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Abstract  21 

 Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a 22 

powerful method to understand how tissue shape changes emerge from the complex choreography 23 

of constituent cells.  However, methods to store and interrogate the large datasets produced by these 24 
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experiments are not widely available. Furthermore, recently developed methods for relating tissue 25 

shape changes to cell dynamics have not yet been widely applied by biologists because of their 26 

technical complexity. We therefore developed a database format that stores cellular connectivity 27 

and geometry information of deforming epithelial tissues, and computational tools to interrogate it 28 

and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational 29 

framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue 30 

dynamics in vein and inter-vein subregions of the Drosophila pupal wing.  These analyses reveal an 31 

unexpected role for convergent extension in shaping wing veins. 32 

 33 

Introduction 34 

 Understanding how cells collectively shape a tissue is a long-standing question in 35 

developmental biology. We recently addressed this question by analyzing morphogenesis of the 36 

Drosophila pupal wing at cellular resolution (Etournay et al., 2015). To understand the cellular 37 

contributions to pupal wing shape changes, we quantified the spatial and temporal distribution of 38 

both cell state properties (e.g. cell area, shape and packing geometry), as well as dynamic cellular 39 

events like rearrangements, divisions, and extrusions. We quantitatively accounted for wing shape 40 

changes on the basis of these cellular events.  By combining these analyses with mechanical and 41 

genetic perturbations, we were able to develop a multiscale physical model for wing morphogenesis 42 

and show how the interplay between epithelial stresses and cell dynamics reshapes the pupal wing. 43 

  Researchers interested in epithelial dynamics face similar challenges in processing and 44 

analyzing time-lapse movie data. Quantifying epithelial dynamics first requires image-processing 45 

steps including cell segmentation and tracking, to digitalize the time-lapse information. Recently, 46 

software tools for segmentation and tracking have become generally available (Aigouy et al., 2010; 47 

Mosaliganti et al., 2012; Sagner et al., 2012; Barbier de Reuille et al., 2015; Cilla et al., 2015; 48 
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Wiesmann et al., 2015).  However, more advanced analysis is required to quantify, interpret and 49 

visualize the information derived from segmentation and tracking. Epithelial cells share a set of 50 

core behaviors, such as division, rearrangement, shape change and extrusion, which underlie a wide 51 

variety of morphogenetic events in different tissues. Methods for analyzing these core behaviors 52 

have been developed independently in several labs (Blanchard et al., 2009; Bosveld et al., 2012; 53 

Etournay et al., 2015). However, these analysis tools have not yet been made available to other 54 

users in an easy to use and well-documented form.  55 

 Here, we propose a generic data layout and a comprehensive and well-documented 56 

computational framework called TissueMiner (see box 1) for the analysis of epithelial dynamics in 57 

2D. It enables biologists and physicists to quantify cell state properties and cell dynamics, their 58 

spatial patterns and their time evolution in a fast, easy and flexible way. It also facilitates the 59 

comparison of quantities within and between tissues. To make TissueMiner accessible to a novice, 60 

we provide tutorials that guide the user through its capabilities in detail and release a workflow that 61 

automatically performs most of the analysis and visualization tasks we reported previously for 62 

Drosophila pupal wings (Etournay et al., 2015). These tutorials operate using one small example 63 

dataset and 3 large wild-type datasets corresponding to the distal wing blade, which we also provide. 64 

The code for TissueMiner, along with tutorials and datasets, are publically available (box 1).  We 65 

illustrate the utility and power of these tools by performing a more extensive analysis of pupal wing 66 

morphogenesis focused on differences in the behavior of vein and inter-vein cells.  67 

 Wing veins are specified during larval stages, but only become morphologically distinct 68 

during prepupal and pupal morphogenesis.  During pupal morphogenesis, the dorsal and ventral 69 

surfaces of the wing epithelium become apposed to each other on their basal sides, except in the 70 

regions that will give rise to veins - here the basal surfaces of dorsal and ventral cells form a lumen. 71 

Vein and inter-vein cells also differ on their apical surfaces. Vein cells have a narrower apical 72 
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cross-section and form corrugations that protrude from the dorsal and ventral surfaces of the wing 73 

blade. The cell dynamics underlying vein morphogenesis have never been quantitatively examined.  74 

 75 

Box 1: TissueMiner can be found on the web-based repository GitHub 76 

https://github.com/mpicbg-scicomp/tissue_miner#about along with its documentation and 77 

tutorials.  78 

Several possibilities are offered to the user to run TissueMiner. For beginners we highly 79 

recommend the use of the docker, which allows to package an application with its dependencies 80 

into a standardized unit for software development (https://www.docker.com/)(Nickoloff, 2015). 81 

Using a provided docker image for TissueMiner, users can directly run it without any further setup 82 

being required. Additional instructions and examples are detailed in the supplementary information 83 

and on GitHub. We also provide one example biological dataset that can be used to run 84 

TissueMiner tutorials in R. In addition, we give access to 3 databases corresponding to wild-type 85 

pupal movies of the distal wing blade. These datasets are available at https://github.com/mpicbg-86 

scicomp/tissue_miner#datasets along with the processed images. Tutorials can be found at 87 

https://github.com/mpicbg-scicomp/tissue_miner#documentation. 88 

 89 

Results 90 

 We analyze epithelial morphogenesis within TissueMiner in three steps (Figure 1 – figure 91 

supplement 1). First, all epithelial cells of the tissue are digitalized (segmented) and automatically 92 

tracked over time using the interactive TissueAnalyzer software, which is included in the 93 

TissueMiner framework (Aigouy et al., 2010; Sagner et al., 2012). This software generates 94 

segmented images, referred to as segmentation masks that contain information about cell geometry, 95 

cell neighbor topology and cell ancestry, which are essential for the study of morphogenesis 96 
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(Aigouy et al., 2010; Sagner et al., 2012; Etournay et al., 2015). Second, we use a TissueMiner 97 

automated workflow to extract this information from the images and store it in a relational database. 98 

This workflow also automatically performs most of the visualization steps we describe in this paper 99 

(Materials and Methods, and Appendix 1). Third, we use TissueMiner’s powerful and convenient 100 

library of tools for R and Python to query the database to both visualize the data and quantitatively 101 

compare cell properties and behaviors between different movies and subregions of the tissue.  102 

 Time-lapse datasets are rich with information, and one important set of tools that 103 

TissueMiner provides is the ability to visualize this information on the tissue. Such type of 104 

visualization can reveal interesting spatial and temporal patterns of core cell behaviors and can 105 

guide subsequent analyses. This is, however, insufficient for quantitatively comparing regions 106 

within the same tissue or even comparing how the tissue behaves across replicates or various 107 

conditions. Therefore, we developed tools to enable the user to define regions of interest, 108 

synchronize movies in time, and align all tissues to a common orientation. We then provide tools to 109 

easily plot average quantities in different regions or across movies. For each type of measurement, 110 

we refer to the tutorials regarding the specific visualization tools we have built (Box 1). 111 

  112 

Preparing the Dataset  (TM R-User Manual sections 1.1 to 1.5) 113 

 Before conducting any analysis, the TissueMiner automated workflow reads three 114 

configuration files that contain (1) user-defined regions of interest (ROI’s), (2) time offsets for 115 

movie synchronization, and (3) the rotation angle used to align the tissue to a standard orientation 116 

(Figure 1 – figure supplement 1).   117 

  118 

1) Defining regions of interest (howto Video 1) 119 

 As cellular behaviors may be spatially patterned, one should have the ability to quantify and 120 
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compare cell dynamics within different ROI’s. TissueMiner provides a Fiji macro to manually 121 

define a set of ROI’s directly on one given image of the movie. This program manages several lists 122 

of ROI’s, which the user can create, modify and delete. These lists help maintain the consistency of 123 

ROI labels, which is essential for subsequent analysis (Video 1).  124 

 In addition, defining ROI’s of different shapes and following them backwards and forwards 125 

in time (Figure 1A-E’) is a useful method to visualize tissue deformations (Figure 1D-D’, Video 2). 126 

These ROI’s can be defined at any frame within the movie.  Thus, it is even possible to specify a 127 

region based on morphological features that only arise late in the morphogentic process under study, 128 

which is true of wing veins for example (see Figure 1E-E’). ROI definition allows the user to define 129 

morphologically relevant regions of interest and compare the behavior of cells in the different 130 

regions.  131 

 By default, TissueMiner generates two regions of interest – raw and whole_tissue – in order 132 

to select cell populations by name. The raw ROI corresponds to all segmented and tracked cells. 133 

However cells located at the tissue margin may move in and out of the field of view of the 134 

microscope lens. TissueMiner identifies the population of cells (whole_tissue) whose entire lineage 135 

lies within the field of view throughout the movie. To identify this population, we developed a 136 

filtering tool to discard in each movie frame margin cells located at the edge of the segmentation 137 

mask and one additional row of cells that contact the margin cells. The choice of discarding two 138 

rows of cells is motivated by the fact that segmentation quality drops near the margin. We iterate 139 

over all time points to ensure that we discard all cells moving in and out the field of view (see 140 

