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SUMMARY

Basal (intermediate) progenitors are the major source
of neurons in the mammalian neocortex. The molecu-
lar machinery governing basal progenitor biogenesis
is unknown. Here, we show that the zinc-finger tran-
scription factor Insm1 (insulinoma-associated 1) is
expressed specifically in progenitors undergoing neu-
rogenic divisions, has a panneurogenic role through-
out the brain, and promotes basal progenitor forma-
tion in the neocortex. Mouse embryos lacking Insm1
contained half the number of basal progenitors and
showed a marked reduction in cortical plate radial
thickness. Forced premature expression of Insm1 in
neuroepithelial cells resulted in their mitosis occurring
at the basal (rather than apical) side of the ventricular
zone and induced expression of the basal progenitor
marker Tbr2. Remarkably, these cells remained nega-
tive for Tis21, a marker of neurogenic progenitors, and
did not generate neurons but underwent self-amplifi-
cation. Our data imply that Insm1 is involved in the
generation and expansion of basal progenitors, a hall-
mark of neocortex evolution.

INTRODUCTION

A hallmark of mammalian brain evolution is the expansion of the

cerebral cortex. The concomitant increase in cortical neurons

largely reflects an increase in the number of neuron-generating

(neurogenic) divisions of progenitor cells (PCs). Two principal

parameters determine how many of these divisions occur during

cortical neurogenesis: (1) how often a given PC undergoes neu-

rogenic divisions and (2) how many PCs capable of undergoing

neurogenic division (neuronal PCs) are formed (Caviness et al.,

1995; Dehay and Kennedy, 2007; Huttner and Kosodo, 2005;

Kriegstein et al., 2006; Rakic, 1995).

Neuronal PCs in the developing mammalian cerebral cortex

can be classified into two principal groups depending on where

mitosis occurs. One group comprises the PCs that divide at the
40 Neuron 60, 40–55, October 9, 2008 ª2008 Elsevier Inc.
ventricular surface (or very close to it). These include the neuro-

epithelial (NE) cells, the primary PCs of the central nervous sys-

tem (CNS) (Götz and Huttner, 2005), and the PCs they transform

into with the onset of neurogenesis, the radial glial cells (Krieg-

stein and Götz, 2003) and the short neural precursors (Gal

et al., 2006). As apical-basal cell polarity is a characteristic fea-

ture of these PCs (Götz and Huttner, 2005) and the ventricular

surface corresponds to their apical plasma membrane, these

PCs will be collectively referred to as APs (Haubensak et al.,

2004; Konno et al., 2008).

The other group comprises the PCs that divide away from the

ventricular surface, in the basal region of the ventricular zone (VZ)

and in the adjacent subventricular zone (SVZ). These PCs have

been referred to as basal progenitors (BPs) (Haubensak et al.,

2004) or non-surface-dividing PCs (to indicate the site of their

mitosis) (Miyata et al., 2004) or as intermediate PCs (to indicate

their place in the lineage from APs to neurons) (Kriegstein

et al., 2006; Noctor et al., 2004; Pontious et al., 2008). Impor-

tantly, by dividing in an abventricular location, BPs serve as

a means of substantially increasing the number of mitoses that

can occur per unit segment of ventricular wall, as compared to

a situation in which mitoses are confined to the ventricular sur-

face (Haubensak et al., 2004; Kriegstein et al., 2006; Pontious

et al., 2008; Smart, 1972b).

Consistent with this, BPs are a characteristic feature of mam-

mals (as opposed to other vertebrates); are most abundant in the

telencephalon, the part of the mammalian CNS with the greatest

production of neurons; and are the source of most cortical neu-

rons (Haubensak et al., 2004; Pontious et al., 2008). Moreover,

the expansion of the mammalian cerebral cortex is associated

with an increase in BPs relative to APs (Rakic, 2003; Smart

et al., 2002; Tarabykin et al., 2001). This increase is thought to

reflect the capacity of BPs to self-expand their population by

symmetric division (Kriegstein et al., 2006; Pontious et al.,

2008), with the founder BPs arising from APs (Attardo et al.,

2008; Miyata et al., 2004).

A central question of cortical neurogenesis therefore is: Which

molecules govern the production of BPs? While perturbation of

proteins implicated in apical-basal polarity (Cappello et al.,

2006) and cleavage plane orientation (Buchman and Tsai, 2007;

Konno et al., 2008; Morin et al., 2007) can result in mitoses
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occurring in an abventricular location, the molecular machinery

that is involved in the physiological transition from APs to BPs

is unknown. Using both loss- and gain-of-function analyses, we

report here that the transcription factor Insm1 (insulinoma-asso-

ciated 1) (Gierl et al., 2006; Goto et al., 1992; Lan et al., 1994; Wild-

ner et al., 2007; Xie et al., 2002) has a panneurogenic role through-

out the brain and, in the neocortex, is a master regulator of BP

biogenesis.

RESULTS

Insm1 Expression Correlates with Neurogenesis
throughout the Nervous System
To identify candidate genes involved in the switch of neural PCs

from proliferative to neurogenic divisions, we performed ge-

nome-wide gene expression profiling of the E9.5–E11.0 mouse

dorsal telencephalon (dTel) at 12 hr intervals. A particularly inter-

esting candidate gene whose expression in the CNS showed

a striking correlation with the onset of neurogenesis and which

appeared to be specifically expressed in neural PCs was insuli-

noma-associated 1 (Insm1, IA-1), a zinc-finger transcription

factor identified in human pancreatic b cell tumors (Goto et al.,

1992). Specifically, by microarray analysis, Insm1 mRNA was

barely detectable in the dTel until E10.0 but showed a steep

increase in expression levels at E10.5 and E11.0 (Figure 1A).

Whole-mount in situ hybridization (ISH) revealed the presence

of Insm1 mRNA throughout the central (Figure 1B) and periph-

eral (see Figure S1 available online) nervous system (Gierl

et al., 2006; Wildner et al., 2007). Insm1 expression in the CNS

reflected the known gradients of neurogenesis, i.e., it was first

detectable in the midbrain-hindbrain region (Figure 1B, E9.5-lat,

black arrowhead and line) and then spread caudally throughout

the spinal cord (Figure 1B, E11.0-lat and E11.0-dor, black

arrowheads) and rostrally to the telencephalon (Figure 1B,

E11.0-lat, arrow) in a ventral-to-dorsal fashion (Figure 1B,

E11.0-ant, black and white arrowheads, respectively). Impor-

tantly, the temporal and spatial expression pattern of Insm1 in

the CNS was essentially indistinguishable from that of Tis21

(Figure 1B), a panneurogenic PC marker (Haubensak et al.,

2004; Iacopetti et al., 1999).

ISH on cryosections corroborated the expression of Insm1 in

the CNS in correlation with the gradients of neurogenesis and

revealed that its expression was confined to the PC layers

(Figure 1C). Notably, in the developing neocortex, Insm1 mRNA

was abundant in both the VZ and SVZ (Figures 1D and 1E), i.e.,

the two neuronal PC-containing layers. Interestingly, at later

stages of development, Insm1 expression specifically occurred

in brain areas showing characteristic patterns of neurogenesis,

such as (1) the external granule cell layer of the developing

cerebellum (Figure 1F), (2) the dentate gyrus of the postnatal

hippocampus (Figures 1G and 1G0), and (3) the wall of the lateral

ventricle at postnatal day P7 (Figures 1H–1I0), where it persisted

into adulthood (Figure 1J). Taken together, our expression data

suggest that Insm1 is a panneurogenic transcription factor.

Figure 1. Mouse Insm1 mRNA Expression

Correlates with Neurogenesis throughout

the Embryonic and Adult CNS

(A) Insm1mRNA levels (in arbitraryunits [A.U.]) in the

E9.5–E11.0 dorsal telencephalon (dTel) as revealed

by microarray analysis. Data are the mean of three

(E9.5–E10.5) or two (E11.0) independent samples;

bars indicate SD (E9.5–E10.5) or the variation of

the individual values from the mean (E11.0).

(B) Whole-mount in situ hybridization (ISH) for

Insm1 and Tis21 mRNAs of E9.5–E11.0 mouse

embryos. Lat, lateral view; dor, dorsal view; ant,

anterior view. White asterisks, trigeminal ganglion;

white and black arrowheads in E9.5-lat, telen-

cephalon and ventral midbrain, respectively;

dashed line, mid-hindbrain boundary; arrow and

arrowhead in E11.0-lat, telencephalic vesicle and

spinal cord, respectively; black and white arrow-

heads in E11.0-dor, spinal cord and dorsal root

ganglia, respectively; black and white arrowheads

in E11.0-ant, ventrolateral and dTel, respectively;

star in E11.0-ant, olfactory placode.

(C–F) ISH for Insm1 mRNA on sagittal cryosec-

tions of E11.0–E16.5 mouse brains. Boxed region

in (D) is shown at higher magnification in (E). Note

that (D)–(F) show cryosections from Tis21-GFP

knockin mice that had also been subjected to im-

munoperoxidase staining for GFP. Di, diencepha-

lon; Mes, mesencephalon; Met, metencephalon;

Ctx, cortex; CP, cortical plate; IZ, intermediate

zone; LV, lateral ventricle; Cb, cerebellum. Scale

bars = 200 mm in (C), (D), and (F) and 50 mm in (E).

