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Information about the physical association of proteins is
extensively used for studying cellular processes and dis-
ease mechanisms. However, complete experimental
mapping of the human interactome will remain prohibi-
tively difficult in the near future.

Here we present a map of predicted human protein
interactions that distinguishes functional association
from physical binding. Our network classifies more than 5
million protein pairs predicting 94,009 new interactions
with high confidence. We experimentally tested a subset
of these predictions using yeast two-hybrid analysis and
affinity purification followed by quantitative mass spec-
trometry. Thus we identified 462 new protein-protein in-
teractions and confirmed the predictive power of the net-
work. These independent experiments address potential
issues of circular reasoning and are a distinctive feature
of this work. Analysis of the physical interactome unravels
subnetworks mediating between different functional and
physical subunits of the cell. Finally, we demonstrate the
utility of the network for the analysis of molecular mech-
anisms of complex diseases by applying it to genome-
wide association studies of neurodegenerative diseases.
This analysis provides new evidence implying TOMM40 as
a factor involved in Alzheimer’s disease. The network
provides a high-quality resource for the analysis of
genomic data sets and genetic association studies in par-
ticular. Our interactome is available via the hPRINT web
server at: www.print-db.org. Molecular & Cellular Pro-
teomics 10: 10.1074/mcp.M111.010629, 1–13, 2011.

Accurate high-throughput detection of protein-protein in-
teractions is one of the most challenging tasks in the post-
genomic era. Availability of such data has become essential

for studying biological pathways, molecular evolution, for as-
sessing protein functions based on functional genetics
screens, and for studying molecular mechanisms of diseases
(1–3). The size of the human physical interactome is predicted
to be between 130,000–600,000 interactions (2, 4, 5). High
throughput techniques, such as yeast two-hybrid (Y2H)1 (6, 7)
or affinity purification followed by mass spectrometry (8, 9) are
being used for the large-scale measurement of protein bind-
ing. However, those interactions, together with the protein-
protein interactions measured through small-scale experi-
ments (10) only cover 52,000 interactions, i.e. less than 25%
of the predicted human interactome (11). Computational pre-
diction of protein interactions can fill this gap until the human
interactome has been fully explored using experimental tech-
niques (12). In addition, computational prediction can help
guiding experimental screening thereby significantly shorten-
ing the time needed until reaching (nearly) complete coverage
of an interactome (13).

It is important to distinguish databases assembling data
and reporting experimentally tested interactions from others
that actually predict previously not reported interactions. We
call the second type of interactions ‘de novo’ predictions, as
these interactions have no experimental evidence through
assays directly testing for binding (although there might be
indirect experimental evidence, e.g. co-expression or com-
mon knock-out phenotypes). The class of databases making
such de novo prediction can again be subdivided into two
subtypes: those predicting functional interactions (14–16) and
others predicting physical association (14, 17–20). A func-
tional interaction typically just indicates membership in a
common pathway, whereas physical association refers to di-
rect or indirect binding of proteins in a stable or transient
complex. Recent work has underlined the importance of dis-
tinguishing the prediction of functional from physical associ-
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ation (19–21). Knowing physical associations is important for
elucidating the structure of pathways and for understanding
molecular mechanisms underlying high-level phenotypes (1,
4, 11). However, only a few existing databases actually make
computational predictions of physical associations of human
proteins using heterogeneous types of evidence (18–20).

Here we present an approach that integrates heterogene-
ous biological data in order to predict and distinguish physical
from functional interactions. Applying this framework to hu-
man data we were able to predict 94,009 new physical asso-
ciations with high confidence (probability � 0.7, see Results
for more details). We termed this map “human predicted
protein interactome” (hPRINT) and validated predictions ex-
perimentally based on Y2H and AP-MS analyses. Using these
complementary technologies we identified 462 new human
protein interactions and we validated the high predictive
power of our scoring scheme.

Having established the accuracy of hPRINT, we used this
interaction map for studying the physical organization of cel-
lular processes with a specific focus on the molecular causes
of neurodegenerative diseases. Our assessment of interac-
tions between gene products that are associated with neuro-
degenerative diseases reveals that hPRINT can be used for
prioritizing candidate genes suggested by genome-wide as-
sociation studies. Using amyotrophic lateral sclerosis (ALS),
Alzheimer’s and Parkinson’s diseases as examples we dem-
onstrate how hPRINT can assist in the reconstruction of mo-
lecular mechanisms linking genes to pathologic phenotypes.

EXPERIMENTAL PROCEDURES

Interaction Prediction

Data Sets—For training and testing, we used data from the Human
Protein Reference Database (HPRD) (22), the Comprehensive Re-
source of Mammalian protein complexes (CORUM) (23), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (24). In order to create
a data set of physically interacting genes (PHYSET, 72,450 interac-
tions), we selected only in vivo interactions from HPRD, human inter-
actions from CORUM, and binary and complex interactions defined in
human KEGG pathways. In addition, we selected high confidence
interactions reported in a previous analysis (25) where each interac-
tion is reported in at least two publications (termed CRGhigh). A data
set of functionally related but not physically interacting genes
(FUNSET, 412,587 interactions) was extracted from KEGG pathways.
FUNSET is composed of gene pairs that are in the same pathway but
are not physically interacting. Finally we generated a data set of
noninteracting gene pairs (NONSET, 331,596 interactions). NONSET
consists of random pairs of genes from distinct KEGG pathways that
are not known to interact physically. Hence, NONSET represents
interactions that are neither functionally related nor physically binding.