Materials and Methods). User-defined ROI’s are also subjected to this filtering. 141 

 142 

2) Aligning movies in time  143 

 To temporally align movies, TissueMiner provides a configuration file in which to manually 144 
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define a time correction for each movie relative to one reference movie whose time correction is set 145 

to zero. The time correction can be estimated based on the appearance of morphological landmarks, 146 

or by aligning curves of a defined state quantity in time, such as cell area or cell elongation, on the 147 

assumption that this quantity has a similar qualitative time evolution.   148 

 149 

3) Aligning movie orientation (howto Video 3) 150 

 In order to compare replicates of the same dynamic biological process, all movies should 151 

have a common orientation. TissueMiner contains a Fiji macro (orient_tissue.ijm) to assist the user 152 

in finding the optimal angle through which each movie should be rotated so that all movies have a 153 

comparable orientation (see Video 3 for an example on the pupal wing).   154 

 155 

Visualizing cell area, cell shape and cell packing on the entire tissue (TM R-User Manual 156 

sections 2.2 and 2.6, Py-tutorial sections 2.1 to 2.3) 157 

 An important step in analyzing tissue morphogenesis is to quantify cell state properties over 158 

time. These properties include cell area, shape anisotropy and packing geometry. In this section, we 159 

demonstrate the analysis and visualization tools of TissueMiner by comparing how these state 160 

properties evolve during wing morphogenesis in vein and inter-vein regions.  161 

 162 

Cell area and elongation (TM R-User Manual sections 2.2 - 2.5, Py-tutorial sections 2.1 – 2.2) 163 

 Morphogenesis is often characterized by changes in cell area and elongation. In the 164 

TissueMiner workflow, these properties are calculated from the original segmentation masks and 165 

stored in the database (Materials and Methods). To visualize the evolution of the cell area pattern at 166 

the scale of the whole tissue, we map the area values of each individual cell to a gradient color scale 167 

(see Figure 2A-A’, Video 4). Each cell contour is filled with a color that corresponds to its area. 168 
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Figure 2A shows the pattern of cell areas in the wing at the end pupal wing blade elongation. This 169 

visualization scheme reveals that cells in the proximal hinge and in wing veins have a smaller cross-170 

sectional area (blue) at this time. 171 

 Cell elongation is characterized by a nematic tensor describing the axis and magnitude of the 172 

elongation (Aigouy et al., 2010). As with cell area, we map the magnitude of cell elongation to a 173 

color scale (Figure 2B-B’, Video 5). This fine-grained quantification of cell elongation highlights 174 

striking differences between inter-vein and vein cells. Inter-vein cells are more elongated than vein 175 

cells at 22 hours, but this pattern is reversed by 31 hours.   176 

 The color scale above reveals only the magnitude of the tensor.  To visualize both the 177 

magnitude and direction of cell elongation, we represent the elongation nematic as a line whose 178 

length and angle correspond to the magnitude and angle of cell elongation, respectively. Nematics 179 

can also be averaged across multiple cells in a region in order to coarse-grain the patterns and 180 

highlight the main features (Figure 2C-C’’, Video 6). For example, the coarse-grained elongation 181 

nematics shown in Figure 2C, highlight the global alignment of cell elongation in the proximal-182 

distal direction at 22 hours. 183 

 184 

Packing geometry (TM R-User Manual section 2.6, Py-tutorial section 2.3) 185 

 Cells in the wing become progressively more hexagonal during pupal wing morphogenesis 186 

(Classen et al., 2005). To visualize packing geometry, we map the neighbor number of each cell to a 187 

discrete color code (Figure 2D-D’, Video 7). This makes changes in packing geometry during 188 

morphogenesis immediately obvious (22 h and 31 h) 189 

 190 

Plotting temporal evolution of average cell properties (TM R-User Manual sections 3.3 to 3.6, 191 

Py-tutorial section 3) 192 



9 
 

 The visualization tools described above effectively reveal detailed spatial patterns of cell 193 

properties.  To highlight how average cell properties change over time, and to facilitate comparison 194 

between movies and ROI’s, TissueMiner also provides tools to create plots of average quantities as 195 

a function of time. In Figure 2E and F, we compare the time evolution of the average cell area and 196 

the average cell elongation in movies of the 3 WT wings (blue, green, red) used in (Etournay et al., 197 

2015). The plots in Figure 2 compare the time evolution of average cell elongation and area values 198 

for vein and inter-vein cells. We previously showed that average cell area in the wing blade 199 

decreases during morphogenesis, but that cell area decrease is balanced by cell divisions to maintain 200 

wing blade area.  Quantifying average area values in vein and inter-vein ROI’s reveals that vein 201 

cells contract over a longer period of time than inter-vein cells, and thus have a smaller cross-202 

sectional area at the end of morphogenesis (Figure 2F). As previously described, cells in the wing 203 

blade elongate and then relax their shapes during pupal wing morphogenesis (Etournay et al., 204 

2015)(Figure 2E, blade part). Plotting elongation in vein and inter-vein ROI’s reveals that vein cells 205 

elongate more slowly and also relax their elongation more slowly than inter-vein cells. These 206 

differences suggest that vein and inter-vein cells have different mechanical properties. 207 

 208 

Visualizing patterns of cell division (TM R-User Manual sections 2.7 – 2.9, Py-tutorial section 209 

2.4). 210 

  Oriented tissue morphogenesis may reflect the number, orientation and spatio-temporal 211 

pattern of cell divisions.  TissueMiner provides several tools to visualize these events. Overlaying 212 

color-coded generation number on a pupal wing movie reveals patterns of cell divisions as they 213 

occur (Video 8), and examining the last frame of the movie (Figure 3A) reveals the cumulative 214 

pattern of cell divisions. This analysis is largely consistent with the cell division timing inferred 215 

from classical BrdU pulse-chase experiments (Schubiger and Palka, 1987; Garcia-Bellido et al., 216 
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1994; Milan et al., 1996), but also reveals unexpected additional features. The pattern of cell 217 

divisions correlates with veins: most cells in the wing blade divide only once during pupal 218 

morphogenesis, whereas in some parts of inter-vein regions they divide twice.  These include the 219 

cells lying adjacent to veins L3, L4 and L5, and the region posterior to L5. We estimate the median 220 

cell-cycle length between the first and second rounds of cell divisions to be (5.25 ± 1.50) h. 221 

 To further investigate how cell divisions are patterned in the blade, we quantified the time 222 

evolution of cell division rates in each vein and inter-vein region (Figure 3B). This analysis reveals 223 

differences in the timing and numbers of cell divisions in these different ROI’s. Cells in veins L2 224 

and L4 divide before those in L3 and L5. These divisions are followed by a second peak of division 225 

in the inter-vein regions distInterL3-L4, interL2-L3 and postL5 (see cartoon in figure 3A).  226 

 To more easily visualize the spatio-temporal pattern of divisions in veins only, the powerful 227 

tools available in TissueMiner allow us to assign vein cells a color corresponding to the time at 228 

which they divide: blue for 16-18 hours after puparium formation (hAPF) and red for 18-20 hAPF 229 

(see Video 9). This analysis reveals more detailed patterning in division timing.  Cell divisions in 230 

vein regions that protrude ventrally (L2 and proximal L4), peak at the same time and earlier than 231 

those that protrude dorsally (L3, distal L4 and L5). Precise correlation of cell divisions with specific 232 

vein and inter-vein regions suggests that they are autonomously controlled by signaling associated 233 

with veins.  234 

 To measure the orientation of cell divisions, we define a unit nematic tensor (see Materials 235 

and Methods). For each cell division, the orientation of this unit nematic is defined by the line 236 

connecting the centers of mass of the two daughter cells when they first appear (see Figure 3C-C', 237 

and TM R-User Manual section 2.8). Each nematic is assigned a position on the tissue that 238 

corresponds to the center of combined mass of the two daughter cells. To visualize division 239 

orientation patterns, unit nematics can be added within different regions and averaged over different 240 
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time intervals (Figure 3D, Video 10, TM R-User Manual section 2.9).  241 

   242 

 243 

Visualizing cell junction dynamics (TM R-User Manual sections 2.10 – 2.12, 3.8-3.9) 244 

 Epithelial tissues can be reshaped by cell rearrangements, or T1 transitions (for review 245 

(Walck-Shannon and Hardin, 2014)). In the simplest case, a T1 transition involves two pairs of cells, 246 

that exchange neighbors by disassembling one cell-cell contact and replacing it by another – 247 

bringing together two previously separated cells (Figure 4A).  In reality, cell contacts may undergo 248 

multiple rounds of shrinkage and regrowth before resolving.  Furthermore some epithelia undergo 249 

the related process of rosette formation where multiple cell junctions are disassembled before new 250 

neighbors are brought into contact. By separately quantifying the orientation with which cell 251 

contacts are gained and lost, one can reveal whether there is a net directionality to cell junction 252 

assembly and disassembly. To identify gained and lost cell contacts, we compare cell neighbor 253 

relationships between 2 subsequent frames. We exclude changes in neighbor relationships resulting 254 

from cell division, extrusion or a cell moving in and out of the field of view. The remaining 255 

neighbor relationship changes are used to define cell contacts that have appeared or disappeared. 256 

