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ABSTRACT

The rapid adoption of high-throughput next generation sequence data in biological research
is presenting a major challenge for sequence alignment tools—specifically, the efficient
alignment of vast amounts of short reads to large references in the presence of differences
arising from sequencing errors and biological sequence variations. To address this chal-
lenge, we developed a short read aligner for high-throughput sequencer data that is tolerant
of errors or mutations of all types—namely, substitutions, deletions, and insertions. The
aligner utilizes a multi-stage approach in which template-based indexing is used to identify
candidate regions for alignment with dynamic programming. A template is a pair of gapped
seeds, with one used with the read and one used with the reference. In this article, we focus
on the development of template families that yield error-tolerant indexing up to a given
error-budget. A general algorithm for finding those families is presented, and a recursive
construction that creates families with higher error tolerance from ones with a lower error
tolerance is developed.

Key words: filtration, gapped q-gram, gapped seed, multiple spaced seeds, sequence similarity,

string matching.

1. INTRODUCTION

The new generation of high-throughput sequencers—including Helicos�’ HeliScope single

molecule sequencing platform (Harris et al., 2008; Lipson et al., 2009), Illumina’s Genome Analyzer,

and Life Technologies’ SoLID—are significantly accelerating the investigation of many biological ques-

tions. Applications that have already benefited from these technologies include expression profiling (Lipson

et al., 2009), the study of genetic variations between individuals (Wang et al., 2008), and the study of DNA

protein interactions ( Johnson et al., 2007). In addition, these technologies enable massive re-sequencing

endeavors such as the 1000-Genomes project (Kaiser, 2008).
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For re-sequencing and counting applications, the first step in the analysis is the correct placement of the

DNA sequence reads on a reference genome or transcriptome. This is a challenging step due to the need to

provide sensitivity in the presence of errors and sequence variations of all types (insertion, deletions, and

substitutions) in reads as short as 25 nucleotides, and the need to rapidly align a very large number of reads,

up to 109 per run for a HeliScope. Furthermore, the different short read technologies have very different

error profiles, with substitutions being most common in the Illumina system, while deletions and insertions

are the dominant error type in single molecule sequencing. Hence, in order to achieve an accurate, cost-

effective and timely analysis, the aligner should be capable of aligning massive amounts of short reads with

errors or sequence variations of all types to large genomic references.

In this article, we present a high-throughput alignment tool for effectively aligning variable length short

reads that contain mutations or errors of all types. Our aligner has three stages: a novel error-tolerant

indexing stage for seeding alignments, an edit distance (Myers, 1999) based filter for filtering out non-

promising candidate locations, and finally a full dynamic programming alignment. Many aligners use a

similar multi-stage strategy, including BLAST, BLASTZ, and BLAT (Altschul et al., 1997; Kent, 2002;

Schwartz et al., 2003); and in the short read arena, SHRIMP and Mosaik (Rumble et al., 2009; Stromberg,

2009).

This article focuses on the seeding stage in which the portions of the reference that are most similar to a

read are identified. Seeding alignments is generally achieved by finding small patterns of nucleotides,

called ‘‘seeds,’’ shared exactly by the read and the reference. This process is fast and can be accelerated

using a lookup table. Seeding is generally followed by an expensive alignment step, so reducing the portion

of the reference considered in the second stage greatly reduces the overall computational cost. In lossless

seeding, there is a guarantee that all regions of the reference within a certain error budget from a fixed size

window of the query are found. In the lossy case, many but not all such regions are found.

In standard seeding with k-mers, the patterns are contiguous stretches of k nucleotides called ‘‘words’’ or

‘‘k-mers.’’ This approach is subject to the following tradeoff: short k-mers yield good sensitivity at the

expense of lower specificity (more false positive locations) and longer computation time. Long k-mers

increase specificity but reduce sensitivity. An increase in specificity with only a small reduction in sen-

sitivity can also be achieved by requiring that each read have multiple short k-mer matches in the same

reference locus. Aligners that use this approach include BLAST (Altschul et al., 1997), BLAT (Kent,

2002), and Mosaik (Stromberg, 2009) for short reads. Another extension to the contiguous seed model is

found in BLAT (Kent, 2002), where each seed is allowed to contain a mismatch in at most one location.

