
Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction
SIGPLAN Notice8 VoL 19, No. 8, June 198,~

Analyzing and Compressing Assembly Code~

Christopher W. Fraser
Eugene W. Myers

Alan L. Wendt

Dept. o f Computer Science
University o f Arizona

Tucson, A Z 85721

Abstract
This paper describes the application of a general

data compression algorithm to assembly code. The
system is retargetable and generalizes cross-jumping
and procedural abstraction. It can be used as a space
optimizer that trades time for space, it can turn
assembly code into interpretive code, and it can help
formalize and automate the traditionally ad hoe
design of both real and abstract machines.

1. Introduction
Most optimizations focus on saving time. Some

incidentally save space, but many actually make pro-
grams faster by making them longer (e.g., induction
variable elimination, loop unrolling).

Optimizations that save space (possibly at the
expense of time) have been less studied. Of these,
procedural abstraction and cross-jumping are the
most important. Procedural abstraction [6] turns
repeated code fragments into procedures. It is usu-
ally applied to intermediate code or even source code
[6], which avoids machine-dependencies but can miss
repeated fragments introduced during code genera-
tion. Cross-jumping [9] reuses the common tail of
two merging code sequences. For example, it
replaces

tThis work was supported in part by the National Science Founda-
tion under Grant MCS-8210096.

Permission to copy without fee all or part of this material is grant-
ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and /o r specific per-
mission.

©1984 ACM 0-89791-139-3/84/0600/0117500.75

with

X
jump L1

X
LI: Y

jump L2
,..

L2: X
LI: Y

Cross-jumping is usually performed after code gen-
eration because the juxtapositions that it improves
are not evident earlier [9]. Implementations of pro-
cedural abstraction and cross-jumping seldom share
code.

This paper describes the application of a general
data compression algorithm to assembly .code. It
subsumes procedural abstraction and cross-jumpmg.
To give an extreme example, this code compressor
can reduce a program consisting of 27 adjacent
copies of some fragment X to

main:
call subrl
call subrl
call subrl
exit
subrl:
call subr2
call subr2
subr2:
X
X
X

return

That is, the main routine does subrl three times,
subrl does subr2 three times (once by "falling into"
it), and subr2 does X three times. Section 2 describes
the code compressor.

117

cwfraser
Note
© ACM, 1984. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 1984 SIGPLAN Symposium on Compiler Construction, {0362-1340, (1984)} http://doi.acm.org/10.1145/502874.502886

The code compressor has applications beyond
space optimization. When asked to subroutinize
everything, even tiny, unrepeated fragments, the code
compressor turns assembly code into threaded code
[1], allowing one compiler to yield code for either
direct execution or interpretation. The code
compressor also automatically analyzes assembly
code and identifies its idioms. This helps solve com-
mon problems in compiler and machine design.
Compiler writers must routinely identify where to
focus optimization effort, and automatic identifica-
tion of idioms helps in this search. The designers of
real and abstract machines must identify the instruc-
tions appropriate for a given application, and
automatic identification of idioms suggests obvious
candidates, allowing design to proceed in a scientific
fashion, rather than the traditional ad hoc, intuitive
fashion. Section 3 discusses these applications.

labelled with exactly this string. The substrings
labelling the arcs are typically represented by storing
the indices of their first and last characters. Thus suf-
fix trees can be stored in space linear in the length of
the input.

The suffix tree is built incrementally. Each step
adds one more position to the tree. For example,
when constructing the tree above, step 3 takes a tree
with positions 1 and 2

2. A Code Compressor

The code compressor has three logical phases:
identifying repeated code fragments, evaluating their
suitability for abstraction, and actually compressing
the program. The three subsections below treat these
three phases.

