
COUPLED SIGNED-DISTANCE FUNCTIONS FOR IMPLICIT SURFACE
RECONSTRUCTION

Yuanhao Gong, Grégory Paul, Ivo F. Sbalzarini

MOSAIC Group, Institute of Theoretical Computer Science, ETH Zurich, Switzerland.
SIB Swiss Institute of Bioinformatics, Zurich, Switzerland.

ABSTRACT
We present a coupled signed-distance function method for re-

constructing closed implicit surfaces from unstructured point

clouds. The method can capture high curvature without the

need for adaptive grids and is easy to implement. We present

the method, benchmark it on artificial data, and apply it to two

biological point data sets from protein surfaces and PALM

microscopy.

Index Terms— Surface reconstruction, point cloud, cou-

pled signed-distance function, coupled level set, PALM

1. INTRODUCTION

Surface reconstruction from unstructured point clouds is

a fundamental problem in diverse fields such as computer

graphics, computer vision, fluid dynamics, molecular mod-

eling, microscopy, etc. The problem is challenging due to

the absence of connectivity information between the points,

which may lead to topological ambiguities. Moreover, high

curvature (sharp corners or edges) and noise in the point

positions often complicate the task.

A wealth of methods have been proposed to address these

issues; we briefly review them in Sec. 1.1. We then propose

a new implicit surface reconstruction method called coupled
signed-distance functions (cSDF). It is inspired by coupled

level-set methods [1, 2, 3], but addresses some of their short-

comings when reconstructing high-curvature regions, while

guaranteeing the signed-distance property.

1.1. Prior Works and Motivation

Numerous methods have been proposed for surface recon-

struction from unstructured point clouds. This includes ap-

proaches based on FFTs (e.g., [4]), Poisson surfaces (e.g.,

[5]), and moving least squares (e.g., [6]). Level-set meth-

ods [7, 8] minimize the p-norm of the distance field d(·) from

the implicit surface Γ. The same objective function can also

be minimized using Bregman iterations, leading to very effi-

cient algorithms [9]. In this energy-based approach, methods

from image segmentation have also been adapted to surface

Funding: Swiss National Science Foundation, grant CRSII3-132396/1.

reconstruction [10]. Thanks to the convexity of the energy,

fast solvers (e.g., split-Bregman or Primal/Dual) can be used.

The regularization term in a segmentation model, however,

tends to smooth the result and remove details from the sur-

face. Moreover, the computational cost depends on proper

initialization and step-size control. These issues are avoided

with cSDF.

Prior work also demonstrated several strategies to save

memory and reduce the computational complexity of these

algorithms. This includes narrow-band formulations [11],

multi-scale methods [12, 13], and DT-grids [14]. The need

for computationally expensive level-set re-initialization has

been reduced by adding an additional penalty term in the

energy [15].

1.2. Properties of cSDF

The contributions of the present method are:

1. cSDF do not require (pseudo-)time evolution of a PDE.

This avoids initialization, reinitialization, and the sta-

bility condition for time stepping.

2. The result from cSDF is a signed distance function.

3. cSDF requires no estimation of normals. Approaches

such as the Poisson surface method require consistent

normal estimation. This is avoided in cSDF by a two-

layer labeling scheme.

4. cSDF can capture high-curvature regions without re-

quiring adaptive grids.

2. METHOD

Let the point cloud S = {xi : xi ∈ R
n, i = 1, . . . , N}. We

first illustrate cSDF in 2D and then apply it to synthetic and

real-world data in 3D. The method progresses in three steps

as detailed by Algorithms 1 to 3 below. The corresponding

steps are illustrated as �, �, and � in Fig. 1.

2.1. Step 1: Distance Field

For a given point cloud S, we compute the distance field d(x)
on a predefined Cartesian grid G = U ×V of uniform resolu-

1000978-1-4577-1858-8/12/$26.00 ©2012 IEEE ISBI 2012

tion h. This amounts to solving the following Eikonal equa-

tion: { ‖∇d(x)‖ = 1 ∀x ∈ G
s.t. d(xi) = 0 ∀xi ∈ S

(1)

as a boundary-value formulation of the corresponding Hamil-

ton-Jacobi problem.