Feature Set—We used 18 features to predict interactions. Five
types of evidence are taken from the STRING database (version 8.2):
genomic neighborhood, gene fusion, phylogenetic profile, coexpres-
sion, and text mining (16). Five additional features are generated using
the GoGene tool, which annotates genes based on Gene Ontology
(GO) terms and disease annotations using text mining information
(including co-occurrence in publications) (26). The features extracted
with GoGene are: cellular component, molecular function, biological
process, disease, co-occurrence. Next, we used presence of known

binding motifs in protein sequences as a predictor for physical bind-
ing. This feature (named “domain pairs”) is based on the presence of
binding domains predicted by profile Hidden Markov Models (27).
Finally, we considered the topology of the STRING interaction net-
work to predict physical interactions. We recalculated the STRING
combined score after eliminating the experimental and database fea-
tures in order to exclude any experimental evidence. Using the re-
sulting STRING interaction scores we extracted seven topological
features for each edge of this network: clustering coefficient, mini-
mum spanning tree, extended minimum spanning tree, neighborhood
ratio, ratio between shortest path and edge weight, local between-
ness, and global betweenness. Detailed descriptions for all features
can be found in supplementary material.

Training—We performed a three-class classification, namely phys-
ical, functional, and nonrelated. All the PHYSET is used as training
data for physical interactions. To avoid a bias toward larger classes,
we randomly sampled from FUNSET and NONSET to obtain training
sets of approximately even size. A Random Forests with 1000 trees
was trained (28). Random Forests generates three probabilities sum-
ming up to 1 for each edge: probability of being physical (RFphys),
probability of being functional (RFfun), and probability of being non-
related (NON). This analysis was done using the Random Forests
package from R (http://www.r-project.org/).

The above Random Forests scores are de novo predictions of
interactions because they are not based on any data originating from
experimental testing of interactions. In order to integrate prior knowl-
edge of measured interactions we combined the Random Forests
scores with experimental lines of evidence using Bayesian integration
(implemented in R) as described previously (29). This approach also
accounts for correlation between individual lines of evidence.

Evaluation—The different prediction strategies were computation-
ally validated using cross-validation and using independent sets of
known interactions. Fivefold cross-validation was performed by ran-
domly sampling training and test sets from the pools of reference
interactions. However, cross-validation might overestimate the pre-
dictive power of machine learning methods, because it does not take
into account systematic differences among independently measured
data. Hence, our second strategy hides one data source during the
training phase and uses it for testing. Here, we used CRGhigh for
independent testing, because it is not commonly used as a training
set and so allowing it to be used as an independent test set for
comparing all different networks. If a test interaction was reported in
another source, it was removed from the training data and only used
for testing.

Analysis of Cross Talk between Pathways and Compartments—In
order to analyze the cross-talk between pathways we selected all
genes annotated for at least one cellular process or environmental
information processing pathway in KEGG. We generated a high con-
fidence physical interaction network of these selected genes with
interactions having a Random Forests physical interaction score
above 0.7. Because many genes are annotated for more than one
pathway it is nontrivial to decide if a physical interaction is within or
between two pathways. Two different strategies were followed for
classifying interactions as “between pathway.” Assume Pg1 and Pg2

are the sets of pathways for which the genes g1 and g2 are anno-
tated. In the first strategy, we call the interaction g1 � g2 ‘between’ if

Pg1 � Pg2 � Ø and we added
1

�Pg1 � Pg2�
as cross-talk for each pair of

pathways in the Cartesian product Pg1 � Pg2. If Pg1 � Pg2 � A � Ø

then we treat this as a within interaction and we added
1

�A� contribution

as within interaction for each pathway in A. This first approach rests
on the assumption that two genes annotated for a common pathway
are interacting inside that pathway. However, if genes are also anno-
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tated for different pathways the interaction may (in addition) also link
those distinct pathways.

Hence, in the second strategy, even if two genes share common
pathways, we assumed there is cross-talk between pathways in Pg1

and Pg2. Again we add a contribution
1

�Pg1 � Pg2�
as cross-talk for each

pair in Pg1 � Pg2. Note, that in contrast to the first strategy, it is
possible to have pairs (x, x) in this Cartesian product since Pg1 � Pg2

is not necessarily empty. Such a pair was assumed as within inter-
action in pathway x. At the end, for each strategy, we generated a
N � N matrix showing the cross-talk between N pathways.

We carried out the same analysis for cellular compartments. The
only difference is that, instead of KEGG pathways, we used genes
that have a cellular localization annotation in the generic version of
GO slim (http://www.geneontology.org). Cytoscape was used for
drawing the networks (30).

Selecting Genes for Y2H Experiments—Genes potentially related to
ALS, Parkinson, Huntington, or Alzheimer diseases were selected
using three data sources, Online Mendelian Inheritance in Man
(OMIM) (http://www.ncbi.nlm.nih.gov/omim/, downloaded 28/10/10),
KEGG (24), and Genetic Association Database (GAD) (31). From
OMIM we selected genes that are known to be related with these
diseases; for achieving maximal stringency we only selected genes
from OMIM class 3: their mutations were positioned by mapping the
wild-type gene and a mutation in that gene created a phenotype that
is in association with the disorder. GAD contains results from Genome
Wide Association Studies (GWAS) and linkage studies. We selected
genes from GAD that show positive association with the diseases.
From KEGG we selected all genes participating in the respective
disease pathways. The union of all of these genes resulted in 433
nonredundant genes (Entrez Gene IDs).

Functional Enrichment—We calculated functional enrichment
(based on GO) of genes interacting with known disease associated
genes (OMIM) or candidate genes (GWAS) using Fisher’s exact test.
The purpose was to show that “linker genes” lying between GWAS
and OMIM genes are enriched for specific molecular functions that
are different from other genes neighboring OMIM genes. Hence, we
did not compute the functional enrichment of linker genes versus the
whole genome, but versus other neighbors of OMIM genes. Thus,
enrichment of linker genes was computed using as universe not the
whole genome but the whole set of OMIM or GWAS gene interactors
respectively (supplemental Tables S6, S7). However, using the whole
genome as a universe yields similar findings especially in case of the
OMIM interactors (supplemental Table S8).

