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ABSTRACT

We present a variational model with local weighted Gaussian
curvature as regularizer. We show its convexity for an area-
weight function and provide a closed-form solution for this
case. The corresponding regularization coefficient has a the-
oretical bound. Moreover, we prove that the model is con-
vex for a wide range of weight functions and show that it can
be efficiently solved using splitting techniques. Finally, we
demonstrate several applications of the model in image de-
noising, smoothing, texture decomposition, image sharpen-
ing, and regularization-coefficient optimization.

Index Terms— Gaussian curvature, regularization, con-
vex model, variational form, image processing

1. INTRODUCTION

Reconstructing a signal from discrete samples, such as image
pixels or a point cloud, is a fundamental task. However, since
both the topology and the metric on the samples are miss-
ing, it is not clear what the true signal should be, especially
in regions devoid of samples. Conceptually, there are two
approaches to recovering the signal: interpolation (find miss-
ing data) and model fitting (reduce error). Both approaches
require predefined basis functions that ideally reflect geomet-
ric properties of the signal, such as connectivity, smoothness,
sparsity, or curvature. These implicitly assumed properties
constitute the prior knowledge about the signal. Their imposi-
tion may render the reconstruction problem well-posed. Fre-
quently used priors include sparsity in the spatial and/or fre-
quency domain, total variation (TV), mean curvature (MC) [1,
2, 3], and Gaussian curvature (GC) [4, 5, 2, 6, 7].

Variational methods have been successfully used in image
restoration [8, 9, 10, 2, 11], segmentation [12, 13], and in-
painting [14]. Here, we show how to impose weighted Gaus-
sian curvature (WGC) priors in a variational framework.

1.1. Variational Framework

Let S = {s;(Z) : ¢ = 1... N} be the samples with spatial
positions & = (x,y)?. We aim at recovering an image U (%)
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such that

min E(U) :/ @1(U,S)da_c'+)\/ Dy (U)dZ. (1)
UeFs TeQ TeQ

®, is a data-fitting (loss) functional between the recovered
image U and samples S. @5 is a regularization functional on
U. The parameter ) is a scalar regularization coefficient. € is
the image domain, and Fj is a suitable function space for U.

Frequently, ®; is a distance metric, such as the Euclidean
distance, Mahalanobis distance, Hausdorff distance, or L,
distance. The choice of distance metric depends on how the
data were obtained, the noise distribution and magnitude, the
targeted reconstruction error, and the desired computational
efficiency. Common choices are the Lo distance to filter
Gaussian noise or the L distance to filter outliers.

@4 has to be designed with several goals in mind: 1) it
should be efficient to compute; 2) it should have a mathe-
matical meaning; 3) it should generate satisfactory results;
4) it should be easily adopted into different models. Even
though there are many well-known regularization terms, such
as Tikhonov, the ¢5 norm of the gradient, TV, MC, total cur-
vature (TC) [13], etc., none of them fulfills all of these char-
acteristics. We show that WGC regularization has all of the
above features.

Recently, curvature regularization has been adopted in
variational frameworks for various image-processing prob-
lems, including inpainting [14], smoothing [15, 13], and
segmentation [13, 16].

1.2. Gaussian Curvature

Let U = (Z, U(Z)) be the image surface. We then have the
first and second fundamental form:

(102, UL,
F—( U, 1+ U2 > @
D:(‘Ilw"j’ ‘%.'wy"j>, 3)
Wyw -1, Wyy -1

where subscripts denote differentiation with respect to the
corresponding variable. The normal vector is given by 1 =
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. Gaussian curvature (GC) is defined as:

Cu@) = det(F) — (1+U2+U2)?"

From the right-hand side of Eq. 4, we have:
G(U(D)) = (UsaUyy —Uz,)/(142|VU[3+[VU3) , (5)

zy

which means that U, Uy, — Ufy is a good approximation to
G when ||[VU ||% is small. This inspires our construction of an
area-weighted Gaussian curvature regularizer for variational
problems.

Previously, GC has been used in several diffusion-based
models [4, 2, 6, 7], which are generally based on the geomet-
ric flow [4]

0
iU = V- (6(@)vU) ©®)
with initial condition Uy = S and proper boundary con-

ditions. The function ¢ is monotonic. This anisotropic
diffusion process is similar to the Perona-Malik model [17].
Edge-indicator weights can be used to preserve edges during
flow evolution [7]. A comparison of MC, GC, and TV has
been done in Refs. [6, 2]. The model we present here is not
diffusion-based.