(G–J) ISH on coronal cryosections of postnatal (P7) and adult (4 months) brains for Insm1 mRNA (blue, [G]–[J]) in combination with phosphohistone H3 (PH3)

immunoperoxidase (brown, [G]–[J]) and DAPI staining (G0, H0, and I0). Arrowheads in (J) indicate Insm1-expressing cells, one of which is in mitosis (arrow).

DG, dentate gyrus; LV, lateral ventricle; lat, lateral; med, medial. Scale bars = 100 mm in (G)–(I) and 50 mm in (J).
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Figure 2. Insm1 mRNA Is Expressed in Neurogenic Progenitor Cells

(A–E) ISH for Insm1 or Tis21 (blue) combined with immunoperoxidase (brown) on cryosections of E10.5–E16.5 mouse brain. Ventricular surface is down (dashed

lines); basal lamina is indicated by dotted lines. Hind, hindbrain; IZ, intermediate zone; NL, neuronal layer; CP, cortical plate. Scale bars = 50 mm unless otherwise

indicated.

(A) Staining for PH3 (Ac) and GFP ([Ad], Tis21-GFP knockin mouse). Boxed region in (Ac) is shown at higher magnification in (Cc).

(B) Staining for bIII-tubulin (Tub); (Bc) shows immunofluorescence (IF) (red) rather than immunoperoxidase. Boxed region in (Bb) is shown at higher magnification

in (Be). Arrows, newborn neurons; arrowheads, Insm1-expressing cells. Scale bars in (Bd) and (Be) = 10 mm.

(C) Staining for PH3. Black arrowheads, mitotic Insm1-expressing apical progenitors (APs) and basal progenitors (BPs); white arrowheads, mitotic Insm1-

negative APs. (Cd) and (Ce) and (Cf) and (Cg) show APs and BPs, respectively, at higher magnification. Scale bars = 10 mm in (Cf) (for [Cd]–[Cf]) and in (Cg).

(D) Staining for GFP (Tis21-GFP knockin mouse). Boxed region in (Db) is shown at higher magnification in (Dc). Arrows in (Dd) indicate Insm1- and Tis21-GFP-

expressing cells. Black arrowheads in (De)–(Dh) indicate an Insm1- and Tis21-GFP-expressing mitotic AP (De), Insm1- and Tis21-GFP-expressing mitotic BPs

(Df), and an Insm1-expressing but Tis21-GFP-negative mitotic BP (Dg); white arrowhead indicates a Tis21-GFP-expressing but Insm1-negative mitotic BP (Dh).

Mitotic cells were identified by PH3 IF and DAPI staining (not shown). Scale bars = 10 mm in (Dc), (Dd), and (Dh) (for [De]–[Dh]).

(E) Staining for bIII-tubulin.

(F and G) Quantitation of mitotic APs and BPs (identified by PH3 IF) expressing Insm1 (F) and Insm1 and/or Tis21-GFP ([G], Tis21-GFP knockin mouse), as

indicated. More than 500 cells were counted for each condition in (F), and 126 cells were counted in (G).

(H) Quantitation of mitotic APs (identified by PH3 staining) expressing Insm1 in wild-type (+/+) and Hes5 knockout (�/�) E10.5 hindbrain (Hind) and dTel. Data are

the mean of three embryos; bars indicate SD. *p < 0.01.

(I) Cartoon summarizing Insm1 mRNA expression (blue) and its increase from AP to BP in the dTel at the onset of neurogenesis. NE, neuroepithelial cells under-

going proliferative, but not yet neurogenic, division; N, newborn neurons; CP, cortical plate; VZ, ventricular zone; SVZ, subventricular zone.
42 Neuron 60, 40–55, October 9, 2008 ª2008 Elsevier Inc.
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Insm1 Is Expressed in Neurogenic APs and BPs
Closer examination by ISH of the distribution of Insm1 mRNA in

the VZ at the onset of neurogenesis revealed the highest levels of

expression in cell bodies located at the basal side of the VZ

(Figures 2Aa and 2Ab). This pattern, together with the restriction

of Insm1 expression to the PC-containing layers in correlation

with neurogenesis (Figure 1), would be consistent with either

expression in neurogenic PCs, transient expression in newborn

neurons, or both. We used ISH in combination with immunohis-

tochemistry on E10.5–E11.0 hindbrain and E10.5–E16.5 telen-

cephalon to determine which was the case.

Counterstaining for the early neuronal marker bIII-tubulin

showed that Insm1 mRNA was not detected in the neuronal

layers and/or cortical plate (Figures 2Ba, 2Bc, and 2Ea). More-

over, the newborn neurons that either were found within the VZ

(Figure 2Bd, arrow) or were forming the first neuronal layer

(Figures 2Bb and 2Be, arrows) also lacked Insm1 mRNA.

Counterstaining for the mitotic marker phosphohistone H3

(PH3) showed that Insm1 mRNA was detected in both (1)

PCs dividing at the apical side of the VZ (NE cells, radial glial

cells, and short neural precursors [Pontious et al., 2008], collec-

tively referred to as APs [Haubensak et al., 2004]) and (2) PCs

dividing in the basal region of the VZ and, at later stages of neu-

rogenesis in the telencephalon, in the SVZ (Haubensak et al.,

2004; Miyata et al., 2004; Noctor et al., 2004) (collectively

referred to as BPs [Haubensak et al., 2004]) (Figures 2Ca–

2Cc; see also Figure 2Ac). The vast majority of mitotic BPs

were Insm1 positive throughout neurogenesis (Figure 2F; Fig-

ures 2Cb, 2Cc, 2Cf, and 2Cg). By contrast, the proportion of

Insm1-positive APs was small at the onset of neurogenesis

(Figure 2F; Figures 2Cd and 2Ce) and appeared to increase

with its progression (compare Figures 2Cb and 2Cc). We no-

ticed that at the onset of neurogenesis, Insm1 mRNA levels

were consistently lower in the Insm1-positive mitotic APs than

mitotic BPs (Figure 2Cb; see also Figure 2I). Taken together,

these observations suggested that Insm1 is specifically ex-

pressed in neurogenic PCs rather than newborn neurons

(Figure 2I).

To examine this further, we compared the expression of

Insm1 with that of the panneurogenic marker Tis21 at the sin-

gle-cell level, taking advantage of the Tis21-GFP knockin

mouse line (Haubensak et al., 2004), in which GFP is expressed

under the control of the Tis21 promoter. Counterstaining for

Tis21-GFP at the onset of neurogenesis, when individual neuro-

genic PCs can be more easily discerned from surrounding cells

than at later stages, revealed an almost complete overlap with

Insm1 expression in both interphase (Figure 2Da) and mitotic

(Figure 2De) APs as well as interphase (Figure 2Dd) and mitotic

(Figure 2Df) BPs. Specifically, quantification of mitotic BPs

(Figure 2G) at the onset of neurogenesis (E10.5) showed that

the vast majority (80%) were positive for both Insm1 mRNA

and Tis21-GFP, with only a minority expressing either Insm1

alone (13%; Figure 2Dg), Tis21-GFP alone (2%; Figure 2Dh),

or neither marker (5%). Consistent with this, the Insm1 and

Tis21 expression patterns with regard to PC versus neuronal

layers, as revealed by ISH, were very similar (Figure 2E). We

conclude that Insm1, like Tis21, is a panneurogenic PC marker

(Figure 2I).
Insm1 Expression Is Controlled by Positive and Negative
Transcriptional Regulators of Neurogenesis
The levels of Insm1 mRNA were found to be controlled by Hes

genes and proneural genes (for details, see Supplemental

Results and Discussion and Figures S2 and S3). In particular,

in the E10.5 hindbrain of Hes5 knockout mice, a much greater

proportion (z50%) of APs than normal showed Insm1 expres-

sion (Figure 2H).

Ablation of Insm1 Reduces SVZ and Cortical Plate
Radial Thickness
To directly investigate the role of Insm1 in neurogenesis, we an-

alyzed Insm1 null mouse embryos, in which the role of Insm1 has

thus far been investigated with regard to the development of the

endocrine pancreas and sympathoadrenal system (Gierl et al.,

2006; Wildner et al., 2007). Given the higher level of Insm1

mRNA in BPs than in APs (Figure 2) and its expression in almost

all BPs (Figures 2F and 2G), we concentrated on neurogenesis in

the dTel, where the majority of neurons are thought to be gener-

ated by BPs (Haubensak et al., 2004; Pontious et al., 2008).

Insm1 ablation leads to embryonic lethality starting at E11.5

(Gierl et al., 2006) (see Experimental Procedures), and the latest

embryonic stage at which we could (rarely) obtain embryos was

E16.5. Therefore, most of our analyses of the developing Insm1

null neocortex were carried out at E13.5–E14.5, and the latest

developmental stage analyzed was E16.5.