Central Nervous System (CNS) Specificity—CNS specificity for
each of the interactions is calculated via applying the Kolmogorow-
Smirnov (KS) test. mRNA expression levels in various human tissues
were collected from BIOGPS. For each of the 12,056 genes present in
the BIOGPS we compared expression in CNS tissues and cell types
versus all other tissues using the KS test. Interactions were scored by
assigning the lowest p value of the two interacting genes to the edge.
This is because of the fact that an interaction is present in a specific
tissue only if both partners are expressed, hence it is restricted on the
less promiscuous gene.

Experimental Testing of Protein Associations

Y2H—Y2H experiments were performed as described previously
(7). In Brief, selected ORFs were transferred into bait (pBTM117c) and
prey vectors (pACT4-DM). The L40ccU2 MATa yeast strain was trans-
formed with the bait plasmids and preys were used to transform
MATalpha strain L40cc� (32). Bait and prey yeast strains were pair
wise ordered in mircotiter plate format according to hPRINT predic-
tions and mated on YPD for 36 h. Diploid yeast were grown on S.D.
media supplemented with histidine and uracil for 3 days. Interacting

proteins were identified by growth on selective plates (-Leu-Trp-Ura-
His) after 6 days. Random noninteracting pairs were tested by mating
nonpair wise matching bait and prey plates. Every protein pair was
assayed in at least two independent interaction mating experiments.

Cell Line Production—Mouse or human BAC harboring the genes
of interest were obtained from the BACPAC Resources Center (http://
bacpac.chori.org). The N-terminal NFLAP tagging cassette as well as
the C-terminal LAP and DIGtag tagging cassettes were PCR amplified
using primers that carry 50 nucleotides of homology to the N- or C
terminus, respectively, of each of the target genes. Recombineering
and stable transfection of the modified BAC was performed as de-
scribed (33). Briefly, both, a plasmid carrying two recombinases and
the purified tagging cassette, were introduced into the E. coli strain
containing the BAC vector using electroporation. Precise incorpora-
tion of the tagging cassette was confirmed by PCR and sequencing.
Next, the GFP-tagged BACs were isolated from bacteria using the
Nucleobond PC100 kit (Macherey-Nagel, Germany).

Subsequently, HeLa Kyoto cells were transfected using Effectene
(Qiagen, Dorking, Surrey, UK) and cultivated in selection media con-
taining 400 �g/ml geneticin (G418, Invitrogen, Carlsbad, CA). Finally,
HeLa pools stably expressing the tagged transgenes were analyzed
by Western blot and immunofluorescence using an anti-GFP antibody
(Roche) to verify correct protein size and localization of the tagged
transgene. Next, cell pools were subject to analysis using mass
spectrometry (8).

Affinity Purification, Mass-Spectrometry Protein Identification (AP-
MS)—AP-MS was performed according to the recently published
QUBIC (Quantitative BAC InteraCtomics) method (8). In short, pull-
downs of GFP-tagged, transgenic cell line and of an untransfected
control cell line were done in triplicates using monoclonal anti-GFP
antibody coupled to �MACS beads (Miltenyi Biotec). Purified proteins
were digested in-column and purified peptides were directly sub-
jected to liquid chromatography tandem MS (LC-MS/MS) analysis
using a Proxeon EASY-nLC system coupled online to a LTQ-Orbitrap.
Raw data was analyzed using the MaxQuant Software (version
1.1.0.28) with label-free protein quantification (34). Significant inter-
actors were determined by a volcano plot-based strategy, combining
p values of the standard equal group variance t test with ratios
comprised from protein intensities in the pulldowns of the transgenic
and the control cell line. MaxQuant settings and significance cut-offs
were chosen as described in (8).

RESULTS

Predicting the Human Physical Interactome—For predicting
the human protein-protein interactions we developed a novel
combined Random Forests/Bayesian learning strategy. First,
we integrated information from automated text mining with
comparative and functional genomics data, protein domain
profiles, and network features resulting in a total of 18 features
(Fig. 1, supplemental Table S1). This data was generated
in-house (26, 27) and obtained from the STRING database
(35). Because we aimed at the de novo prediction of binding
experimental data reporting direct evidence for physical pro-
tein association was excluded at this step. Experimental bind-
ing data was however integrated at a later step for further
improving the coverage and accuracy of the interaction map
(see Fig. 1A and Experimental Procedures). We generated
independent sets of positive reference interactions based on
four high-confidence sources (see Experimental Procedures).
All subsequent steps were tested independently on these
positive reference sets in order to ensure generality of our
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findings. Random interactions between proteins that were
part of the positive reference sets were used as a negative
reference set. We employed the Random Forests supervised
learning algorithm (28) for integrating the features and pre-
dicting interactions. An important feature of our method is the
simultaneous classification of three types of protein pairs:
physical binding (RFphys), functional association (RFfun), and
nonrelated, i.e. pairs of proteins that likely do not interact.
These scores reflect the probability for membership in the
respective class. RFfun reflects the probability that an inter-
action is functional but not physical, whereas physical binding
(high RFphys) does not preclude functional association. Note
that 1 – (RFfun � RFphys) is the probability that the respective
protein pair does not interact at all. Using our pipeline we
tested more than 5 million protein pairs. hPRINT predicts
94,009 new interactions (RFphys � 0.7) that have no prior
experimental evidence in any of the databases that we in-
cluded. We created a web-interface for hPRINT at www.
print-db.org, allowing to search the database and to down-
load the data.