 We characterize the orientation of contact gains and losses by assigning them a unit nematic 257 

tensor. For contact loss, the orientation of the nematic is defined by the axis intersecting the two cell 258 

centers. For contact gain, the orientation of the nematic is perpendicular to the axis intersecting the 259 

two cell centers (Figure 4A-A’). If there is a simple disappearance and reappearance of a single cell 260 

contact, corresponding nematics will cancel out.  Therefore, the sum of contact gain and contact 261 

loss nematics over time and/or space will represent an effective T1 nematic describing net direction 262 

of contact assembly/disassembly.  263 

 The rate of contact gain and loss can be visualized in different ways. Cell contact dynamics 264 
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can be viewed directly on movies of tissue morphogenesis by assigning colors to cells as they gain 265 

(red) or lose (green) contacts.  Those cells that simultaneously gain and lose different cell contacts 266 

are colored blue (Figure 4B-B’).   267 

 The frequency of contact gain and loss, independent of orientation, can be plotted over time.  268 

Figure 4C compares the frequency of contact assembly/disassembly in vein and inter-vein regions. 269 

In both regions, this rate begins to decrease in the second half of morphogenesis.   270 

 To visualize the pattern of orientation of T1 transitions throughout the wing, we sum contact 271 

gain and loss nematics over square grid elements, and average over a chosen time window (about 272 

50 minutes in Figure 4D, Video 11, see TM R-User Manual section 2.12).   273 

 Finally, the average orientation of effective T1 nematics in sub-regions over time can be 274 

visualized using circular diagrams, where nematics are color-coded to indicate developmental time. 275 

Figure 4S1A reveals that the orientation of effective T1’s is along the anterior-posterior (AP) axis 276 

early (blue) and shifts to the proximal-distal (PD) axis in the second half of morphogenesis (red). A 277 

similar approach can be used to illustrate average cell elongation nematics over time (Figure 4S1B). 278 

 279 

Quantification of tissue deformation and the contribution of different cellular events (TM R-280 

User Manual section 3.10) 281 

  While it is useful to quantify the number and orientation of cellular events like elongation, 282 

rearrangement, extrusion and division, this by itself does not provide quantitative information about 283 

the amount of tissue shape change contributed by each type of event.  We therefore devised a 284 

method to measure deformation caused by these cellular processes such that they sum to the 285 

measured tissue deformation.    286 

 Tissue deformation can be decomposed into isotropic and anisotropic parts that distinguish 287 

changes in area (compression/expansion) from changes in aspect ratio (pure shear, for details see 288 
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also Materials and Methods). The quantities describing area changes are scalar, whereas the 289 

quantities describing shear rate in a 2D-network are nematic tensors harboring two distinct 290 

components that describe the orientation and magnitude of the shear.  291 

 Tissue area changes can be calculated based on cell area change and the number of cells 292 

gained and lost by divisions and extrusions – information that is all available in the TissueMiner 293 

database (Etournay et al., 2015).  294 

 To quantify the cellular contributions to anisotropic tissue deformation, TissueMiner uses 295 

the so-called Triangle Method, which is based on a triangular tiling of the junctional network 296 

(Etournay et al., 2015; Merkel et al.).  Triangle elongation is a proxy for cell elongation, and 297 

topological changes in the network result in redrawing of triangles (Figure 5A-C).  The resulting 298 

change in average triangle elongation can be used to calculate the shear due to the topological 299 

change (Etournay et al., 2015).  In addition to contributions from divisions, cell rearrangements, 300 

extrusions and cell shape changes, the method also takes into account deformation caused by 301 

correlations between elongation and both area change and rotation. 302 

 303 

Validation of tissue deformation measurements using computer-generated cells 304 

 To test the reliability of TissueMiner in calculating large cell and tissue deformations, we 305 

created two computer-generated movies of hexagonal cell sheets (Videos 12 and 13). In one movie, 306 

we imposed a constant isotropic expansion rate of 3.50 10-2 per frame, without any anisotropic 307 

deformation. In the second movie, we imposed a constant pure shear along the x-axis with a rate of 308 

1.75 10-2 per frame, and without any isotropic expansion. The amounts of isotropic expansion and 309 

pure shear have been chosen to be at least 10 times higher than what we measure between 310 

subsequent frames of pupal wing movies. 311 

 We then asked if TissueMiner could quantitatively recapitulate the respectively imposed 312 
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deformation rates. In each dataset, TissueMiner automatically defines a “whole_tissue” region of 313 

interest that corresponds to a consistent set of cells that are always visible (about 100 cells in the 314 

isotropic expansion movie and about 50 cells in the pure shear movie, green labels in Videos 12 and 315 

13). All measurements are done in this ROI to avoid measuring deformation due to inward and 316 

outward cell flows. Figure 5 – figure supplement 1 shows the time evolution of the measured tissue 317 

expansion rate (panel A) and tissue shear rate (panel C) that were averaged over the “whole_tissue” 318 

ROI, and their respective cellular contributions. Panels B and D show the corresponding cumulated 319 

curves. As expected, in the isotropic expansion movie we observe a nearly constant isotropic 320 

expansion rate, which is accounted for by the cell area change contribution. We measure an average 321 

expansion rate of (3.53 ± 0.04) 10-2 per frame, which is consistent with the value imposed when 322 

creating the movie. The measured uncertainty is the 95% confidence interval of the standard error 323 

of the mean. The pure shear rate and its cellular contributions nearly vanish in this movie (Figure 5 324 

– figure supplement 1 C, D).  325 

 For the pure shear movie, we measure an approximately constant horizontal component of 326 

the pure shear rate of (1.74 ± 0.02) 10-2 per frame, which is consistent with the value imposed when 327 

creating the movie. This pure shear rate is entirely accounted for by cell elongation change. The 328 

isotropic expansion rate and its cellular contributions nearly vanish (Figure 5 – figure supplement 1 329 

A, B). Other contributions to expansion and shear rates are negligible in both movies. 330 

 The pixelated nature of individual cell contours contributes to fluctuations of our measured 331 

values. Moreover, we find that these fluctuations cancel out when cumulating the deformation 332 

(Figure 5 – figure supplement 1 B and D). Thus, the current implementation of TissueMiner 333 

captures the tissue isotropic expansion and pure shear rates as well as the corresponding cellular 334 

contributions with a good precision in these computer-generated movies. 335 

 336 
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 337 

Deformation of the pupal fly wing 338 

 Figure 5 – figure supplement 2 shows the rate of relative area change and cumulative area 339 

change of vein and inter-vein regions over time, as well as the cellular contributions to these area 340 

changes. As previously noted, the area of the blade as a whole changes very little. However sub-341 

region analysis reveals that inter-vein expansion compensates for compression in vein regions. Vein 342 

cells not only divide less than inter-vein cells, but also decrease their area more. 343 

 Next we use the Triangle Method to calculate pure shear rates in the time-lapse movies of 344 

developing pupal wings. To visualize the spatial pattern of pure shear rate in the wing, TissueMiner 345 

allows us to plot nematics corresponding to the local tissue shear rates (Figure 5D) and to rates of 346 

shear produced by different cellular contributions (Figure 5 – figure supplement 3, and (Etournay et 347 

al., 2015)) averaged within the squares of about 26 x 26 microns. 348 

 To compare the time evolution of pure shear rate between different tissue subregions we plot 349 

this rate averaged over the corresponding ROI (Figure 5E-F and (Etournay et al., 2015)).  A positive 350 

sign for shear indicates an extension along the PD axis and a contraction along the AP axis, whereas 351 

a negative sign indicates an extension along the AP axis and a contraction along the PD axis. 352 

 As reported previously, the wing blade as a whole shears along its PD axis between 16 and 353 

32 hAPF. T1 transitions and cell elongation are major contributors to total PD shear, and they 354 

display complementary behavior that evolves over time. In the first phase, cells elongate in the PD 355 

axis in response to tissue stresses generated by hinge contraction, and by actively oriented T1 356 

transitions that occur first along the AP axis. In the second phase, cell elongation causes the 357 

orientation of T1 transitions to shift 90˚ from the AP to the PD axis (Etournay et al., 2015).  These 358 

PD oriented T1 transitions both contribute to tissue shear and relax PD cell elongation. We now 359 

compare shear and cellular contributions to shear in vein and inter-vein regions. Tissue shear peaks 360 
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earlier in inter-vein regions than in veins, but veins shear more overall. Examining the cellular 361 

contributions to shear suggests that increased shear in veins reflects a different relationship between 362 

cell elongation and T1 transitions.  PD-oriented T1 transitions do not only produce more shear in 363 

veins, they also fail to relax PD cell elongation as much as in inter-vein regions.  364 

 365 

Discussion 366 

Quantitative image analysis of developing epithelia is a powerful approach to understanding 367 

morphogenesis, but the tools with which to tame and analyze these complex data have not been 368 

widely available in a standard and well-documented format. Here we provide an introduction to the 369 

capabilities of TissueMiner and tutorials for its use. TissueMiner provides general strategy to store 370 

and analyze large data sets of interwoven objects by combining state of the art tools for data mining. 371 