2.1 Identification

Like some compression algorithms for general
data [5], the code compressor starts by building the
suffix or Patricia tree [3, 4] for its input program.
The suffix tree for a string S has arcs labelled with
substrings of S and leaves labelled with positions in
S. For example, the suffix tree for the string
XYXYZ is

The labels traversed on the paths from the root to the
leaves are in one-to-one correspondence with the suf-
fixes of the string. For example, the suffix of the
string XYXYZ starting at position 2 is YXYZ, so the
path from the root to the leaf labelled 2 traverses arcs

and adds position 3:

Let SUF(K) denote the suffix that starts at position
K. Let HEAD(K) denote the longest prefix of
SUF(K) that prefixes an earlier suffix. The naive
implementation suggested by the example above per-
forms step K in time proportional to the length of
HEAD(K) and thus constructs the entire tree in qua-
dratic time. However, HEAD(K) starts with the tail
of HEAD(K-l). This observation leads to a refined
algorithm that avoids rescanning each character
more than once. Thus the entire tree is constructed
in linear time. A complete discussion of such an
algorithm is beyond the scope of this paper, but one
may be found in Reference 4.

Suffix trees identify common substrings. If an
interior node heads a subtree with M leaves, the
string on the path from the root to that node appears
M times. Thus, in the suffix tree above, the left son
of the root heads a tree with leaves for positions l
and 3, so the string XY occurs twice in the input.

118

This algorithm is most commonly applied to
strings of characters, but it applies just as well to
strings in which the primitive elements are instruc-
tions~, not characters. The code compressor reads
instructions into a hash table, and all occurrences of
a common instruction share the same hash address.
The code compressor thus compresses strings of hash
addresses, not characters.

As assembly code is read, some of it is factored
out. Data definition directives are flushed directly to
the output. These cannot yield useful code frag-
ments, and, if interleaved with code, would compli-
cate the identification of otherwise useful fragments.
Label definitions are not flushed, but they are hidden
during the identification of repeated fragments.
Without this, otherwise identical fragments with
internal labels would appear different because their
internal labels are necessarily distinct. Section 2.3
shows that hiding label definitions cannot introduce
false equivalences.

The algorithm that builds the suffix tree must fre-
quently compare instructions. For most instructions,
this is done by merely comparing their hash
addresses; that is, two instructions are equal if their
assembly code is textually equal. However, this res-
triction is relaxed for branches to catch opportunities
for compression that would otherwise be missed.
For example, jumps to equivalent labels are deemed
equivalent. Many compilers generate multiple labels
at certain points. For example, conditional state-
ments typically end with a label, and many loops
begin with one, so a conditional followed by a loop
may label one point twice. The code compressor fac-
tors out spurious inequalities by noting equivalent
labels as it reads instructions. Ultimately, it should
also interpret assembler directives to equate symbols.

The instruction comparator also allows relative
branches. Consider two otherwise identical code
fragments that include a branch over a few instruc-
tions. They reference different labels so they differ
textually, but if they skip equal distances then it may
still be possible to combine the two fragments. Thus
two branches are deemed equal if they are equal
either absolutely (i.e., they reference equivalent
labels) or relatively (i.e., they jump equivalent dis-
tances). Distances are computed in a machine-
independent fashion by merely counting instructions.
It is unnecessary to consider instruction sizes because
the code compressor cannot relocate a relative

~'Ultimately, it would help to perform this optimization on
instructions before the registers were completely hound.
for some fragments are equivalent except for differing re-
gister assignments.

branch without also relocating the target of the
branch, so it cannot combine two fragments with
relative jumps without first checking that the instruc-
tions they jump over are also equivalent.

To simplify retargeting, the code compressor's
few machine-specifics are isolated in patterns. For
example, the patterns for the UNIX PDP-I1 assem-
bler

%%u jump
jbr %1
imp %1
%%label
%1:

state that unconditional jumps start with jbr and jmp
and are followed by an arbitrary string (%1), and that
labels are an arbitrary string followed by a colon.
The complete pattern file (describing conditional
branches, calls, etc.) for the UNIX PDP-I 1 assembler
is a page of these short patterns.

2.2 Evaluation

Once repeated code fragments have been identi-
fied, their suitability for abstraction must be
evaluated because, for example, some fragments may
be too short to justify procedural abstraction. Thus
once it has built the suffix tree, the code compressor
enumerates the tree's nodes, which correspond to the
repeated code fragments. The list of instances of
each repeated fragment is passed to a function that
returns the number of instructions that would be
saved were all of those instances replaced with a com-
mon copy. Negative "savings" indicate fragments
that should be left alone.

