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Abstract 
This paper describes the application of a general 

data compression algorithm to assembly code. The 
system is retargetable and generalizes cross-jumping 
and procedural abstraction. It can be used as a space 
optimizer that trades time for space, it can turn 
assembly code into interpretive code, and it can help 
formalize and automate the traditionally ad hoe 
design of both real and abstract machines. 

1. Introduction 
Most optimizations focus on saving time. Some 

incidentally save space, but many actually make pro- 
grams faster by making them longer (e.g., induction 
variable elimination, loop unrolling). 

Optimizations that save space (possibly at the 
expense of time) have been less studied. Of these, 
procedural abstraction and cross-jumping are the 
most important. Procedural abstraction [6] turns 
repeated code fragments into procedures. It is usu- 
ally applied to intermediate code or even source code 
[6], which avoids machine-dependencies but can miss 
repeated fragments introduced during code genera- 
tion. Cross-jumping [9] reuses the common tail of 
two merging code sequences. For example, it 
replaces 
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with 

X 
jump L1 

X 
LI: Y 

jump L2 
,.. 

L2: X 
LI: Y 

Cross-jumping is usually performed after code gen- 
eration because the juxtapositions that it improves 
are not evident earlier [9]. Implementations of pro- 
cedural abstraction and cross-jumping seldom share 
code. 

This paper describes the application of a general 
data compression algorithm to assembly .code. It 
subsumes procedural abstraction and cross-jumpmg. 
To give an extreme example, this code compressor 
can reduce a program consisting of 27 adjacent 
copies of some fragment X to . . . .  

main: 
call subrl 
call subrl 
call subrl 
exit 
subrl: 
call subr2 
call subr2 
subr2: 
X 
X 
X 

return 

That is, the main routine does subrl three times, 
subrl does subr2 three times (once by "falling into" 
it), and subr2 does X three times. Section 2 describes 
the code compressor. 
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The code compressor has applications beyond 
space optimization. When asked to subroutinize 
everything, even tiny, unrepeated fragments, the code 
compressor turns assembly code into threaded code 
[1], allowing one compiler to yield code for either 
direct execution or interpretation. The code 
compressor also automatically analyzes assembly 
code and identifies its idioms. This helps solve com- 
mon problems in compiler and machine design. 
Compiler writers must routinely identify where to 
focus optimization effort, and automatic identifica- 
tion of idioms helps in this search. The designers of 
real and abstract machines must identify the instruc- 
tions appropriate for a given application, and 
automatic identification of idioms suggests obvious 
candidates, allowing design to proceed in a scientific 
fashion, rather than the traditional ad hoc, intuitive 
fashion. Section 3 discusses these applications. 

labelled with exactly this string. The substrings 
labelling the arcs are typically represented by storing 
the indices of their first and last characters. Thus suf- 
fix trees can be stored in space linear in the length of 
the input. 

The suffix tree is built incrementally. Each step 
adds one more position to the tree. For example, 
when constructing the tree above, step 3 takes a tree 
with positions 1 and 2 

2. A Code Compressor 

The code compressor has three logical phases: 
identifying repeated code fragments, evaluating their 
suitability for abstraction, and actually compressing 
the program. The three subsections below treat these 
three phases. 

2.1 Identification 

Like some compression algorithms for general 
data [5], the code compressor starts by building the 
suffix or Patricia tree [3, 4] for its input program. 
The suffix tree for a string S has arcs labelled with 
substrings of S and leaves labelled with positions in 
S. For example, the suffix tree for the string 
XYXYZ is 

The labels traversed on the paths from the root to the 
leaves are in one-to-one correspondence with the suf- 
fixes of the string. For example, the suffix of the 
string XYXYZ starting at position 2 is YXYZ, so the 
path from the root to the leaf labelled 2 traverses arcs 

and adds position 3: 

Let SUF(K) denote the suffix that starts at position 
K. Let HEAD(K) denote the longest prefix of 
SUF(K) that prefixes an earlier suffix. The naive 
implementation suggested by the example above per- 
forms step K in time proportional to the length of 
HEAD(K) and thus constructs the entire tree in qua- 
dratic time. However, HEAD(K) starts with the tail 
of HEAD(K-l). This observation leads to a refined 
algorithm that avoids rescanning each character 
more than once. Thus the entire tree is constructed 
in linear time. A complete discussion of such an 
algorithm is beyond the scope of this paper, but one 
may be found in Reference 4. 

Suffix trees identify common substrings. If an 
interior node heads a subtree with M leaves, the 
string on the path from the root to that node appears 
M times. Thus, in the suffix tree above, the left son 
of the root heads a tree with leaves for positions l 
and 3, so the string XY occurs twice in the input. 
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This algorithm is most commonly applied to 
strings of characters, but it applies just as well to 
strings in which the primitive elements are instruc- 
tions~, not characters. The code compressor reads 
instructions into a hash table, and all occurrences of 
a common instruction share the same hash address. 
The code compressor thus compresses strings of hash 
addresses, not characters. 