Substantial increases in sensitivity with the same specificity can be achieved by using gapped words or

gapped-seeds. Here, the common pattern between a read and a reference consists of a subset of nucleotides

in a word, with mismatches allowed in the intermediate positions. For example, if only the first, fifth, and

tenth nucleotide from a 10-mer are used, those nucleotides are concatenated into a 3-mer word, which is

then compared to a reference’s set of words generated by the same pattern. This approach has been widely

studied in both the lossy (Buhler, 2001; Buhler et al., 2003; Burkhardt and Kärkkäinen, 2002; Califano and

Rigoutsos, 1993; Choi and Zhang, 2004; Keich et al., 2004; Kucherov et al., 2004; Li et al., 2004; Ma et al.,

2002; Noé and Kucherov, 2004; Sun and Buhler, 2004; Xu et al., 2004) and the lossless case (Burkhardt

and Kärkkäinen, 2003; Kucherov et al., 2005; Pevzner and Waterman, 1995). Aligners that use gapped-

seeds include FLASH (Califano and Rigoutsos, 1993), patternHunter (Ma et al., 2002), and blastZ

(Schwartz et al., 2003), and the short read aligners include SHRIMP (Rumble et al., 2009) and MAQ (Li

et al., 2008). MAQ use pairs of gapped seeds.

PatternHunter (Ma et al., 2002) uses a single seed with optimal sensitivity. The optimization is for a

fixed specificity and a uniform probability model for substitutions. Algorithmic solutions to the problem of

finding an optimal seed are presented in Choi and Zhang (2004) and Keich et al. (2004).

Multiple gapped seeds improve the sensitivity-specificity tradeoff even further. FLASH (Califano and

Rigoutsos, 1993) uses multiple randomly chosen gapped seeds, and a similar approach was taken in LHS-

ALL_PAIRS (Buhler, 2001). Algorithms for designing sensitive sets of gapped seeds are presented in

Buhler et al. (2003), Li et al. (2004), Sun and Buhler (2004), and Xu et al. (2004). Computing the seeds

assuming a Markov alignment model was considered in Buhler et al. (2003) and Sun and Buhler (2004).

Extensions that enable protein similarity searches are presented in Brejova et al. (2003) and Brown (2004).

With the exception of the work of Burkhardt and Kärkkäinen (2002), prior approaches are useful only for

finding regions of un-gapped similarity. Specifically, the gapped seed approach does not generate a match

when insertions or deletions occur inside a seed, even in positions where a mismatch is allowed.
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The seeding we develop here is both lossless and capable of finding gapped similarities. This is achieved

by using an extension to the multiple gapped seed approach that we call covering template families. Here, a

template is a pair of gapped seeds: one associated with the read and the other with the reference. A template

generates a match if the read seed from the query matches a reference seed at some reference position. The

gapped seeds discussed in Burkhardt and Kärkkäinen (2002) are equivalent to templates for the one gap case.

Covering template families guarantee that, for a given error budget, at least one template in the family

generates a match between a fixed size sequence and another at edit distance no greater than the error budget.

The edit distance is the minimal number of insertions, deletions, or substitutions between two sequences. This

approach has ‘‘perfect sensitivity’’ (sensitivity is equal to 1) within the error budget, without sacrificing

specificity. Covering sets of gapped seeds for un-gapped similarity were computed in Xu et al. (2004).

Here we present several approaches for developing covering template families. First a greedy exhaustive

algorithm is presented. Then we present a recursive construction that creates families with higher error

tolerance from ones with lower error tolerance.

The article is organized as follows. In Section 2.1, we introduce definitions of key concepts. In Section

2.2, we describe the process of indexing with covering template families. Section 2.3 describes the ex-

haustive greedy algorithm for finding covering template families, and indicates some properties of those

suited to common usage. In Section 2.3, we present an explicit construction that leverages a family with a

certain error budget to create a family with a higher error budget. Section 3 includes various results.

2. METHODS

2.1. Definitions

In this section, we introduce several definitions, with the ultimate goal of introducing the concept of

covering template families.

2.1.1. Gapped words. A word S of size N is a contiguous stretch of N nucleotides, N is the word size.

A key of weight w is a vector of w distinct non-negative integers sorted in increasing order Keys are used to

define a subsequence pattern within an arbitrary sequence. The key size is one plus the maximum integer in

the key. Note that 0 based indexing is used throughout the article.

We denote the length of a sequence S by L(S), and given sequences S1 and S2, we denote their con-

catenation by S1þ S2.

Let K ¼ (k0, . . . , kw� 1) be a key of weight w. We denote by K0 ¼mþK the key K 0 ¼
(k0þm, . . . , kw� 1þm).

For a sequence S¼ (S0, . . . , SM� 1) and a key K of weight w and size k such that L(S)� k we denote by

S[K] the sequence obtained by concatenating the w nucleotides SK[0], . . . , SK[w� 1]. We call it the gapped

word corresponding to S and K.

2.1.2. Templates and template families. In order to develop an indexing scheme that is tolerant of

both substitutions and indels, gapped words are not sufficient. What is required is the template construct,

which is essentially a pair of keys: one used with the query and one with the reference.

Definition: Given two keys K1 and K2 of same weight w, the pair T¼ (K1, K2) is called a template. K1

is called the reference key and denoted by T.referenceKey, while K2 is called the query key and is denoted

by T.queryKey.

