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a b s t r a c t

Ror receptor-tyrosine kinases act as Wnt-5a receptors in beta-catenin independent Wnt-signaling path-
ways. In Xenopus, expression of xPAPC is regulated by a Wnt-5a/Ror2 pathway, which resembles typical
signaling cascades downstream of receptor-tyrosine kinases. Here, we have identified the phospho-tyro-
sine binding protein ShcA as an intracellular binding partner of Ror2. ShcA binds to a conserved motif in
Ror2 via its SH2-domain. Wnt-5a induces clustering of Ror2 in the cell membrane and recruitment of
ShcA to the Ror2 receptor complex. We further show that ShcA is co-expressed with Ror2 in developing
Xenopus embryos and ShcA is required for Wnt-5a/Ror2 mediated upregulation of xPAPC, demonstrating
the functional relevance of this interaction.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Ror receptor-tyrosine kinases (RTK) are evolutionary conserved
single-pass transmembrane receptors with characteristic domain
architecture [1] including a Wnt-binding Frizzled-like cysteine-rich
domain. Ror receptors have been shown to activate non-canonical
Wnt-pathways [2–5] and to mediate inhibition of canonical
Wnt/b-catenin signaling [6,7]. Ror2 also mediates Wnt5a-induced
filopodia formation via its interaction with filamin A (FLNa) in
murine fibroblasts [8,9]. In addition, Ror2 has been shown to inter-
act with casein-kinase 1e (CK1 e, [10]), Glycogen-synthase kinase 3
(GSK3, [11]), TGF-b-activated kinase 1 (TAK1 [12]), Dishevelled
(Dvl [13]) and 14-3-3b [14].

Tyrosine-kinase activity seems to be dispensable for a subset of
Ror2 functions including inhibition of canonical Wnt-signaling in
certain contexts [7,12], Wnt-5a-induced cell migration [8] and
AP1-activation [15]. On the other hand, tyrosine-autophosphoryla-
tion of Ror2 upon ligand binding [16,17] is required for the antag-
onism of canonical Wnt-signaling by Wnt-5a [17]. We have
reported previously that Ror2 controls transcription of the xpapc
gene in early Xenopus embryos. Regulation of xPAPC transcription
requires xRor2 tyrosine-kinase activity, PI3K, cdc42 and JNK [3].

Typically, RTK signaling is initiated by ligand-induced dimeriza-
tion and autophosphorylation of the receptor. Intracellularly, bind-
ing of adaptor proteins with phospho-tyrosine binding domains
such as SH2-, SH3- or PTB-domains, is required for the subsequent
activation of downstream effectors including PI3K and the small
GTPases Ras, Rac1 or cdc42 [18].
ll rights reserved.
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Here, we show that the SH2- and PTB-domain protein ShcA
binds to Ror2 in vitro and in vivo. ShcA interaction with Ror2 occurs
via its SH2-domain, which binds to Shc-SH2 motif located in the
Ror2 tyrosine-kinase domain. In Xenopus embryos, xShcA is co-ex-
pressed with xRor2 and required for the xRor2-dependent upregu-
lation of the xWnt-5a target gene xPAPC.

2. Materials and methods

2.1. Frog handling and microinjections

RNA for microinjections was prepared using the mMessage mMa-
chine Kit (Ambion, Austin/TX, USA). If not indicated otherwise, injec-
tion amounts were 100 pg pCS2 + LacZ DNA, 30 pg xRor2-EGFP and
xRor2-mCherry RNA, 100 pg xWnt-5a RNA, xShcA p52, xShcA p52
DN and xShcA p52 DC RNA, 1.6 pmol xWnt-5a MO, 0.8 pmol xRor2
MO [3], 2.4 pmol xShcA MO p52 (50-taacaaaccccctgtcttctacagc-30).
A control MO was provided by GeneTools and used in the same con-
centration as experimental MOs.

Embryos were obtained by in vitro fertilization and cultured as
described previously [19]. Embryos were injected in both blasto-
meres at the two-cell stage for Animal Cap experiments or in one
dorsal blastomere at the four-cell stage for in situ hybridization
and cultured till they reached the desired stage according to the
normal table of Nieuwkoop and Faber (NF) [20].

2.2. Animal caps, immunostaining and in situ hybridization

Xenopus embryos were injected as indicated and cultured till NF
Stage 9. The Animal Cap was dissected and cultured in xWnt-5a
conditioned or control Medium from stable transfected 3T3 cells,
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brought to Xenopus physiological ion concentration (approx.
100 mM NaCl) with distilled water. For RT-PCR Animal Caps were
stimulated, cultured and processed as described in (Schambony
and Wedlich 2007).