It allows quantification and visualization of epithelial morphogenesis at multiple scales – from 372 

individual cells to entire tissues. It provides both a generic database format and a multi-platform 373 

toolkit to interrogate and visualize data and quantify cellular contributions to large-scale epithelial 374 

deformations.  375 

TissueMiner has been designed to be versatile and expandable. The database format we 376 

provide standardizes the organization of tracked cell data and collects all data into a single file per 377 

movie. Such a standardized data format facilitates data sharing between different sources, thereby 378 

enhancing cross-laboratory reproducibility. As the database stores positional information about cells 379 

and cell contacts, as well as cell neighbor topology, it could also be useful for parameterizing 380 

simulations of epithelial remodeling by vertex models or other physical network models. The 381 

scheme of our relational database is expandable: additional properties of cells, bonds and vertices 382 

can be appended to the database without affecting the relationships between tables. As a 383 

consequence, our current query tools to interrogate the database remain functional, even if the 384 
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database is extended with new properties of cells, bonds and vertices.  385 

 TissueMiner takes advantage of the advanced graphical capabilities of R and Python to 386 

enable the visualization of patterns of deformation and cell state properties directly on the movie 387 

images or quantitatively summarized in graphs. In particular, R provides a flexible grammar with 388 

which to manipulate tables obtained from the database and to easily plot graphs (Wickham, 2009; 389 

Francois, 2015). TissueMiner also offers multiple options for coarse-graining data in space and time 390 

through an expandable collection of scripts, which constitutes the TissueMiner library for R or 391 

Python. These two easy-to-learn programming languages give TissueMiner its great flexibility to 392 

both address general questions of epithelial morphogenesis and project-specific questions, and 393 

enable automation, parallelization and customization of user-specific workflows.  394 

 The tools underlying TissueMiner were originally developed to understand the interplay of 395 

cell dynamics and epithelial tension on the developing wing of the fruit fly, where we described 396 

cellular contributions to pupal wing morphogenesis averaged throughout the entire wing blade 397 

(Etournay et al., 2015). Here, to illustrate the utility of the TissueMiner framework, we compared 398 

the behavior of vein and inter-vein regions in the developing pupal wing. Comparing cell dynamics 399 

in veins and inter-vein regions provided an unexpected explanation for the process of “vein 400 

refinement”. Vein refinement refers to the fact that veins become narrower during pupal 401 

morphogenesis. This had been interpreted as a signaling-dependent reduction in the number of cells 402 

assuming the vein fate (Blair, 2007). Here we show instead that vein narrowing results from a 403 

convergent extension-like process that is stronger in veins than in inter-vein regions. This elongates 404 

and narrows the veins without reducing vein cell number. It will be interesting to examine how 405 

signaling pathways involved in vein refinement influence cell dynamics in veins during 406 

morphogenesis. The standardization of analysis that TissueMiner provides will facilitate these and 407 
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other comparisons critical for deciphering the molecular mechanisms underlying epithelial 408 

morphogenesis.  409 

 410 

Material and methods 411 

 412 

Live imaging of the pupal wing 413 

 The knock-in Ecad::GFP fly line (Huang et al., 2005) was used for live imaging of the 414 

developing pupal wing. Flies were raised and maintained at 25°C during imaging by using a 415 

temperature-controlled chamber equipped with a humidifier to prevent desiccation. Long-term time-416 

lapse imaging was performed as previously described (Etournay et al., 2015). After the imaging 417 

session, flies were maintained in a humid environment where they eclosed at the term of pupal 418 

development. 419 

 420 

A relational database to store the history of cells, their lineage and their constituent bonds 421 

and vertices 422 

 The visualization and quantification of cell dynamics underlying tissue morphogenesis relies 423 

on the ability to extract information about cell geometry, cell neighbor topology and cell histories 424 

from time-lapse movies (Aigouy et al., 2010; Etournay et al., 2015). We use TissueAnalyzer to 425 

segment and track the cell network over time. This results in a series of digital images that contain 426 

this information (Figure 6 – figure supplement 1). To facilitate its access and use, we developed 427 

tools in the TissueMiner framework to extract and convert this information initially stored in 428 

images into a specific database format (see details in appendix 1), which we call “TM-DB” 429 

(schematically outlined in Figure 6A). 430 

 First, the history of each tracked cell in the movie is stored as a separate row in the 431 
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cell_histories table of the TM-DB (Figure 6A). This includes the movie frames in which it first 432 

appears and disappears and why, along with its lineage relationship to other cells (see appendix 1). 433 

The reason for cell appearance and disappearance is inferred by the parser. A primary reason could 434 

be a cell division, which results in the disappearance of the mother cell and in the appearance of two 435 

daughter cells. It could be a cell extrusion that results in its disappearance. It could also be that cells 436 

move in and out of the field of view of the microscope lens, resulting in gain and loss of cells. 437 

Furthermore, we use this information to establish the lineage relationship that corresponds to each 438 

group of cells related by ancestry (Figure 6B). Each cell within the lineage group is assigned a 439 

generation number. The lineage group and generation number for each cell are listed in the 440 

cell_histories table.  441 

 We store the time points at which the movie images were recorded into a frames table that 442 

links each movie frame to its corresponding time point. For each movie frame, we need to store 443 

geometrical and topological information about cells within the cellular network. Geometrical 444 

information includes position and shape descriptors, whereas topological information indicates the 445 

arrangement of neighboring cells around each cell. We use cell histories, geometry and topology to 446 

understand how individual cells contribute to the whole tissue deformation during morphogenesis 447 

(Etournay et al., 2015). 448 

 The geometrical information is stored in three tables of the TM-DB: cells, bonds and 449 

vertices. They correspond to the 3 generic entities - cells, cell-cell contacts and intersections 450 

between cell-cell contacts, respectively illustrated in figure 6C. These entities are commonly used in 451 

vertex model simulations (for review (Fletcher et al., 2014)). The cells table contains cell 452 

geometrical data (center of mass, area, shape anisotropy) and the polarized distribution of proteins 453 

along the cell circumference, as represented by a polarity nematic tensor (Aigouy et al., 2010). The 454 

bonds table informs about bond length, and the vertices table about vertex position in each movie 455 
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frame. 456 

 The directed_bonds table exclusively stores the cell neighbor topological information at 457 

each frame, i.e. how bonds are organized around each cell along with the cell neighbor relationship 458 

information. To store the cell neighbor topology in an unambiguous manner, we define for each cell 459 

a directed path of consecutive bond vectors oriented counterclockwise, which forms the oriented 460 

circumference of the cell (Figure 6D, see also (Kachalo et al., 2015)). We link each directed bond to 461 

its counterclockwise follower (left directed bond) in the same cell. To store the cell neighbor 462 

relationship, we link each directed bond to its corresponding directed bond (conjugated bond) of the 463 

neighboring cell (Figure 6D, and appendix 1). 464 

 The TM-DB is relational, which means that it establishes contextual relationships between 465 

items stored in one ore more tables (see appendix 1). These relationships are outlined in rounded 466 

boxes in the conceptual scheme of the TM-DB (Figure 6A). Technically, each item in a table is 467 

stored in a separate row and is given a unique number as identifier. For a relationship between two 468 

tables, one of the tables contains an additional column, which refers to items in the other table by 469 

holding their identifier number. Such additional columns for the TM-DB format are shown in blue 470 

in Figure 6 – figure supplement 2. When extracting information from a database using so-called 471 

queries, these columns serve as bridges connecting the information stored about related items. 472 

 In essence, this structure creates a generic relational model to represent complex cell 473 

tracking data in 2D. In practice, the data for each movie is stored in a separate SQLite database file. 474 

Since all movie files are stored using the same database structure, automated data mining and 475 

visualization are greatly facilitated. For the same reason, usage of the TissueMiner database format 476 

encourages exchange of both movie data and analysis tools. 477 

 478 

 479 



21 
 

An automated workflow compliant with high performance computing platforms 480 

 To help the user to perform complex tissue morphogenesis analysis, we developed an 481 

automated pipeline that uses the tracked data from TissueAnalyzer as an input to build the database 482 

and perform all downstream analyses described above. To do so, we use the snakemake workflow 483 

engine developed by Koster and Rahmann (Koster and Rahmann, 2012). This engine channels the 484 

different processing steps into a well-formed workflow graph. Snakemake automatically determines 485 

the execution order, provides means for error recovery and job control, and supports High 486 

Performance Computing (HPC) environments. By using snakemake we enable the user to easily run 487 

and monitor TissueMiner, while maintaining a proper decoupling of tools as independent 488 

executables.  489 

 Practically, the user defines a workflow definition file in which processing steps are defined 490 

as a set of execution rules, namely a list of scripts to be run along with required input(s) and 491 

expected output(s). Snakemake automatically builds a directed graph from which the execution 492 

order of processing steps is inferred. If only one branch of the graph needs to be run, the engine will 493 

ensure that all input data are present and will automatically run upstream steps if necessary. This 494 

engine also provides the possibility to visualize a directed acyclic execution dependency and 495 

execution state graph (DAG) for a given workflow (see Figure 7). 496 

 One major advantage of a workflow engine such as snakemake is that it can run the 497 

workflow on various architectures - from single-core workstations to multi-core servers and clusters 498 