1.3. Motivation and Contributions

GC is an intrinsic property of the surface and is indepen-
dent of how the surface is embedded in external coordi-
nates. Moreover, surfaces with zero GC can be isometrically
mapped onto a plane without distortion. Minimizing GC can
hence be seen as making the image surface As Planar As
Possible (APAP). The Ricci flow drives the surface toward
constant GC by evolving its Riemann metric [18].

Total GC, however, is related to the surface’s topology
through the Gauss-Bonnet theorem:

Theorem 1 [; G d¥ + [, Gy db = 27y (¥) |

where Gy, is the boundary curvature, dba length element, and
x the Euler characteristic of . Because of this dependence,
we minimize WGC instead of total GC.

A second reason is that the WGC model is more general,
since different weight functions can be adopted. The resulting
model is convex over a wide range of weight functions.

The Euler-Lagrange equation relates the variational frame-
work (Eq. 1) to diffusion models (Eq. 6). For diffusion flows,
however, a CFL stability condition has to be satisfied at ev-
ery iteration, limiting computational performance especially
for large images or videos. Convex models can be solved
without any CFL limit using solvers such as Primal/Dual
methods [19] or split-Bregman methods [20].

Our contributions here are:
1) We propose a new variational model with WGC regular-
ization that is not based on anisotropic diffusion.
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2) We prove that our model is convex for a wide range weight
functions and present a closed-form solution for an area-
weight function.

3) We provide a theoretical bound for the regularization coef-
ficient and analyze a low-rank approximation to our model.
4) We derive an orthogonal basis that enables multi-resolution
analysis for images of the same size.

5) We demonstrate several applications of WGC priors in
image denoising, sharpening, and cartoon/texture decompo-
sition.

2. WEIGHTED GAUSSIAN CURVATURE

We take @1 = (U — 5)? and ®, = G(U)0(Z), where ()
is a weight function. We further take F to be the ¢? space.
Then, our model is defined as:

min E(U):[ Q}(U—S)Qder/\[ij(U)Hd\f!. @
S

Uel?

2.1. Closed-Form Solution for Area Weights

In principle, the weight function 6 can be chosen arbitrar-
ily. Motivated by Eq. 4, we choose 0(%) = (1 + U2 +
sz)% which is related to the surface area element dV =
dzy/1+ U2+ U?. The resulting WGC hence becomes an

area-weighted GC. This weight is also the determinant of the
Hessian matrix, which is commonly used for point or line de-
tection, and is also related to tensor diffusion. We hence have:

G(U)O(2)dT = det(D) det(F)dz
=(UysUyy — UZ,)dT.

zy

®)
The resulting energy functional is:

EU) :/ 1(U—S)Qdfﬂ/(UmUyy—Ugfy)df. 9)
Q2 Q

It can be rewritten in discrete form as:

»»

E(U)==(U-89TU0-8)+\XUTWU, (10

DN =

where U and S are discrete forms of U and S, respectively.
w =A% A, —AfyAzy, where A.. is the matrix of central-
difference approximations to the second derivatives with re-
spect to the subscript variables.

This model has a closed-form solution, which is not pos-
sible for diffusion-based models [4, 2, 6, 7]:

B
oU

E(U)=(U—-8)+AWyU =0 (11)

= I+ \W)U=25, (12)
where Wy = wT +w.



2.1.1. Computational Efficiency

It is worth noting that M = I 4+ AW is independent of U,
which means that the entire matrix can be pre-computed and
reused for images of the same size, as in a video sequence.
Moreover, W is a very sparse matrix, which renders solving
the above equation efficient. Table 1 compares the runtime of
our model with that of a TV model [8]. This efficiency also
allows optimizing the regularization parameter A\ using line
search.

Image Size 64 x 64 128 x 128 256 x 256

Our Model  0.02496 0.1314 0.5963
TV! 2.187 2.354 6.041
TV? 0.9409 2.892 5.983

Table 1. Runtime in seconds on a 2 GHz Intel Core i7 using
Matlab R2012b.

2.1.2. Convexity and Bound for A

We provide a proof that W is positive-semidefinite (PSD),
implying that our model is convex, if A is bounded. Let

0 1 0 0

0 0 1 0
P=

0o ... ... 1

1 0 0 0

be a circulant square matrix of size mn x mn (m x n are the
image dimensions). It is then clear that P™" = I and A, =
—2I + P+ P". Similarly, A,, = —2I + P™ + P~ and
Ay = %(Pm+1 + P~ pmml_ pmFh) Therefore,
W is PSD with spectral radius p(W') < 16. This implies that

M is PSDif A > —W.