For immunostaining, Animal Caps were fixed after xWnt-5a
stimulation for 1 h (4% formaldehyde, 100 mM MOPS, 2 mM EGTA,
1 mM MgSO4, pH 7.4), blocked in 10% horse serum/PBT (PBS, 0.1%
Tween 20), incubated with the primary antibody overnight at 4 �C,
washed three times with PBT, incubated with the secondary anti-
body for 4 h at RT, washed and nuclei stained with DAPI, and
mounted in Mowiol (Roth). Images of optical sections were taken
using a fluorescence microscope equipped with Apotome optics
(Zeiss).

In situ hybridization was carried out as described in [21].

2.3. Antibodies, cells and transfections

The following antibodies were used: mouse anti-b-Actin (Sig-
ma–Aldrich); goat anti-Ror2 (R&D Systems); rabbit anti-ShcA, rab-
bit anti-Grb2, rabbit anti-Shp2, rabbit anti-GFP, rabbit anti-pAKT,
rabbit anti-EEA1 (Abcam); rabbit anti-AKT, rabbit anti-JNK (Santa
Cruz); rabbit anti pJNK (Promega); rabbit anti-Flag, rabbit anti-
myc (Cell Signaling); mouse anti-myc 9E10, mouse anti-b-tubulin
(DSHB); mouse anti-mCherry was obtained from the antibody
facility at MPI CBG; anti-mouse-AP, anti-rabbit-AP (Cell Signaling),
anti-goat AP, anti-mouse-Cy3 (Dianova), anti-rabbit-Alexa Fluor
488 (Invitrogen). HEK 293 cells and 3T3 cells stably expressing
xWnt-5a were generated using the pMSCV system (Clontech) and
cultured in DMEM supplemented with 10% FCS and 100 lg/ml
G418. Conditioned medium from xWnt-5a expressing cells
(xWnt-5a CM) and control cells (control CM) was collected after
4 days. Cos-1 and HEK 293 cells were cultured in DMEM supple-
mented with 5% FCS and transfected with TransPass D2 (New Eng-
land Biolabs) according to manufacturer’s instructions.

2.4. Co-immunoprecipitation

Two days after transfection, cells were washed with cold PBS.
Proteins were solubilized in lysis buffer (50 mM Hepes, pH 7.5,
150 mM NaCl, 2 mM EDTA, 1% Nonidet P40) supplemented with
complete protease inhibitor cocktail and PhosStop phosphatase
xRor2-EGFP xRor2-mCherry

xRor2-EGFP xRor2-mCherry

xRor2-EGFP
xRor2-mCherry

xRor2-EGFP
xRor2-mCherry

1
c

1
x

Fig. 1. xRor2 clusters in response to Wnt-5a. (A) EGFP- and mCherry-tagged xRor2 was
Animal Caps incubated in control CM for 15 min, both proteins partially co-localized at th
localization at the membrane and intracellularly. (C) Co-immunoprecipitation of xRor
stimulation with Wnt-5a conditioned medium for 15 min. Wnt-5a stimulation also indu
inhibitor cocktail (Roche). Proteins were precipitated with anti-Flag
affinity agarose gel (Sigma–Aldrich) or purified 9E10 anti-myc and
Dynabeads protein G (Invitrogen), and further analyzed by standard
Western blotting procedure.

3. Results

3.1. Wnt-5a induces clustering of xRor2

The xWnt-5a triggered xRor2-dependent signaling cascade in
early Xenopus embryos and Xenopus Animal Cap explants includes
PI3K, cdc42, MKK7 and JNK [3] and thus strongly resembles other
RTK pathways. In addition, dimerization and autophosphorylation
of mammalian Ror2 in response to Wnt-5a stimulation has been
shown [16,17]. We hypothesized that Xenopus xRor2 acts similarly
and indeed observed enhanced co-localization and clustering of
xRor2-EGFP and xRor2-mCherry in Animal Cap explants after stim-
ulation with xWnt-5a conditioned medium (xWnt-5a CM) in com-
parison to control CM (Fig. 1A and B). Intracellular and
submembraneous clusters and vesicle-like structures do not repre-
sent endosomes as they failed to co-localize with the early endo-
somal marker EEA1 (Supplementary Fig. 1A–C).