Evaluating hPRINT—Based on the positive and negative
reference interactions we subjected hPRINT to a range of
tests. In addition to cross-validation, we assessed predictions

based on test sets obtained from independent sources. This
approach ensures that the performance assessment is inde-
pendent of specificities of the training or test data. First, we
compared our approach to other machine learning methods
(Fig. 2A and supplemental Figs. S1A, S2A, S3A). Random
Forests clearly outperformed all other methods tested, which
is consistent with previous studies (21, 36, 37). Next, we
compared four published networks and hPRINT in their ability
of predicting physical association of human proteins (Fig.
2B–E and supplemental Figs. S1B, S2B, S3B). hPRINT per-
formed consistently better than previous approaches. In order
to show that these differences are statistically significant, we
performed fivefold cross validation, computing each time the
area under the ROC curve (AUC). This provided us with dis-
tributions of AUC scores that we compared between hPRINT
and STRING (which has the largest overlap with the test set
among all competing databases). It turned out that the AUCs
of hPRINT are significantly larger than those of STRING (t test,
p � 6.7 � 10�07) (supplemental Table S2). In order to under-
line the importance of distinguishing physical from functional
association we also tested if RFfun could predict known phys-
ical binding events (Fig. 2B): whereas RFfun is predictive for
physical association, it performs much worse than RFphys.

FIG. 1. A, Workflow and B, feature importance for predicting interactions. In a first step Random Forests physical and functional
interactions scores are estimated excluding direct experimental evidence. Features based on experimental evidence are weighted using a
Bayesian approach and respective log-likelihood scores are computed. In a second step Random Forests physical (RFphys) and log-likelihood
scores from experimental interactions are combined through Bayesian learning in order to give a final score for each interaction. B, Feature
importance for Random Forests machine learning expressed as the mean decrease of accuracy when shuffling the respective line of evidence.
Some features are predictive but have low feature importance because of low coverage (e.g. Gene Fusion).
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FIG. 2. Evaluation of hPRINT. A, Precision-Recall curves for comparing Random Forest with naïve Bayesian prediction and Support Vector
Machines (SVM). Radial basis factor was used as kernel for training the SVM. B, Precision-Recall curves for comparing Random Forests
physical and functional scores with other published networks. The aim of the Random Forests machine learning was the de novo prediction
of new interactions; hence, experimental interaction measurements were ignored. In the comparison we also removed experimental evidence
from the other data sets. This was also necessary to avoid circular reasoning. Panels (A) and (B) are both based on fivefold cross validation
using functional and noninteracting gene pairs (FUNSET and NONSET) together as the negative data set. Supplemental Fig. S1 shows
equivalent plots when using other combinations of training and test sets. (C–E) Area Under the ROC Curve (AUC) for (C) fivefold cross
validation, (D) using HPRD as an independent test set, E, using CRGhigh as an independent test set. The AUC of RFphys is significantly larger
than in all the other cases (supplemental Fig. S2; supplemental Table S3). F, G, Experimental validation using yeast two-hybrid (F) and AP-MS
(G). High scoring interactions (RFphys � 0.5) could be confirmed with much higher probability than interactions without any evidence (“Not in
hPRINT”), low scoring interactions (RFphys � � 0.5), and interactions predicted to be only functional (RFfun � 0.5). The comparison with the
reference set (“Gold Standard”) is a measure of the sensitivity of the assays. Note that in case of AP-MS we cannot define a “Not in hPRINT”
set. See Supplementary Material for additional analyses of the experimental testing.
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It has recently been proposed that predicted physical inter-
actomes can be used for streamlining the experimental map-
ping of interactions (13). To test this hypothesis with human
proteins and to further corroborate the reliability of hPRINT we
conducted experimental testing of predicted interactions us-
ing Y2H and AP-MS. For Y2H we selected 433 proteins that
are known to be related to at least one of four neurodegen-
erative diseases (ALS, Parkinson’s, Huntington, and Alzhei-
mer’s, see Experimental Procedures for details). After remov-
ing proteins for which clones were not available in our library
or which were autoactive we were left with 281 proteins,
giving rise to almost 40,000 possible pairs. Of these we tested
5434 at least twice. These interactions consist of 548 pairs
with RFphys scores above 0.5, 3010 had no evidence in
hPRINT, and the remaining ones have RFphys scores below
0.5. Also, this set contained 295 interactions from our positive
control set, which we used for assessing the sensitivity or
retest rate of the assay. Thus, our experimental test set con-
tains various controls all based on the same 281 proteins (i.e.
thereby controlling for potential protein set specific biases).
We reproducibly detected 81 interactions (54 present in
hPRINT), most of which were not reported before. Validation
rates are substantially better for high-scoring interactions
compared with the negative controls (Fig. 2F). The experimen-
tally validated interactions have significantly higher RFphys
scores compared with RFfun (KS test, p � 0.0016) and ran-
dom interactions (KS test, p � 2.45�10�12). This is also true for
cut-off values different than 0.5. supplemental Figs.
S4 and S5 show that the predictive power increases as a
function of the interaction score. Other databases also per-
formed better than random in predicting the Y2H interactions;
however, the predictive power was below that of RFphys
(STRING: p � 1.25�10�09, PIP: p � 0.615, HiMAP and Fun-
Coup had too small overlap with the experimentally validated
interactions to allow for a quantitative assessment). Hence,
using hPRINT we can significantly increase the success rate
for interaction screening as compared with random testing of
interactions.

Next, we performed AP-MS experiments using 14 proteins
with neurological relevance as baits. For these baits hPRINT
predicted in total 43 interactions with a RFphys score above
0.5. In case of the AP-MS measurements the set of tested
interactions was defined as the set of all predicted interac-
tions with the respective bait protein. Between 1 and 181
proteins were copurified per bait, resulting in a total of 462
interactions (92 present in hPRINT). Again, validation rates are
much higher for RFphys than for the negative controls (Fig.
2G), RFphys scores of validated interactions are significantly
higher than random (p � 2.2 � 10�7) and higher than RFfun
scores (p � 3.05 � 10�7, supplemental Table S3). We also
tested how well other databases could predict the experimen-
tally verified interactions. Similar to what we observed with the
Y2H test set, the comparison with other databases using the
AP-MS test set shows that hPRINT performs best (sup-

plemental Table S3, supplemental Figs. S4 and S6). Bench-
marking our predictions against another recently published
set of AP-MS measurements (38) yields similar results
(supplemental Fig. S7).

