
SIAM J. COMPUT.
Vol. 7, No. 3, August 1978

1978 Society for Industrial and Applied Mathematics

0097-5397/78/0703-0003 $01.00/0

FINDING ALL SPANNING TREES OF
DIRECTED AND UNDIRECTED GRAPHS*

HAROLD N. GABOW]. AND EUGENE W. MYERS]"

Abstract. An algorithm for finding all spanning trees (arborescences) of a directed graph is presented. It
uses backtracking and a method for detecting bridges based on depth-first search. The time required is
O(V+E+EN) and the space is O(V+ E), where V, E, and N represent the number of vertices, edges, and
spanning trees, respectively. If the graph is undirected, the time decreases to O(V+E + VN), which is
optimal to within a constant factor. The previously best-known algorithm for undirected graphs requires
time O(V+E +EN).

Key words, spanning tree, arborescence, bridge, depth-first search

1. Introduction. The problem of finding all spanning trees of directed and
undirected graphs arises in the solution of electrical networks [7, pp. 252-364].
Algorithms of varying efficiency have been proposed [4], [5], [6], [8], [9], [10],
[11], [13]. For undirected graphs, the best algorithm seems to be that of Minty, Read
and Tarjan. It uses O(V +E +EN) time and O(V+E) space, where the graph has V
vertices, E edges, and N spanning trees. We refine their approach and present an
algorithm that uses O(V +E + VN) time and O(V + t7,) space. In terms of worst-case
asymptotic bounds, this algorithm is optimal. The algorithm also applies to directed
graphs. Here it uses O(V +E +EN) time and O(V +E) space. A previous algorithm
[11] uses exponential time per tree (in the worst case).

We first review some terms for undirected graphs, and generalize them to direc-
ted graphs. In a connected undirected graph G, a spanning tree is a subgraph having a
unique simple path between any two vertices of G. A bridge is an edge e where G-e
is not connected. Equivalently, e is in every spanning tree of G.

In a directed graph G, a spanning tree (rooted at r) is a subgraph having a unique
(directed) path from r to any vertex of G. If such a tree exists, G is rooted at r. A bridge
(for r) is an edge e where G-e is not rooted at r. Equivalently, e is in every
spanning tree rooted at r. ("Spanning arborescence" is often used for "spanning tree"
of a directed graph. There appears to be no standard term for what we call a "bridge"
of a directed graph.)

The problem we consider is to find all spanning trees of a graph. This means that
for a given graph, a list is to be printed that contains each spanning tree exactly once.
Section 2 presents our results. Section 3 discusses some open problems.

2. Algorithm for all spanning trees. This section begins with an algorithm for all
spanning trees rooted at a given vertex r in a directed graph. This algorithm is used to
find all spanning trees, first in a directed graph and then in an undirected graph.

For all spanning trees rooted at r, the approach is to find all spanning trees
ccntaining a given subtree T rooted at r. To do this, first choose an edge el directed
from T to a vertex not in T; find all spanning trees containing T el; then delete el
from the graph. Next choose an edge e2 from T to a vertex not in T; find all spanning
trees (in the modified graph) containing TUe2; then delete e2. To continue,
repeatedly choose an edge ei from T to a vertex not in T; find all spanning trees (in
the modified graph) containing T t_J ei; then delete ei. Stop when the edge ek that has
just been processed is a bridge of the modified graph. At this point each spanning tree

* Received by the editors January 21, 1977. This work was partially supported by the National Science
Foundation under Grant GJ36461.

]" Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado 80309.

280

ALL SPANNING TREES 281

containing T has been found (exactly once). For if a spanning tree does not contain
any e/, < k, it must contain the bridge ek.

This basic approach needs an efficient method for discovering when an edge e is a
bridge. This can be done in a variety of ways; set merging techniques and edge
exchanges are two possibilities [3]. Below we describe a method based on depth-first
search.

