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Apico-basal polarity is a hallmark of epithelial tissues. The

integrated activity of several evolutionarily conserved protein

complexes is essential to control epithelial polarity during

development and homeostasis. Many components of these

protein complexes were originally identified in genetic screens

performed in Drosophila or Caenorhabditis elegans due to

defects in cell polarity. With time, it became obvious that these

protein complexes not only control various aspects of apico-

basal polarity, but also perform a plethora of other functions,

such as growth control, organization of endocytic activity,

regulation of signaling and asymmetric cell division, to mention

just a few. Here we summarize some results mostly obtained

from studies in Drosophila to elucidate how variation in protein

composition and modification of individual components

contribute to make polarity complexes versatile platforms to

fulfill a variety of functions.

Address

Max-Planck-Institute of Molecular Cell Biology and Genetics,

Pfotenhauerstrasse 108, 01307 Dresden, Germany

Corresponding author: Knust, Elisabeth (knust@mpi-cbg.de)

Current Opinion in Cell Biology 2016, 42:13–21

This review comes from a themed issue on Cell dynamics

Edited by Kenneth M Yamada and Roberto Mayor

http://dx.doi.org/10.1016/j.ceb.2016.03.018

0955-0674/Published by Elsevier Ltd.

Regulation of polarity complexes by dynamic
composition
The founding members of the three major polarity pro-

tein complexes Par3/Par6, Crb and Scrib (see Box 1 for

definitions), were identified in genetic screens, performed

in Caenorhabditis elegans and Drosophila, respectively.

These proteins organize membrane-associated apical

and lateral protein complexes, which led them to be

called the Par-complex, composed of Par3/Par6/aPKC,

the Crb-complex, comprising, besides Crb, the scaffold-

ing proteins Sdt, Drosophila PATJ and Drosophila Lin-7,

and the Scrib-complex, built from Scrib, Dlg and Lgl.

Many of these proteins contain multiple protein-protein

interaction motifs, such as PDZ-domain, SH3-domain or

GUK-domain (Figure 1), thus enabling the recruitment of
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additional proteins into the complex (recently reviewed

in [1]). More extensive studies have shown, however, that

these protein complexes are not static, but highly dynam-

ic entities, making it more appropriate to talk about Par-

module, Crb-module and Scrib-module. In the case of the

Drosophila Crb complex, the transmembrane protein Crb

and the scaffolding proteins Sdt, DPATJ and DLin-7 form

the core complex, based on the observation that these

four proteins co-localize whenever they are expressed in

the same cell [2].

Various ways exist to modify the nature, and thus proba-

bly also the function, of these protein complexes. One of

these consists in the expression of different isoforms of

the same gene. More precise genome annotations predict

that nearly all Drosophila polarity genes encode more than

one isoform (see Flybase: http://flybase.bio.indiana.edu/).

Based on these predictions, Drosophila may theoretically

organize 96 different Par-complexes, 84 different Crb-

complexes and 3.168 different Scrib-complexes. So far,

however, very little is known about tissue-/cell type-

specific expression of the different isoforms, nor how

individual isoforms may affect the function of a given

complex. At least two different Sdt isoforms are expressed

in Drosophila photoreceptor cells. Upon overexpression,

they exert opposite effects on the length of the stalk

membrane, a portion of the apical membrane, where the

Crb complex is localized [3]. Three different Crb isoforms

exhibit stage-specific and tissue-specific expression (our

unpublished results). Alternative splicing of the crb pre-

mRNA in Drosophila embryos is controlled by the heli-

case Obelus. obelus mutant embryos are characterized by

the aggregation of adhesion junction components and

defects in centrosome positioning, and show upregulation

of one crb RNA, the crb-C mRNA. The obelus phenotypes

are mimicked by the overexpression of the crb-C, but not

the crb-A isoform in otherwise wild-type embryos, point-

ing to specific functions of these two isoforms [4]. In

mammals, isoform diversification of a given gene is often

achieved by different genes, rather than by alternative

splicing of one gene. Most of Par6A, for example, can be

found at the TJs in MDCK cells and has no effect on TJs,

while Par6B is mostly cytosolic and inhibits TJ formation.