Whereas E13.5–E14.5 Insm1 null brains did not show any

striking abnormalities with regard to gross anatomical structure

as observed macroscopically (data not shown), immunohisto-

chemical analysis revealed a slight (albeit not statistically signif-

icant) reduction in the radial thickness of the E13.5–E14.5 dTel

compared to either wild-type or heterozygous littermates (com-

pare Figure 3A versus 3B and Figure 3G versus 3H and 3S). This

reduction became greater by E16.5 (compare Figure 3I versus

3J and Figure 3K versus 3L and 3W) and affected predominantly

the SVZ (Figures 3V and 3Z) and cortical plate (Figures 3T and

3X), as was also evident from staining for bIII-tubulin (compare

Figure 3C versus 3D). Comparative quantitation of Tbr1-positive

and DAPI-stained nuclei in the cortical plate at E13.5 revealed

an essentially identical decrease in the Insm1 knockouts

(Figure S4), indicating that the reduction in the radial thickness

of the cortical plate upon Insm1 ablation was due to a reduction

in neurons.

This reduction was not due to increased neuronal death. Im-

munofluorescence (IF) for activated caspase-3 (Figures S5C

and S5D), a marker of apoptotic cells, or DAPI staining (Figures

S5A and S5B; Figures 3K and 3L) did not reveal detectable cell

death in the E14.5 and E16.5 Insm1 null telencephalon. Together

with the reduction in the radial thickness of the SVZ (Figures 3V

and 3Z), the major site of neurogenesis (Haubensak et al., 2004;

Pontious et al., 2008), these data suggested that the generation

of cortical neurons in the mouse dTel was impaired in the

absence of Insm1.

Ablation of Insm1 Leads to Expansion of the VZ
at the Expense of the SVZ
In contrast to the decrease in the radial thickness of the cortical

plate (Figures 3T and 3X) and SVZ (Figures 3V and 3Z), the
Neuron 60, 40–55, October 9, 2008 ª2008 Elsevier Inc. 43
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Figure 3. Reduction in SVZ and CP Thickness and Increase in VZ Thickness and Lateral Expansion of the Dorsal Telencephalon of Insm1

Knockout Mouse Embryos

Cryosections of littermate wild-type, heterozygous (+/�, black bars), and homozygous (�/�, red bars) embryos were analyzed. As wild-type and heterozygous

embryos were indistinguishable, only the results for heterozygous and homozygous embryos are shown. IZ, intermediate zone; CP, cortical plate. Scale

bars = 200 mm in (B and J) and 50 mm in all other panels. +/� and �/� pairs are shown at the same magnification.

(A–H) E14.5.

(A and B) Overview; double immunoperoxidase for Tbr2 (blue, nickel enhancement) and bIII-tubulin (Tub) (brown). Arrowheads indicate the maximum lateral

extension of the dTel in the image as revealed by Tbr2 immunostaining (see quantification in [M]). The lines indicate the position of the quantitations shown in

(S)–(V) and the standard position of the lateral edges of the 203 and 403 images taken in this study.

(C and D) bIII-tubulin immunoperoxidase.

(E and F) Pax6 IF.

(G and H) DAPI staining.

(I–L) E16.5.

(I and J) Overview; PCNA IF (red) combined with DAPI staining (blue). Dashed lines and arrowheads indicate the lateral extension of the dTel at the ventricular

surface (see quantification in [O]). Solid lines indicate the position of the quantitations shown in (W)–(Z) and the standard position of the lateral edges of the 203

and 403 images taken in this study.

(I0 and J0) PCNA IF in the VZ and SVZ at higher magnification.

(K and L) DAPI staining.

(M–O) Quantification of the lateral dimension of the dTel at E14.5 (M and N) and E16.5 (O).

(M) Lateral extension as determined from the distance between the tips of the arrowheads shown in (A) and (B). For each section along the rostrocaudal axis

analyzed, data were first expressed as a percentage relative to wild-type (mean of three embryos), followed by calculation of the average percentage for all

sections of a given embryo. Data are the mean of three embryos; bars indicate SD. *p < 0.05.

(N) Total number of sections required to cover the dTel (tel.). Data are the mean of three embryos; bars indicate SD.
44 Neuron 60, 40–55, October 9, 2008 ª2008 Elsevier Inc.
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radial thickness of the VZ in the Insm1 null dTel was not re-

duced (Figure 3U) but actually increased, which was particu-

larly evident at E16.5 (Figure 3Y). This was due to an increase

in the number (rather than the proportion) of cycling cells in

the VZ, as revealed by PCNA IF (Figures 3I0, 3J0, 3P, and 3Q).

Interestingly, consistent with the decrease in the radial thick-

ness of the SVZ (Figure 3Z), the number of PCNA-positive cells

in the SVZ was reduced (Figure 3R), and this reduction largely

corresponded to the increase in PCNA-positive cells in the VZ

(Figure 3Q).

Remarkably, the Insm1 null dTel exhibited not only a radially

thicker VZ but also an expansion in the lateral dimension, which

was greater at E16.5 than at E14.5 (compare Figure 3A versus 3B

and Figure 3I versus 3J and 3M–3O). We conclude that ablation

of Insm1 impairs the formation of the SVZ, with a concomitant

expansion of the VZ.

Ablation of Insm1 Impairs the Generation of BPs
Given these changes in the VZ and SVZ upon Insm1 ablation, we

investigated APs and BPs in greater detail. IF for PH3 (Figures 4A

and 4B) revealed a reduction in the number of mitotic BPs in the

E13.5 and E14.5 Insm1 null dTel to about half of that in wild-type

and heterozygous littermates (Figure 4D and data not shown),

whereas mitotic APs showed a small, albeit not statistically sig-

nificant, increase (Figure 4C). Similar results were obtained when

APs and BPs were quantitated at E11.5 (data not shown) and

E16.5 (Figures 4M–4P).

We sought to corroborate the reduction in BPs upon ablation

of Insm1 by immunostaining for Tbr2 (Figures 4E and 4F), which

is expressed, along with Insm1 (Figures 4I and 4J), in almost all

BPs (Englund et al., 2005) (Figure 4K). Indeed, an essentially

identical reduction in mitotic BPs was observed when Tbr2-pos-

itive basal mitoses were quantified (Figure 4H). Analysis of Tbr2-

positive interphase nuclei (rather than Tbr2-positive basal mito-

ses) also revealed a reduction for the Insm1 null dTel (Figure 4L).

Interestingly, we observed a decrease very similar to that in Tbr2-

positive basal mitoses (Figure 4H) when, instead of examining all

apical mitoses in the Insm1 null dTel (Figure 4C), we counted only

the Tbr2-positive apical mitoses (Figure 4G). The latter constitute

a small subpopulation of all apical mitoses (Englund et al., 2005)

and presumably constitute APs that generate BPs. Together with

the observation that there was no increased cell death in the

Insm1 null cortical wall (Figure S5), our data indicate that

Insm1 ablation reduces the generation of BPs throughout neuro-

genesis.
Both Deep Layer and Upper Layer Neurons Are Reduced
in Insm1 Null Neocortex
Given these observations, it was important to investigate the

abundance of neurons in the various layers of the Insm1 null neo-

cortex, as deep layer and upper layer neurons are generated

during the early and late stages of neurogenesis, respectively (Mo-

lyneaux et al., 2007). The overall reduction in radial thickness of the

E16.5 cortical plate upon Insm1 ablation, as revealed by IF for the

general marker of young neurons bIII-tubulin (Figures 4Q and 4R),

was due to a reduction in both deep layer neurons, identified by

Tbr1 IF (Figures 4U and 4V; see also Figure S4) (Englund et al.,

2005), and upper layer neurons, identified by Brn1 IF (Figures 4S

and 4T) (Molyneaux et al., 2007). IF for another marker of deep

layerneurons,Foxp2(Molyneauxetal.,2007), revealedareduction

similar to that observed for Tbr1 (Figures 4W and 4X). Insm1 abla-

tion did not result in a premature switch of neocortical PCs from

the neuronal to the glial lineage, as revealed by CD44 and nestin

IF of E16.5 Insm1 null neocortex (for details, see Supplemental Re-

sults andDiscussion and FigureS6).These data indicate that,con-

sistent with the reduction in BPs at early as well as late stages of

neurogenesis, both deep layer and upper layer neuron production

are decreased in the developing Insm1 null neocortex.

Insm1 Ablation Leads to Reduced Neurogenesis in Brain
Regions Other Than the Neocortex
Given that (1) Insm1 ablation reduces neurogenesis and BPs in

the developing neocortex (Figure 3; Figure 4) and (2) Insm1 ex-

pression occurs throughout the developing brain in the VZ and

(when present) SVZ in correlation with neurogenesis (Figure 1;

Figure 2), it was of interest to investigate whether Insm1 ablation

impaired neurogenesis in brain regions other than the dTel. In

both the developing hindbrain (Figures 4Ya and 4Yb) and mid-

brain (Figures 4Za and 4Zb), where neurogenesis occurs earlier

than in the dTel and BPs are very rare (Haubensak et al.,

2004), Insm1 ablation resulted in a reduction in the thickness of

the neuronal layer as revealed by bIII-tubulin IF at E11.5. In

contrast, Pax6 IF did not reveal any obvious changes in the hind-

brain and midbrain VZ at this early developmental stage (Fig-

ures 4Y and 4Z). For other brain regions, see Supplemental

Results and Discussion and Figure S7.