2.1.3. Multi-Scale Analysis and Low-Rank Approximation

The eigenvectors v; of W provide a complete orthogonal ba-
sis for all images of size m x n. The resulting basis is reminis-
cent of certain wavelet filters. Some example basis functions
are shown in Fig. 1. They also provide a novel way to solve
Eq. 12 in the sense of a low-rank approximation.
Let Wuv; = ~v,1 = 1,...,(mn), where v; are the
mn
corresponding eigenvalues. Then, S = > Biv; and U=
i=1

Bi

o, We solve this

mn
>~ a;v;. Due to orthogonality, «; =
i=1
linear system for ¢ < K, where K is a pre-defined rank-

approximation order.

Lena image, € = 1, max iteration=80
2cameraman image, € = 1, max iteration=80
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(h) vag

(g) v2a

(e) vie

Fig. 1. Some example basis functions v;.

2.2. General Weights with Edge Preservation

In the general case when 0(Z) = w(||[V¥||), Eq. 7 can be
rewritten in discrete form as:

1

2

E(U)=-(U-9TU -8+ XUTWW,_U), (13)

where W, is a diagonal matrix corresponding to the weight
function w. More specifically, W, (i,i) = —w(IVelD)
(1+UZ+U7)2

Then:

iE(U) ~ (U —8)+ A\W,W, U =0

14
o0 (14)

— [+ \W, W)U =8§. (15)

This model has no closed-form solution. However, it can
be efficiently solved using the split weighted Gaussian curva-
ture (SWGC) algorithm given below.

Algorithm 1 SWGC: Split Weighted Gaussian Curvature
Require: §, A . R R

1: compute Wg,AWw(S)A, setUg=S5,k=0

2: while max{|Uk+1 — Uk‘} < tol do

3:  compute Wa(uv\in)

4:  compute Uy, from Eq. 15
5 k=k+1
6: end while

Ensure: U

2.2.1. Convexity and Bound for \

W, is PSD for a wide range of functions w. Therefore,
WW,, is PSD and ) is bounded as A > ,m. It is
straightforward to get a bound for w. For example, when w is
the identity function, p(W,,) < 1.
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(a) original image

(e) original image (f) A = —0.01 (h) A =—-0.03

(g) A= —0.02

Fig. 2. Image smoothing (top row) and sharpening (bottom
row) using area-weighted GC for different .

—— original
——our resultA= 0.1
~———our resultA=1

——our resultA= 10

Fig. 3. A line profile from Fig. 2 for image smoothing.

3. APPLICATIONS

We demonstrate the application of WGC in image smoothing,
sharpening, cartoon/texture decomposition, image denoising,
and regularization-coefficient optimization.

3.1. Image Smoothing and Sharpening

Figure 2 shows the results of image smoothing and sharp-
ening using our WGC model with the area-weight function
and with different parameters (sharpening with negative A >
- W). A line profile is compared with TV? in Fig. 3.

In Fig. 4, image smoothing is shown with edge-preserving
weights (w is the identity function); a detail patch is shown in
the row below. In practice, three to four iterations of SWGC
are enough.

3.2. Cartoon/Texture Decomposition and Denoising

We compare the area-weighted GC model with TV regular-
ization for cartoon/texture decomposition and image denois-
ing. The result is shown in Fig. 5 for e = 1.5 in TV and
A =301in WGC.

For denoising, the image is corrupted with additive Gaus-
sian noise of magnitude ¢ = 10. Denoising results by TV?
and WGC (area weight) with A = 0.48 are shown in Fig. 5.
The final mean-square errors for TV and WGC are 70.77 and
56.54, respectively.

3TV uses € = 1 and max iteration = 80
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() A =10

Fig. 4. Image smoothing with edge-preserving weights (w is
the identity function).

(e) texture WGC  (f) noisy image (g) denoise by TV (h) denoise WGC

Fig. 5. Cartoon/texture decomposition and denoising.

3.3. Regularization-Coefficient Optimization

To the best of our knowledge, searching for the optimal regu-
larization coefficient A is hard in general. The computational
efficiency of our model, however, allows the use of line search
to optimize the regularization coefficient in Eq. 7 by solving
Eq. 12. We did this for the image denoising experiment above.

4. CONCLUSION AND FURTHER WORK

We have presented weighted Gaussian curvature regulariza-
tion in a variational framework. The resulting model is con-
vex over a wide range of weight functions and has a closed-
form solution for the special case of area weights. We have
shown a bound on A and presented an efficient algorithm to
numerically solve the model when no closed-form solution
is available. We have demonstrated the proposed model in
several applications ranging from image smoothing to sharp-
ening, denoising, and cartoon/texture decomposition.

Weighted Gaussian curvature can be further extended to
3D images and to point-cloud surfaces [21].
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