- without the need to modify the rules, thereby facilitating reproducible research. To simplify the 499 

TissueMiner installation procedure, we provide a pre-configured system to be loaded in the docker 500 

software available at http://docker.com. The TissueMiner docker image can be run without any 501 

setup using provided example data or custom user data as detailed out on the TissueMiner GitHub 502 

project page. More advanced users can use TissueMiner directly from the command-line with or 503 
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without snakemake and can thus perform simultaneous analyses of multiple movies. 504 

 505 

A user-friendly data-mining library to easily collect information for comparing multiple 506 

datasets 507 

 After applying our automated workflow to different movies, the results can be easily 508 

compared using a collection of command-line tools written in R and Python. These tools aggregate 509 

different experiments for plotting and performing comparative analysis. Here we describe the tools 510 

written in R, and Python tools are described in the corresponding tutorial. The R tools are designed 511 

to be used in an integrated development environment such as Rstudio, which provides a user-512 

friendly environment to assist the user in writing and executing command lines. These command 513 

line tools are organized in the spirit of a grammar of data manipulation and they can be combined 514 

with the existing R tools like dplyr (Francois, 2015) or ggplot2 (Wickham, 2009) for manipulating 515 

and visualizing data (https://mpicbg-516 

scicomp.github.io/tissue_miner/user_manual/Learning_the_R_basics_for_TissueMiner.html ).  517 

 We developed generic “multi-query functions” (mqf) to collect specific information for 518 

individual movies. These mqf tools are organized into fine-grained and coarse-grained categories 519 

according to the type of analysis to be carried out. The fine-grained tools aggregate data at cellular 520 

level, namely individual cell properties inside regions of interests. These tools are prefixed with 521 

“mqf_fg_”. The coarse-grained mqf tools are further separated into “roi” and “grid” categories to 522 

distinguish between regions moving with the tissue and static square regions tiled into a grid. They 523 

allow one to visualize and quantify average cell properties at different tissue locations and various 524 

spatial scales, and are prefixed with  “mqf_cg_roi_” and “mqf_cg_grid_” respectively.  525 

 To compare fine-grained and coarse-grained cell properties amongst movies we developed a 526 

“multi-db-query” tool, which streamlines the application of the mqf tools to a set of movies. To use 527 
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this tool, the user should first align the movies in time, using convenient morphological or cellular 528 

landmarks. As for the Drosophila wing, we align movies such that the peaks of cell elongation 529 

coincide in the different movies. The user can then apply a chosen mqf tool to multiple movies and 530 

multiple ROI’s. All mqf tools, alone or in combination with the “multi-db-query” tool, generate a 531 

table that contains individual or averaged measurements to be visualized on the tissue (Figure 1 A-E, 532 

Figure 2A-D, Figure 3A,D, Figure 4B,E, Figure 5C) or in graphs (Figure 2E-F, Figure 3B, 533 

Figure 4C, Figure 5D-E). This library of tools is described in detail in the TM R-User Manual, 534 

which also provides many examples. These tools can be easily extended to address project specific 535 

questions.  536 

 537 

Detecting gain and loss of cell contacts  538 

 To detect cell neighbor changes, we developed a routine in R that queries the DB and 539 

establishes the cell-neighbor relationship at each frame. By comparing the list of neighboring cell 540 

identifiers for a given cell between two consecutive frames , can one identify and count 541 

the changes in neighbor relationships. These can be subdivided into those caused by cell divisions, 542 

cell extrusions or the simple gain or loss of a cell contact (not due to division or extrusion). We call 543 

these half-T1’s because they resemble the gain and loss of cell contacts that occurs during a T1 544 

transition – although they may also be generated by other events such as rosette formation. To 545 

assign a neighbor change to the half-T1 category, the corresponding cell identifiers must be present 546 

in both frames, ruling out extrusions and cells moving in and out of the field of view. To detect 547 

half-T1’s that occur simultaneously with divisions, we mask neighbor changes due to divisions by 548 

propagating the mother cell identifier (frame f) to the two daughter cells (frame f+1) that we fuse 549 

into one fake cell having the mother cell identifier. We iterate over each pair of consecutive frames 550 

and store the half-T1 events due to a gain and a loss of cell neighbors.  551 
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 552 

Cell lineages and lineage browsing to follow ROI’s forward and backward in time 553 

 We pool all lineage information (as contained in the cell_id, left_daughter_cell_id and 554 

right_daughter_cell_id columns from the cell_histories table) into a directed lineage graph (Nepusz, 555 

2006) from which we infer a lineage group identifier and a generation number. By definition the 556 

root of each lineage tree is considered as the F0 generation and is thus given a generation value of 0. 557 

We follow ROI’s backward and forward in time by browsing lineage graphs that were selected 558 

based on the regions drawn by using the draw_n_get_ROIcoord.ijm Fiji macro. However cells may 559 

be lost or not detected when browsing the lineages. One primary reason is that extruding cells are 560 

not detected when browsing the lineage backward in time. Cells could also be lost due to possible 561 

tracking mistakes. To improve spatial continuity of ROI’s we have implemented a method to 562 

reassign lost cells to ROI’s when located within ROI’s. To identify lost cells for a frame within a 563 

given ROI, we first distinguish bonds that connect two cells within the ROI, only one cell within the 564 

ROI or none. All corresponding cell-pairs define an undirected graph on which a connected 565 

component analysis (Nepusz, 2006) allows to identify the ROI and non-ROI regions. All cells of 566 

non-ROI regions, except for the largest one, are reassigned to become part of the ROI. By doing so, 567 

we make the assumption that the largest non-ROI component is defined by the tissue surrounding 568 

the ROI. 569 

 570 

Nematic tensors to describe cell elongation and the orientation of cellular processes 571 

 When analyzing and visualizing single cell properties, we use the same cell elongation 572 

definition as in Aigouy et al., 2010. For a given Cartesian  coordinate system, the elongation of a 573 

given cell is defined by the nematic tensor 574 
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with 575 

 

 

Here,  is the area of the given cell, and the integrals are carried out over all points  within the 576 

cell. The angle  is the angle between the vector  and the  axis, where  is the cell center 577 

defined as 578 

 

Here, the integral is again carried out over all points  within the cell. The magnitude of the 579 

elongation is given by  and the elongation angle  is given by the following 580 

two equations 581 

 

 

Note that this definition of cell elongation is different from the triangle-based definition that is also 582 

discussed in this article. However for the fruit fly wing, both cell elongation definitions yield very 583 

similar results. 584 

 To characterize the axes of cell divisions and T1 transition, we introduce the unit nematic 585 

tensors , , and . The orientation of a single cell division is quantified by the unit 586 

nematic  defined by: 587 

. 588 

Here, the angle  is the angle of the line connecting both cell centers with respect to the  axis, 589 

measured in counter-clockwise sense. The orientation for a half-T1 transition during which two cell 590 
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lose neighborship is characterized by: 591 

 

where  is the angle of the line connecting the centers of the cells losing neighborship. The 592 

orientation for a half-T1 transition during which two cell gain neighborship is characterized by: 593 

 

where  is the angle of the line connecting the centers of the cells that gain neighborship. The 594 

axes of the nematics ,  and  roughly correspond to the axis along which the tissue 595 

extends due to the respective cell division or half-T1 transition. In particular, because of the minus 596 

sign in the definition of , when the same two cells gain neighborship and lose it again along 597 

the same axis, the total effect adding  and  is zero. 598 

 599 

Tissue deformation and cellular contributions to it 600 

 Here we discuss the formal definitions used to characterize tissue deformation, area change, 601 

and shear. We characterize the local rate of tissue deformation by the gradient of the velocity field 602 

. We then define the overall deformation rate  of a given piece of tissue by the integral over 603 

the area  of this piece: 604 

 

This 2x2 tensor can be decomposed into an isotropic part  characterizing the relative growth 605 

rate of tissue area, a symmetric, traceless part  characterizing the anisotropic part of the 606 

deformation (pure shear rate), and an antisymmetric part  characterizing overall tissue rotation: 607 
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Here, we have defined , , 608 

 

 In recent work, we have shown that the overall shear rate  can be exactly decomposed into 609 

a sum of cellular contributions using our Triangle Method (Merkel et al., in preparation; Merkel, 610 

thesis 2014): 611 

 

Here, the nematic tensors  is the average cell elongation defined based on triangles, and the 612 

nematic tensors , ,  , and  are the shear contributions by T1 transitions, cell divisions, cell 613 

extrusions, and correlation effects, respectively. The corotational time derivative  is defined 614 

by 615 

 