Predicted Interactome Covers Many Underexplored
Genes—Most existing measurements of protein-protein inter-
actions are biased toward well-studied genes and even high-
throughput screens may be biased because of the selection
of bait proteins (39, 40). One goal of this study was to at least
partly fill this gap by predicting interactions for less well-
studied genes. In order to assess the bias toward well-studied
genes, genes were grouped based on their citation frequency
in PubMed abstracts. Fig. 3 shows the number of interactions
as a function of “gene popularity.” Experimentally verified
interactions (reported in HPRD, KEGG, CORUM, CRGHigh,
and IntAct) are biased toward well-studied genes, whereas in
hPRINT this bias is much less pronounced. hPRINT not only
predicts new interactions among already well-studied genes
for which an abundance of information is already available.
Thus, the input data used is less dependent on gene-popu-
larity and our prediction method effectively uses this informa-
tion. The importance of text mining derived features in our
predictions (Fig. 1B) might suggest that our network should
be subject to the same bias as experimental data sets. How-
ever, our text mining based features are normalized for the
number of citations (26), which partly balances the bias
against less studied genes. Additionally, our network is utiliz-

FIG. 3. Publication Bias. The gene name citation frequency in
PubMed abstracts is shown along both axes and genes were grouped
in even-sized bins. The color in each grid cell encodes the number of
interactions connecting the respective gene products in the two cor-
responding bins. The upper triangle shows the number of experimen-
tally tested interactions per bin pair; the lower triangle shows the
number of predicted interactions in hPRINT (mean RF score per bin).
The predicted interactome covers the human genome much more
evenly than the known (experimentally tested) interactions, which are
heavily biased toward well-studied genes (bottom left corner).
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ing unbiased information such as co-expression or protein
sequence, which is available for virtually all gene pairs. In
conclusion our network predicts interactions for largely unex-
plored parts of the genome.

Networks Linking Cellular Processes and Signaling Path-
ways—Recently it has been noted that viewing signaling path-
ways as isolated linear chains of reactions may be misleading.
Many pathways are in fact interconnected, i.e. signaling path-
ways are linked to other regulatory or signaling pathways and
to basic cellular processes such as endocytosis (41, 42). It is
emerging that cells are using highly connected networks to
integrate a wide variety of noisy signals, for predicting future
conditions in the environment and ultimately for balancing
partly conflicting cues to make decisions (43, 44). Having a
substantially more comprehensive and less biased map of the
human physical interactome allows us to re-examine the de-
gree to which proteins interact within a specific pathway and
across pathways. In order to quantify the extent of interpath-
way connectivity we measured the fraction of interactions
bridging different pathways (Fig. 4A, supplemental Fig. S8).
Likewise, we quantified the fraction of interactions connecting
different cellular compartments (Fig. 4B). Interactions be-
tween proteins annotated for different cellular localizations
could be either because of binding at interfaces or because of
multiple protein localizations. In the latter case, interactions in
fact do not “bridge” compartments, but they rather reflect the
dynamics of protein (re-)localization. Fig. 4 clearly shows that
the fraction of interactions connecting cellular localizations is

much larger than the fraction of interactions bridging path-
ways. Although 50% of the interactions link proteins at differ-
ent localizations, 29% of the interactions connect proteins
annotated for different pathways. This observation reflects the
fact that most pathways span several compartments and it
shows that the cellular context of proteins is very dynamic.
Pathways on the other hand, representing functional subunits
of the proteome, are less densely connected between each
other. Still, the fact that almost one third of all interactions are
inter- rather than intrapathway suggests considerable inter-
connectedness, emphasizing once more that signal process-
ing and decision making in cells are highly interconnected
processes operating at the network level.

Using hPRINT for Exploring Genes Associated with Neuro-
degenerative Diseases—GWAS allow for the unbiased detec-
tion of disease modifying genes (45–47). Having identified
SNPs in or close to a gene from a large population of individ-
uals it is not always apparent what the molecular mechanisms
are linking the causal gene to the disease phenotype (47).
Physical protein interaction data has proven to be helpful in
similar contexts, but applications to GWAS are still limited (46,
48–52). We reasoned that a network with increased coverage
would also be of improved utility for studying GWAS candi-
date genes.

Here we address the important problem of prioritizing can-
didate genes identified through GWAS. Our hypothesis was
that for a given disease, candidate genes whose products are
closer in our network to confirmed causal disease genes are