Definition: A collection of M templates F¼fT1, . . . , TMg of same weight w, maximum reference key

size N and maximum read key size f is an (N, w, f) template family.

Definition: An e-error instance E derived from a word S is the sequence of nucleotides obtained by

introducing e errors (insertions deletions or substitutions) into S.

Definition: Let E be an e-error instance derived from a word S. We say that a template T induces a

match between E and S provided E[T.queryKey]¼ S[T.referenceKey]. Here, T has reference key size no

greater than L(S) and read key size no greater than L(E).
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Definition: An (N,w,f) template family F¼fT1, . . . , TMg is an (N, w, f, e) covering template family

provided that for any n-error instance E with n� e derived from a word S of length N there is T 2 F that

induces a match between E and S.

2.2. Indexing with covering template families

In this section, we motivate the use of covering template families for error tolerant indexing, and explain

the actual algorithm for indexing with them. We also highlight computational complexity issues and

tradeoffs associated with the use of template families.

2.2.1. Template indexing algorithm. Consider a read D sequenced from a known reference R in the

presence of sequencing errors and/or mutations. We assume that the prefix E of D was derived from a word

S of size N in R by introducing e errors and that L(E)¼ f�Nþ e. The goal of the indexing algorithm is to

discover the match between D and R in order to seed an alignment between them.

Any (N, w, f, e) covering template family F has a template T� 2 F for which E[T*.queryKey]¼
S[T*.referenceKey]. If S begins at position m of R, then

D[T�:queryKey]¼R[mþ T�:referenceKey] (1)

This match between a small section of the read and a small section of the reference is found despite the

presence of e errors or mutations in that section.

The template T* and m required to find the match are unknown. Therefore, equation (1) should be tested

for all members of F and all possible values of m. In addition, to increase the likelihood that a match be

found, T*.queryKey can be applied in multiple positions of the query. This yields the basic template

indexing algorithm of Figure 1.

The computational complexity of the indexing algorithm of Figure 1 is O(jFj(1þb (L(D)�f)/D) c) jRj),
where each term results from a loop in the algorithm. This suggests features of F and implementation

details that will reduce the computational complexity and actual run time.

The loop in line A yields the jFj term and it reveals that the smallest possible covering template family

for a given error tolerance e, is desirable.

The loop in line C yields the jRj term and can be avoided by using an index lookup. Specifically, an index

of all w-mers R[mþ T.referenceKey], 0�m� L(R)�N, is computed for each T 2 F. If indexes are pre-

computed the computational complexity becomes O(jFj(1þ (L(D)�f)/D)). Fewer indexes are required if

multiple templates share the same reference key, another desirable feature of F.

The sensitivity of the algorithm is increased at the expense of run-time when a large number of positions

in the read are probed. The step-size D on line B controls this tradeoff.

Note that conventional indexing with k-mers is a special case of the algorithm of Figure 1 with

F¼fT : T :queryKey¼ T :referenceKey¼ (0, . . . , k� 1)g.

2.2.2. Sensitivity and specificity. It is useful to compare the sensitivity and specificity of indexing

with k-mers to that of indexing with an (N,w,f,e) covering template family F. To that end, we introduce two

functions k(F) and K(F). The former is the largest k-mer size that yields the same error budget guarantee

as F in k-mer indexing, while the later is the k-mer size that yields the same specificity as F. We also

introduce the set:

FIG. 1. Basic template indexing algorithm.

1282 GILADI ET AL.



I¼fEjE is an e - error instance obtained from S, L(S)¼Ng:

The use of F in Figure 1 guarantees a match between S and any E 2 I. Then k(F) is then the minimum

over E 2 I of the longest error free subsequence of E. The minimum occurs when E contains only

substitutions and the length of E’s error free segments are essentially equal

k(F)¼d(N� e)=(eþ 1)e: (2)

Moreover, a match is guaranteed when all of E0s positions are queried, i.e., D¼ 1 in line B of Figure 1.

To determine K(F), we calculate the expected number1 of random/false positive matches in the algorithm

of Figure 1 on a reference of size M for both k-mer indexing and template indexing. We assume here that

both methods probe the same number of positions in the read and find

E(Number of random matches with k - mer indexing) � M · b1þ (L(D)� f )=Dc=4k, (3)

E(Number of random matches when indexing with F) � M · jFj · b1þ (L(D)� f )=Dc=4w: (4)

The second term in the numerator on the right of (3) also found in (4) is the number of positions indexed in

the read, and 1/4k is the probability of a word matching at a given location in the reference. In equation (4)

jFj is the number of templates, and 1/4w is the probability of a query gapped words matching at a reference

position.

Equating the right sides of equations (3) and (4), and solving for k yields the k-mer index size K(F) that

generates an equal number of random/false positive matches as indexing with F.