Forced Premature Insm1 Expression Increases
the Occurrence of Tbr2-Positive Basal Mitoses
at the Expense of Apical Mitoses
Given that Insm1 is necessary for the generation of BPs, we in-

vestigated whether it is sufficient to increase the occurrence of
(O) Lateral extension as determined from the distance between the tips of the arrowheads shown in (I) and (J). Data are the mean of three (+/�) and two (�/�)

embryos (at least 12 cryosections per embryo); bars indicate SD (+/�) or the variation of the individual values from the mean (�/�).

(P–R) Quantification of PCNA-positive nuclei in the VZ and SVZ at E16.5 as determined after IF in combination with DAPI staining in rectangular fields (203), each

corresponding to 110 mm of ventricular surface. Data are the mean of three (+/�) and two (�/�) embryos; bars indicate SD (+/�) or the variation of the individual

values from the mean (�/�).

(P) Proportion of DAPI-stained nuclei in the VZ that are PCNA positive.

(Q and R) Number of PCNA-positive nuclei per field in the VZ (Q) and SVZ (R).

(S–Z) Quantification of the radial dimensions of the dTel at E14.5 (S–V) and E16.5 (W–Z).

(S–V) Radial thickness of the entire cortical wall (S), the cortical plate (T), the VZ (U), and the SVZ (V), determined at the position of the lines shown in (A) and (B).

Data are the mean of five (+/�) and three (�/�) embryos; bars indicate SD. *p < 0.05.

(W–Z) Radial thickness of the entire cortical wall (W), the cortical plate (X), the VZ (Y), and the SVZ (Z), determined at the position of the lines shown in (I) and (J).

Data are the mean of three (+/�) and two (�/�) embryos; bars indicate the variation of the individual values from the mean.
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basal mitoses. For this purpose, we carried out forced expres-

sion of Insm1 in the dTel of E10.5 NMRI mice, i.e., at the onset

of neurogenesis. Specifically, a plasmid driving Insm1 expres-

sion from a constitutive promoter was electroporated into NE

cells of embryos ex utero, followed by whole-embryo culture

(WEC) for 24 hr. This in vitro system is known to allow embryonic

development, and neurogenesis in particular, to proceed in

a manner indistinguishable from that in utero (Calegari and Hutt-

ner, 2003). Moreover, we observed no significant apoptosis us-

ing this system, either in the control condition or upon any of

the forced Insm1 expressions described below (data not shown).

Upon electroporation of the E10.5 dTel, approximately one-

third of NE cells are known to express the transgene (Osumi

and Inoue, 2001), which was also observed in the present study

when analyzing GFP expression from a reporter plasmid.

Consistent with this, ISH revealed that upon forced Insm1

Figure 4. Reduction in BPs and Neurons of

All Cortical Layers in the Dorsal Telenceph-

alon of Insm1 Knockout Mouse Embryos

Cryosections of littermate wild-type, heterozy-

gous (+/�, black bars), and homozygous (�/�,

red bars) embryos were analyzed (except for [I]

and [J]). As wild-type and heterozygous embryos

were indistinguishable, only the results for hetero-

zygous and homozygous embryos are shown. IZ,

intermediate zone; SP, subplate; CP, cortical

plate; MZ, marginal zone. Scale bars = 50 mm.

+/� and �/� pairs are shown at the same magni-

fication.

(A and B) PH3 (green) and Pax6 (red) double IF

combined with DAPI staining (blue) at E13.5.

(C and D) Number of mitotic APs (C) and BPs (D) at

E13.5 as revealed by PH3 IF (field = 203 image).

Data are the mean of four (+/�) and three (�/�)

embryos; bars indicate SD. **p < 0.01.

(E and F) Tbr2 IF at E13.5. Arrowheads indicate

Tbr2-expressing mitotic BPs (identified by PH3

IF). Inset in (E): double IF for Tbr2 (red) and PH3

(green) of the cell indicated by the asterisk.

(G and H) Number of Tbr2-expressing mitotic APs

at E14.5 ([G], sum of 12 fields = 203 images) and

BPs at E13.5 ([H], field = 403 image), as revealed

by double IF for PH3 and Tbr2. Data are the

mean of five (+/�) and three (�/�) embryos for

apical mitoses and four (+/�) and two (�/�)

embryos for basal mitoses; bars indicate SD or

the variation of the individual values from the

mean. *p < 0.02.

(I and J) ISH for Insm1 (blue) combined with stain-

ing for Tbr2 (brown) on cryosections of E13.5

dTel of NMRI mice. The boxed region in (I) is

shown at higher magnification in (J). Arrowheads

indicate Insm1- and Tbr2-expressing BPs in mi-

tosis as revealed by DAPI staining (not shown).

Dashed line, ventricular surface.

(K) Proportion of mitotic BPs (identified by PH3 IF)

expressing Tbr2 at E13.5. Data are the mean of

two embryos; bars indicate the variation of the

individual values from the mean.

(L) Number of Tbr2-expressing cells in interphase

at E14.5 as revealed by Tbr2 IF, determined for

each image in a rectangular field corresponding

to 123 mm of ventricular surface. Data are the

mean of six (+/�) and three (�/�) embryos; bars

indicate SD. *p < 0.01.

(M and N) Tbr2 (green) and PH3 (red) double IF combined with DAPI staining (blue) at E16.5. Arrowheads indicate mitotic BPs, essentially all of which are Tbr2 positive.

(O and P) Number of apical (O) and basal (P) mitoses at E16.5 as revealed by PH3 IF (field = 203 image). Data are the mean of three (+/�) and two (�/�) embryos;

bars indicate SD (+/�) or the variation of the individual values from the mean (�/�).

(Q–X) bIII-tubulin ([Q and R]; Tub, red), Brn1 ([S and T]; green), Tbr1 ([U and V]; red), and Foxp2 ([W and X]; red) IF at E16.5, combined with DAPI staining (blue) as

shown in the left segment of each panel.

(Y and Z) Pax6 (green) and bIII-tubulin (red) double IF in the ventral hindbrain (Hind, [Ya and Yb]) and ventral midbrain (Mid, [Za and Zb]) at E11.5. Dashed lines

indicate the boundary between the VZ and the neuronal layers. Note the reduction in the radial thickness of the neuronal layers in the Insm1 knockout.
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expression, a much greater proportion of NE cells than in the

control condition showed robust Insm1 mRNA levels

(Figure 5A). In fact, the proportion of Insm1 mRNA-positive NE

cells observed upon electroporation at this very early stage of

neurogenesis corresponded to that normally only observed at

later stages (see Figure 2Bc). Hence, the forced Insm1 expres-

sion actually constituted a premature expression with regard to

most of the targeted NE cells. Forced premature expression of

Insm1 led to a more than 2-fold increase in the abundance of

basal mitoses, as revealed by PH3 immunostaining (Figure 5B)

or quantitation of abventricular mitotic centrosomes

(Figure 5C). Apical mitoses were not increased but, if anything,

slightly decreased (Figure 5B).

At E11.5, apical mitoses are much more abundant than basal

mitoses (Haubensak et al., 2004), and so the gain in basal mitoses

upon forced Insm1 expression could correspond to the loss in

apical mitoses. To investigate this, we restricted our analysis to

the targeted cells, i.e., those that had actually received the

Insm1 expression plasmid, as indicated by the expression of

the coelectroporated fluorescent reporter protein (GFP or

Figure 5. Forced Premature Insm1 Expres-

sion in the Dorsal Telencephalon Increases

the Number of Tbr2-Positive Basal Mitoses

at the Expense of Apical Mitoses and Re-

duces Cell-Cycle Progression

dTel neuroepithelium of E10.5 NMRI mouse em-

bryos was electroporated with a mixture of either

empty plasmid (A–D) or nonexpressing Insm1 plas-

mid (E–O) and GFP expression plasmid (control;

Con, black bars) or Insm1 expression plasmid and

GFP expression plasmid (Insm1, red bars), followed

by whole-embryo culture (WEC) for 24 hr without

(A–H) or with (I–O) the presence of BrdU during

the last 30 min and preparation of cryosections.

(A) An Insm1-electroporated embryo analyzed by

ISH for Insm1 (blue) combined with PH3 staining

(brown). The boxed regions show, at higher mag-

nification, the nontargeted side (Aa0) and the tar-

geted side (Aa00). Arrowheads indicate mitotic

BPs. Scale bars = 200 mm in (A) and 50 mm in (Aa00).

(B) Quantitation of apical and basal mitoses as

revealed by PH3 staining. Data are expressed as

the ratio of the targeted side to the corresponding

nontargeted side and are the mean of four em-

bryos each; bars indicate SD. **p < 0.001.

(C) Quantitation of centrosomes in mitotic BPs as

revealed by analysis of the basal two-thirds of the

VZ (rectangular field corresponding to 96 mm of

ventricular surface per image) after DAPI staining

and g-tubulin IF. Data are expressed as the ratio

of the targeted side to the corresponding nontar-

geted side and are the mean of three embryos

each; bars indicate SD. *p < 0.03.