As assembly code is read, some of it is factored 
out. Data definition directives are flushed directly to 
the output. These cannot yield useful code frag- 
ments, and, if interleaved with code, would compli- 
cate the identification of otherwise useful fragments. 
Label definitions are not flushed, but they are hidden 
during the identification of repeated fragments. 
Without this, otherwise identical fragments with 
internal labels would appear different because their 
internal labels are necessarily distinct. Section 2.3 
shows that hiding label definitions cannot introduce 
false equivalences. 

The algorithm that builds the suffix tree must fre- 
quently compare instructions. For most instructions, 
this is done by merely comparing their hash 
addresses; that is, two instructions are equal if their 
assembly code is textually equal. However, this res- 
triction is relaxed for branches to catch opportunities 
for compression that would otherwise be missed. 
For example, jumps to equivalent labels are deemed 
equivalent. Many compilers generate multiple labels 
at certain points. For example, conditional state- 
ments typically end with a label, and many loops 
begin with one, so a conditional followed by a loop 
may label one point twice. The code compressor fac- 
tors out spurious inequalities by noting equivalent 
labels as it reads instructions. Ultimately, it should 
also interpret assembler directives to equate symbols. 

The instruction comparator also allows relative 
branches. Consider two otherwise identical code 
fragments that include a branch over a few instruc- 
tions. They reference different labels so they differ 
textually, but if they skip equal distances then it may 
still be possible to combine the two fragments. Thus 
two branches are deemed equal if they are equal 
either absolutely (i.e., they reference equivalent 
labels) or relatively (i.e., they jump equivalent dis- 
tances). Distances are computed in a machine- 
independent fashion by merely counting instructions. 
It is unnecessary to consider instruction sizes because 
the code compressor cannot relocate a relative 

~'Ultimately, it would help to perform this optimization on 
instructions before the registers were completely hound. 
for some fragments are equivalent except for differing re- 
gister assignments. 

branch without also relocating the target of the 
branch, so it cannot combine two fragments with 
relative jumps without first checking that the instruc- 
tions they jump over are also equivalent. 

To simplify retargeting, the code compressor's 
few machine-specifics are isolated in patterns. For 
example, the patterns for the UNIX PDP-I1 assem- 
bler 

%%u jump 
jbr %1 
imp %1 
%%label 
%1: 

state that unconditional jumps start with jbr and jmp 
and are followed by an arbitrary string (%1), and that 
labels are an arbitrary string followed by a colon. 
The complete pattern file (describing conditional 
branches, calls, etc.) for the UNIX PDP-I  1 assembler 
is a page of these short patterns. 

2.2 Evaluation 

Once repeated code fragments have been identi- 
fied, their suitability for abstraction must be 
evaluated because, for example, some fragments may 
be too short to justify procedural abstraction. Thus 
once it has built the suffix tree, the code compressor 
enumerates the tree's nodes, which correspond to the 
repeated code fragments. The list of instances of 
each repeated fragment is passed to a function that 
returns the number of instructions that would be 
saved were all of  those instances replaced with a com- 
mon copy. Negative "savings" indicate fragments 
that should be left alone. 

For purposes of evaluation, there are two types of 
code fragments, "closed" fragments, which exit only 
by falling off (or jumping to) the end of the fragment, 
and "open" fragments, which include a non-relative 
branch (or return) to an external site. Closed frag- 
ments will be implemented as subroutines, and 
adding calls and entry and exit sequences may actu- 
ally lengthen programs, so the evaluation function 
uses parameters that describe these costs. Thus it 
normally reports positive savings only for subrou- 
tines of several instructions. Open fragments will be 
. . . . . . . . . .  jumps or by falling into them. This is 
how as they are reached in the input program, so they 
always produce positive savings. 

Proposed fragments must be screened because 
some otherwise desirable fragments must be rejected 
or divided. For  example, as noted above, if a frag- 
ment includes a relative branch, then it must also 
include the target of the branch, for it would change 
the effect of the program to relocate the branch and 
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leave the target behind. Offending fragments are 
divided at the unacceptable code, which is discarded. 

Also, closed fragments will be implemented as 
subroutines, so it is illegal to enter or exit them via a 
simple jump. Symmetrically, open fragments will be 
reached by jumping or falling into them, so it is ille- 
gal for them to exit by falling off the end, because 
relocating such code would change its effect. Again, 
offending fragments are divided to remove the unac- 
ceptable code. 

Also, fragments that overlap without nesting 
must be prevented. For example, the suffix tree for 
ABABCBC would report two instances each of AB 
and of BC, but the second instance of AB overlaps 
the first instance of BC, so only one of them can be 
replaced with a subroutine call. Overlapping frag- 
ments are discarded; it has not proven empirically 
important  to divide them. 