K(F)¼w� log4 jFj: (5)

In Sections 3.1.1 and 3.1.2, k(F) and K(F) are computed and compared for several template families. We

find that for a given error budget guarantee the covering template family approach is more efficient than k-

mer indexing because it yields a substantially smaller number of false positive matches. We recall that

matches seed costly dynamic programming alignments and minimizing them reduces the overall cost of

any alignment algorithm.

2.3. Greedy algorithm for finding covering template families

We now present a greedy algorithm for finding small covering template families. At each iteration of the

algorithm, a new template is added to that family. This template covers as many yet uncovered error

instances as possible. The algorithm generates an (N,w,f,e) covering template family provided that N�e�w

and N� f�Nþ e. We then prove that the algorithm terminates with a correct solution.

2.3.1. Algorithm description. The algorithm is presented in Figure 2. and we refer to it as the greedy

covering template family algorithm. It requires two inputs: the set of error instances and the set of query

keys which we now describe.

Input 1: Generate symbolically the set I of all e error instances of size f from the symbolic word

W ¼ (0, . . . , N�1). Specifically, for each set of e errors an error instance is generated as follows. The

character I is inserted at each insertion position of W, the character S replaces each substitution’s position,

and each deletion removes its respective position from W in an error instance. The resulting sequence is

then padded with the symbol N or truncated to length f. We refer to this set as the error instance set.

Input 2: Generate all query keys, i.e., all vectors of w integers chosen without replacement from the

integers f0, . . . , f�1g and sorted in increasing order. This set of vectors is called the key set.

We illustrate these sets for the (N, w, f, e)¼ (8, 6, 8, 1) family. Table 1 presents the set of error instances,

while Table 2 presents the key set

The description of the greedy algorithm requires the following definition.

Definition: Given a key K and an error instance E 2 I we say that E[K] is valid if it does not contain

any of the symbols in {S, I, N}, then K is a valid key for E.

1Reference is assumed to be generated by an iid model, with equal probability for each nucleotide.
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Definition: A position j in E 2 I is a valid position E[j] 62 fS, I, Ng.
2.3.2. Proof of correct termination. We now prove in three steps that the algorithm generates a

covering template family F. First, we show that it always terminates in a bounded number of iterations,

then that F yields a match between E and W for all E 2 I, and finally that F yields a match for all error

instances E with n� e errors.

Lemma 1: For each E 2 I, there are at least N�e valid positions in the N symbol prefix.

Proof. The proof is by induction on e 0� e�N�w. If e¼ 0, all N prefix positions are valid. Suppose

that the lemma is true for e<N�w errors. Consider an instance E with eþ 1 errors, and let E0 be derived

from W by introducing the first e errors. By the induction hypothesis, the N symbol prefix of E0 has at least

N�e valid positions.

FIG. 2. Covering template family algorithm.

Table 1. Error Instances for (8,6,8,1)

I 0 1 2 3 4 5 6 0 1 2 3 I 4 5 6

1 2 3 4 5 6 7 N 0 1 2 3 5 6 7 N

S 1 2 3 4 5 6 7 0 1 2 3 S 5 6 7

0 I 1 2 3 4 5 6 0 1 2 3 4 I 5 6

0 2 3 4 5 6 7 N 0 1 2 3 4 6 7 N

0 S 2 3 4 5 6 7 0 1 2 3 4 S 6 7

0 1 I 2 3 4 5 6 0 1 2 3 4 5 I 6

0 1 3 4 5 6 7 N 0 1 2 3 4 5 7 N

0 1 S 3 4 5 6 7 0 1 2 3 4 5 S 7

0 1 2 I 3 4 5 6 0 1 2 3 4 5 6 I

0 1 2 4 5 6 7 N 0 1 2 3 4 5 6 N

0 1 2 S 4 5 6 7 0 1 2 3 4 5 6 S
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Introducing the eþ 1st error into E0 followed by a truncation or padding with the symbol N yields E. If

this error is an insertion, the positions that follow are shifted to the right and only the last position in the

prefix of E0 is no longer in that of E. Hence, the latter has at least (N�e)� 1¼N� (eþ 1) valid positions.

The case of substitution and deletion are proved in a similar fashion. &

The next lemma shows that the greedy algorithm always terminates in a bounded number of steps.

Lemma 2: At each iteration of the block beginning line A, the size of errorInstanceSet decreases by at

least one.

Proof: In view of lemma 1, the error instance R chosen after line A has at least N�e�w valid

positions in its N symbol prefix, so there is at least one valid key K for R. When K is a valid key for R, the

condition on line C holds and errorInstanceSubset is initialized to contain R. Then, in the block of line D,

errorInstanceSubset can only increase in size. In the block of line F, bestErrorInstanceSubset is either

initialized or possibly updated to the current errorInstanceSubset, so it has at least one member, and at line

H, errorInstanceSet is reduced by at least one member. It follows that the algorithm will complete in at most

jIj iterations. &

The next lemma shows that the template family generated by the algorithm yields a match between all

E 2 I and W.