The operator  denotes the total derivative, , and the dot denotes the tensor 616 

dot product. The quantities  and  denote magnitude and angle of the average cell elongation 617 

tensor .  618 

 These formal definitions for , , , , , and  refer to deformation rates in the limit 619 

of infinitesimal deformations. However, subsequent frames of any real tissue movie are separated 620 

by finite time intervals, i.e. finite deformations. There are different ways to adapt these definitions 621 

to finite deformations (Etournay et al., 2015; Merkel et al.). The current implementation of 622 

TissueMiner uses the finite-deformation definitions presented in detail in (Etournay et al., 2015). 623 

  624 
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Appendix 1  625 

 626 

Parsing tracked-cell images to build the TM-DB 627 

 We used TissueAnalyzer to detect cell contours (segmentation) and to track cells over time. 628 

This software generates two output masks - the tracked-cell and the cell-division masks. These 629 

masks are raster images. In both masks, cell circumferences are represented by one pixel thick 630 

white lines. In the tracked-cell mask, all pixels inside the cell circumference have the same unique 631 

color. In consecutive frames, the same cell has the same color. In the cell-division mask, each cell is 632 

colored either in black or in blue. If a cell is blue, it is a daughter cell that emerged from a division 633 

between two consecutive frames. Otherwise, a cell is black in the cell-division mask. 634 

 We wrote a custom C++ parser that converts information contained in the tracked-cell and 635 

cell-division masks into tables that can be easily transformed into the TissueMiner database. This 636 

parser first extracts topological and geometrical information about cells, bonds and vertices for each 637 

individual frame. Afterwards, it analyzes the continuity of cell existences across consecutive frames. 638 

In particular, it tries to infer reasons for appearance or disappearance of cells. Finally, based on this 639 

information, history and lineage can be established for each cell (see Materials and methods).  640 

 The parser extracts the topological information for each frame from the tracked-cell mask. It 641 

scans the entire mask image row by row. Whenever it hits a cell boundary (white pixel), it defines 642 

the cell circumference and divides it into bonds defined as contiguous white pixels that are in 643 

contact with exactly two cells, and vertices defined as white pixel surrounded by 3 or more pixels of 644 

different colors). The topology, namely how neighboring cells are arranged around each cell, is 645 

obtained by creating a counter-clockwise series of consecutive directed bonds. Each directed bond 646 

stems from a unique vertex and points to the next vertex along the cell circumference. We created 647 

the concept of directed bonds to unambiguously characterize the wiring between cells, vertices, and 648 
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(undirected) bonds (Figure 6D). The parser stores the topology by creating the relation of each 649 

directed bond with its next counter-clockwise follower on the cell circumference and with the 650 

vertex from which it stems (Figure 6D). To store the cell-nearest-neighbor relationships, we map 651 

each cell-cell contact (bond) to the two corresponding directed bonds, where each directed bond is 652 

associated with a single cell and a single vertex. This is illustrated in Figure 6D, where the cyan 653 

directed bond points towards vertex  and lies on the side of cell , whereas the magenta directed 654 

bond points towards vertex  and lies on the side of cell . We call the cyan and magenta directed 655 

bonds to be “conjugated” to each other.  656 

  The parser also extracts geometrical information for each given cell by going along the 657 

circumference of that cell. Cell area  is computed as: 658 

 

where the index  runs over all pixels in counter-clockwise order around the cell. The vector 659 

 denotes the position of pixel . The cell center  is computed as: 660 

 

Cell shape anisotropy is described by the two components of the symmetric traceless tensor defined 661 

elsewhere (Aigouy et al., 2010). The cell perimeter is computed as the sum of the lengths of all 662 

bonds belonging to the cell boundary. The length of a bond is computed as the summed pixel 663 

distance going along this bond pixel by pixel. In particular, when advancing on pixel up, down, left, 664 

or right, one is added to the bond length. However, when advancing diagonally,  is added. 665 

 After extracting topology and geometry for each frame, the parser infers for each cell 666 

whether it stays in the tissue, or whether it appears or disappears in going from one frame  to the 667 

next one . Which of the three possibilities occurs can be directly inferred using fact that each 668 
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cell is assigned a unique color throughout all tracked-cell masks. If a cell is present in both tracked-669 

cell masks, it is just staying within the tissue. If it is only present in frame , it is appearing, 670 

which may happen for several reasons. For one, a cell may appear as a daughter cell of a division, 671 

which can be checked using the cell-division mask. Moreover, if a cell appears at the margin of the 672 

piece of tissue, it is declared as moving in via the margin. The same happens if an appearing cell is 673 

next to a cell that has already been declared as moving in via the margin. If none of these happened, 674 

the parser declares a tracking error as the reason for appearance.  675 

 If a cell is only present in frame  but not in , it is disappearing, which may happen for 676 

several reasons, too. For one, the cell could be the mother cell of a division that occurs between 677 

frames  and . This can be checked using the cell-division mask. Otherwise and if the cell is 678 

disappearing at the margin, the parser marks the cell as moving out of the margin. The same 679 

happens if the disappearing cell is next to a cell that has already been marked as moving out of the 680 

margin. Finally, every cell that disappears for none of the two previous reasons is marked as 681 

undergoing an extrusion/apoptosis.  682 

  683 

Implementing the TissueMiner relational database 684 

 The TissueMiner parser generates tables from which we build the TissueMiner relational 685 

database (TM-DB). To do so, we used the formalism developed in the Merise method (Tardieu et 686 

al., 2000), which includes the entity-relationship model (Peter Pin-Shan, 1976), the relational 687 

database theory (Codd, 1970; Codd, 1972) and Codd's normal forms (1971; Codd, 1974); thus, it 688 

allows one to translate the conceptual data model into a relational database scheme.  689 

 We first establish the “entity-relationship” scheme of the database to represent the 690 

information extracted with the parser in entities, and to establish relationships between and within 691 

entities. This conceptual approach defines the basic elements of the entity-relationship model (Peter 692 
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Pin-Shan, 1976): the entity, the association, the cardinality and the identifier. Entities consist of 693 

objects (cells, bonds, vertices, frames) or concepts (cell_histories, directed_bonds) that can be 694 

uniquely identified. The association is a link that relates two entities. The identifier is an obligatory 695 

property of an entity and uniquely defines each occurrence of the entity. The cardinality reflects the 696 

minimum and maximum connections (functional dependencies) between the identifiers of two 697 

associated entities: [1,n] stands for one-to-many, [0,n] for none-to-many, [1,1] for one-to-one, and 698 

[0,1] for none-to-one. Hence, each association is assigned two cardinalities corresponding to the 2 699 

possible directions of association between the two entities. For the sake of clarity, Figure 6A shows 700 

a simplified “entity-relationship” scheme of the TM-DB without cardinalities. However, 701 

cardinalities are used in the Merise method to translate the conceptual scheme (Figure 6A) into the 702 

logical scheme shown in Figure 6 – figure supplement 2A. We therefore show them in table 1. The 703 

rules to translate a conceptual scheme to a logical one can be found here (Tardieu et al., 2000). 704 

Below, we explain our conceptual scheme along with its translation into the logical scheme, which 705 

can be directly implemented using a chosen SQL language. Applying these rules to our TM-DB, 706 

these entities become physical tables in the logical scheme, and associations become table columns 707 

(“foreign keys” in blue) in related tables (Figure 6 – figure supplement 2A). The foreign keys 708 

constitute a referential integrity constraint between tables. 709 

 The TM-DB consists of six entities, frames, cells, vertices, bonds, directed_bonds and 710 

cell_histories that are linked by logical associations (Figure 6A). Their respective identifier is 711 

underlined in the conceptual scheme (Figure 6A), and becomes the “primary key” placed in the 712 

table header in the logical scheme (Figure 6 – figure supplement 2A). In the TM-DB, identifiers 713 

(frame, cell_id, vertex_id, bond_id, dbond_id) are numbers that we use to index the corresponding 714 

tables. Time and movie frames are contained in the frames entity. Geometrical information is 715 

contained in the cells, vertices and bonds entities. Topological information including cell neighbor 716 
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relationships is represented in the directed_bonds entity. The cell ancestry is represented in the 717 

cell_histories entity.  718 

 In order to relate a given cell to its lineage and intrinsic properties during the time evolution 719 

of the movie, we create specific associations within and between the cells and cell_histories entities. 720 

In the cell_history entity, a cell is uniquely determined by a cell identifier (cell_id) that exists as 721 

long as the tracked cell does not die or divide. All cells are represented in this entity, which stores in 722 

which frame a given cell appears (first_occ) and disappears (last_occ), and why (appears_by and 723 

disappears_by). The cell ancestry is represented by the “be_daughter_of” association that relates 724 

each dividing cell to its two daughters (left_daughter_cell_id and right_daughter_cell_id columns, 725 

Figure 6 – figure supplement 2A). To relate a cell to the time evolution of its properties (center of 726 

mass, area, shape anisotropy, polarized protein distribution), we create an association between the 727 

cells and cell_histories entities, in which each entry is uniquely determined by the combination of 728 

cell_id and frame. As movies may be acquired at different frame rates, we also represent the real 729 

time evolution (in seconds) in the frames entity that we connect to the cells entity.  730 