Finally, when the calls introduced for closed frag- 
ments affect a stack, these fragments must pop off 
the stack exactly what they push onto it. For  exam- 
ple, a closed fragment that starts by popping the 
stack would pop an unexpected return address if it 
were subroutinized. This problem is solved using 
patterns like those above, extended with a stack 
adjustment at the end of the line. For  example, the 
patterns 

Pattern Stack adjustment 
mov %l,-(sp) 2 

add %l,sp -%1 

state that mov x,-(sp) adds two bytes to the stack and 
that add n,sp subtracts n bytes. (The add instruction 
"subtracts"  f rom a stack because the PDP-11 stack 
grows down.) The evaluator scans proposed subrou- 
tines, noting the points where they were stack- 
balanced. If the entire subroutine is not  balanced, 
the offending instruction is taken to be the one 
preceding the longest balanced suffix. The proposed 
subroutine is split at the point of this instruction, 
which is discarded. 

Screening is integrated into the algorithm as fol- 
lows. The nodes of the suffix tree are enumerated, 
and the repeated fragments they represent are 
evaluated naively; that is, the checks above are not 
performed. The fragments are entered into a priority 
queue based on the estimated savings. When this is 
complete, the most promising repeated fragment is 
removed from the queue and screened as above. If 
all checks are passed, the program is rewritten as out- 
lined in the next section. Otherwise, offending 
instances of the fragment are discarded or divided, 
and the remaining code is re-entered in the priority 

queue. Then the next most promising repeated frag- 
ment is removed from the queue, and the process is 
repeated until no promising fragments remain. This 
approach results in a code compressor that processes 
80-100 instructions per second on a VAX-11/780. 

2.3 Compression 

Repeated closed fragments are turned into sub- 
routines. One copy of each is surrounded with a sub- 
routine entry/exi t  sequence and placed out-of-line at 
the end of the program. The original fragments are 
replaced with a call to the appropriate routine. If the 
entry sequence is empty, one subroutine may fall into 
another, as in Section l's procedural abstraction 
example. 

Repeated open fragments are replaced with a sim- 
ple branch. Like closed fragments, one copy of each 
could be placed out-of-line at the end of the program, 
and the original fragments could be replaced with a 
jump to the one remaining copy. However, it is 
slightly more efficient to place the one remaining 
copy at the site of  one of  the branches, so that one 
execution path can fall into the fragment instead of 
jumping to it. This effectively implements cross- 
jumping1-. 

As explained in Section 2.1, label definitions are 
hidden during the identification of repeated frag- 
ments. Fortunately,  this cannot introduce false 
repeated fragments. Closed fragments can only be 
entered at the top, so any labels they define are the 
targets of  only internal, relative branches, the con- 
sistency of which has already been checked. On the 
other hand, open fragments can be entered any- 
where, so the code compressor shuffles their label 
definitions together when it forms their generaliza- 
tion. For  example, it takes the two fragments 

A A 
k l :  B B 
C L2: C 
jump L3 jump L3 

and shuffles them together to form their generaliza- 
tion 

A 
LI:  B 
L2: C 
jump L3 

The code compressor has been run on a range of 
programs, including 157 UNIX system utilities. Dif- 

1'To make all paths that end up at label L look the same, a 
jump to L is inserted before L. Such extra jumps are re- 
moved as the program is written out. 
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ferent samples might give different results, but, so 
far, compression ratios have ranged 0-39% with an 
average of 7%. Compressed code has taken 1-5% 
more CPU time but as much as 11% less real time, 
presumably because it loads faster. 

3. Other Applications 

Normal evaluation functions report savings for 
only those repeated closed fragments that have 
several instructions and occur several times. While 
this capability has not yet been used in practice, these 
thresholds are variable and can be adjusted to specify 
the generation of even one-instruction subroutines 
that are used only once. The resulting program is a 
list of jumps and subroutine calls, followed by a list 
of subroutine bodies. The subroutine addresses in 
the calls effectively form a threaded code [1], and the 
subroutine bodies form an interpreter. Thus the code 
compressor allows one compiler to yield both execut- 
able and interpretive code. 

The code compressor also helps analyze assembly 
code. As an option, it can record each repeated frag- 
ment, its length and number of instances in the origi- 
nal program and in the program as it stands when 
instances of that fragment are compressed. This data 
can be used directly or processed to identify common 
idioms. For example, a simple program borrowed 
from a companion peephole optimizer [2] replaces 
the n-th distinct number or variable name in each 
fragment with a string of the form %n. This program 
turns the record of a fragment like 

mov _i,rl 
mul #10,rl 
add _j,rl 

into 

mov %1 ,r%2 
mul #%3,r%2 
add %4,r%2 

This represents the general idiom of which the frag- 
ment above is an instance. Computing the frequency 
of the idioms reported for a large testbed should help 
compiler writers identify where to focus optimization 
effort, and help the designers of real and abstract 
machines identify appropriate machine primitives. 
This complements previous systems to help identify 
such primitives, which have determined the fre- 
quency of either source code operations [8] or of 
pairs and longer, but hand-written, juxtapositions of 
assembler instructions [7]. These past analyses were 
almost certainly cheaper to perform, but the current 
system lists all idioms automatically and appears 
more likely to catch longer idioms. 
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