For purposes of evaluation, there are two types of
code fragments, "closed" fragments, which exit only
by falling off (or jumping to) the end of the fragment,
and "open" fragments, which include a non-relative
branch (or return) to an external site. Closed frag-
ments will be implemented as subroutines, and
adding calls and entry and exit sequences may actu-
ally lengthen programs, so the evaluation function
uses parameters that describe these costs. Thus it
normally reports positive savings only for subrou-
tines of several instructions. Open fragments will be
. jumps or by falling into them. This is
how as they are reached in the input program, so they
always produce positive savings.

Proposed fragments must be screened because
some otherwise desirable fragments must be rejected
or divided. For example, as noted above, if a frag-
ment includes a relative branch, then it must also
include the target of the branch, for it would change
the effect of the program to relocate the branch and

119

leave the target behind. Offending fragments are
divided at the unacceptable code, which is discarded.

Also, closed fragments will be implemented as
subroutines, so it is illegal to enter or exit them via a
simple jump. Symmetrically, open fragments will be
reached by jumping or falling into them, so it is ille-
gal for them to exit by falling off the end, because
relocating such code would change its effect. Again,
offending fragments are divided to remove the unac-
ceptable code.

Also, fragments that overlap without nesting
must be prevented. For example, the suffix tree for
ABABCBC would report two instances each of AB
and of BC, but the second instance of AB overlaps
the first instance of BC, so only one of them can be
replaced with a subroutine call. Overlapping frag-
ments are discarded; it has not proven empirically
important to divide them.

Finally, when the calls introduced for closed frag-
ments affect a stack, these fragments must pop off
the stack exactly what they push onto it. For exam-
ple, a closed fragment that starts by popping the
stack would pop an unexpected return address if it
were subroutinized. This problem is solved using
patterns like those above, extended with a stack
adjustment at the end of the line. For example, the
patterns

Pattern Stack adjustment
mov %l,-(sp) 2

add %l,sp -%1

state that mov x,-(sp) adds two bytes to the stack and
that add n,sp subtracts n bytes. (The add instruction
"subtracts" f rom a stack because the PDP-11 stack
grows down.) The evaluator scans proposed subrou-
tines, noting the points where they were stack-
balanced. If the entire subroutine is not balanced,
the offending instruction is taken to be the one
preceding the longest balanced suffix. The proposed
subroutine is split at the point of this instruction,
which is discarded.

Screening is integrated into the algorithm as fol-
lows. The nodes of the suffix tree are enumerated,
and the repeated fragments they represent are
evaluated naively; that is, the checks above are not
performed. The fragments are entered into a priority
queue based on the estimated savings. When this is
complete, the most promising repeated fragment is
removed from the queue and screened as above. If
all checks are passed, the program is rewritten as out-
lined in the next section. Otherwise, offending
instances of the fragment are discarded or divided,
and the remaining code is re-entered in the priority

queue. Then the next most promising repeated frag-
ment is removed from the queue, and the process is
repeated until no promising fragments remain. This
approach results in a code compressor that processes
80-100 instructions per second on a VAX-11/780.

2.3 Compression

Repeated closed fragments are turned into sub-
routines. One copy of each is surrounded with a sub-
routine entry/exi t sequence and placed out-of-line at
the end of the program. The original fragments are
replaced with a call to the appropriate routine. If the
entry sequence is empty, one subroutine may fall into
another, as in Section l's procedural abstraction
example.

Repeated open fragments are replaced with a sim-
ple branch. Like closed fragments, one copy of each
could be placed out-of-line at the end of the program,
and the original fragments could be replaced with a
jump to the one remaining copy. However, it is
slightly more efficient to place the one remaining
copy at the site of one of the branches, so that one
execution path can fall into the fragment instead of
jumping to it. This effectively implements cross-
jumping1-.