This difference goes along with a difference in the

binding affinity to Pals1, the vertebrate orthologue of

Drosophila Sdt [5]. Finally, the epithelial isoform of

Drosophila Dlg lacks the L27-domain, while DlgS97,

the isoform expressed in the neuromuscular junction,

contains an L27-domain, thus enabling interaction with

Lin7 [6,7] (Figure 2).
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Box 1 Definitions and concepts

AJ: Adherens junction. Membrane-associated protein complex forming an adhesive junction between neighboring cells. Localized basal to the TJs

in epithelial cells. They are composed of transmembrane proteins (E-cadherin), the extracellular domains of which are held together by homophilic

interactions, and scaffolding proteins (e.g. a-catenin and b-catenin), which serve as anchors for the actin cytoskelelon.

Amnioserosa: A squamous transient extra-embryonic epithelial tissue that covers the dorsal part of the Drosophila embryo. It derives from the

dorsal-most region of the cellular blastoderm.

AP-2: Adapter-protein 2-complex. A heteromeric protein complex, which is involved in the internalization of cargo from the cell membrane via

clathrin-dependent endocytosis. The AP-2 complex comprises four subunits, the large a-adaptin and b2-adaptin, the medium m2-adaptin and the

small s2-adaptin. The core region of AP-2 recognizes cargo proteins through specific recognition motifs in the cytoplasmic domain of these

proteins.

Apico-basal polarity: Apicobasal polarity refers to asymmetry along the apical–basal cell axis and is a key feature of epithelial cells. Two functional

and biochemical distinct membrane domains are distinguished: the apical membrane faces the external environment or an organ lumen, while the

baso-lateral membrane contacts neighboring cells or the underlying extracellular matrix (ECM).

aPKC: atypical protein kinase C. First identified as component of the Par3/Par6 complex in C. elegans (PKC-3), required for asymmetric division in

the early embryo [62].

Cellularization: Embryogenesis in Drosophila starts with 13 rounds of nuclear division without cytokinesis, resulting in a syncytium. During

cellularization, membranes simultaneously invaginate between the nuclei, thus forming the cellular blastoderm, a single-layered epithelium of

�6000 cells enclosing the yolk.

Crb: Crumbs. Founding member of the Crb protein complex, originally identified in Drosophila [63]. Crb is a type I transmembrane protein, with a

large extracellular domain and a short, highly conserved cytosplasmic domain [64]. Mammals contain three Crb genes, Crb1, Crb2 and Crb3.

Dlg: Discs-large. Tumor suppressor protein, often part of the Scrib complex, localized at the lateral membrane of epithelial cells. Mutations in dlg

have first been identified due to overgrowth of imaginal discs [65]. Dlg encodes a member of the MAGUK protein family.

Dorsal closure: A morphogenetic movement during Drosophila embryogenesis, during which the dorsal-most epithelium, the amnioserosa,

becomes internalized into the embryo, while the lateral epidermis from both sides moves dorsally and eventually seals at the dorsal midline.

FBM: FERM domain-binding motif. Short stretch of amino acids in the cytoplasmic domain of transmembrane proteins that are recognized and

bound by FERM domains.

FERM-domain: Named after the first four proteins containing this domain: protein 4.1/Ezrin/Radixin/Moesin [66]. FERM domains are often found in

proteins that link integral membrane proteins to the actin cytoskeleton, whereby the FERM domain interact with a specific sequence in the

cytoplasmic tail of the membrane proteins (reviewed in [67]).

Follicle epithelium: A single-layered epithelium that surrounds a 16-cell germline cyst (one oocyte and 15 nurse cells), thus forming egg

chambers in the ovariole of the Drosophila ovary. Cells of the follicle epithelium form the eggshell (chorion, vitelline membrane) at late stages

of oogenesis.

Germ band extension: The germ band is the region of the Drosophila embryo (and other insect embryos) that develops into the segmented part

of the body (gnathal, thoracic and abdominal segments). During germ band extension/elongation, which takes about 100 min, the length of the

germ band increases about two-fold, while its width decreases about two-fold. During this process, the germ band extends dorso-anteriorly.