After transfection of xRor2-EGFP into Cos-1 cells we observed
partial co-localization of xRor2-EGFP with endogenous Ror2 that in-
creased significantly after stimulation with Wnt-5a protein for
15 min (Supplementary Fig. 1D–E). Consistently, the amount of
xRor2-EGFP that co-immunoprecipitated with xRor2-Flag signifi-
cantly increased in Wnt-5a stimulated Cos-1 cells (Fig. 1C). Notably,
Wnt-5a stimulation also resulted in increased AKT phosphorylation
in these cells, indicating that PI3K was activated and thus Wnt-5a/
Ror2 signaling recapitulated the PI3K, cdc42, JNK cascade [3].

3.2. xRor2 binds SH2-domain proteins

Based on these observations, we assumed that PI3K activation
downstream of xRor2 could be mediated by the same adaptor pro-
teins that are well-characterized effectors in other RTK signaling
cascades. We have cloned the Xenopus orthologs of the SH2-do-
main proteins Grb2, Shp2 and ShcA (Fig. 2A) and confirmed endog-
enous expression of these genes in gastrula stage embryos by
RT-PCR (Supplementary Fig. 2A).
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Co-immunoprecipitation showed that all, xGrb2, xShp2 and
xShcA, bind to xRor2 when overexpressed in Cos-1 cells (Fig. 2B).
In this model system experimental artifacts due to overexpression
of the proteins could not be ruled out as overexpressed xRor2 was
not only observed at the cell membrane but also to a large extend
intracellularly in Cos-1 cells (see Supplementary Fig. 1D and E).
However, we have shown previously that Cos-1 cells endogenously
recapitulate the Ror2 signaling cascade we have characterized in
Xenopus embryos [3,13] and were therefore suitable to investigate
ligand-dependent SH-2 domain protein recruitment to endogenous
Ror2.

Endogenous Ror2 was immunoprecipitated from Cos-1 cells and
we found that Wnt-5a stimulation induced recruitment of ShcA
(Fig. 2C). In mammalian cells, ShcA is expressed in three isoforms
named p66, p52 and p46 according to their molecular weight. In
unstimulated cells the ShcA p46 and ShcA p52 co-immunoprecip-
itated with Ror2. Wnt-5a stimulation resulted in enhanced binding
of ShcA p46 and p52 and in addition ShcA p66 was co-immunopre-
cipitated with Ror2 (Fig. 2C). Shp2 was constitutively associated
with Ror2 while Grb2, although present in the lysate, was not
bound to Ror2 in Cos-1 cells neither with nor without Wnt-5a
stimulation (Fig. 2C). Activation of downstream signaling was con-
firmed by immunoblotting for pAKT and pJNK, which were in-
creased in the lysates of Wnt-5a stimulated cells (Fig. 2C). The
levels of phospho-p38 MAPK and phospho-ERK1/2 remained un-
changed (not shown). This indicated a specific activation of the
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JNK-mediated branch of MAPK signaling. Of the SH2-domain pro-
teins investigated only ShcA showed recruitment to Ror2 upon
Wnt-5a stimulation in Cos-1 cells, therefore we focused on the role
of ShcA as an intracellular effector of Ror2 signaling.

3.3. xShcA binds to the tyrosine-kinase domain of xRor2 via its SH2-
domain

We generated truncated versions of xShcA lacking either the
PTB or the SH2-domain and an xRor2 construct that lacks the re-
gion C-terminal of the tyrosine-kinase domain (xRor2D745, see
also Fig. 2A). Co-immunoprecipitation showed that full length
xShcA binds to full length xRor2 as well as to xRor2D745, indicat-
ing that xShcA binds to a motif located within the tyrosine-kinase
domain of xRor2 (Fig. 2D). Binding of xShcA to xRor2 required the
SH2, but not the PTB-domain of xShcA, as xShcADN was still able to
bind xRor2, but xShcADC was not (Fig. 2D). Indeed, xRor2 contains
a conserved binding motif for Shc-SH2-domains within its tyro-
sine-kinase domain [1,22] but no PTB-domain binding motif. In
addition, a motif described as required for activation of the related
RTK TrkA [23] in vertebrate Ror2 and Caenorhabditis elegans Ror
also matches the consensus sequence for Shc-SH2-domains
pYUX(I/L/M) with U representing a neutral, hydrophobic and X
any amino acid [22]. We have mutated both motifs (Fig. 2E) and
performed co-immunoprecipitation in HEK293 cells. In these cells,
strong binding of xShcA to xRor2 was only observed after stimula-
tion with xWnt-5a CM for 15 min, demonstrating again that this
interaction was ligand-induced (Fig. 2E). Mutation of Y642 and
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Y643, located in the motif required for activation of the related
TrkA resulted in weaker binding of xShcA probably due to reduced
activation of xRor2. Mutation of Y719 in the conserved Shc-SH2
binding motif however almost completely abolished binding of
xShcA (Fig. 2E). Notably, both mutations resulted in a reduction
of the dominant band of lower electrophoretic mobility observed
for wt xRor2 and the appearance of an additional band of higher
mobility, indicating that the resulting proteins carry less post-
translational modifications. It can be concluded that xShcA inter-
acts with Ror2 in a ligand-dependent manner and binds to a
phospho-tyrosine containing SH2-domain binding motif in the Ror2
tyrosine-kinase domain, which is conserved in all Ror orthologs
(Fig. 2F).