 To represent the cell topology in the database, we create a directed_bond entity along with a 731 

self-association “be next left” that links each directed bond in each frame (dbond_id) to its next 732 

counter-clockwise follower (left_dbond_id column, Figure 6 – figure supplement 2A). This stores 733 

the ordering of the directed bonds around each cell. To relate each cell with its neighbors in each 734 

frame, we define a “be conjugated” self-association that links each directed bond to its 735 

corresponding conjugated bond (conj_dbond_id column, Figure 6 – figure supplement 2A). To 736 

connect the topology to geometrical information, we first define an additional association (“be part 737 

of”) that connects the cells to the directed bonds entities.  We then connect both entities to the 738 

frames entity by defining the association “exist in” that matching the cell_id and frame attributes 739 

(Figure 6 – figure supplement 2A). Finally, we connect directed bonds to bonds and directed bonds 740 
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to vertices by creating the associations “be part of” and “stem from”, respectively (see vertex_id and 741 

bond_id columns, Figure 6 – figure supplement 2A).  742 

  The TM-DB follows the 3 first normal forms established by Codd (1971; Codd, 1974). The 743 

first normal form ensures that all entity properties are mono-valued and non-divisible, and that at 744 

least one of them is the identifier, which semantically determines all other properties of the entity. 745 

The second normal form adds constraints on the identifiers: if an identifier is composed of multiple 746 

properties (see cells entity), the other properties must be determined by the whole identifier and not 747 

by only part of it. The third normal form stipulates that a property isn't allowed to be determined by 748 

an existing property that isn't an identifier. In the conceptual scheme, those 3 normal forms ensure 749 

that the identifier uniquely defines each property of the entity. They also ensure that entity 750 

properties are entirely determined by the sole identifier. This helps clarifying the notion of entities 751 

and their content when creating the data model. It also helps reducing redundancy in the database. 752 

 The logical scheme of the TM-DB is implemented using the SQLite management system 753 

(Jay, 2010). We chose SQLite for its ease of use: there is no need to install a dedicated server and 754 

the DB is stored in a single file that is easily shared with collaborators. The source code is 755 

accessible on GitHub repository (see box 1).  756 

  757 
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 758 

 759 

Entity A Entity B Association (A->B) Cardinality 

A->B 

Cardinality 

B->A 

cell_histories cell_histories to be daughter of [0,1] [0,n] 

cells cell_histories to belong to [1,1] [1,n] 

cells frames to exist in [1,1] [1,n] 

directed_bonds cells to be part of [1,1] [1,n] 

directed_bonds directed_bonds to be conjugated [1,1] [1,1] 

directed_bonds directed_bonds to be next left [1,1] [1,1] 

directed_bonds frames to exist in [1,1] [1,n] 

directed_bonds bonds to be part of [1,1] [1,n] 

directed_bonds vertices to stem from [1,1] [1,n] 

vertices frames to exist in [1,1] [1,n] 

bonds frames to exist in [1,1] [1,n] 

Table 1 : Cardinalities per association.  760 
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 762 

 763 
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 776 

Figure legends 777 

 778 

Figure 1. Regions of interest are followed in time by browsing the cell lineages    779 

(A) Largest population of cells (purple) that remains visible throughout the entire time-lapse. Two 780 

cell rows in contact to margin cells were discarded as margins cells are usually not well segmented. 781 

(B) Largest blade cell population (green) that remains visible throughout the entire time-lapse. The 782 

blade region of interest (yellow line) was defined on the last frame of the time-lapse using a custom 783 

Fiji macro (https://github.com/mpicbg-scicomp/tissue_miner/blob/master/fiji_macros/). The 784 

underlying cell population was then subset using our lineage browser algorithm. (C) One can define 785 

veins and inter-vein regions of interest and apply the same algorithm as in (B). (D-D') Regularly 786 

spaced regions of interest automatically selected and followed over time to visualize tissue 787 

deformation. (E-E')  Here, we make use of the lineage browser routine to trace back the vein 788 
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positions at 15h APF, as they aren't visible yet at 15 hAPF.  Scale bar 50 microns. 789 

 790 

Figure 1 - figure supplement 1. Flow chart of TissueMiner. 791 

Solid lines depict the three main steps to analyze epithelial morphogenesis within TissueMiner. 792 

Dashed lines indicate additional inputs to the automated workflow: red boxes represent required 793 

inputs and black boxes indicate optional inputs. Arabic numbers indicate the order in which the 794 

tools are described in the main text. Cumulative time of the movie must be listed in a text file called 795 

cumultimesec.txt and located along with the movie images. The snakemake automated workflow is 796 

described in Figure 7. 797 

 798 

Figure 2.  Patterned cell state properties in the developing pupal wing of Drosophila 799 

(A-D') Cell state patterns at 22 and 31 hAPF. (A-A') Color-coded cell area. (B-B') Color-coded cell 800 

elongation. The magnitude of cell elongation correspond to the norm of the cell elongation nematic 801 

tensor. (C-C'') Coarse-grained pattern of cell elongation nematics and (C'') cell elongation nematics 802 

represented as bars on each individual cell. The wing was divided into adjacent square-grid 803 

elements of 33x33 microns in which cell elongation nematics were averaged. (D-D') Color-coded 804 

representation of the cell neighbor. (E) Time evolution of the average cell area in different regions 805 

of interest: wing blade (Figure 1B), veins (Figure 1E), and inter-vein regions. (F) Time evolution of 806 

the average cell elongation magnitude in the blade, veins and inter-vein regions. Scale bar: 50 807 

microns. 808 

 809 

Figure 3. Visualization of cell generations and cell divisions 810 

(A) Color-coded pattern of cell generations. The wing cartoon on the bottom right shows the names 811 

of subregions that we analyze in panel B. Scale bar 50 microns. (B) Cell division rate in different 812 
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regions of interest. To smooth fluctuations, these rates were averaged in discrete time intervals of 813 

one hour (TM R-User Manual, section 3.7). We further averaged these rates amongst the three wild-814 

type wings. Error bars depict the standard deviation between wings. Cells divide earlier in veins L2 815 

and L4 than in L3 and L5. Two maxima corresponding to two rounds of divisions are visible in 816 

inter-vein regions: interL2-L3, distInterL3-L4 and postL5. (C-C') A dividing cell with its unit 817 

nematic depicting the division orientation. Scale bar 10 microns. (D) Coarse-grained pattern of cell 818 

division orientation (grid size of 33x33microns). Scale bar 50 microns. 819 

 820 

Figure 4. Visualization and quantification of T1 transitions 821 

(A-A') Cartoon depicting an effective T1 transition (A) that corresponds to cell-contact loss and 822 

gain in different directions. Each contact loss or gain is assigned a unit nematics describing its 823 

orientation. (B-B') Pattern of cells losing contact (green), gaining contact (red) or both (blue). (C) 824 

Rate of neighbor change per cell and per hour in the blade, veins and inter-vein regions of interests. 825 

Rates were averaged within discrete time intervals of one hour and further averaged among the 3 826 

WT wings (TM R-User Manual, section 3.8). Error bars depict the standard deviation amongst 827 

wings. (D) Coarse-grained pattern of neighbor exchange orientation at 17 hAPF. Cell neighbor 828 

change nematics were obtained by summing up unit nematics in each grid elements of 829 

33x33microns and further averaged in time using a 50min time window. Scale bar 50 microns. 830 

 831 

Figure 4 - figure supplement 1. T1 and cell elongation nematic orientation 832 

(A) Cell neighbor change nematics were averaged at each frame within each region of interest and 833 

are represented as bars in a circular diagram. The bar angle indicate the average T1 orientation, and 834 

its length (nematic norm) reflects how ordered cell neighbor change nematics are in a given region 835 

of interest. Their color depicts the developmental time in hours after puparium formation. (B) Cell 836 
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elongtation nematics were also averaged at each frame within each region of interest. The average 837 

T1 nematic orientation starts to match the average cell elongation nematic orientation from about 22 838 

hAPF (peak of cell stretch) on, when stress-induced PD-oriented T1 dominate over autonomous 839 

AP-oriented T1. 840 

 841 

Figure 5. Visualization and quantification of anisotropic cell and tissue deformation 842 

(A) Triangulation of the cell network: each triangle vertex corresponds to a cell center. (B-B') 843 

Cartons depicting triangle pure shear and total tissue shear along the x axis. (C) Cartons depicting 844 

shear due to T1 transition, cell division and extrusion. (D) Pattern of local tissue shear rate obtained 845 

from the triangulation method. Scale bar 50 microns. (E) shows the average rate of tissue shear 846 

(blue) in the blade, interveins and veins, and the corresponding cellular shear contributions (other 847 

colors). Shaded regions indicate the standard deviation amongst wings. (F) shows the accumulated 848 

tissue shear over time and the accumulated contributions of each type of cellular event. The tissue 849 

shear (blue) in veins is orientated along the PD axis and it is higher than in inter-vein regions during 850 

most of pupal morphogenesis. It leads to an extension along the PD axis and to a narrowing along 851 

the anterior-posterior (AP) direction. By the end of the movie, accumulated tissue shear (blue) is 852 

almost twice as high in veins as in inter-vein regions. Shaded regions represent the standard 853 

deviation. 854 

 855 

Figure 5 - figure supplement 1. Measurements of cell and tissue deformation from two 856 

computer-generated sheets of hexagonal cells.  857 

(A-D) One dataset corresponds to hexagonal cells undergoing a constant isotropic expansion rate of 858 