GUK-domain: Guanylate kinase-like domain.

Imaginal disc: Tissues in the larvae of holometabolic insects that give rise to most of the external structures of the adult insect, such as the wings,

the legs, the halters. They are ideal tissues to study growth and pattern formation in epithelia. (For more information, see: The Interactive Fly

(http://www.sdbonline.org/sites/fly/aimain/1aahome.htm).)

L27 domain: Lin2/Lin7-domain. Protein interaction domain first described in the C. elegans proteins Lin-2 and Lin-7. Most MAGUK proteins

contain one or two L27 domains.

Lgl: Lethal(2)giant larvae. Scaffolding protein, often part of the Scrib complex, localized at the lateral membrane of epithelial cells. Mutations in lgl

were first identified due to overgrowth of imaginal discs [68].

Lin-7: First identified in C. elegans as member of a tripartite complex containing, besides Lin7, the scaffolding proteins Lin2 and Lin10. The

complex is required to anchor the LET-23 receptor at the baso-lateral membrane of vulval epithelial cells [69]. Called Veli (vertebrate homolog of

Lin7 or Mals (= mammalian LIN7 proteins)) in vertebrates/mammals.

MAGUK: Membrane-associated guanylate kinase. Protein superfamily, characterized by the presence of one or several PDZ-domains, an SH3-

domain and a guanylate kinase-domain, which is, however, catalytically inactive. Many MAGUKs additionally contain L27 domains. They act as

scaffolding proteins at various junctions.

Par1/Par3/Par6: PARtitioning defective homologue-1, homologue-3, homologue-6. These and three more par genes were first identified in a

genetic screen in C. elegans [70]. Mutations in these maternal effect genes show defects in asymmetric cell division in the early embryo and fail to

partition P-granules asymmetrically. These proteins are highly conserved from C. elegans to human, and are also involved in the control of

epithelial cell polarity. The posterior Par-1 protein encodes a Ser/Thr kinase, while Par3 and Par6 encode scaffolding proteins and localize, together

with aPKC, at the anterior pole of C. elegans blastomeres and apically in epithelial cells (reviewed in [71,72]).

PATJ: Protein associated with tight junction/Pals-1 associated tight junction protein. Scaffolding protein, which contains several PDZ-domains

and one L27 domain, first (wrongly) described as Discs Lost in Drosophila [73] and PATJ in vertebrates [74]. PATJ is recruited into the Crb complex

by interaction of its L27 domain with the N-terminal L27-domain of Sdt.
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PDZ-domain: Protein-protein interaction domain, named after the founding members, the postsynaptic protein PSD95, the septate junction protein

of Drosophila Discs large, and ZO-1, a protein of the zonula occludens (tight junction). PDZ domains are versatile motifs characterized by a

hydrophobic pocket that can accommodate the PDZ-binding motif at the C-terminus of a transmembrane protein.

PBM: PDZ-binding motif. A short peptide, most often found at the very C-terminus of transmembrane proteins.

SAR: subapical region, also described as marginal zone, corresponds to the stalk membrane in Drosophila photoreceptor cells. A distinct region

of the apical membrane, localized just apical to the ZA (zonula adherens), corresponding to the site where tight junctions in vertebrate epithelia are

situated. The Crb proteins complex defines the SAR.

Scrib: Scribble. Founding member of the Scrib complex. Mutations in Drosophila scrib result in loss of the monolayered organization of many

epithelia in the embryo. The protein localizes on the lateral membrane of epithelia [75].

Sdt: Stardust. First identified in a genetic screen performed in Drosophila [76]. Sdt encodes members of the MAGUK family [77,78]. Loss of sdt

results in the loss of epithelial cell polarity in the embryo. Sdt binds via its PDZ domain to the C-terminus of Crb. The human homologue is MPP5

(membrane associated palmitoylated protein-5), also called Pals1 (Protein associated with Lin7).

SH3 domain: Src-homology 3 domain, often found in signaling molecules.