Several methods are available to numerically solve this

equation, including the Fast Marching Method [11], the

Group Marching Method [16], the Fast Sweeping Method

(FSM) [17], the Fast Iteration Method [18], and direct

Hamilton-Jacobi solvers [19]. Here, we use an extended-

window FSM restricted to a narrow band of width b:

Nb = {x ∈ G : ∃xi ∈ S s.t. ||xi − x|| < b} . (2)

2.1.1. Extended-window Fast Sweeping Method

FSM sweeps the grid until convergence, which can be ineffi-

cient for points far from the interface. Fast iterative methods

relax this by using locks [18]. These locks, however, cause

additional serialization. Here, we accelerate FSM by using a

larger window size w > 1 (see Algorithm 1). Fig. 3(b) shows

an example d(x) computed using FSM with w = 3. The orig-

inal FSM [17] is recovered for w = 1. While an extended

window can significantly reduce the iteration count, the local

update cost increases from 2 to (w + 1)(w + 2)/2 − 1. We

initialize the algorithm with:

{
d(x) = +∞ ∀x ∈ Nb \ S
d(xi) = 0 ∀xi ∈ S .

(3)

Algorithm 1 Extended-window fast sweeping method in 2D

1: INPUT: threshold tol, window size w, S, U , V
2: set w+1 = w + 1
3: initialize dk+1(x) using Eq. 3

4: define the loop sets

{(i, j) : i = w+1 . . . U − w, j = w+1 . . . V − w},

{(i, j) : i = U − w . . . w+1, j = w+1 . . . V − w},

{(i, j) : i = U − w . . . w+1, j = V − w . . . w+1},

{(i, j) : i = w+1 . . . U − w, j = V − w . . . w+1}
5: while max{|dk+1(x)− dk(x)|} > tol do
6: go through the loop sets and do

dk+1(x) = Updatew(dk(x))
7: end while
8: dk(x) =

√
dk+1(x)

9: OUTPUT: dk(x)

The Updatew of FSM [17] is ex-

tended to account for all points in a

w-neighborhood, as illustrated on

the right.

Fig. 1. Illustration of Algorithms 1 to 3

2.2. Step 2: Coupled Signed-Distance Functions

We aim to compute φ(x), the signed-distance function asso-

ciated with d(x). The key idea of cSDF is to apply distance-

preserving shift transformations to the output of Algorithm

1, thus solving the boundary-value problem in Eq. 1 without

(pseudo-)time evolution. Specifically, we shift d by an offset

T in order to determine the functions φin
bin and φout

bin that indi-

cate whether the shifted level set d − Ts is inside or outside

of Γ (see shaded areas in Fig. 1). Algorithm 2 first computes

these bands for d shifted down by Ts (i.e., the level sets φin1

and φout1) and then for the function d − Ts shifted up again,

yielding φin2 and φout2. The threshold T defines the separa-

tion between the regions to be labeled.

Algorithm 2 cSDF construction

1: INPUT: threshold T , Ts, d(x)
2: d0(x) = d(x)− T
3: select any point p0 on the outer boundary of the narrow band.

4: starting from p0, label as φout
bin the connected component where

d0 > 0; label the rest of the region where d0 > 0 as φin
bin.

5: d1(x) = d(x)− Ts

6: compute φin1 and φout1 using Algorithm 1 on φin
bin and φout

bin ,

respectively, with input d1(x)
7: φin2 = φin1 − Ts, φ

out2 = φout1 − Ts

8: OUTPUT: φin2 and φout2

2.3. Step 3: Surface Reconstruction using cSDF

After computing φin2 and φout2, a joint estimation of the

signed-distance function φ of the reconstructed surface Γ is

computed from φin2, φout2, and d(x) as described in Algo-

rithm 3.

3. RESULTS

We demonstrate cSDF on 2D and 3D benchmarks and show

its application to real-world data.