Lemma 3: Let F be the set of templates generated by the greedy covering template family algorithm.

Then for any E 2 I there is a T� 2 F that generates a match between W and E.

Proof. Consider the iteration of line A at which E was removed from errorInstanceSet, then

E 2 bestErrorInstanceSubset on line H. Let T* be the template defined on lines I and J at this iteration.

Then in view of line C and line E E[T*.queryKey] is valid and line J implies E[T*.queryKey]¼
T*.referenceKey. Now, since W ¼ (0, . . . , N - 1), W[T*.referenceKey]¼ T*.referenceKey hence

W[T*.referenceKey]¼E[T*.queryKey] &

Error instances of I have exactly e errors while the definition of covering template family requires that all

error instances with n� e have a match. The following remark demonstrates that this property holds for F.

Remark 1: Let E be an error instance generated by introducing n< e errors into W, and let F be the

template family generated by the greedy covering template family algorithm. Then there is a T� 2 F that

yields a match between W and E.

Proof. We first substitute e-n nucleotides of E by the symbol S to obtain E0. By lemma 3, there is a

T� 2 F for which E0[T*.queryKey]¼W[T*.referenceKey]. Since E0[T*.queryKey] is valid, T*.queryKey

contains none of the artificial substitution’s positions. Hence E0[T*.queryKey]¼ E[T*.queryKey])
W[T*.referenceKey]¼E[T*.queryKey] &

We summarize the analysis of this section with the following theorem.

Theorem 1: The greedy covering template family algorithm always terminates in a bounded number of

steps and finds a covering template family.

We note that the speed of the greedy algorithm depends on the parameters of the family, as the latter

affect the size of the error instance set, and the key set. We also note that the covering template family

algorithm can be used with error instances involving either errors of all types, or errors of just one type

(e.g., just deletions). In fact, any combination of error types is possible.

Table 2. Key Set for the (8, 6, 8, 1) Family

2 3 4 5 6 7 0 1 3 5 6 7 0 3 4 5 6 7 0 1 2 4 5 6

1 3 4 5 6 7 0 1 3 4 6 7 0 2 4 5 6 7 0 1 2 3 6 7

1 2 4 5 6 7 0 1 3 4 5 7 0 2 3 5 6 7 0 1 2 3 5 7

1 2 3 5 6 7 0 1 3 4 5 6 0 2 3 4 6 7 0 1 2 3 5 6

1 2 3 4 6 7 0 1 2 5 6 7 0 2 3 4 5 7 0 1 2 3 4 7

1 2 3 4 5 7 0 1 2 4 6 7 0 2 3 4 5 6 0 1 2 3 4 6

1 2 3 4 5 6 0 1 2 4 5 7 0 1 4 5 6 7 0 1 2 3 4 5
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2.4. Modular template family construction

We now construct a family tolerant to kþ 1 errors using a family tolerant of k errors. Specifically, a

(Nþw/2, w, Nþw/2þ kþ 1, kþ 1) covering template family F0 is constructed using templates from a

(N, w, Nþ k, k) covering template family F and a few additional templates. The families generated here

require much fewer indexes as compared to the ones generated by the greedy covering template family

algorithm.

2.4.1. Preliminary results. We begin by compiling preliminary definitions and results.

Definition: A (K, D) symmetric key, is the key (0, . . . , K� 1, KþD, . . . , 2KþD� 1).

A symmetric key is used to extract from a sequence two words of length K separated by a gap of

length D.

Definition: A symmetric template family STF(K, D, k) F is the collection of 2kþ 1 templates such that

for each T 2 F: T.referenceKey is the (K,D) symmetric key and T :queryKey 2 f(K, D – j)

symmetric key j j¼ 0, . . . , kg.

Lemma 1: Consider word S and an error instance E obtained by introducing n errors fe1, . . . , eng into

S, where ei is either an insertion, a deletion or a substitution, then

L(E)¼ L(S)þ�(e1, . . . , en),

�(e1, . . . , en)¼
Xn

i¼1

/(ei),

/(ei)¼ 1 for an insertion, /(ei)¼ � 1 for a deletion, and /(ei)¼ 0 for a substitution:

Proof. The proof is by induction on n. If n¼ 0 F¼ 0 and E¼ S therefore L(E)¼ L(S). Assume the

lemma holds for up to n errors. Consider the set of nþ 1 errors fe1, . . . , enþ Ig. Let E0 be obtained by

introducing e1 into S, then

L(E0)¼ L(S)þ�(e1), (6)

since a substitution does not change the length of a sequence while an insertion or a deletion respectively

increases or decreases the length by one. Introducing fe2, . . . , enþ Ig into E0 yields E and by the induction

hypothesis:

L(E)¼ L(E0)¼ þ�(e2, . . . , enþ 1): (7)

Combining (6), (7), and the definition of F proves the lemma &

Lemma 2: Consider a word S of size N¼ 2KþD and its subsequences: S1 its first K nucleotides, S2

the next D nucleotides and S3 the last K nucleotides. Let F¼ STF(K,D,k), k�D. Then for any error instance

E obtained from S by introducing n errors, n� k, into S2 there is a T 2 F that yields a match between E

and S.