As explained in Section 2.1, label definitions are
hidden during the identification of repeated frag-
ments. Fortunately, this cannot introduce false
repeated fragments. Closed fragments can only be
entered at the top, so any labels they define are the
targets of only internal, relative branches, the con-
sistency of which has already been checked. On the
other hand, open fragments can be entered any-
where, so the code compressor shuffles their label
definitions together when it forms their generaliza-
tion. For example, it takes the two fragments

A A
k l : B B
C L2: C
jump L3 jump L3

and shuffles them together to form their generaliza-
tion

A
LI: B
L2: C
jump L3

The code compressor has been run on a range of
programs, including 157 UNIX system utilities. Dif-

1'To make all paths that end up at label L look the same, a
jump to L is inserted before L. Such extra jumps are re-
moved as the program is written out.

120

ferent samples might give different results, but, so
far, compression ratios have ranged 0-39% with an
average of 7%. Compressed code has taken 1-5%
more CPU time but as much as 11% less real time,
presumably because it loads faster.

3. Other Applications

Normal evaluation functions report savings for
only those repeated closed fragments that have
several instructions and occur several times. While
this capability has not yet been used in practice, these
thresholds are variable and can be adjusted to specify
the generation of even one-instruction subroutines
that are used only once. The resulting program is a
list of jumps and subroutine calls, followed by a list
of subroutine bodies. The subroutine addresses in
the calls effectively form a threaded code [1], and the
subroutine bodies form an interpreter. Thus the code
compressor allows one compiler to yield both execut-
able and interpretive code.

The code compressor also helps analyze assembly
code. As an option, it can record each repeated frag-
ment, its length and number of instances in the origi-
nal program and in the program as it stands when
instances of that fragment are compressed. This data
can be used directly or processed to identify common
idioms. For example, a simple program borrowed
from a companion peephole optimizer [2] replaces
the n-th distinct number or variable name in each
fragment with a string of the form %n. This program
turns the record of a fragment like

mov _i,rl
mul #10,rl
add _j,rl

into

mov %1 ,r%2
mul #%3,r%2
add %4,r%2

This represents the general idiom of which the frag-
ment above is an instance. Computing the frequency
of the idioms reported for a large testbed should help
compiler writers identify where to focus optimization
effort, and help the designers of real and abstract
machines identify appropriate machine primitives.
This complements previous systems to help identify
such primitives, which have determined the fre-
quency of either source code operations [8] or of
pairs and longer, but hand-written, juxtapositions of
assembler instructions [7]. These past analyses were
almost certainly cheaper to perform, but the current
system lists all idioms automatically and appears
more likely to catch longer idioms.

References

1. J .R . Bell, Threaded Code, Comm. A CM 16, 6
(June 1973), 370-372.

2. J .W. Davidson and C. W. Fraser, Automatic

.

Generation of Peephole Optimizations,
SIGPLAN ~4 Symposium on Compiler
Construction, June 1984.

D. E. Knuth, The Art of Computer
Programming, Volume 3: Sorting and
Searching, Addison-Wesley, 1973.

4. E.M. McCreight, A Space-Economical Suffix
Tree Construction Algorithm, J. A CM 23, 2
(April 1976), 262-272.

5. M. Rodeh, V. R. Pratt and S. Even, Linear
Algorithm for Data Compression via String
Matching, J. ACM28, 1 (January 1981), 16-24.

6. T.A. Standish, D. C. Harriman, D. F. Kibler
and J. M. Neighbors, The Irvine Program
Transformation Catalogue, Technical report,
University of California, Irvine, January 1976.

7. R.E. Sweet and J. G. Sandman, Jr., Empirical
Analysis of the Mesa Instruction Set,
Proceedings of the Symposium on
Architectural Support for Programming
Languages and Operating Systems, March
1982, 158-166.

8. A.S. Tanenbaum, Implications of Structured
Programming for Machine Architecture,
Comm. ACM21, 3 (March 1978), 237-246.

9. W. Wulf, R. K. Johnsson, C. B. Weinstock, S.
O. Hobbs and C. M. Geschke, The Design of
an Optimizing Compiler, North Holland, 1975.

121