FIG. 4. Fraction of physical interactions connecting (A) pathways and (B) cellular locations. Each pair of pathways or cellular locations
is connected by an edge reflecting the fraction of interactions from the smaller of the two groups linking proteins in those groups (“between
interactions”). The size of each node shows the number of proteins annotated for that group and the nodes’ border thickness is proportional
to the fraction of interactions connecting proteins inside each group (“within interactions”). Note that the two panels are at scale, i.e. pathways
generally have fewer annotated proteins than cellular locations. Edges with scores below 0.14 are not shown for the sake of simplicity. The full
networks have many more edges, e.g. there are physical interactions connecting the Wnt-pathway with cell adhesion.
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likely to have stronger effects on the disease phenotype, i.e.
those genes might be more relevant and easier to replicate.
For testing this hypothesis we selected the top ranking genes
from AlzGene (53), a database offering a publicly available and
regularly updated field-synopsis of published genetic associ-
ation studies performed on Alzheimer’s disease (AD). The
overall epidemiological credibility of the top genes is graded
as “A” (strong, 19 genes), “B” (moderate, 19 genes), and “C”
(weak, 44 genes) (53). Next, we obtained a set of high-confi-
dence disease causing genes from OMIM and quantified the
distance between candidate genes from AlzGene and known
genes from OMIM (distance was defined as the smallest sum
of links connecting the respective proteins in hPRINT). Ini-
tially, we performed the analysis using all data, i.e. combining
predictive and experimental evidence (using the Bayesian
scoring, Fig. 1A). In our network AlzGene candidates are
significantly closer to disease genes than random genes (Fig.
5A, supplemental Table S4). Also, genes graded A generally
had shorter distances to OMIM genes than genes graded B or
C (though this difference was not statistically significant).
Next, we tested how important the predictive evidence was
for correctly ranking the candidate genes. When using exper-
imental information alone the difference between class B and
C genes and randomly selected genes vanished and only
class “A” genes were still closer to OMIM genes than ex-
pected by chance (supplemental Fig. S9A, supplemen-
tal Table S4). Another concern might be that the degree of the
nodes that we assessed influenced the results (e.g. if a class
A gene has a very high degree this might reduce the distance
to all genes in the network). To address this problem we
randomly re-wired the network maintaining the degree of each
node. Such randomization diminished the differences be-
tween the gene classes (supplemental Fig. S9B) showing that
the differences seen before are not an artifact caused by high
node degrees. These findings suggest that network distance
in hPRINT can be used for prioritizing candidate genes from
GWA studies and that the predicted interactions add disease
relevant information to the network. For prioritizing genes
linked to three neurodegenerative diseases, we compiled 75
candidate genes for ALS, Alzheimer’s, and Parkinson’s dis-
ease (54), mapped them onto hPRINT (48 out of 75), and
ranked them based on their network distance to known dis-
ease genes, respectively (supplemental Table S5). In case of
AD the top scoring gene was CLU, which ranked second in
AlzGene after ApoE.

The concordance between AlzGene and our network-based
analysis is interesting in two respects: AlzGene is also based
on an automated ranking of candidate genes. But instead of
using network information it ranks genes based on their re-
producibility across several genetic linkage and association
studies. Hence, we achieve agreement based on complemen-
tary data. This implicates first, that our network analysis might
be particularly useful for traits with smaller numbers of inde-
pendent association studies that could be used to confirm

candidate genes. And second, the correlation between mo-
lecular interactions and reproducibility in association studies
suggests that effect size might be a function of molecular
proximity to established disease genes.

Linker Genes are Enriched for Common Functions—In order
to further corroborate the relevance of genes identified
through the network analysis and to obtain first hints toward
molecular mechanisms we analyzed the genes and interac-
tions connecting candidate GWAS genes to known disease
genes (i.e. genes from OMIM). For each candidate gene we
identified its closest known disease causing gene and se-
lected all “linker genes” lying between these two genes in
hPRINT. These linker genes are particularly interesting, be-
cause they are typically not known to affect disease pheno-
types, but they may be important for understanding the dis-
ease mechanisms. These linker genes could not easily have
been identified without the network information.

We assessed the relevance and consistency of linker genes
by measuring the functional enrichment among them based
on Gene Ontology (GO) terms. Interestingly, linker genes of all
three diseases are enriched for related cellular processes
(supplemental Tables S6 and S7). Apoptosis (programmed
cell death) and cytoskeleton rearrangements and cargo trans-
portation are two terms that appear frequently among linker
genes in all three diseases. These functions are clearly con-
nected to the etiology of neurodegenerative diseases (55),
further underlining the potential role of linker genes in the
establishment of disease phenotypes.

Interactions Connecting Disease Genes Are CNS Spe-
cific—We then calculated the central nervous system (CNS)
specificity for disease genes, linker genes, and their interac-
tions based on expression data from BIOGPS (56, 57). The
CNS specificity score of interactions is based on the simple
notion that both proteins constituting an interaction must be
expressed in a given tissue or cell type. Hence, CNS speci-
ficity of an interaction is high when a given pair of proteins is
expressed in the CNS (see Experimental Procedures).

We noticed that interactions between disease genes (either
GWAS or OMIM) are more CNS specific than interactions
involving linker genes. (Figs. 5B, 5C, and supplemen-
tal Fig. S10–S13). Hence, genes with CNS specific interac-
tions connecting to known disease genes are more likely to be
of higher relevance. Supplemental Table S5 lists the top can-
didate disease genes interacting with known disease genes in
a CNS specific manner. Based on this ranking CLU is again
predicted to be one of the top candidates for Alzheimer’s
disease. Also Translocase of outer mitochondrial membrane
40 homolog (TOMM40) ranked highly as an AD candidate
gene based on both the shortest path and CNS specificity
scores (supplemental Table S5). There has been a debate
whether mutations in TOMM40 are actually related with higher
risk in developing Alzheimer’s disease (58) or whether the
correlation of TOMM40 with Alzheimer’s is because of linkage
disequilibrium (59, 60). More recent work suggests that

Large-scale Prediction of Protein Interactions

10.1074/mcp.M111.010629–8 Molecular & Cellular Proteomics 10.11

http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1
http://www.mcponline.org/cgi/content/full/M111.010629/DC1


FIG. 5. Prioritization of Alzheimer’s disease candidate genes. A, Empirical cumulative distribution function (ECDF) for the weighted
network distance between OMIM genes that are known to cause Alzheimer’s and candidate genes with different confidence scores (classes
A–C). The distance between class A genes and OMIM genes is generally closer than in case of the other two classes or random genes. The
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TOMM40 is indeed involved in AD etiology (61) and our find-
ings support this view.