Proof. Let S02 be derived from S2 by introducing n errors fe1, . . . , eng. Then E¼ S1þ S02þ S3 and by

lemma 2 L(S02)¼Dþ�(e1, . . . , en) where� n��(e1, . . . , en)�n. From the definition of a symmetric

template family, there is a T� 2 F for which T*.queryKey is the (K, Dþ�(e1, . . . , en)) symmetric key, and

therefore E[T*.queryKey]¼ S1þ S3 then S[T*.referenceKey]¼E[T*.queryKey] &

2.4.2. The modular construction. To construct F0, we consider a sequence S with L(S)¼Nþw/2

and the set
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I¼fEjE is an l error instance of S, l�kþ 1g:

We determine F0 by constructing a set of templates that yields a match between S and any E 2 I. To that

end we consider the subsequences of S: S1 the first w/2 nucleotides, S2 the next N�w/2 and S3 the last w/2.

Any E 2 I is partitioned accordingly into S1
0, S2
0 and S3

0 with Si
0 obtained by introducing the corresponding

part of the l errors into Si. Based on the distribution of the errors in Si
0, i¼ 1, 2, 3, we partition I into groups:

Group 1: S1
0 þ S2

0 is an n error instance of S1þ S2 with 0� n� k errors. This group includes instances

E with no more than k errors. Since L(S1þ S2)¼N a member of F yields a match between S1þ S2 and

S1
0 þ S2

0 and therefore between S and E.

Group 2: E has kþ 1 errors and S2
0 þ S3

0 is an n error instance of S2þ S3 with 0� n� k errors. Since

L(S2þ S3)¼N there is a T� 2 F that yields a match between S2þ S3 and S2
0 þ S3

0 hence

S[w=2þ T�:referenceKey]¼E[L(S01)þ T�:queryKey]: (8)

The number of errors in S01 is kþ 1� n and L(S01 � 0 so using lemma 1

max (0, w=2� k� 1þ n) � L(S01) � w=2þ kþ 1� n: (9)

Moreover, lemma 1 implies L(S02þ S03) � N þ n so that size(T*.queryKey)�Nþ n and

L(S01)þ size(T�:queryKey) � Nþw=2þ kþ 1:

It follows that

max (0, w=2� k� 1) � L(S01) � N þw=2þ kþ 1 - size(T�:queryKey): (10)

This implies that there is a Ts 2 Shift(F) that yields a match between S and E where:

Shift(F)¼fTsj Ts¼ (w=2þ T :referenceKey, lþ T :queryKey), T 2 F

max(0, w=2 - k - 1) � l � N þw=2þ kþ 1 - size(T :queryKey)g

Group 3: S02 is a kþ 1 error instance of S2. This is the configuration of lemma 2 with K¼w/2 and

D¼N�w/2. Hence, members of STF(w/2, N�w/2, kþ 1) yield a match for all error instances in this group.

We summarize this analysis in the following theorem.

Theorem 2: Let F be an (N, w, Nþ k, k) covering template family and

F0 ¼F [ Shift(F) [ STF(w=2, N �w=2, kþ 1): (11)

Then F0 is an (Nþw/2, w, Nþw/2þ kþ 1, kþ 1) covering template family.

In section 2.4.3 we show that indexes of F0 are those of F plus the single index of STF(w/2, N�w/2, kþ 1).

2.4.3. The modular recursion. The construction of Section 2.4.2 can be applied recursively to obtain

a hierarchy of covering template families Fk with parameters (Nk, w, fk, k). Here, we study properties of

these families. We study the recursion in which F1 is given.

Lemma 3: The local error rate k/Nk is monotonically increasing with k and

limk!1k=Nk ¼ 2=w: (13)

Proof. Nk¼Nk�1þw/2 so that

Nk ¼ (k� 1)w=2þN1: (14)

Dividing k by Nk and taking the limit with respect to k yields (13). To show monotonic behavior, we take

the derivative with respect to k of k/Nk to obtain
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d=dk(k=Nk)¼ (N1�w=2)=((k� 1)w=2þN1)2: (15)

Both numerator and denominator in (15) are positive. &

The derivative in (15) converges to zero as k?? , indicating that only a few applications of the

recursion are useful in practice.

We now determine the number of indexes and templates required to search with Fk when an index

lookup is used to replace the loop of Line C in the template indexing algorithm of Figure 1.