1001

Algorithm 3 Surface reconstruction using cSDF

1: INPUT: φin2, φout2, d
2: dinout = ||φin2| − |φout2||,

dinedge = ||φin2| − d|, doutedge = ||φout2| − d|
3: for all x ∈ Nb do
4: t = min{dinout, dinedge, doutedge}
5: if dinout == t then φ = (φin2 − φout2)/2
6: if dinedge == t then φ = −φin2

7: if doutedge == t then φ = φout2

8: end for
9: OUTPUT: φ

0 5 10
0

0.005

0.01

0.015

0.02

N/R

L 1 n
or

m

(a) L1-error vs. N/R

0 5 10
0

1

2

3

4x 10
−4

N/R

L 2 n
or

m

(b) L2-error vs. N/R

Fig. 2. Reconstruction errors for point clouds on circles

3.1. 2D Benchmarks

We test the accuracy of cSDF by sampling N points uni-

formly on a circle of radius R and comparing the recon-

structed circle to the ground truth for decreasing N . We use

a 2002 grid for all N ∈ [45, 360]×R ∈ [40, 70]. We linearly

interpolate the resulting φc at each of the original xi ∈ S. The

correct value would be φc = 0 for all xi. We hence compute

the overall (reconstruction plus interpolation) mean L1 and

L2 errors as
∑i=N

i=1 |φc(xi)|/N and
(∑i=N

i=1 φc(xi)
2/N

)1/2

,

respectively. The result is shown in Fig. 2. The memory

usage of cSDF is 3|Nb|.
Figure 3 shows a synthetic example with sharp corners

to illustrate cSDF’s capability of representing them without

introducing excessive surface smoothing.

3.2. 3D Benchmarks

We benchmark cSDF in 3D by using the vertices of the trian-

gulated surfaces of the well-known computer graphics models

“Armadillo” and “Buddha” as input point clouds. The number

of points for each model, the CPU time for cSDF reconstruc-

tion of the implicit surface representation, and the resulting

errors against the known ground truth at the vertex positions

are given in Table 1. The code is implemented in C and run

on a 2 GHz Intel Core i7. Figure 4 shows the resulting re-

constructions and close-ups with the input point cloud over-

laid to demonstrate the method’s capability of representing

high-curvature regions (“Armadillo” claws) without grid re-

finement (Fig. 4(b) and (d)).

(a) Input point cloud (b) Distance field d(x)

(c) Result φ (d) Zoom at a sharp corner

Fig. 3. 2D benchmark example with sharp corners

Surface # Points Grid CPU time L1−error L2−error
Armadillo 172 974 175 × 208 × 159 39.9 s 0.0523 0.0755

Buddha 543 652 82 × 199 × 82 32.6 s 0.0673 0.1122

Protein 3 511 66 × 66 × 66 2.9 s – –

PALM 582 400 × 400 0.0056 s – –

Table 1. cSDF benchmarks (b = 6 in all cases).

(a) Buddha (b) Zoom with point cloud

(c) Armadillo (d) Zoom with point cloud

Fig. 4. Model surface reconstruction using cSDF

1002

(a) Protein surface with MHP (b) Zoom with point cloud

(c) 2D PALM data (d) Zoom with point cloud

Fig. 5. Biological surface reconstruction using cSDF

3.3. Applications in Bioimaging

We apply cSDF to two point data sets from biology. The first

data set comprises 3D positions of atoms in a protein confor-

mation obtained from molecular-dynamics simulations1. We

use cSDF to reconstruct the molecular surface of the protein

and locally shade it according to the Molecular Hydropho-

bicity Potential (MHP). The result is shown in Fig. 5(a) and

(b). The second case considers a 2D PALM super-resolution

image. PALM intrinsically produces point clouds and cSDF

can be used to reconstruct the imaged geometry (Fig. 5(c) and

(d)). The PALM image shows a cell nucleus with the lamin

proteins of the nuclear lamina fluorescently labeled2. Prior

to cSDF reconstruction, the image is pre-processed to remove

outlier points. Identification of objects from the reconstructed

surface is a post-processing step, done here to retain only the

largest connected component.

4. CONCLUSIONS

We have presented coupled signed-distance functions (cSDF)

for implicit surface reconstruction from unstructured point

clouds. The method is based on applying distance-preserving

shift transformations to the Euclidean distance map of the

point data. The result is a signed-distance function, dispens-

ing with the need for re-initialization. We have demonstrated

the method in both 2D and 3D, benchmarked its computa-

tional cost, and illustrated its capability to represent high cur-

1Data courtesy of Dr. Anton Polyansky, Zagrovic group, MFPL, Vienna.
2Data courtesy of Dr. Jonas Ries, Ewers group, ETH Zurich.

vature without adaptive grids. We also demonstrated the ap-

plicability of the method to 2D and 3D real-world data. We

currently use a single level function and can hence not repre-

sent intersecting surfaces.