(D) Quantitation of total and targeted (GFP-

positive) apical and basal mitoses of the targeted

side as revealed by PH3 and GFP double IF (field =

403 image). Data are the mean of four (control)

and three (Insm1) embryos; bars indicate SD.

*p < 0.02 (basal); *p < 0.05 (apical). Brackets indi-

cate the Insm1-induced gain in basal mitoses (red)

and the loss in apical mitoses (black) in targeted

cells.

(E) Comparison of total (gray bars) and Tbr2-

positive (white bars) basal mitoses as revealed

by PH3 and Tbr2 double IF (field = 403 image). Data are the mean of two (control) and three (Insm1) embryos; bars indicate SD or the variation of the individual

values from the mean. *p < 0.01.

(F and G) Triple IF of the targeted side for GFP (green), Tbr2 (red), and PH3 (white). Arrowheads indicate targeted (GFP-positive, white) and nontargeted (GFP-

negative, black) basal mitoses. Ventricular surface is down. Scale bars = 50 mm.

(H) Quantitation of Tbr2-positive interphase nuclei of the targeted side as revealed by Tbr2 IF (field = 403 image). Data are the mean of two (control) and three

(Insm1) embryos; bars indicate SD or the variation of the individual values from the mean.

(I–N) BrdU incorporation of the targeted side as revealed by double IF for GFP ([I], [J], [M], and [N]; green) and BrdU ([K], [L], [M], and [N]; red). Arrowheads indicate

BrdU-negative targeted cells. Ventricular surface is down (lower dashed lines); upper dashed lines indicate the basal boundary of the VZ. Scale bar = 50 mm.

(O) Quantitation of BrdU-labeled (BrdU+) targeted cells in the VZ as revealed by double IF for BrdU and GFP. Data are expressed as percentage of all targeted

cells and are the mean of two (control) and three (Insm1) embryos; bars indicate SD or the variation of the individual values from the mean. **p < 0.01.
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mRFP). This revealed that forced Insm1 expression reduced the

targeted cells that divided apically to about half (Figure 5D), and

this loss in apical mitoses matched the gain in basal mitoses

(Figure 5D, black and red brackets, respectively).

The increased basal mitoses observed upon forced Insm1

expression exhibited a characteristic feature of BPs, the expres-

sion of Tbr2 (Englund et al., 2005). Specifically, comparison with

the total number of basal mitoses as revealed by PH3 IF showed

that almost all of them were Tbr2 positive, as in the control

situation (Figure 5E; see also Figures 5F and 5G). Analysis of in-

terphase Tbr2-positive nuclei (rather than Tbr2-positive basal

mitoses) also revealed a small, albeit not statistically significant,

increase upon forced Insm1 expression (Figure 5H; see also

Figures 5F and 5G).

Forced Premature Insm1 Expression Reduces
Cell-Cycle Progression
Neurogenic PCs, and BPs in particular, lengthen their cell cycle

(Calegari et al., 2005; Dehay and Kennedy, 2007; Takahashi

et al., 1995b). Given the specific expression of Insm1 in these

PCs, we investigated whether Insm1 reduces their cell-cycle

progression. Insm1 along with a GFP reporter was electropo-

rated into NE cells in the dTel of E10.5 NMRI mice, followed by

WEC for 24 hr and BrdU labeling during the last 30 min of WEC

(Figures 5I–5N). Forced Insm1 expression led to a z20% de-

crease in the proportion of GFP-positive cells in the VZ that

had incorporated BrdU (Figure 5O). This presumably reflected

a lengthening of the cell cycle of the targeted PCs rather than

cell-cycle withdrawal of a subpopulation of cells, as we did not

observe an accumulation of bIII-tubulin-positive cells in the VZ

(Figure S8) and 90% of the Insm1-electroporated cells in the

VZ were found to be PCNA positive (data not shown; see also

the PCNA IF below). We conclude that premature Insm1 expres-

sion reduces cell-cycle progression of neural PCs. Consistent

with this, we observed reduced proliferation of Insm1-trans-

fected Neuro2a cells (Figure S9). This appears to be a conserved

role of Insm1, as forced expression of Insm1 in medaka nonneu-

ral PCs produces a similar effect (Candal et al., 2007).

The Additional Basal Mitoses Induced by Forced
Premature Insm1 Expression Are Tis21-GFP Negative
Two subpopulations of mitotic BPs can be distinguished, those

showing Tis21 expression and those lacking it (Haubensak

et al., 2004). Tis21-expressing BPs constitute up to 90% of all

BPs in the dTel (Haubensak et al., 2004). We therefore investi-

gated whether or not the additional basal mitoses observed

upon forced Insm1 expression showed Tis21 expression. Forced

expression of Insm1 in the dTel of E10.5 Tis21-GFP knockin em-

bryos in WEC produced an effect very similar to that in NMRI

mice (Figures 6A and 6B), causing an approximately 2-fold

increase in the abundance of basal mitoses (Figure 6B). Remark-

ably, the increase in Tis21-GFP-positive basal mitoses was

much less pronounced (Figure 6B, arrow) than the increase in

the total number of basal mitoses (Figure 6B, asterisk), suggest-

ing that forced Insm1 expression preferentially induced the

generation of Tis21-negative BPs.

This was further corroborated by separate analysis of the mi-

totic BPs originating from electroporated versus nonelectropo-

rated NE cells, as revealed by the presence versus absence,

respectively, of mRFP reporter fluorescence (Figures 6C–6D0).

In the control condition, at least 90% of both mRFP-negative

and mRFP-positive mitotic BPs showed either strong or weak

Tis21-GFP expression (Figure 6E). Similarly, upon forced Insm1

expression, >90% of the mRFP-negative mitotic BPs, i.e., those

originating from nonelectroporated NE cells, showed Tis21-GFP

expression (Figure 6E). By contrast, >60% of the mRFP-positive

Figure 6. The Additional Basal Mitoses In-

duced by Forced Premature Insm1 Expres-

sion Are Tis21-GFP Negative

dTel neuroepithelium of E10.5 Tis21-GFP knockin

mouse embryos was electroporated with a mixture

of either empty plasmid and mRFP expression

plasmid (control) or Insm1 expression plasmid

and mRFP expression plasmid (Insm1, red out-

lines), followed by WEC for 24 hr and preparation

of cryosections.

(A and B) Quantitation of strongly Tis21-GFP-pos-

itive (green bars) apical (A) and basal (B) mitoses in

comparison to total mitoses (gray bars) as

revealed by GFP and PH3 double IF (field = 403

image). Data are the mean of four (control) and

six (Insm1) embryos; bars indicate SD. *p < 0.02.

Note the lack of a significant increase in Tis21-

GFP-positive basal mitoses upon forced expres-

sion of Insm1 (arrow in [B]).

(C–D0) Triple IF of the targeted side for Tis21-GFP

(green), PH3 (red), and mRFP (blue). White arrow-

heads indicate Tis21-GFP-positive basal mitoses;

black arrowheads indicate Tis21-GFP-negative,

targeted basal mitoses; asterisks indicate basal mitoses shown at higher magnification in (D0). Ventricular surface is down (dashed line). Scale bars = 50 mm.

(E) Analysis of Tis21-GFP expression in targeted (mRFP+) and nontargeted (mRFP�) basal mitoses (identified by PH3 IF). Tis21-GFP expression was detected by

GFP IF and scored as absent (white), weak (light green), or strong (dark green; see top left panel in [D0] for an example). For each of the four cell populations, at

least 17 mitoses were analyzed, and data are presented as percentage of the total number of mitoses.
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mitotic BPs observed upon forced Insm1 expression, i.e., those

originating from electroporated NE cells, lacked Tis21-GFP ex-

pression, and Tis21-GFP expression in the remainder was weak

(Figure 6E).

The increase in Tis21-GFP-negative basally dividing cells ob-

served upon forced Insm1 expression did not reflect a premature

generation of astroglial PCs. Immunostaining for CD44 (Fig-

ure S10) and glial fibrillary acidic protein (data not shown) did

not reveal any expression in the Insm1-electroporated dTel of

E10.5 embryos subjected to WEC for 48 hr. Taking these data to-

gether, we conclude that Insm1 alone is sufficient to promote the

generation of Tbr2-positive, but Tis21-negative, BPs in the

mouse embryonic dTel.

The Additional BPs Induced by Forced Premature Insm1

Expression Can Self-Amplify
The Tis21-negative subpopulation of APs is known to generate

more PCs rather than neurons (Attardo et al., 2008; Haubensak

et al., 2004; Noctor et al., 2004). Given that the additional BPs

induced by forced Insm1 expression were Tis21 negative (Fig-

ure 6), we investigated whether they would generate neurons

or self-amplify. In the latter case, one would expect that upon

Figure 7. Forced Premature Insm1 Expression Leads

to an Accumulation of Basal Mitotic Cells at the

Expense of Neurogenesis

dTel neuroepithelium of E10.5 NMRI mouse embryos was

electroporated with a mixture of either empty plasmid (A–G)

or nonexpressing Insm1 plasmid (H–L) and GFP (A–G and L)

or mRFP (H–K) expression plasmid (control), or Insm1 expres-

sion plasmid (A–L) and GFP (A–G and L) or mRFP (H–K)

expression plasmid (Insm1), followed by WEC for either

24 hr ([A] left) or 48 hr ([A] right, [B–L]), with a 1 hr BrdU pulse

starting at 24 hr (H–K), and preparation of cryosections.