3.4. xShcA is co-expressed and co-localizes with xRor2 in Xenopus
embryos

We investigated next, if xShcA is co-expressed with xRor2
in vivo and whether it is required for xRor2 signaling in early Xeno-
pus embryos. In mammalian cells, ShcA is expressed in the three
isoforms ShcA p46, p52 and p66. All isoforms contain an N-termi-
nal phospho-tyrosine-binding (PTB) domain, a central CH1 domain
and a C-terminal SH2-domain (Fig. 3A). The p66 isoform shows an
extended N-terminus due to alternative splicing, while p52 and
p46 isoforms are generated by usage of alternative translation
starts from the same transcript (for review see [24]).

In Xenopus embryos the p52 isoform is present maternally and
dominates through gastrula and neurula stages. Only from tadpole
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l membrane without exogenous ligand. xWnt-5a stimulation induced clustering of
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stages onwards we have observed expression of the p46 isoform
(Fig. 3A). The p66 isoform was not detected in significant amounts
in Xenopus embryo lysates. Whole mount in situ hybridization of
Xenopus embryos showed that xShcA expression overlapped with
xRor2 expression on the dorsal side of gastrula stage embryos
(Fig. 3B). At later stages overlapping expression was detected in
the nervous system, cranial ganglia and cranial nerves (Fig. 3B
and Supplementary Fig. 2B–J).

3.5. xShcA is required for xPAPC expression in Xenopus embryos

Immunostaining for endogenous ShcA on Xenopus Animal Caps
showed a low level expression and mostly membrane proximal
localization of the protein (Fig. 3C). In Animal Caps expressing
mCherry-tagged xRor2 we observed partial co-localization of the
two proteins at cell membranes (Fig. 3C). Co-localization could
be enhanced by treating the explants with xWnt-5a CM for
15 min (Fig. 3C), indicating that xWnt-5a stimulates binding of
xShcA to xRor2 in vivo.

To further investigate the role of xShcA in early Xenopus devel-
opment we generated antisense Morpholino oligonucleotides di-
rected against xShcA p52 and xShc p46 (Supplementary Fig. 3).
Interestingly, already at gastrula stages which express only xShcA
p52 the translation of the p52 isoform was inhibited stronger with
a combination of both MOs than with xShcA p52 MO alone. There-
fore, we used both, the p52 MO alone and a combination of both
MOs for the subsequent experiments.
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xPAPC is a target gene of the Wnt-5a/Ror2 pathway in gastrulat-
ing Xenopus embryos. Therefore, we investigated the effect of
xShcA gain-of-function and loss-of-function on xPAPC gene
expression at early gastrula stages (NF stage 10.5). RT-PCR revealed
that knock-down of xShcA resulted in downregulation of xPAPC
mRNA levels (Fig. 4A). Overexpression of xShcA only slightly
upregulated xPAPC, but overexpression of either xShcADN or
xShcADC almost completely suppressed xPAPC transcription, indi-
cating that both constructs behaved as dominant-negatives with
respect to xPAPC expression in gastrula stage Xenopus embryos
(Fig. 4A). When we performed in situ hybridizations for xPAPC
mRNA at late gastrula stages (NF stage 12–12.5), we found that
knock-down of xShcA was sufficient to downregulate xPAPC tran-
scription (Fig. 4E) in 53% and 62% of the embryos, respectively
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es of at least three independent experiments (**significantly different from LacZ and
o the left and labeled with an asterisk: LacZ (100 pg, C), control MO (2.7 pmol, D),
t-5a RNA + xShcA p52 MO (100 pg + 2.7 pmol, H).
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significant, further supported the conclusion that xShcA acts
downstream of xWnt-5a in the regulation of xPAPC gene expression.