We choose edges e so the tree T grows depth-first. More precisely, we always add
the edge e to T that originates at the greatest depth possible. Now suppose all
spanning trees containing T k.J e have been found, and we want to check if e is a
bridge. Let L be the last spanning tree found that contains Tt_J e, and let e (u, v).
Intuitively, in L, vertex v has the fewest descendents possible (among all spanning
trees containing TLI e). Equivalently, no edge goes from a nondescendent of v to a
proper descendent of v. (This is proved below in Lemma 3.) So e is a bridge when no
edge (besides e) goes from a nondescendent of v to v. This observation gives an
efficient bridge test.

To grow T depth-first requires some care. The algorithm below uses F, a list of all
edges directed from vertices in T to vertices not in T. F uses stack operations: to

enlarge T, an edge e is popped from the front of F and added to T; new edges for
T t_J e are pushed onto the front of F. In addition when e is added to T, some edges are

removed from F; when e is removed from T, these edges are restored in F. It is crucial
that the remove and restore operations leave the order of edges unchanged in F.
Otherwise, T will not grow depth-first.

Besides F, the algorithm uses lists FF. Each recursive invocation has a local FF
list. It is used to reconstruct the original F list. It is managed as a stack.

The algorithm also uses data structures for T, the current tree, and L, the last
spanning tree output thus far. The algorithm is given below in ALGOL-like notation.

2.
3.
4. new tree edge:

6. update F:
7.
8. recurse
9. restore F:

10.
11. delete e:
12. bridge test:

13.
14. reconstruct G:

procedure S; comment $ finds all spanning trees rooted
at r in a directed graph G rooted at r; begin
procedure GROW; comment GROW finds all spanning

trees rooted at r containing T; begin
if T has V vertices then begin L <- T; output (L) end
else begin make FF an empty list, local to GROW;

repeat
pop an edge e from F; let e go from T to vertex v,
re!T;

add e to T;
push each edge (v, w), w T, onto F;
remove each edge (w, v), w T, from F;
GROW;
pop each edge (v, w), w T, from F;
restore each edge (w, v), w T, in F;
remove e from T and from G; add e to FF;
if there is an edge (w, v), where w is not a

descendent of v in L then b - false else b - true;

until b;
pop each edge e from FF, push e onto F, and add e to G;

end end GROW;

282 HAROLD N. GABOW AND EUGENE W. MYERS

FIG. 1. Example graph.

15. start:

16.

initialize T to contain the vertex r; initialize F to contain
all edges (r, v) from r;

GROW;
end S;

Figure 1 shows a graph with four spanning trees rooted at r. Figure 2 shows a
computation tree indicating how S finds these trees T, 1 _-< i-< 4. In the computation
tree, a node represents a call to GROW; the arcs directed down from the node
correspond to the edges e added to T in line 5. For example, the root node first adds
edge 1, then deletes 1 and adds 2. Since 2 is a bridge in the modified graph, no other
edges are added.

Note the importance of restoring edges in correct order in line 10. When edge 4 is
added to get T1, edges 5 and 2 are removed from F. If they are restored in opposite
order (i.e., 2, 5), T3 is found, and then T2; then edge 1 is mistakenly declared a bridge,
and T4 is not found.

Now we prove procedure S is correct. Note the original graph G is modified by
GROW, by deleting and replacing edges (lines 11,14). In the discussion below the
current graph refers to the edges in the graph at a specified point in the computation.

We first show the tree T grows depth-first. This amounts to showing F simulates
the stack of active vertices in a normal depth-first search.

LEMMA 1. Let GROW be called with F containing the sequence of edges
(v,, w,), 1, 2,..., IFI. Then

ALL SPANYYa TRFZS 283

2

TI T2 T5 T4
FIG. 2. Computation tree.

(i) F contains all edges joining T to the rest o] the graph, i.e., {(v, w)lv T,
w T, (v, w) is in the current graph}= {(vi, w)ll _-< -<

(ii) F contains edges in a "depth-first order", i.e., if]>=i then vj is a
descendent of vi in T.

Pro@ First note that on exit from GROW, F is identical to what it was on entry.
This follows by observing that the changes to F in lines 4, 6 and 7 are undone by lines
14, 9 and 10, respectively.