(A) Quantitation of basal mitoses at 24 hr and 48 hr as identi-

fied by PH3 staining (field = 403 image). Mitotic BPs from

the dTel of E11.5 and E12.5 NMRI mouse embryos were quan-

titated for comparison (blue columns). Data are the mean of

two (24 hr control, E12.5), three (Insm1, E11.5), and four

(48 hr control) embryos each; bars indicate SD or the variation

of the individual values from the mean. *p < 0.05.

(B–G) Combined ISH for Insm1 ([D] and [E]; blue), immunoper-

oxidase for PH3 ([D] and [E]; brown), and double IF for GFP

([C], green) and bIII-tubulin ([B], [F], and [G]; Tub, red) of

Insm1-electroporated embryos at 48 hr, with the nontargeted

side serving as control. Dashed boxes in (B) indicate areas

shown at higher magnification in (C)–(E); the dashed boxes

in (D) and (E) indicate areas shown at higher magnification in

(F) and (G). Ventricular surface is down (lower dashed lines

in [F] and [G]); upper dashed lines in (C)–(E) indicate the bound-

aries of the preplate (PP). Scale bars = 200 mm in (B) and 50 mm

in (C)–(G).

(H–K) Analysis of electroporated cells and their progeny (iden-

tified by mRFP), pulse-labeled with BrdU at 24 hr, for cell-cycle

reentry at 48 hr (PCNA staining).

(H and I) Triple IF for mRFP (red), BrdU (green), and PCNA

(white). Arrows indicate examples of mRFP-positive/BrdU-

positive/PCNA-positive cells in the VZ; arrowheads indicate

examples of mRFP-positive/BrdU-positive/PCNA-negative

cells in the PP.

(J) Quantification of the proportion of mRFP- plus BrdU-posi-

tive cells in the cortical wall that are PCNA positive (field = 253

image). Data are the mean of six (control) and three (Insm1)

embryos each (>100 mRFP- plus BrdU-positive cells per

embryo were analyzed); bars indicate SD. *p < 0.05. Similar

results were obtained when only cells in the VZ were scored

(data not shown).

(K) Quantification of the proportion of mRFP- plus BrdU-

positive cells in the PP that are PCNA negative (field = 253 image). Data are the mean of six (control) and three (Insm1) embryos each (>100 mRFP- plus

BrdU-positive cells per embryo were analyzed); bars indicate SD. *p < 0.05. Similar results were obtained when cells were scored across the entire cortical

wall (data not shown).

(L) Quantitation of the cleavage plane orientation at metaphase and anaphase/telophase, deduced from DAPI staining, of targeted basal mitoses, identified

by intrinsic mRFP fluorescence and phosphovimentin IF, respectively. Cleavage plane orientation was assigned to one of three groups as indicated on the

left; 0� corresponds to parallel to the ventricular surface. Data are from five (control, 28 metaphase and 25 anaphase/telophase cells) and three (Insm1, 40 meta-

phase and 33 anaphase/telophase cells) embryos.
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Table 1. Genes Whose Expression in the E13.5 Dorsal Telencephalon Is Decreased in the Insm1 Knockout

Gene Symbol Gene Name Function

Expression in VZ/SVZ

Progenitors % of WT p Value

Elavl4 Embryonic lethal, abnormal

vision, Drosophila-like 4 (HuD)

RNA binding protein, neuronal

progenitor differentiation

yes (weak) 74 0.023

Robo2 Roundabout homolog 2 Slit receptor, neuronal migration,

neural progenitor proliferation

versus differentiationa

yesa 63 0.023

Nhlh1 Nescient helix loop helix 1 Transcription factor,

neuronal differentiation

yes (SVZ, strong) 62 0.027

Ebf3 Early B cell factor 3 Transcription factor, tumor

suppressor, cell-cycle regulation

yes (weak) 73 0.028

Cntn2 Contactin 2 Cell adhesion yes 61 0.034

Stat3 Signal transducer and activator

of transcription 3

Signal transducer, transcriptional

regulator, neural progenitor

proliferation versus differentiation

yes (strong) 69 0.034

Abhd2 Abhydrolase domain

containing 2

Membrane enzyme, brain

tumor progression

yes (weak) 81 0.041

Myh9 Myosin, heavy polypeptide 9,

nonmuscle (NMHC-IIA)

Motor protein yes (weak) 83 0.044

Rbm9 RNA binding motif protein 9 Neuronal RNA splicing yes (SVZ) 83 0.044

Net1 Neuroepithelial transforming

gene 1

Rho-GEF yes (weak) 80 0.045

Arhgef7 Rho guanine nucleotide

exchange factor (GEF7)

Rho-GEF yes (ubiquitous) 85 0.034

Mcart1 Mitochondrial carrier triple

repeat 1

Mitochondrial metabolism yes (ubiquitous) 76 0.044

Uba1 Ubiquitin-like modifier activating

enzyme 1

Ubiquitination yes (ubiquitous) 88 0.044

PLCb1 Phospholipase C, beta1 Signal transduction not obvious (migrating neurons) 59 0.006

9030425E11Rik Adipocyte adhesion molecule Cell adhesion not obvious (migrating neurons) 60 0.027

Nrp1 Neuropilin 1 Semaphorin/VEGF receptor,

neuronal guidance, angiogenesis

not obvious (migrating neurons) 74 0.044

Acpl2 Acid phosphatase-like 2 Enzyme not obvious (migrating neurons) 72 0.045

Lamb1-1 Laminin B1 subunit 1 Extracellular matrix not obvious 72 0.006

St18 Suppressor of tumorigenicity 18 Transcription factor, tumor

suppressor

not obvious 61 0.006

Dscam Down syndrome cell adhesion

molecule

Neuronal adhesion not obvious 68 0.027

Kif5a Kinesin family member 5A Motor protein, axonal transport not obvious 72 0.027

Rassf2 Ras association (RalGDS/AF-6)

domain family 2

Ras effector, signal transduction,

tumor suppressor

not obvious 69 0.027

Nefm Neurofilament, medium

polypeptide

Intermediate filament protein not obvious 63 0.034

Snap91 Synaptosomal-associated

protein 91 (AP180)

Clathrin adaptor, neuronal

membrane traffic

not obvious 83 0.034

Crabp1 Cellular retinoic acid binding

protein I

Retinoic acid metabolism not obvious 64 0.040

Accn2 Amiloride-sensitive cation

channel 2

Neuronal ion channel ND 61 0.027

Gfpt1 Glutamine fructose-6-

phosphate transaminase 1

Hexosamine metabolism ND 82 0.028

Ipo9 Importin 9 Nuclear import ND 81 0.044

dTel from E13.5 wild-type (WT) and homozygous Insm1 knockout mouse embryos was subjected to microarray analysis. Genes whose expression in

the Insm1 knockout showed a change with an adjusted p value < 0.05 as compared to wild-type are listed. These 28 genes (other than Insm1 itself), all

of which showed a decreased level of expression (expressed as percentage of wild-type), were assigned to five groups depending on the pattern of
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Insm1 electroporation and WEC for longer than 24 hr, additional

BPs should continue to accumulate.

Upon electroporation of NE cells of E10.5 NMRI mice under

control conditions and WEC for 48 hr, the abundance of mitotic

BPs in the dTel was twice that observed after 24 hr (the standard

length of WEC in the previous experiments in Figure 5 and Fig-

ure 6) and matched that of the corresponding stage of neurogen-

esis (E11.5 and E12.5) in utero (Figure 7A, blue columns). Forced

expression of Insm1 resulted in a doubling of the level of mitotic

BPs not only after 24 hr but also after 48 hr (Figures 7A, 7D, and

7E). Concomitant with this, the accumulation of neurons in the

preplate (Figure 7C) was markedly reduced compared to control

(Figures 7B, 7F, and 7G).

We sought to obtain direct evidence that the additional BPs

observed 48 hr after forced Insm1 expression originated from

Insm1-induced BPs generated during the first 24 hr of WEC.

To this end, dTel of E10.5 embryos was electroporated with

Insm1 or under control conditions, using mRFP to identify the

electroporated cells, and labeled after the first 24 hr of WEC

for 1 hr with BrdU, followed by analysis after 48 hr of WEC. Spe-

cifically, we determined the proportion of the mRFP and BrdU

double-positive cells that were PCNA positive after 48 hr of

WEC, i.e., the proportion of PCs that originated from electropo-

rated PCs during the second 24 hr of WEC (Figures 7H and 7I,

arrows). Forced Insm1 expression significantly increased this

proportion (Figure 7J).

Conversely, the proportion of the mRFP and BrdU double-

positive cells that were PCNA negative after 48 hr of WEC, i.e.,

the proportion of postmitotic cells that originated from electro-

porated PCs during the second 24 hr of WEC (Figures 7H and

7I, arrowheads), was significantly decreased upon forced

Insm1 expression (Figure 7K). Moreover, most of the mRFP

and BrdU double-positive, PCNA-negative cells were located

in the preplate, consistent with these being neurons generated

from electroporated PCs during the second 24 hr of WEC. In

line with this, the proportion of electroporated cells that accumu-

lated in the preplate was significantly reduced upon forced

Insm1 expression (Figures 7H and 7I, red; data not shown).

