedgehog move

in an extracellular manner, and their range is limited by

endocytosis [24��,25,26��,27�,28�]. A variety of other

mechanisms promote, rather than inhibit, the spread of

these morphogens.

Hedgehog transport by cilia-dependent currents

Currents generated by nodal cilia appear to be important

for the dispersal of Hedgehog on NVPs. The structure

and function of cilia that generate leftward flow in the

ventral node depend on the activity of the intraflagellar
www.sciencedirect.com



Release and trafficking of lipid-linked morphogens Eaton 19
transport proteins. These proteins were first identified in

single-celled algae, in which they are needed for the

growth and maintenance of flagella [29]. When ciliary

function is disturbed by mutation of genes encoding the

intraflagellar transport proteins, Hedgehog and RA-con-

taining NVPs are still released but do not flow to the left

side of the node [16]. Interestingly, work from Kathryn

Anderson’s laboratory has shown that mutating any of the

intraflagellar transport genes disturbs Hedgehog signaling

in the neural tube [30�,31]. The convergence of these two

studies might suggest that Hedgehog could be trans-

ported by a similar mechanism in this tissue. Indeed,

the Huttner laboratory has demonstrated that the lumen

of the neural tube contains exovesicular membranous

particles that are enriched with Prominin and appear to

be generated from microvilli [32]. Nevertheless, epistasis

analyses (see Glossary) of mutations in the Hedgehog

pathway and of intraflagellar transport mutants are not

consistent with this model [31]. These studies suggest

that intraflagellar transport mutants affect signaling either

downstream of or in parallel to Smoothened, a 7-pass

transmembrane protein (see Glossary) that mediates

Hedgehog signaling. Furthermore, intraflagellar transport

proteins appear to be required to generate both the

activator and the repressor forms of Gli protein

[31,33�,34��], and Smoothened must localize to the pri-

mary cilium to signal effectively [35��]. In Drosophila
epithelial cells, which do not construct primary cilia,

the complexes that control processing of the Gli homolog

Cubitus Interruptus nevertheless localize to microtubules

[36], supporting the idea that downstream signaling

events occur on a microtubule-based scaffold. It is not

clear whether cilia might have an additional function in

distributing Hedgehog-containing particles in the verte-

brate neural tube.

Heparan sulfate proteoglycans regulate morphogen

dispersal

Heparan sulfate proteoglycans (HSPGs) are required for

a wide variety of signaling events in vertebrates and

invertebrates. Often, they act as ligand co-receptors,

but recent studies in Drosophila have suggested that they

also influence morphogen trafficking: they stabilize

Wingless and Hedgehog and disperse them through

tissue. Mutations that block the synthesis of heparan

sulfate prevent the accumulation of Wingless and

Hedgehog in both producing and receiving tissue of

Drosophila wing imaginal discs [37,38�,39��]. In produ-

cing cells, this may reflect decreased stability of the

protein. However, the situation in receiving tissue is

more complex. Morphogens not only fail to accumulate

in receiving tissue but build up to abnormally high levels

in adjacent wild type producing cells [39��]. This sug-

gests strongly that receiving cells missing heparan sulfate

cannot acquire morphogen from their neighbors and that

it is actively required for the transfer of morphogen from

cell to cell.
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Which specific HSPGs might be responsible for these

effects? The glycophosphoinositol-linked HSPGs (glypi-

cans) Dally and Dlp may contribute to Hedgehog dis-

persal in the wing disc, although the effects of even

double mutants on the spread of Hedgehog protein are

much milder than those produced by blocking heparan

sulfate synthesis [22��]. It has been suggested that the

Syndecan homologue, Trol, promotes Hedgehog disper-

sal in the brain [40], and it might be an interesting

candidate for examination in the imaginal discs.

Recent studies have suggested that Dlp is important for

long-range dispersal of Wingless in imaginal discs

[26��,41��–44��]. In Dlp mutant wings, the Wingless

gradient is steeper. Consistent with this, in Dlp mutants,

long-range signaling is reduced, and short-range signaling

is increased [43��,44��]. By contrast, Dally appears to be

important for short-range Wingless signaling. This may

in part reflect the different expression patterns of these

two genes: Dally-like expression is reduced near Wing-

less-producing cells, whereas that of Dally is elevated.

Nevertheless, their overexpression phenotypes suggest

that the two do not function identically [41��]. Although

the glypicans appear to be important for Wingless traf-

ficking, the consequences of removing these proteins are

not identical to those of blocking heparan sulfate synth-

esis. In particular, Wingless is depleted rather than

elevated in wild type cells adjacent to Dally mutant

clones, and Dally-like clones cause very modest accu-

mulation of Wingless in adjacent wild type tissue. This

may suggest that other HSPGs also influence Wingless

trafficking; alternatively, blocking heparan sulfate synth-

esis could alter rather than abrogate the function of

HSPGs.