TJ: Tight junction. Also called zonula occludens. Membrane-associated protein complex, localized apically in epithelial cells of vertebrates,

bringing neighboring membranes in close proximity. They are composed of transmembrane proteins (claudins, occludins), the extracellular

domains of which being in close contact with each other, and scaffolding proteins (e.g. ZO-1), which serve as anchors for the actin cytoskelelon.

TJs have two major functions: they act as barriers, to prevent the free diffusion of molecules and ions between neighboring cells, and serve as

fence, which prevents the lateral diffusion of integral membrane proteins between the apical and lateral membrane domain. Thereby, they

contribute to maintain polarity.

ZA: zonula adherens. An adhesion belt, which encircles the apex of epithelial cells. It mediates adhesion between neighboring cells through

homophilic interaction of the extracellular domains of the adhesion molecule E-cadherin.
A second way to modify polarity complexes comes from

the promiscuous behavior of some of their members.

During cellularization, for example, Sdt interacts with

Bazooka (Baz), the fly orthologue of Par3. Upon Baz

phosphorylation by aPKC, Sdt is released and is now free

to bind to Crb [8] (whether it is the same Sdt isoform that

interacts with Baz and Crb, is an open question, since

several Sdt isoforms are expressed in the embryo [9,10]).

Crb, as another example, can interact via its C-terminus

with the PDZ-domain of either Sdt or Par6 [11,12].

Specificity and binding affinities of PDZ-domains to their

targets can be modulated by sequences adjacent to the

PDZ-domain. Recent structural analysis revealed that the

PDZ domain of Pals1 binds with much higher affinity to

the PBM of Crb when it is linked with the SH3-domain

and the GUK-domain [13]. Strikingly, the PDZ-binding

motif of Crb can also interact with a-adaptin, a compo-

nent of the AP-2 complex. While interaction with Sdt

stabilizes Crb on the surface, Crb interaction with AP-2

results in its endocytosis, suggesting that competitive

binding to either Sdt or a-adaptin controls the amount

of Crb on the cell surface, a crucial parameter for proper

apico-basal polarity [14]. How the proportion of Crb

binding to either Sdt or a-adaptin is determined is an

open question.

Finally, complexity can be increased by the (transient)

recruitment of additional proteins into the complex in a

tissue-specific and/or stage-specific manner. Beside the

PBM, the Crb cytoplasmic tail contains a FBM. Three

FERM proteins have been shown to bind to Crb, namely

Yurt, Moesin and Expanded. Interaction of Crb with

Expanded, an upstream component of the Hippo signal-

ing pathway, keeps Expanded in an apical position, where

it can suppress the activity of the Hippo pathway and thus
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overgrowth in imaginal discs [15–18]. Interaction be-

tween Crb and Yurt results in apical Yurt recruitment,

where it negatively controls Crb activity, though the

molecular mechanism is poorly understood [19]. Striking-

ly, a Crb protein carrying a mutation in the FBM rescues

polarity of most epithelia of crb mutant embryos. Yet,

these embryos fail to undergo dorsal closure due to an over-

active actomyosin network, suggesting a specific interac-

tion between Crb and probably Moesin in the amnioserosa

to negatively regulate actomyosin dynamics [20�,21].

Regulation of polarity complexes by
modification of their components
Modification of polarity proteins by phosphorylation can

affect the localization, the assembly/composition, or the

activity of protein complexes. Both the nature of the

kinase involved as well as antagonistic activities of

kinases and phosphatases contribute to the fine-tuning

of polarity complex dynamics.

Mutual exclusion of polarity complexes from a given site

of the cell through phosphorylation of one of its compo-

nent is recurrently used to localize polarity complexes.

Phosphorylation of Baz at Ser151 and Ser1085 by basally

localized Par-1 excludes Baz from the basolateral mem-

brane. Baz phosphorylation by Par-1 is counteracted by

protein phosphatase 2A (PP2A), which interacts with

DPATJ and dephosphorylates Baz at Ser1085 [22]. Refine-

ment of Baz to an apico-lateral position, which overlaps

with the SAR and the ZA, occurs through aPKC-mediated

phosphorylation at Ser980, during cellularization of the

Drosophila embryo and in photoreceptor cells [23–25]. In

the absence of aPKC, Baz accumulates, together with AJ

components, at two foci, which are linked to centrosomes

[26].
Current Opinion in Cell Biology 2016, 42:13–21
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Figure 1
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Graphic representation of Drosophila polarity proteins. Apical (a) and basolateral (b) protein domains, phosphorylation sites and functional motifs