5. REFERENCES

[1] M. Sussman, “A second order coupled level set and volume-of-fluid

method for computing growth and collapse of vapor bubbles,” J. Com-
put. Phys., vol. 187, no. 1, pp. 110–136, 2003.

[2] N. Paragios and R. Deriche, “Coupled geodesic active regions for im-

age segmentation: A level set approach,” in Proc. Europ. Conf. Com-
puter Vision. 2000, pp. 224–240, Springer.

[3] X. Zeng, L. H. Staib, R. T. Schultz, and J. S. Duncan, “Segmentation

and measurement of the cortex from 3D MR images using coupled-

surfaces propagation,” IEEE Trans. Medical Imaging, vol. 18, no. 10,

pp. 927–937, 1999.

[4] M. Kazhdan, “Reconstruction of solid models from oriented point sets,”

in Proc. 3rd Eurographics Symp. Geometry Process., 2005, pp. 73–es.

[5] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-

tion,” in Proc. 4th Eurographics Symp. Geometry Process., 2006, pp.

61–70.

[6] C. A. Öztireli, G. Guennebaud, and M. H. Gross, “Feature preserv-

ing point set surfaces based on non-linear kernel regression,” Comput.
Graph. Forum, vol. 28, no. 2, pp. 493–501, 2009.

[7] H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit and non-

parametric shape reconstruction from unorganized data using a varia-

tional level set method,” Computer Vision and Image Understanding,

vol. 80, no. 3, pp. 295–314, 2000.

[8] H. K. Zhao, S. Osher, and R. Fedkiw, “Fast surface reconstruction

using the level set method,” in Variational and Level Set Methods in
Computer Vision. IEEE, 2001, pp. 194–201.

[9] J. Ye, X. Bresson, T. Goldstein, and S. Osher, “A fast variational

method for surface reconstruction from sets of scattered points,” UCLA

CAM report, UCLA, 2010.

[10] T. Goldstein, X. Bresson, and S. Osher, “Geometric applications of the

split Bregman method: Segmentation and surface reconstruction,” J.
Sci. Comput., vol. 45, no. 1, pp. 272–293, 2010.

[11] J. A. Sethian, “A fast marching level set method for monotonically

advancing fronts,” Proc. Natl. Acad. Sci. U.S.A., vol. 93, no. 4, pp.

1591, 1996.

[12] I. Tobor, P. Reuter, and C. Schlick, “Multi-scale reconstruction of im-

plicit surfaces with attributes from large unorganized point sets,” in

Proc. Shape Modeling Appl. IEEE, 2004, pp. 19–30.

[13] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. P. Seidel, “Multi-

level partition of unity implicits,” ACM Trans. Graphics, vol. 22, no. 3,

pp. 463–470, 2003.

[14] M. B. Nielsen and K. Museth, “Dynamic Tubular Grid: An efficient

data structure and algorithms for high resolution level sets,” J. Sci.
Comput., vol. 26, no. 3, pp. 261–299, 2006.

[15] C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-

initialization: a new variational formulation,” in Proc. Conf. Computer
Vision & Pattern Recognition (CVPR), Washington, DC, USA, 2005,

IEEE, pp. 430–436.

[16] S. Kim, “An O(N) level set method for Eikonal equations,” SIAM J.
Sci. Comput., vol. 22, no. 6, pp. 2178–2193, 2001.

[17] H. Zhao, “A fast sweeping method for Eikonal equations,” Math. Com-
put., vol. 74, no. 250, pp. 603–628, 2005.

[18] W. K. Jeong and R. T. Whitaker, “A fast iterative method for Eikonal

equations,” SIAM J. Sci. Comput., vol. 30, no. 5, pp. 2512–2534, 2008.

[19] M. Sussman and E. Fatemi, “An efficient, interface-preserving level set

redistancing algorithm and its application to interfacial incompressible

fluid flow,” SIAM J. Sci. Comput., vol. 20, no. 4, pp. 1165–1191, 1999.

1003