We also noticed that interactions derived by applying the
shortest path algorithm, though they are not all CNS specific,
cluster various tissues and especially CNS successfully (Fig.
5C). This observation implies that the physiological differ-
ences between tissues are not because of a large fraction of
tissue specific proteins (62). Rather, tissue specificity seems
to be achieved through activation of a specific set of interac-
tions or protein complexes (Fig. 5C and supplemental
Figs. S12, S13).

DISCUSSION

hPRINT uses a combination of Random Forests and Bayes-
ian learning approaches in order to integrate various types of
evidence for predicting physical protein interactions and inte-
grating those predictions with known information. This unique
combination of machine learning methods, the emphasis on
distinguishing physical binding from functional association,
the coverage of the human genome, and the extensive exper-
imental testing of our predictions set hPRINT apart from ex-
isting resources.

The specific design of our prediction pipeline combines the
following goals: (1) it makes robust predictions even in the
complete absence of experimental binding evidence; (2) be-
cause using Random Forests it allows for nonlinear interac-
tions between the features; (3) final interaction scores also
include published experimental evidence. Other designs
would have failed to meet at least one of these criteria. For
example, including experimental evidence in the first step
(and thus dropping the second Bayesian learning step) would
potentially have led to circular reasoning. An additional more
subtle disadvantage is that in that case Random Forests
would have given strong preference to experimental evidence
because it almost perfectly predicts binding in the training set.
Thus, other types of evidence that are needed for actual
predictions would not have been trained correctly for situa-
tions when experimental evidence is absent. Our two-step
procedure circumvents both of these problems.

When assembling the reference interactions that we used
for training and testing we have tried to avoid circular reason-
ing as much as possible especially by excluding experimental
evidence. However, complete independence from all the in-
formation we used for predicting interactions is not possible
(e.g. in the case of text mining). Essentially all published

predicted networks suffer from this limitation. We addressed
this problem in two different ways: first, we removed all text
mining-based features and second, we conducted indepen-
dent experimental testing. Supplemental Fig. S14 shows that
the quality of the predictions does not drop when removing
text mining-based features, even though, of course, the den-
sity of the network is reduced. This analysis confirms that the
quality measures shown in Fig. 2 are not biased in favor of the
predictions because of potential circular reasoning when us-
ing text mining. Independent experimental testing should ad-
dress all possible biases—even undetected ones. We evalu-
ated hPRINT and the other databases based on three new
experimental data sets: one was very recently published and
not available for the training of hPRINT (38), and two novel
screens were performed in the framework of this project and
are reported here. Using the two complementary experimental
methods, Y2H and AP-MS, we demonstrated the predictive
power of hPRINT and we confirmed the importance of distin-
guishing physical and functional gene associations. In addi-
tion, in our experiments we tested the performance of hPRINT
and other databases using large scale screening setups. We
set out to experimentally test hPRINT predictions with stan-
dardized experimental setups rather than testing our method
using literature-derived gold standards.

Initially, it might be surprising that the Y2H experiments
identified only 81 interactions among 5434 tested protein
pairs. However in such an approach it is very important to test
a large number of noninteracting pairs as well as the predicted
interactions, because we anticipated an extremely low suc-
cess rate in the negative and random control set (5). There-
fore, by design only half of the tested interactions had any
prediction score in our database and only 548 had an RFphys
score above 0.5. Because in vivo interactions often depend on
specific cellular conditions (e.g. presence of co-factors) we do
not expect that all predicted interactions can be verified using
these standardized high throughput assays. In fact, our vali-
dation rate compares well to the retest rate for the positive
reference set (Fig. 2C, 2D), indicating that the low sensitivity of
the experimental techniques accounts for the relatively low
number of interactions found rather than the false positive rate
of the hPRINT predictions. Hence, these experiments do not
serve to provide validation of individual interactions, but they
provide very good support for a quality assessment of the
hPRINT predictions and other databases in a quantitative and

Wilcoxon rank test was used for comparing network distances against distances for random genes. B, Expression specificity in the central
nervous system (CNS) quantified as the maximum specificity (minimum p value) of the two interacting genes (see Experimental Procedures for
details). Box-plots of CNS specificity are shown for interactions connecting different types of genes (see labels at bottom). CNS specificity is
generally higher (low p values) for interactions connecting two disease genes compared with interactions connecting disease genes with other
genes. C, Expression specificity of individual interactions across tissues. Each column in the heat map shows the expression of one interaction
across all tissues tested. CNS specificity is shown in the top bar. Interactions were grouped in different classes based on the disease
classification of the genes (vertical bands, see color code on top). Tissues (rows) were grouped according to the BIOGPS classification (color
code on the left). Dendrogram on the left shows clustering of tissues based on expression specificity of the interactions. Resulting groups agree
with the BIOGPS classification. Equivalent figures for ALS and Parkinson’s are shown in the supplement (supplemental Figs. S10–S13).
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unbiased way. The main finding from these experiments is
that the recovery rate of predictions from other databases
(supplemental Table S3) or using RFfun (Fig. 2F, 2G) is sig-
nificantly lower than from RFphys predications. Even though
some of the experimentally observed binding events might
not constitute true in vivo interactions and some of the inter-
actions found in the negative sets might be actually true
interactions the overall statistics would not change
significantly–especially the relative differences between the
networks would not change. This notion is supported by the
statistical significance of the performance differences, which
also reflects robustness against noise in the measurements.

The superior performance of hPRINT compared with previ-
ous attempts in predicting protein-protein binding is ex-
plained by four facts. First, the Random Forests machine
learning method is more flexible than competing methods and
it makes significantly fewer assumptions about the nature
of the predictors and their relationships to each other. Sec-
ond, the complete exclusion of experimental binding evidence
in the training phase is important for robust de novo prediction
of protein binding. Third, we are using additional features
such as the network features that have not been used in
combination before. Fourth, the distinction of functional and
physical interactions in the machine learning turned out to be
very important. Though being intuitive, this distinction has not
always been made in the past. That is not to say that predict-
ing functional relationships is useless (52). Rather, they reflect
different aspects of the system and explicitly distinguishing
those aids subsequent analyses built on top of the network.