are shown. Below each phosphorylation site, the responsible kinase or phosphatase is indicated. The number in parenthesis next to each name

indicates the number of predicted isoforms (number of unique polypeptides) according to FlyBase (flybase.org). (c) Shows the key for the different

domains as well as the scale bar for the whole figure. EGF, epidermal growth factor; PDZ, PSD95/Dlg1/ZO-1 domain; L27, domain in receptor

targeting proteins Lin-2 and Lin-7; FBM, FERM-domain binding motif; PBM, PDZ-domain binding motif; ECR, evolutionary conserved region; DAG,

diacylglycerol; SH3, SRC Homology 3; PB1, Phox and Bem1p; PH, Pleckstrin homology. The canonical sequences used for the representation

were obtained from UniProt (uniprot.org) and InterPro (ebi.ac.uk/interpro/) [79,80]. The accession numbers are given in parenthesis: Crb (P10040),

DPATJ (Q9NB04), Sdt (Q0KHU9), DLin-7 (Q8IMT8), Cdc42 (P40793), Par6 (O97111), aPKC (A1Z9X0), Baz (O96782), Moesin (P46150), Dlg

(P31007), Lgl (P08111), Scrib (Q7KRY7), Par1 (Q9V8V8), Yurt (A0T1Z4), Cora (Q9V8R9), and Nrx-IV (Q94887).
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Figure 2
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In the same way as basal Par-1 excludes Baz from basal,

apical aPKC activity restricts Lgl to the basolateral do-

main by phosphorylation of three conserved Ser residues

(Ser656, Ser660 and Ser664) [27–31]. aPKC targets a poly-

basic region in Lgl that mediates plasma membrane-

specific electrostatic interactions. Hence, phosphoryla-

tion of Lgl inhibits its membrane targeting by neutraliz-

ing positive charges of Arg and Lys residues in this region

[32,33]. Whereas the kinase activity of aPKC ensures

basolateral restriction of Lgl, phosphorylation of Lgl at

Ser656 and Ser664 by Aurora kinases induces its relocation

to the cytoplasm at early prophase in both epithelia and

neuroblasts. Lgl relocation is essential to orient the mi-

totic spindle during symmetric division [34,35�].

Only recently, in vitro experiments showed that phosphor-

ylation of at least one of the three conserved Ser residues

in the mammalian homolog Lgl2 results in its binding to

Dlg4 GUK domain [36�], showing for the first time that

these two proteins can interact directly, though the rele-

vance of such interactions in vivo remains to be analyzed.

aPKC substrates contain a basic and hydrophobic motif

(BHM) that interact directly with phospholipids. Phos-

phorylation of the BHM changes its electrostatic character

and inhibits interaction with phospholipids [37��]. Thus,

it will be interesting to analyze in the future whether

aPKC inhibits Par-1 in Drosophila, as phosphorylation of

hPar-1b (mammalian homologue) on the conserved Thr595

(Thr785 in Drosophila) negatively regulates its kinase

activity and plasma membrane localization [38,39].

As noted above, phosphorylation of Baz by aPKC releases

the Baz–Sdt interaction and allows Sdt to interact with

Crb [8]. It has been suggested that aPKC also phosphor-

ylates the FBM of Crb [40]. Although this phosphoryla-

tion was postulated to be important for Crb stabilization

[41] and for the regulation of the Crb-Moesin interaction

[42�], a crb allele carrying Ala substitutions for the four

putative aPKC phosphorylation sites was reported to

produce viable flies [43]. The FERM protein Yurt is

another transient component of the Crb complex. Yrt

directly binds to Crb FBM. Localized basolaterally in

the early embryo, Yrt is later recruited apically by Crb,

and negatively regulates Crb activity during late embryo-

genesis [19,44]. aPKC phosphorylates Yrt on several

residues (Ser348, Ser358, Thr379, Ser387, and Ser392), thus

preventing its premature apico-lateral localization and

integration into the Crb complex. Yrt, in turn, prevents

apical accumulation of aPKC and thus ensures proper

membrane domain formation [45].
(Figure 2 Legend) Apico-basal cell polarity and its regulation in Drosophila.