4. Discussion

Dimerization and autophosphorylation are common functional
mechanisms for receptor-tyrosine kinases. For mammalian Ror2
autophosphorylation induced by forced dimerization via a cross-
linking antibody [16] or the Wnt-5a ligand [17] has been reported.
Consistent with these reports, we have shown Wnt-5a-induced
dimerization of xRor2-Flag and xRor2-EGFP in a cell culture model
and clustering of xRor2 in vivo in Xenopus Animal Cap explants. In
the same cellular systems we show that ShcA is recruited to the
xRor2 RTK in response to xWnt-5a stimulation.

Our results demonstrate ligand-induced interaction of Ror2
with a phospho-tyrosine binding protein. The sequence motif
YxLM represents a ShcA SH2 binding site and is conserved in all
Ror family proteins [1,22]. Consistently, we have mapped ShcA
interaction with Ror2 to the ShcA SH2-domain and confirmed that
mutation of the tyrosine residue in this YTLM motif (Fig. 2F) abro-
gates the ability of xRor2 to recruit xShcA.

A second interaction motif, YxxDYY, is found in all Ror family
RTKs (Fig. 2F, [1]) and is required for activation of the related fam-
ily of Trk receptors [23]. Mutation of the last two tyrosine residues
in this motif rendered xRor2 less capable to recruit xShcA than wt
xRor2, but stronger than mutation of the YTLM motif (Fig. 2E).
These results indicate that the YTLM motif is the Shc binding motif
of Ror2 and the YxxDYY motif may be an activation motif of Ror
family RTKs similar to Trk receptors.

The tyrosine-kinase domain and the Shc-SH2 binding motif are
evolutionary conserved in all Ror family receptors. In contrast, the
proline-/serine-/threonine (PST)-rich C-terminus is variable in
invertebrates and missing in the Drosophila melanogaster Ror
ortholog. So far, all known cytoplasmic interaction partners of
Ror2 bind to this PST-rich region [10–13]. ShcA is the first interact-
ing protein that binds to a motif present in all Ror family members,
suggesting that signaling through ShcA might represent an evolu-
tionary conserved function.

In Xenopus embryos, we demonstrated that xShcA and xRor2 are
co-expressed in dorsal tissues including cranial ganglia and cranial
nerves at tadpole stages. XRor2 expression appeared generally
broader than xShcA expression suggesting that xShcA could medi-
ate a subset of xRor2 functions in Xenopus embryos. Ror2 has mul-
tiple signaling functions likely achieved by interaction of Ror2 with
context-specific partners, but not necessarily requiring tyrosine-ki-
nase activity [2–9]. Therefore, signaling through ShcA is probably
one of several signaling option downstream of Ror2 receptors.
Whether xShcA function in the nervous system involves interac-
tion with xRor2 remains to be investigated.

However, we have confirmed that xShcA is required down-
stream of xWnt-5a in the regulation of xPAPC expression during
gastrulation. Thus, xShcA mediates xRor2 signaling in a physiolog-
ical context, likely by transducing the signal from xRor2 to PI3K.

ShcA has been shown to activate PI3K through recruitment of
Grb2 and Grb2-associated binder 2 (Gab2, [25]). In addition,
Gab1 mediates PI3K activation downstream of the Ror2 related
TrkA receptor [26]. On the other hand, the regulatory p85 subunit
of PI3K can bind directly to some RTKs. PI3K p85 contains one SH3
and two SH2-domains with the SH2 consensus binding motif
YXXM (reviewed in [27]). The YTLM motif found in xRor2 repre-
sents a reasonable match and direct binding of PI3K to Ror2 cannot
be ruled out at this point. Further studies are required to elucidate
the molecular mechanism of ShcA function downstream of Ror2 in
more detail and the potential role of other adapter proteins.

In conclusion, we have identified ShcA as a novel interacting
protein of Ror2 RTKs. Binding was ligand-induced and mapped to
the conserved YXLM motif in the Ror2 tyrosine-kinase domain.
The functional requirement of ShcA downstream of Ror2 has been
shown in Xenopus embryos where it is required for Wnt-5a/Ror2
mediated regulation of xPAPC expression. These results confirm
that in early Xenopus embryos Ror2 signals through a typical RTK
pathway and demonstrate to our knowledge for the first time the
relevance of RTK activation downstream of a Wnt-signal.
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