Our analysis of disease association data shows that dense
networks like hPRINT might improve candidate gene prioriti-
zation and assist in inferring molecular mechanisms. For ex-
ample the fact that several linker genes are known to be
disease related even though that information was not used in
our analysis demonstrates the utility of network-based meth-
ods for identifying relevant genes. In that respect, this study
represents a proof of principle.

By integrating known with high-confidence predicted inter-
actions we almost double the currently known physical inter-
actome. We anticipate that this resource will be instrumental
for directing future screening of interactions and for conduct-
ing systems-level analysis of cellular processes. In particular,
hPRINT will be valuable for studying disease mechanisms and
for short listing candidate genes identified on a genetic basis
such as GWAS.
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A. A., Sönnichsen, B., Echeverri, C. J., Roth, F. P., Vidal, M., and Piano,
F. (2005) Predictive models of molecular machines involved in Caenorh-
abditis elegans early embryogenesis. Nature 436, 861–865

4. Bork, P., Jensen, L. J., von Mering, C., Ramani, A. K., Lee, I., and Marcotte,
E. M. (2004) Protein interaction networks from yeast to human. Curr.
Opin. Struct. Biol. 14, 292–299

5. Venkatesan, K., Rual, J. F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-
Kishikawa, T., Hao, T., Zenkner, M., Xin, X., Goh, K. I., Yildirim, M. A.,
Simonis, N., Heinzmann, K., Gebreab, F., Sahalie, J. M., Cevik, S.,
Simon, C., de Smet, A. S., Dann, E., Smolyar, A., Vinayagam, A., Yu, H.,
Szeto, D., Borick, H., Dricot, A., Klitgord, N., Murray, R. R., Lin, C.,
Lalowski, M., Timm, J., Rau, K., Boone, C., Braun, P., Cusick, M. E.,
Roth, F. P., Hill, D. E., Tavernier, J., Wanker, E. E., Barabási, A. L., and
Vidal, M. (2009) An empirical framework for binary interactome mapping.
Nat. Methods 6, 83–90

6. Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li,
N., Berriz, G. F., Gibbons, F. D., Dreze, M., Ayivi-Guedehoussou, N.,
Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Gold-
berg, D. S., Zhang, L. V., Wong, S. L., Franklin, G., Li, S., Albala, J. S.,
Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P.,
Sikorski, R. S., Vandenhaute, J., Zoghbi, H. Y., Smolyar, A., Bosak, S.,
Sequerra, R., Doucette-Stamm, L., Cusick, M. E., Hill, D. E., Roth, F. P.,
and Vidal, M. (2005) Towards a proteome-scale map of the human
protein–protein interaction network. Nature 437, 1173–1178

7. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H.,
Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J.,
Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksöz,
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ovsky, A., Weigl, D., Nitzsche, A., Hegemann, B., Bird, A. W., Pelletier, L.,
Kittler, R., Hua, S., Naumann, R., Augsburg, M., Sykora, M. M.,
Hofemeister, H., Zhang, Y., Nasmyth, K., White, K. P., Dietzel, S., Mech-
tler, K., Durbin, R., Stewart, A. F., Peters, J. M., Buchholz, F., and Hyman,
A. A. (2008) BAC TransgeneOmics: a high-throughput method for explo-
ration of protein function in mammals. Nat. Methods 5, 409–415

34. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nat. Biotechnol. 26, 1367–1372

35. Snel, B., Lehmann, G., Bork, P., and Huynen, M. A. (2000) STRING: a
web-server to retrieve and display the repeatedly occurring neighbour-
hood of a gene. Nucleic Acids Res. 28, 3442–3444

36. Lin, N., Wu, B., Jansen, R., Gerstein, M., and Zhao, H. (2004) Information
assessment on predicting protein-protein interactions. BMC Bioinfor-
matics 5, 154

37. Qi, Y., Dhiman, H. K., Bhola, N., Budyak, I., Kar, S., Man, D., Dutta, A.,
Tirupula, K., Carr, B. I., Grandis, J., Bar-Joseph, Z., and Klein-Seethara-
man, J. (2009) Systematic prediction of human membrane receptor
interactions. Proteomics 9, 5243–5255

38. Hutchins, J. R., Toyoda, Y., Hegemann, B., Poser, I., Heriche, J. K., Sykora,
M., Augsburg, M. M., Hudecz, O., Buschhorn, B. A., Bulkescher, J.,
Conrad, C., Comartin, D., Schleiffer, A., Sarov, M., Pozniakovsky, A.,
Slabicki, M. M., Schloissnig, S., Steinmacher, I., Leuschner, M., Ssykor,
A., Lawo, S., Pelletier, L., Stark, H., Nasmyth, K., Ellenberg, J., Durbin, R.,
Buchholz, F., Mechtler, K., Hyman, A. A., and Peters, J. M. (2010)
Systematic Analysis of Human Protein Complexes Identifies Chromo-
some Segregation Proteins. Science 328, 593–599

39. Iossifov, I., Rodriguez-Esteban, R., Mayzus, I., Millen, K., and Rzhetsky, A.
(2009) Looking at cerebellar malformations through text-mined interac-
tomes of mice and humans. PLoS Comput Biol 5, e1000559

40. Cokol, M., Iossifov, I., Weinreb, C., and Rzhetsky, A. (2005) Emergent
behavior of growing knowledge about molecular interactions. Nat. Bio-
technol. 23, 1243–1247

41. Sorkin, A., and von Zastrow, M. (2009) Endocytosis and signalling: inter-
twining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 609–622
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