Clauses (i)-(ii) of the Lemma hold for the first call to GROW (line 16), by the
initialization step (line 15). In general, if clauses (i)-(ii) hold when GROW is called,
they hold for the calls made in line 8, by inspection of lines 3-13 and by the
preliminary remark. So by induction, clauses (i)-(ii) hold for all calls to GROW.

COROLLARY 1. Let ei, 1 <--_ j <-I TI, be the edges in T, indexed in the order they are
added to T. Let ei be directed to vertex v. Then the descendents of any vi in Tare vertices
v,] <-_ k <-_ , for some J.

Proof. It suffices to show the descendents of a given vertex v are added to T
consecutively. We do this as follows. Imagine modifying G, by adding an edge (v, 0)
leading to a dummy vertex 0; in GROW, when v is added to T and edges (v, w) are
pushed onto F (line 6), push (v, 0) first. Now Lemma l(ii) shows as long as (v, 0) is in
F, the edges added to T (in line 4) join descendents of v. When (v, 0) is removed from
F, Lemma l(i) shows there are no edges from descendents of v to vertices not in T.
Thus no other vertices become descendents of v. The corollary follows.

Now we show the bridge test of line 12 is correct.

vertex is considered a descendent, but not a proper descendent, of itself.

284 HAROLD N. GABOW AND EUGENE W. MYERS

LEMMA 2. The bridge test sets b to Irue exactly when edge e is a bridge of the current
graph.

Proofi Let e (u, v), and let D denote the descendents of vertex v in the latest
spanning tree L. Below we show that when e’s bridge test is executed, the current
graph has no edge (w, x), where wD, x D-v. This suffices to prove the lemma.
For e is not a bridge if and only if some path P not containing e goes from r to v. When
there are no edges (w, x) as above. P must end in an edge (w, v), w D; further, P
exists if and only if such an edge (w, v) exists. The bridge test checks if (w, v) exists.
Hence it is correct.

So we must show the current graph has no edge (w, x), w D, x D- v. Let the
edges in L be ei,] 1, , V- 1, indexed in the order they are added; let e e. The
bridge test is executed on edges e, V- 1, , + 1, and then on e e. For j > i, b
is set true. (Otherwise, another spanning tree would be output after L.)

Now consider any vertex x D- v. By Corollary 1, the edge in L directed to x is
some eh, h i. So b is true for eh. Thus no edge (w, x), w D, exists when eh’S bridge
test is executed.

So if (w, x) is in the current graph, it is added in an execution of line 14 following
some ek’S bridge test, where i< k _<-h. Corollary 1 shows ek joins desceqdents of v.
The edges added following ek’S bridge test precede ek in list F. Lemma 1 (ii) shows
these edges originate from D. Thus no edge (w, x), w D, is added. We conclude no
edge (w, x) is in the current graph, ffl

Now we can show S is correct.
LEMMA 3. Procedure S finds all spanning trees rooted at r of a directed graph G

rooted at r.

Proof. Suppose GROW is called, with T a tree rooted at r. Let C be the current
graph (when GROW is called). It suffices to show GROW finds all spanning trees
(rooted at r) of C containing T. For in the initial call (line 16), T contains only the
vertex r, and C G.

The proof is by induction, with the calls to GROW ordered so the size of T is
nonincreasing. For the base case, T contains V vertices; this is handled correctly by
line 1. For the inductive step, suppose when GROW is called T contains less than V
vertices. Let F contain edges ei, 1,..., IFI. Define,. {RIR is a spanning tree rooted at r and

T ei R
_
C-{eill _-<] < i}}.

By induction, it is easy to see GROW finds the trees U k=1, where ek is the first edge
for which b (in line 12) is true. Sets are disjoint, by definition. Lemma 2 shows ek is
a bridge in the graph C-{ejll -< j < k}. Thus any spanning tree R of C that contains T
contains some ej, 1 _-< _-< k, i.e., R . So GROW finds the desired spanning trees.