How might heparan sulfate assist in the spread of lipid-

linked morphogens? One proposal is that heparan sulfate

restricts the diffusion of morphogens to the epithelial

layer, effectively increasing their concentration [41��].
Another possibility is suggested by the observation that

Dlp, which normally causes Wg to accumulate on cells

that express it, can be released from its glycophosphoi-

nositol anchor by the enzyme Notum; if morphogens

were released with Dlp they might spread over longer

distances [42��]. Other evidence suggests that HSPGs

might act to prevent morphogen endocytosis, increasing

the distance over which they spread before being

degraded [26��,44��]. In support of this, Dlp is not

required for the stabilization or spread of Wingless

through the disc epithelium if endocytosis is prevented

[26��]. Finally, the different forms in which morphogens

can be released raise the possibility that HSPGs could

affect dispersal and stability by more complex mechan-

isms — perhaps by altering the trafficking of the particle

on which morphogens travel, or by promoting protrusion

outgrowth. The synergistic combination of biochemistry,

cell biology and genetics has produced rapid progress in
Current Opinion in Genetics & Development 2006, 16:17–22
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the past several years, and we are poised on the verge of

understanding these important problems.

Implications for oncogenesis
Although Hedgehogs and Wnts control patterning and

proliferation during embryonic development, de-regula-

tion of these signaling pathways can also promote uncon-

trolled proliferation and metastasis [45–51]. For some

cancers, the transformed phenotype is caused not by

mutation of signal transduction pathway components

but by over-production of the morphogen itself. Tumors

of the pancreas, stomach and esophagus constitutively

synthesize Sonic Hedgehog, which is required for con-

tinued proliferation [52��,53��]. The synthesis of Wnt

family proteins is upregulated in human colon cancer

and melanoma [54,55], and anti-Wnt-2 antibody inhibits

the growth of melanoma cells [56��]. Recent progress in

understanding how Wnt and Hedgehog family proteins

are released suggests new intervention strategies for such

tumors, some of which are amongst the most recalcitrant

to current therapies. The fact that release of Hedgehog on

NVPs appears to require fibroblast growth factor signaling

suggests that inhibitors of this pathway might be tested on

Hedgehog-secreting tumors. Furthermore, the observa-

tion that Wingless and Hedgehog can be released on

lipoprotein particles raises the possibility that lipoprotein-

lowering drugs, such as statins or inhibitors of microsomal

triglyceride transfer protein, may block the progression of

tumors that secrete these morphogens. Interestingly,

statins appear to inhibit proliferation and survival of a

broad variety of tumors [57,58].

The wide-ranging effects of statins on different types of

tumor cells are not completely understood and may have

many causes. Statins inhibit the production of mevalonate

by hydroxymethylglutaryl co-enzyme A reductase. Meva-

lonate is required for synthesis of sterols and isoprenoids,

as well as for synthesis of dolichols and ubiquinones.

Small GTPases of the Ras and Rho families are often

activated in transformed cells, and their membrane loca-

lization and activity depends on isoprenylation; in some

cases, the tumor inhibitory effect of statins appears to

result from blocking isoprenylation of these GTPases

[59–62].

Other evidence suggests that the effect of statins of

cholesterol synthesis has the potential to regulate prolif-

eration. Although vertebrate cells can obtain sterols either

by LDL uptake or by endogenous synthesis, insects are

sterol auxotrophs. Removal of sterol and other lipids from

the diet of Drosophila during the rapid proliferation that

occurs in larval stages results in growth arrest and min-

iature adults [9��]. In vertebrate cells deprived of LDL,

distal cholesterol biosynthesis inhibitors that enable the

production of isoprenoids, dolichol and ubiquinone cause

cell cycle arrest at the G2–M transition [63��]. The arrest

can be rescued by specific addition of cholesterol, but not
Current Opinion in Genetics & Development 2006, 16:17–22
other sterols [64,65]. These studies suggest there may be

regulatory pathways linking sterol availability to prolif-

eration. In this context, it is intriguing that Hedgehog and

Wingless bind to and are internalized with the lipoprotein

particles that deliver sterol to cells. It would be interesting

to explore how the presence of these morphogens on

Lipoprotein particles affects particle internalization, traf-

ficking and unloading. Clearly, progress in understanding

how these morphogens link tissue growth to patterning

during normal development will continue to have broad

implications for the origin and treatment of tumors.
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