Definition: Let T be a template then Ts¼ (mþ T.referenceKey, nþ T.queryKey) m, n� 0 is a shifted

version of T.

Lemma 4: Let Base(Fk)¼
Sk� 1

j¼ 1 STF(w=2, Nj�w=2, jþ 1) [ F1 then

(a) Any template of Fk belongs to Base(Fk) or is a shifted version of a template in Base(Fk).

(b) The number of templates in Base(Fk) is O(k2).

Proof. We show a) by induction on k using (11). We show b) using &

jBase(Fk)j ¼ jF1j þ
Xk� 1

j¼1

(2(jþ 1)þ 1)¼O(K2): (16)

In (16) 2(jþ 1)þ 1 is the number of templates in STF(w/2, Nj-w/2, jþ 1) &

Lemma 5: Let Ts 2 Fk be a shifted version of T 2 Fk.

(a) The index for T can be used for Ts.

(b) If Ts.queryKey¼ T.queryKey then Ts is redundant.

Proof. Since Ts.referenceKey¼ T.referenceKeyþm any query in T’s index will generate the

hits obtained by querying Ts’s index and potentially m additional hits that can be ignored. This

demonstrates a). If Ts.queryKey¼ T.queryKey query results of Ts are included in those of T, and

this shows b). &

Lemma 6: The number of indexes required by the k’th family is O(k).

Proof: Lemma 4 a) and Lemma 5 a) imply that the indexes of Base(Fk) are those of Fk. The family

STF(w/2, Nj�w/2, jþ 1) has a unique reference key and therefore a unique index, so the number of indexes

in Base(Fk) is bounded by (k� 1)þ jF1j. &

Lemma 7: The number of non-redundant templates in Fk is O(k3).

Proof. For each T 2 Base(Fk) and 0� n� fk we define the sets: &

[T , n]¼fTsjTs 2 Fk, Ts¼ (T :referenceKeyþm, T:queryKeyþ n)g,
M(T , n)¼fmj9 Ts 2 [T , n], Ts¼ (T :referenceKeyþm, T :queryKeyþ n)g:

Note that for some n [T,n] may be empty and that

Fk¼
[

T2Base(Fk)

[fk

n¼0
[T , n]: (17)

Moreover, if m*¼min M(T, n) and T*¼ (T.referenceKeyþm*,T.queryKeyþ n) Lemma 5 b) implies that

all templates in [T, n] are redundant except T*. In conjunction with (17) this yields the bound
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jBase(Fk)j�(fkþ 1) on the number of non-redundant templates. Now (14) implies fk¼ (k� 1) w/2þN1þ k,

which when combined with (16) proves the lemma. &

3. RESULTS

3.1. Families generated by greedy algorithm

3.1.1. General properties. We now present properties of template families generated by the greedy

covering template family algorithm. Table 3 presents the number of templates, k(F) and K(F) of equation

(2) and (5), and the ratio e/N in % for several template families F.

The larger the value of K(F)�k(F) the more efficient the template family in achieving the error budget

guarantee as compared to k-mer indexing, because k-mer indexing will generate 4(K(F)�k(F)) times more

random spurious alignments than template indexing, in order to achieve the same error budget guarantee.

3.1.2. Comparison with k-mer indexing. In this section, we verify computationally the results of

Sections 2.2.2 and 3.1.1 for the (26,16,26,2) template family F. Specifically, a set of 100000 randomly

chosen two-error reads of length 26 from human chromosome 1 are aligned to chromosome 1 with both F,

and k-mer indexing where k is varied in the range k(F), . . . , K(F).

When a query word matches more than M¼ 10000 locations in the reference, it will be ignored. Table 4

presents the percentage of reads with at least one match to their location of origin (% Found), the total

number of candidate locations generated in each alignment run (Candidate positions), and the number of

candidate locations normalized by the number generated by F.

The fraction of reads that match their location of origin when seeding with F and with k¼ k(F) is,

respectively, 99.84% and 98.9%. Neither seeding strategies achieve their theoretical guarantees because

query words with a number of matches greater than M¼ 10000 are ignored. Indexing with k(F) yields 54

times more candidate locations than with F. Indexing with k¼K(F)¼ 13, yields a slightly greater number

of candidate positions than F but finds the correct location for only 81% of the reads. This highlights the

superiority of template family indexing over k-mer indexing in both sensitivity and cost.

3.1.3. Template family structure. In this section, we study the template structure of a frequently

used family generated by the greedy covering template family algorithm. This structure yields a com-

pression scheme for pre-computed indexes in one of the implementations of the indexing algorithm which

is described in Section 3.3.2.