Thus, forced Insm1 expression reduces the targeted PCs that

remain apically after the first 24 hr of WEC to about half of con-

trol (Figure 5D) but increases PCs that originate from electropo-

rated PCs during the second 24 hr of WEC (Figure 7J). Taken

together, these findings imply that the Insm1-induced doubling

of basal mitoses during the second 24 hr of WEC (Figure 7A,

right) reflected their generation from Insm1-expressing BPs. In

other words, we conclude that forced Insm1 expression in

dTel NE cells at the very onset of neurogenesis, when most of

these cells undergo symmetric proliferative divisions (Hauben-

sak et al., 2004), leads to the generation of self-amplifying

BPs at the expense of the generation of BPs that divide to pro-

duce neurons.
Forced Premature Insm1 Expression Promotes
Horizontal Cleavage Plane Orientation of Basal Mitoses
APs can self-renew and maintain apical-basal polarity through

mitosis, and most of their cleavage planes are oriented parallel

to, or deviate only slightly from, the apical-basal (radial) cell

axis—i.e., they occur roughly perpendicular to the ventricular sur-

face (vertical cleavage plane; Figure 7L, 90�–60�) (Chenn and

McConnell, 1995; Götz and Huttner, 2005; Huttner and Kosodo,

2005; Konno et al., 2008; Kosodo et al., 2004; Noctor et al., 2008).

By contrast, most BPs divide only once to generate two neurons,

lack apical-basal polarity during mitosis, and show a nearly ran-

dom cleavage plane orientation (Attardo et al., 2008; Haubensak

et al., 2004; Noctor et al., 2008; Stricker et al., 2006). Given the

ability of the Insm1-induced BPs to self-amplify (Figures 7A–

7K), we therefore investigated whether forced Insm1 expression

affected their cleavage plane orientation.

Analysis of mitotic BPs in the dTel that were derived from PCs

electroporated under control conditions at E10.5 during the en-

suing 48 hr of WEC (i.e., mRFP-positive BPs) revealed a nearly

random orientation of DAPI-stained chromosomes at meta-

phase and anaphase/telophase (Figure 7L). This was indicative

of a random cleavage plane orientation and confirmed and ex-

tended previous observations (Attardo et al., 2008). In contrast,

upon forced Insm1 expression, the proportion of basal mitoses

with chromosomes that were oriented parallel to the ventricular

surface at metaphase and anaphase/telophase, indicative of

a corresponding cleavage plane orientation (horizontal cleavage

plane, 30�–0�), was increased to more than half of total (Fig-

ure 7L). These data suggest that Insm1 expression promotes

the positioning of the mitotic spindle poles of BPs along the

radial axis of the cortical wall.

Downstream Effectors of Insm1
To obtain insight into Insm1 downstream target genes whose

altered expression might explain the phenotypes observed

upon Insm1 ablation and forced expression, we performed com-

parative genome-wide gene expression profiling of the E13.5

dTel of wild-type, heterozygous, and homozygous Insm1 knock-

out mouse embryos using Affymetrix microarrays. Table 1 lists

the 28 genes (other than Insm1 itself) whose expression showed

a statistically significant change (adjusted p value < 0.05)

between wild-type and Insm1 knockout. Each of these genes

was decreased in its mRNA expression level upon Insm1 abla-

tion. Of the 28 genes, 10 are known to be specifically expressed

in the VZ/SVZ (Visel et al., 2004), and interestingly, at least 2 of

these 10 genes, Robo2 and Myh9, are involved in the balance

between APs and BPs, as is discussed below.

As to potential downstream targets of Insm1 involved in cell-

cycle regulation, at least six of the genes listed in Table 1 (Elavl4,

Nhlh1, Ebf3, Net1, St18, and Rassf2) can be considered as can-

didates to mediate the cell-cycle lengthening observed upon
their expression in the E14.5 cortical wall (Visel et al., 2004): (1) ‘‘yes,’’ specific expression in VZ and/or SVZ PCs; (2) ‘‘yes (ubiquitous),’’ expression in

the VZ and SVZ but also in the other layers of the cortical wall; (3) ‘‘not obvious (migrating neurons),’’ scattered expression in VZ and/or SVZ presumably

due to migrating neurons, with stronger expression in the intermediate zone and/or cortical plate; ‘‘not obvious,’’ no detectable expression in VZ and

SVZ; ‘‘ND,’’ expression not determined in Visel et al. (2004).
a O. Marı́n, 2008, Cortical Development, speaker abstract.
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forced Insm1 expression. For gene ontology analysis and the

effects of Insm1 ablation on Mash1 and Hes1 mRNA, see Figures

S11 and S12.

DISCUSSION

Insm1, a Panneurogenic Transcription Factor in Neural
Stem and Progenitor Cells
Our study demonstrates that the transcription factor Insm1 ex-

hibits panneurogenic expression in the developing mammalian

CNS. Specifically, Insm1 was found to be transcribed selectively

in the Tis21-GFP-positive subpopulations of neural stem and

PCs, i.e., those that divide to generate neurons or neuronally

committed PCs, but not in newborn neurons. Importantly,

Insm1 is expressed in correlation with neurogenesis all along

the rostrocaudal axis, in contrast to all other transcription factors

studied thus far in the context of neurogenesis (e.g., the proneu-

ral genes), which show region-specific expression patterns

(Duggan et al., 2008; Guillemot, 2005). Together with our obser-

vation that the various region-specific proneural genes, such as

Ngn2 (dTel) and Mash1 (ventral telencephalon), induce Insm1 ex-

pression (Castro et al., 2006), this suggests that Insm1 is a core

constituent of a common effector pathway in neural PCs leading

to neurogenesis. The upregulation of Insm1 in APs observed in

the E10.5 hindbrain of Hes5 knockout mice, which are known

to exhibit premature neurogenesis (Hatakeyama et al., 2004), is

fully consistent with this notion.

Expression of Insm1 in correlation with neurogenesis is main-

tained until adulthood, as evidenced by the presence of Insm1

mRNA in the wall of the lateral ventricle, a known site of adult

neurogenesis (Alvarez-Buylla and Garcia-Verdugo, 2002; Nin-

kovic and Götz, 2007). Moreover, the panneurogenic expression

of Insm1 is a feature conserved in evolution. As Insm1 is specif-

ically found in essentially all neurogenic APs and BPs in the

developing mouse CNS, the Drosophila ortholog nerfin-1 is ex-

pressed in virtually all delaminating neuroblasts and ganglion

mother cells, the fly counterpart to neurogenic APs and BPs,

respectively, but not in postmitotic neurons and glial cells (Kuzin

et al., 2005).

In functional terms, analysis of the developing Insm1 null brain

reveals a panneurogenic role of Insm1 in neural PCs. Specifi-

cally, our data indicate that Insm1 contributes to neural PCs

becoming committed to the neuronal lineage. This notion is con-

sistent with the observed reduction in neurons throughout the

Insm1 null brain and the concomitant expansion of VZ PCs.

Insm1 Induces the Switch from APs to BPs
Importantly, in the dTel, this panneurogenic role of Insm1 has un-

dergone a remarkable specification. Our loss- and gain-of-func-

tion analyses in the mouse embryo demonstrate that Insm1 is

a key component of the machinery that underlies the transloca-

tion of mitoses of neural PCs from an apical to a basal position.

While the forced expression of Insm1 in the dTel neuroepithelium

indicated that it is sufficient to induce basal mitoses, the reduc-

tion in BPs in the Insm1 null dTel showed that Insm1 is required

for the full extent of BPs. However, the incomplete loss of BPs in

the Insm1 null dTel suggests that this transcriptional regulator is

one, but not the only, factor necessary to generate BPs. Another
52 Neuron 60, 40–55, October 9, 2008 ª2008 Elsevier Inc.
transcription factor reported to be involved in this process is

Ngn2 (Britz et al., 2006; Miyata et al., 2004).

In considering possible underlying mechanisms, we note that

the magnitude of the increase in basal mitoses observed 24 hr

after transfection of Insm1 into NE cells matched that of the de-

crease in apical mitoses. In light of this observation, we conclude

that most of the basal mitoses induced by Insm1 within 24 hr

were PCs arising from apical mitoses. Thus, together with the

observations that the developing Insm1 null neocortex shows

(1) reduced cortical plate and SVZ thickness but, particularly at

E16.5, (2) increased VZ thickness and (3) lateral expansion, it

appears that the BP progeny in the mouse contribute primarily

to cortical thickness and that the AP expansion that results

from the reduced BP generation upon Insm1 ablation leads to in-

creased radial units and thus lateral expansion of the neocortex.

In contrast to the BPs normally observed in the dTel, 90% of

which have been shown to be Tis21-GFP positive (Haubensak

et al., 2004), most of the additional basal mitoses induced by

Insm1 expression were Tis21-GFP negative. This most likely

reflects the fact that at E10.5, the overwhelming majority

(>90%) of NE cells, which are the target of Insm1 electroporation,

are Tis21-GFP negative (Haubensak et al., 2004). Hence, Insm1

expression in E10.5 NE cells is sufficient to convert these nor-

mally apically dividing PCs to basally dividing cells, but not to

induce Tis21 expression.