To estimate the efficiency of S, we must give some implementation details. First
we discuss how F is managed, and in particular, how it is restored to its original state
in line 10. F is a doubly linked list of edges. Line 7 traverses the list of edges directed
to v, from beginning to end. Each edge directed from T is removed from F; however,
the values of its links are not destroyed. Line 10 traverses the list of edges directed to v
in the reverse direction, from end to beginning. Each edge directed from T is inserted
in F, at the position given by its link values. This way, each edge is restored in its
original position.

Next we discuss the implementation of the bridge test. To detect descendents
efficiently, the vertices of L are numbered in preorder [1, pp. 54-55]: For a vertex v,
P(v) is v’s preorder number, and H(v) is the highest preorder number of a descendent
of v. So w is a descendent of v if and only if P(v)<-_ P(w)<-H(v). This test is used in

ALL SPANNING TREES 285

line 12. In line 1, when L is formed, the values P(v) and H(v) are computed and
stored in the data structure for L.

Now we derive the resource bounds for S.
LEMMA 4. Procedure S uses O(EN) time and O(E) space on a directed graph

rooted at r.

Proof. First consider time. One execution of the body of the repeat loop (lines
4-12), excluding the recursive call (line 8), takes time proportional to the number of
edges directed to and from vertex v. Here v is the vertex added to T. In the process of
generating a spanning tree, v ranges over all vertices (except r). So the total time in
the loop body for one tree is O(E). This dominates the run time of S, which thus is
O(EN).

Next consider the space. The graph (is stored as a collection of doubly linked
lists of edges directed to and from each vertex. This uses O(E) space. At any point in
the computation, an edge e may be on the F list, or on at most one FF list. So F and
FF use O(E) space. In addition, O(V) space is needed for T, P, and H. Thus the space
is O(E).

Now consider the problem of finding all spanning trees of a directed graph.
The possible root vertices r form a strongly connected component that precedes all
others. A strong connectivity algorithm can be used to find these roots in time
O(V+E)[12]. Then procedure S can be applied to each root. So we have the
following result.

THEOREM 1. All spanning trees of a directed graph can be found in time O(V+
E +EN) and space O(V+ E).

Next consider the problem of finding all spanning trees of an undirected graph. If
the graph is made directed (by giving each edge both directions), and root r is chosen
arbitrarily, then procedure S finds all spanning trees of the undirected graph. The time
can be estimated more precisely, as follows:

THEOREM 2. All spanning trees of an undirected graph can be found in time
O(V+E + VN) and space O(V+ E).

Proof. We need only show the time bound. Line 1 does a preorder traversal and
outputs each spanning tree; the time is clearly O(V) per tree, or O(VN) total. Now
we analyze the time spent in lines 4-12, when edge e is added. Ignoring the recursive
call (line 8), the time is proportional to the number of edges incident to v. Now we
consider two cases, and show in each case the total time in lines 4-12 is O(VN).

First suppose e is a bridge. Each edge f incident to v is in some spanning tree R
containing T U e. Charge the time spent on f, O(1), to R. Then each spanning tree gets
charged O(V). So a total time O(VN) is spent on bridges in lines 4-12.

Now suppose e is a nonbridge. The time spent on e in lines 4-12 is O(V). Now
we show there are exactly N- 1 nonbridges, so the total time spent on nonbridges is
O(VN): Let the nonbridge e correspond to the tree L used in e’s bridge test. Since e
fails the test, it gets deleted, and another tree is grown before the next bridge test. So a
given tree L corresponds to at most one nonbridge. If L is any spanning tree but the
last one found, it is used in the bridge test for some nonbridge. So it corresponds to
precisely one nonbridge. Thus there are exactly N-l nonbridges, l-]

Procedure S can be sped up in a number of ways. The preorder labeling of trees
can be done as trees are grown. Several trees can be grown at once (e.g., each edge
(w, v) in line 7 gives a spanning tree. Algorithms using this "factoring" approach are
[2, pp. 20-25], [8]). However, if each tree is output as a list of edges, O(VN) time is
required for the output step. So on undirected graphs, the algorithm is optimal, to
within a constant factor.