Table 3. Template Family Properties

Family Number of templates Local % error e/N k(F) K(F)

(18,16,18,1) 26 5.55% 9 13.65

(20,16,20,1) 14 5.00% 10 14.1

(20,16,20,2) 329 10% 6 11.8

(25,16,25,2) 86 8% 8 12.8

(26,16,26,2) 77 7.70% 8 12.8

(29,16,29,2) 51 6.90% 9 13.16

Table 4. Comparison with k-Mer Indexing, M¼ 10000

Indexing type % Found Candidate positions Relative number of positions

(26,16,26,2) 99.84 57,324,646 1

k¼ 9 98.90 3,135,083,623 54.69

k¼ 10 98.10 974,329,226 17.00

k¼ 11 95.32 328,012,196 5.72

k¼ 12 90.66 132,708,178 2.32

k¼ 13 83.99 67,536,030 1.18

k¼ 14 74.85 41,268,785 0.72
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The Appendix presents the templates of the (18,16,18,1) family. Tables 6–9 correspond to the substi-

tution only, deletion only, insertions only and all error types, respectively.

The nine reference keys Ki, i¼ 0, 1, . . . , 8, in Tables 6 and 7 are identical and consist of the integers

0, . . . , 17 with the exception of the gap [2i, 2iþ 1]. Read keys have an identical structure to the reference

keys, but have a gap of size two and one for the substitution and deletion case, respectively. Read keys with

a gap size of three yield templates of read key size 19 that cover all insertion cases.

The last template in Tables 6 and 7 are identical so the total number in all three tables is 26, and is equal

to the one in Table 9. We also note that there is some redundancy in the templates at the edge of the word.

For example, the first templates in Tables 6 and 7 are equivalent, because the reference is indexed at every

position.

3.2. Modular families

Here, we present the parameters of the families generated by the modular recursion of Section 2.4.3,

where F1 is the (18, 16, 19, 1) family of Section 3.1.3. We use the formulas derived in Section 2.4.3 to

obtain Table 5.

We see that a relatively high error tolerance can be achieved with a modest number of indexes.

3.3. Implementation details

3.3.1. Indexing with merge sort. Indexing is implemented as a merge-sort process. Specifically, all

gapped words are encoded as integers, by translating each w-mer as a base 4 number with {A, C, G, T}

respectively mapped to {0, 1, 2, 3}. Translation can be done either left to right or right to left, respectively

called right significant and left significant.

Matches are found by sorting reference and query gapped words, and merging the resulting sorted lists.

Only a portion of the sorted index needs to be in memory at any point in time.

3.3.2. Database compression. It is desirable to pre-compute the indexes in order to reduce com-

putation time. A substantial compression of the index data-base is achieved for certain families by

leveraging the structure of the reference keys.

We illustrate this for the (18, 16, 19, 1) family. The 9 reference keys of Table 6 consist of two groups.

The first five share their last 8 positions, while the last four share their first 8. A single database for the first

five reference keys, and last 4 keys is generated by encoding the full 18 nucleotide word in a right and left

significant mode, respectively. The resulting lists are then sorted to create two databases.

Table 5. Modular Family’s Parameters

k N f k/N in % Num indexes

1 18 19 5.56 9

2 26 28 7.69 10

3 34 37 8.82 11

4 42 46 9.52 12

5 50 55 10 13

Table 6. (18,16,18,1) Substitution Only

Reference keys Read keys

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Table 7. (18,16,18,1) Deletion Only

Reference keys Read keys

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 8. (18,16,18,1) Insertion Only

Reference keys Read keys

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 9. (18,16,18,1) All Error Types

Reference keys Read keys

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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When processing a specific reference key bit-wise operations are used to extract the encoding for that key

from that of the word. This results in a partially sorted index, which is fully sorted by the most significant

16 bit radix. This index is loaded into memory in small sections partitioned along the significant radix

boundaries. Each section can be fully sorted with a small amount of additional computation.

3.3.3. Software. The helisphere distribution contains several programs associated with the aligner:

� IndexDP: very flexible version of the aligner, designed for references of size up to 100MB.
� Templates: program for generating template families used by indexDP. It is based on the greedy

template family algorithm.
� IndexDPgenomic: designed for large references it has a small memory footprint. It makes use of the

pre-computed compressed database discussed in section 3.3.2.
� PreprocessDB: creates compressed index database for indexDPgenomic.’

4. DISCUSSION

We have developed several approaches for generating covering template families and have demonstrated

that they provide a very efficient form of indexing. Specifically, for a given error budget, they yield a match

with substantially fewer spurious false positive matches than k-mer indexing. This new form of indexing

enabled us to create a short read aligner that is tolerant of errors of all type.

5. APPENDIX

Here we present the templates associated with the (18,16,18,1) family, generated by the algorithm of

Section 2.3. Tables 6–8 correspond to the case where the algorithm was run on each error type separately.

Table 9 corresponds to the case where all error types where considered simultaneously.
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