3.50 10-2 per frame, and the other corresponds to hexagonal cells undergoing constant pure shear 859 

rate of 1.75 10-2 per frame. These datasets are termed iso.exp movie and shear movie respectively 860 
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in graphs. There isn't any topological change. To keep consistent sets of cells in time, we filtered 861 

out cells that become in contact to the image border. We then performed our measurement on these 862 

tracked regions of about 50 cells in the shear movie and about 100 cells in the iso.exp movie. (A) 863 

Relative tissue area changes (blue) and its decomposition into cell area changes (green), cell 864 

number increase by divisions (orange) and cell number descrease by extrusions (cyan). Their 865 

corresponding cumulative sums are shown in (B). (C) shows the average tissue shear (blue) and its 866 

decomposition into cellular shear contributions (other colors). Their corresponding cumulative sums 867 

are shown in (D). 868 

 869 

Figure 5 - figure supplement 2. Tissue Isotropic deformation and cellular contributions in 870 

different regions 871 

(A) Relative rates of tissue area changes (blue) averaged over 3 WT wings for the blade, veins and 872 

interveins, and its decomposition into cell area changes (green), cell number increase by divisions 873 

(orange) and cell number descrease by extrusions (cyan). Their corresponding cumulative sums are 874 

shown in (B). (B) Cumulative tissue area changes and its cellular contributions. Shaded regions 875 

represent the standard deviation.  876 

 877 

 878 

Figure 5 - figure supplement 3. Comparison of patterns of cell event orientation with their 879 

correponding quantitative patterns of shear 880 

(A-A') Coarse-grained patterns of cell division orientation (A) and of shear contributed by cell 881 

division (A'). The pattern shown in (A) was obtained by summing up cell division nematics in each 882 

grid element and by further averaging in time. The pattern shown in (A') was obtained by averaging 883 

the shear nematics in each grid element and by further averaging in time. (B-B') Coarse-grained 884 
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patterns of neighbor-change orientation (B) and of shear contributed by neighbor changes (B'). 885 

These patterns were obtained similarly as for cell divisions. Only the shear patterns (A' and B') 886 

obtained with the triangulation method provide a quantitative measurement of the local deformation 887 

induced by each type of cellular event. Square-grid size of 26x26 microns. Time averaging covering 888 

about 55min (11 frames) in each grid element. Scale bar 50 microns. 889 

 890 

 891 

Figure 6. Construction of the relational database of TissueMiner 892 

(A) Conceptual scheme of the database. Entities (square boxes) are related to other entities by 893 

associations (rounded boxes). Each entity contains an identifier (underlined) that uniquely defines 894 

each record. The database can be implemented by converting entities into tables (see appendix 1 895 

and Figure 6 - figure supplement 2). (B) Cell lineage trees are stored in the database: upon division 896 

a mother cell identifier a gives rise to two new daughter cell identifiers b and c. {a,b,c,d,e,f,g} 897 

defines one lineage group. (C) A pixelated cell contour in the 2D cell network: green=bond pixels, 898 

red=vertex pixels, white=other cell network pixels. (D) Vectorized representation of the cell shown 899 

in (C). To preserve the topology of the cell network, directed bonds (cyan) are defined from within 900 

a given cell alpha and ordered anticlockwisely along the cell contour. Each directed bond is 901 

complemented by a conjugated bond (magenta) and is linked to it next counter-clockwise follower 902 

(dashed).  903 

 904 

Figure 6 - figure supplement 1. Tracked cells identified by unique colors in TissueAnalyzer 905 

(A) shows two consecutive frames depicting colored-tracked cells from a time-lapse movie 906 

processed with TissueAnalyzer. Each cell is assigned a color identifier that uniquely defines it in the 907 

course of the time-lapse. One pixel wide cell-cell interfaces are visible in white on the raster image.   908 
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 909 

Figure 6 - figure supplement 2. Logical scheme of the relational database 910 

(A) The conceptual scheme shown in Figure 1A can be automatically converted to a logical scheme 911 

shown here by using softwares such as IntelliJDEA or MySQL workbench. The rules of convertion 912 

are briefly evoked in appendix 1.  The entities defined in the conceptual scheme are converted into 913 

tables containing one primary key (upper part of the table) that uniquely defines each record in the 914 

table, the properties of each record, and the foreign keys (arrows). Foreign keys are properties of 915 

one table pointing to the primary key of a related table (ex: conj_dbond_id:dbond_id means that the 916 

conj_dbond_id column is a foreign key whose values must be defined in the dbond_id column of 917 

the dbonds table). As a consequence of logical contraints by foreign keys, tables harbor more 918 

columns that one expected from looking at Figure 6A. This logical scheme now shows all tables 919 

and columns of the database. This scheme is implemented in physical SQLite tables can are indexed 920 

for the sake of performance (see CreateDbFromParser.R on https://github.com/mpicbg-921 

scicomp/tissue_miner). 922 

 923 

Figure 7. Automated workflow using snakemake 924 

(A) The snakemake engine can generate a directed acyclic graph (DAG) where we show an 925 

example here. This graph represents both the execution dependency (grey arrows) and the execution 926 

state of the workflow (solid or dashed line). Each box corresponds to an execution rule, namely an 927 

program to be run along with required input(s) and expected output(s). This DAG can be generated 928 

at any time when running the workflow (see documentation). Solid lines indicate the rules that have 929 

not been executed yet, whereas dashed lines depict completed jobs. The first rule to be executed is 930 

called "make_originals": it prepares the tracked images from TissueAnalyzer to be converted into 931 

tables of values containing all necessary entities along with their properties by the parser 932 
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(parse_tables rule). Then the "make_db" rule is executed for building the database. Following the 933 

grey arrows can one navigate into the next steps of the workflow. The "roi_tracking" rule filters out 934 

cells in contact to margin cells including user-defined regions of interest and the "roi_movie" rule 935 

allows us to visualize regions of interest over time. The "stripe_movies" and "state_movies" rules 936 

generate annotated movies to visualize the deformation of the tissue and the cell state properties 937 

(area, elongation). The "four_way" rule detects four-way vertices and performs basics statics on 938 

vertices. The "tri_create" rule performs the triangulation of the network for further shear calculation 939 

and visualization ("shear_calculate" and "shear_movie"). It also enables triangle tracking and 940 

mapping to each type of cell event ("tri_categorize"). The rule "topo_countT1" detects neighbor 941 

changes that are not due to division or extrusion, and categorize them into "gained" or "lost" 942 

neighbors. The "topo_movie" rules allow one to visualize the coarse-grained rates of division and 943 

neghbors changes on the tissue. The "topo_unbalance" rule is a quality check to verify that the 944 

number of gained neighbors is similar to the number of lost neighbors. The "polygon_class" rule 945 

performs the cell-neighbor number count.  The "lineage_colors" rule allows us to optimize the color 946 

of each lineage group such that adjacent lineage groups always have different colors. Finally, the 947 

"lineage_movies" allows one to visualize lineage groups and cell generations on the tissue. The rule 948 

"all" checks that all upstream jobs have been completed. 949 

 950 

Videos legends 951 

 952 

Video 1: HOWTO: drawing ROI’s 953 

Video 2: Visualizing tissue deformation by using vertical stripes 954 

Video 3: HOWTO: Orienting a tissue 955 

Video 4: Color-coded cell area pattern 956 
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Video 5: Color-coded cell elongation norm pattern 957 

Video 6: Coarse-grained cell elongation pattern 958 

Video 7: Color-coded cell packing pattern 959 

Video 8: Color-coded cell generation pattern 960 

Video 9: Color-coded cell division pattern in veins and by time intervals 961 

Video 10: Coarse-grained cell division pattern 962 

Video 11: Coarse-grained cell rearrangement pattern 963 

Video 12: Computer-generated hexagonal cells with an imposed shear rate 964 

Video 13: Computer-generated hexagonal cells with an imposed isotropic expansion rate 965 
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Figure 4. Visualization and quantification of T1 transitions
(A-A') Cartoon depicting an effective T1 transition (A) that corresponds to cell-contact loss and gain in different 
directions. Each contact loss or gain is assigned a unit nematics describing its orientation. (B-B') Pattern of cells losing 
contact (green), gaining contact (red) or both (blue). (C) Rate of neighbor change per cell and per hour in the blade, 
veins and intervein regions of interests. Rates were averaged within discrete time intervals of one hour and further 
averaged among the 3 WT wings (TM R-User Manual, section 3.8). Error bars depict the standard deviation amongst 
wings. (D) Coarse-grained pattern of neighbor exchange orientation at 17 hAPF. Cell neighbor change nematics were 
obtained by summing up unit nematics in each grid elements of 33x33microns and further averaged in time using a 
50min time window. Scale bar 50 microns. 
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