We have programmed S and other spanning tree algorithms in FORTRAN on

286 HAROLD N. GABOW AND EUGENE W. MYERS

TABLE 1.
Time for graphs with V 10.

N 50 105 310 680 839 1415

(msec) 100 180 456 831 1048 1634

the CDC6400. Compared to the Minty, Read and Tarjan algorithm, $ is over 3 times
faster for 6 _-< V -< 10, 8 _-< E _-< 14; the difference increases with denser graphs. Table 1
shows that the time for S, with V fixed at 10, is approximately proportional to N, as
predicted by the O(VN) time bound.

3. Open problems. This section briefly discusses two problems related to this
work. The first is to improve the O(V+E +EN) time bound for spanning trees of a
directed graph. To illustrate the difficulty here, consider the family of graphs illus-
trated in Fig. 3. The top part consists of N paths of length 2 from r to s; the bottom
part is a directed path of length N from s to t, plus all possible back edges. The

FIG. 3. Difficult graph.:

algorithm of Theorem 1 uses O(EN) time on these graphs. The time spent repeatedly
scanning back edges is "wasted." (As a point of interest, note the algorithm of [11] can
use exponential time per tree on these graphs.)

The second problem is, can the computation tree of S (Fig. 2) be represented in
less than O(VN) space? Note some computation trees have O(VN) nodes. For

ALL SPANNING TREES 287

instance, the tree for an undirected cycle has V(V- 1)/2 O(VN) nodes. There are
two reasons why a more compact form is desirable.

First, the claim S is optimal for undirected graphs is based on a lower bound for
outputting the spanning trees. If a computation tree is acceptable output, it may be
possible to lower this bound and speed up the algorithm.

Second, consider the problem of listing all spanning trees in order of increasing
weight in a weighted undirected graph. (In a weighted graph, each edge has a
numerical weight; a tree’s weight is the sum of all its edge weights.) One approach is to
find all spanning trees, and then sort them. The sort takes time O(N log N), which is
O(min (V log V, E)N), since N =<min (2E, vV-2). This dominates the run time of the
algorithm. The space is O(VN), since the spanning trees must be saved until the sort
is done. A previous algorithm [3] uses O(EN) time and O(E+N) space. So our
approach is no slower, sometimes faster, but uses more space. Thus a "reduced"
computation tree is desirable.

Acknowledgments. The authors thank the referees for their suggestions.

REFERENCES

[1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] S. M. CHASE, Analysis of algorithms for finding all spanning trees of a graph, RC3190, IBM T. J.
Watson Research Center, Yorktown Heights, NY, Dec. 1970.

[3] H. N. GABow, Two algorithms for generating weighted spanning trees in order, this Journal, 6 (1977),
pp. 139-150.

[4] S. L. HAKIMI AND D. G. GREEN, Generation and realization of trees and k-trees, IEEE Trans. on
Circuit Theory, CT-11 (1964), pp. 247-255.

[5] F. J. MmCWILLIAMS, Topological network analysis as a computer program, IRE Trans., CT-5 (1958),
pp. 228-229.

[6] W. MAYEDA AND S. SEHU, Generation of trees without duplications, IEEE Trans. on Circuit Theory,
CT-12 (1965), pp. 181-185.

[7] W. MAYEDA, Graph Theory, John Wiley, New York, 1972.
[8] M. D. MCILROY, Generation ofspanning trees (Algorithm 354), Comm. ACM, 12 (1969), p. 511.
[9] G. J. MINTY, A simply algorithm for listing all the trees of a graph, IEEE Trans. on Circuit Theory,

CT-12 (1965), p. 120.
[10] R. C. READ AND R’. E. TARJAN, Bounds on backtrack algorithms for listing cycles, paths, and

spanning trees, Networks, 5 (1975), pp. 237-252.
[11] S. SHINOD, Finding all possible directed trees of a directed graph, Electron. Commun. Japan, 51-A

(1968), pp. 45-46.
[12] R. E. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.
[13] H. WATANABE, A computational method for network topology, IRE Trans., CT-7 (1960), pp. 296-

392.