localization of Crb (green) and Dlg (magenta) in the epidermis of wild type D

(noticeable by the spread of Dlg along the plasma membrane) and the loss 

embryos mutant for crb. The scheme depicts the localization of the major p

by red arrows, dephosphorylations by blue arrows and interactions are dep

obtained from studies in various epithelia, that is, not all interactions will tak
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Localization of polarity proteins can have a major impact

on epithelial polarity and morphogenesis. As described

above, Par-1 and aPKC are important to restrict Baz to

the subapical region, where it directs assembly of AJs. In

gastrulating wild-type Drosophila embryos, reduced

phosphorylation of Baz by Par-1 is required for dorsal

fold formation. Preceding dorsal fold formation, cells

that initiate invagination show a basal shift of adherens

junctions, while neighboring cells maintain apical ZA.

Uniform expression of a Baz variant that cannot be

phosphorylated by Par-1 or Par-1 downregulation by

RNAi results in lateral localization of Baz, followed

by a more lateral positioning of adherens junctions,

which in turn abolishes the invagination of the epitheli-

um during dorsal fold formation [46]. Par-1 not only

inhibits spreading of Baz laterally, but also promotes a

positive feedback loop between Baz and the centro-

somes by phosphorylation of Baz as well as by its effect

on centrosomal microtubules [47]. During germ band

extension, Rho-kinase (Rok)-mediated phosphorylation

of Baz oligomerization domain is important for planar

polarized distribution of myosin II during cell intercala-

tion [48]. Interestingly, in mammalian cells Rok also

negatively regulates PAR-3 (Baz homolog), but the

phosphorylation site (Thr833) is different from the one

in Baz [49]. Par-1 also regulates Dlg during synaptic

development by Ser797phosphorylation [50]. Concomi-

tant overexpression of Dlg and Gliotactin in imaginal

discs results in tissue overgrowth. Overgrowth was abol-

ished when a mutant Dlg protein, DlgS797A, which could

not longer be phosphorylated, was expressed along with

Gliotactin [51].

In the Crb complex, direct binding of Moesin to the FBM

of Crb mediates the interaction between plasma mem-

brane proteins and the cytoskeleton [52,53]. Moesin is

phosphorylated by Slik (Sterile20-like) kinase on

Thr556. This Thr residue is conserved in Merlin

(Thr616), another FERM protein that interacts with

Crb via Expanded (reviewed in [54]). In wing imaginal

disc epithelia, Slik simultaneously promotes Moesin

function and inhibits Merlin, although there is no evi-

dence of direct phosphorylation of Merlin by Slik [55–57].

Interestingly, Flapwing, a known myosin phosphatase

[58], acts antagonistically to Slik [59]. Because DPATJ

binds and inhibits the myosin-binding subunit of myosin

phosphatases [60�,61], it will be of interest to analyze

whether the Crb complex can regulate organization of the

cytoskeleton and tissue growth through modulating the

activity of these kinases and phosphatases.
 Upper panel, left, displays immunofluorescence pictures showing the

rosophila embryos. Upper right panel shows the loss of polarity

of tissue organization in the embryonic epidermis of Drosophila

olarity modules and their interactions. Phosphorylations are indicated

icted by dotted lines. Please note that the cartoon compiles interaction

e place in every epithelium.
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Conclusion
Several ways exist that allow polarity complexes to per-

form a multitude of functions in a cell type-specific and/or

stage-specific manner. Here we concentrated on two

major mechanisms, namely variation in protein composi-

tion of a given complex and modification of individual

components and its possible consequences. We would

like to point out, however, that additional mechanisms are

put in place to increase the complexity of polarity mod-

ules. Therefore, we should be aware that results obtained

in a given tissue or developmental stage may not be

relevant in another tissue or at a different stage. This

makes it challenging to define functions of these regula-

tory entities, which are essential for polarity regulation in

all metazoa.
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