Almost all apically dividing NE cells (>95%) are known to be

Tbr2 negative (Englund et al., 2005). Interestingly, in contrast to

the lack of Tis21-GFP expression, essentially all of the additional

basal mitoses induced by Insm1 expression were Tbr2 positive,

like the BPs normally observed in the telencephalon (Englund

et al., 2005). Thus, the Insm1-induced basal mitoses show at

least one other feature characteristic of BPs, i.e., Tbr2 expres-

sion. Our finding implies that Insm1 is a positive regulator of

Tbr2 expression. Consistent with this conclusion, the proportion

of Tbr2-positive apical mitoses was decreased in the Insm1

knockout.

Microarray analysis revealed at least two intriguing down-

stream targets of Insm1, Robo2 and Myh9, that might mediate

its effects on APs versus BPs. Thus, recent findings (O. Marı́n,

2008, Cortical Development, speaker abstract) indicate that

the Slit receptors Robo1 and 2 are involved not only in regulating

neuronal migration (Lopez-Bendito et al., 2007) but also in mod-

ulating the balance between APs and BPs. The reduced level of

Robo2 mRNA in the E13.5 Insm1 null dTel therefore raises the

possibility that the effects of Insm1 on the level of APs versus

BPs are mediated at least in part via regulation of Robo2 levels.

As to Myh9, our group has recently found that interference with

nonmuscle myosin II function by the highly specific inhibitor bleb-

bistatin impairs the apical-to-basal delamination of PCs from the

neuroepithelium, which is a key aspect of the generation of BPs

(J. Schenk and W.B.H., unpublished data). Hence, the reduced

level of mRNA for Myh9, a component of nonmuscle myosin

IIA, in the E13.5 Insm1 null dTel also provides a potential expla-

nation for the reduction in BPs observed upon Insm1 ablation.

Insm1 Allows the Expansion of BPs
In the Insm1 knockout, concomitant with the partial loss of BPs,

the number of neurons was substantially reduced. However,
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forced expression of Insm1 did not increase the number of neu-

rons in parallel with that of BPs but actually decreased the accu-

mulation of neurons. How can this seemingly paradoxical finding

be explained? A key observation in this regard was that upon

forced expression of Insm1 in the E10.5 dTel neuroepithelium, ba-

sally dividing cells (rather than postmitotic neurons) accumulated

over time. Given that at E10.5 the vast majority of APs (the target of

Insm1 electroporation) divide to generate more APs (symmetric

proliferative divisions) (Haubensak et al., 2004; Pontious et al.,

2008; Takahashi et al., 1995a), an intriguing explanation is that

this PC pool-expanding mode of cell division is maintained even

though, asa result of forced Insm1 expression, mitosis now occurs

in an abventricular, basal location. Direct support for this is pro-

vided by the observed increase, upon forced Insm1 expression,

in PCNA-positive PCs at 48 hr of WEC that originated from electro-

porated BrdU-labeled PCs during the second 24 hr of WEC. Thus,

in contrast to the BPs normally observed in the rodent telenceph-

alon, most of which divide only once to generate two postmitotic

neurons (Haubensak et al., 2004; Kriegstein et al., 2006; Miyata

et al., 2004; Noctor et al., 2004; Pontious et al., 2008), the addi-

tional basally dividing cells observed 24 hr after Insm1 electropo-

ration self-amplify, at the expense of neuron production.

Following the onset of neurogenesis in the dTel at E10.5, an in-

creasing proportion of APs normally switch from symmetric,

proliferative divisions to divisions that generate either neurons

(direct neurogenic divisions) or BPs that in turn generate neurons

(indirect neurogenic divisions) (Haubensak et al., 2004; Krieg-

stein et al., 2006; Pontious et al., 2008). A corollary of the obser-

vation that upon forced Insm1 expression, basally dividing cells

and not postmitotic neurons accumulated is that in the targeted,

now basally dividing cells, this progressive switching does not

take place. Hence, the consequence of Insm1 expression, i.e.,

switching the site of mitosis to an abventricular, basal location,

when occurring prematurely, does not suffice to induce the onset

of neurogenic divisions. This conclusion is consistent with the

lack of Tis21 expression in the targeted cells.

Insm1, a Constituent of the Molecular Machinery
Underlying the Evolutionary Expansion of the
Mammalian Cerebral Cortex
Given that the expansion of the mammalian cerebral cortex is

associated with an increase in BPs relative to APs (Bystron

et al., 2008; Kriegstein et al., 2006; Pontious et al., 2008; Rakic,

2003; Smart et al., 2002; Tarabykin et al., 2001), our data imply

that Insm1 is part of the molecular machinery underlying this ex-

pansion. Of particular interest in this regard is the ability of Insm1

to promote the enlargement of the pool of PCs exhibiting mitosis

in a basal location without inducing their differentiation to be-

come committed to neurogenic divisions. This capacity is what

would be expected of a factor involved in the self-expansion of

BPs. It will therefore be interesting to investigate whether the

evolutionary increase in BP self-expansion, especially that

thought to occur in primates (Fish et al., 2008; Kriegstein et al.,

2006; Pontious et al., 2008), involves Insm1.

EXPERIMENTAL PROCEDURES

For detailed methods, see Supplemental Experimental Procedures.
Mice

Unless indicated otherwise, NMRI mice were used. The Tis21-GFP knockin

line (Haubensak et al., 2004) was maintained as homozygote on the C57BL/

6 background and mated with wild-type C57BL/6 females to obtain heterozy-

gous embryos, which were used for all analyses. Insm1 knockout embryos

(C57BL/6 background) were obtained by crossing heterozygous mice (Gierl

et al., 2006). On this genetic background, the Insm1 knockout is embryonic

lethal starting from E11.5; therefore, all studies were performed at E11.5–

E16.5. The day of vaginal plug was defined as E0.5. Fixed Hes1, Hes5,

Ngn2, Mash1, and Ngn2/Mash1 double-knockout embryos together

with wild-type as well as heterozygous littermates were generous gifts of

R. Kageyama and F. Guillemot, respectively.

Microarray Analysis

dTel was dissected from mouse embryos. RNA extraction, probe synthesis,

and hybridization to Affymetrix microarrays (Affymetrix, Santa Clara, CA,

USA) were performed according to the manufacturer’s protocol. Data pro-

cessing and identification of differentially expressed genes was carried out

as described previously (Gierl et al., 2006). Genes were considered differen-

tially expressed if the difference of their expression level had a p value % 0.05.

In Situ Hybridization and Immunohistology

Digoxigenin-labeled riboprobes for ISH were prepared from RT-PCR of cDNAs

for Insm1 (nt 504–1238 or nt 122–1804, AF044669) and Tis21 (nt 12–612,

NM_007570).Whole-mount ISH was performedaccording tostandardmethods.

ISH and immunostaining were performed as described previously (Iacopetti

et al., 1999) using 10 mm coronal cryosections unless indicated otherwise.

Whole-Embryo Culture and Electroporation

WEC of E10.5 NMRI or Tis21-GFP knockin mice and electroporation were per-

formed as described previously (Osumi and Inoue, 2001; Calegari and Huttner,

2003).
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Ninkovic, J., and Götz, M. (2007). Signaling in adult neurogenesis: from stem

cell niche to neuronal networks. Curr. Opin. Neurobiol. 17, 338–344.

Noctor, S.C., Martinez-Cerdeno, V., Ivic, L., and Kriegstein, A.R. (2004). Corti-

cal neurons arise in symmetric and asymmetric division zones and migrate

through specific phases. Nat. Neurosci. 7, 136–144.

Noctor, S.C., Martinez-Cerdeno, V., and Kriegstein, A.R. (2008). Distinct be-

haviors of neural stem and progenitor cells underlie cortical neurogenesis.

J. Comp. Neurol. 508, 28–44.

Osumi, N., and Inoue, T. (2001). Gene transfer into cultured mammalian

embryos by electroporation. Methods 24, 35–42.

Pontious, A., Kowalczyk, T., Englund, C., and Hevner, R.F. (2008). Role of

intermediate progenitor cells in cerebral cortex development. Dev. Neurosci.

30, 24–32.

Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis

of neocortical expansion during evolution. Trends Neurosci. 18, 383–388.

Rakic, P. (2003). Developmental and evolutionary adaptations of cortical radial

glia. Cereb. Cortex 13, 541–549.



Neuron

Insm1 Promotes Cortical Basal Progenitor Formation
Smart, I.H. (1972b). Proliferative characteristics of the ependymal layer during

the early development of the mouse diencephalon, as revealed by recording

the number, location, and plane of cleavage of mitotic figures. J. Anat. 113,

109–129.

Smart, I.H., Dehay, C., Giroud, P., Berland, M., and Kennedy, H. (2002). Unique

morphological features of the proliferative zones and postmitotic compart-

ments of the neural epithelium giving rise to striate and extrastriate cortex in

the monkey. Cereb. Cortex 12, 37–53.
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