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Abstract. We propose to use gradient distribution specification for image en-
hancement. The specified gradient distribution is learned from natural-scene im-
age datasets. This enhances image quality based on two facts: First, the specified
distribution is independent of image content. Second, the distance between the
learned distribution and the empirical distribution of a given image correlates
with subjectively perceived image quality. Based on those two facts, remapping
an image such that the distribution of its gradients (and therefore also Laplacians)
matches the specified distribution is expected to improve the quality of that im-
age. We call this process “image naturalization”. Our experiments confirm that
naturalized images are more appealing to visual perception. Moreover, “natural-
ness” can be used as a measure of image quality when ground-truth is unknown.

1 Introduction

Image enhancement plays a fundamental role in image processing. The usual means
for image enhancement is histogram equalization or one of its variants. However, the
intensity histogram greatly varies with image contents, so that there is no simple math-
ematical model for it. In the absence of such a model, histogram equalization assumes
a uniform prior distribution. This assumption is not usually valid, causing histogram
equalization to fail in many cases.

This problem is circumvented when replacing the intensity histogram with the gra-
dient histogram, which is remarkably invariant across natural-scene images [1–3]. This
fact has previously been exploited for image denoising [1], motion deblurring [2, 3], and
image restoration [4]. In this paper, we propose to use gradient distribution specification
for image enhancement in a novel process we call “image naturalization”.

The concept of image naturalization is illustrated in Fig. 1. Given a learned prior
distribution, the quality of images can be improved by gradient remapping such that the
new gradient and Laplace fields satisfy the prior. The result image can be reconstructed
by solving a single Poisson equation.

1.1 First-Order Prior

It is well known that the gradient distributions of natural-scenes image have a heavy tail
in log-scale [2–4]. Traditionally, such gradient distributions are modeled as generalized
Laplace distributions:

log(p(x)) = −k‖x‖α + β, (1)
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Fig. 1: Illustration of image naturalization.

where k, α, and β are parameters, x is the gradient, and p is the gradient probability dis-
tribution. This model includes several frequently used priors, including total variation
(TV) (α = 1) [5] and Hyper-Laplacian (α = 0.6) [3].

This model, however, has several drawbacks. First, as shown in this paper, this
model does not fit the data well. Second, all previous works treat k, α, and β as in-
dependent variables, violating the normalization of the distribution (

∫ +∞
−∞ pdx 6= 1).

Third, the generalized Laplace model is computational expensive to evaluate. Here, we
present a new model that overcomes all of these issues.

1.2 Second-Order Prior

In addition to first-order (i.e., gradient) statistics, second-order statistics such as mean
curvature (MC) [6] and Gaussian curvature (GC) [7, 8] can also be imposed as priors.
Different orders of priors can be combined, e.g., in Fields of Experts models [9].

However, higher-order statistics may not be necessary in all cases. In Fig. 2, the
correlation between I(x) and I(x+ r) is shown for different orders d of derivatives:

Corr(d, r) := correlation(∇dI(x),∇dI(x+ r)) , (2)
where r = (r, 0). The correlation reduces significantly for larger d. This explains why
first- and second-order priors are so powerful for image processing, but higher-order
derivatives do not necessarily improve the result. One reason is that the discrete image
may not be higher-order differentiable. For image-processing tasks, second order has
repeatedly been shown to be enough [8]. Therefore, we only consider derivatives up to
the order of two.

Among all second order operators, the Laplace operator is the most attractive one
since it leads to a Poisson equation, as does the gradient prior. Therefore, both priors
can be imposed simultaneously by solving a single Poisson equation, for which efficient
solvers are readily available.

1.3 Equivalence between Gradient Field and Original Image

The gradient field of an image is equivalent to the original image plus a single point
constraint. The original image can hence be exactly reconstructed from its gradient
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Fig. 2: Corr(d, r) rapidly reduces for higher-order derivatives.

field [10–12]. An excellent review about signal processing in the gradient domain can
be found in Ref. [11]. Some recent works in this area are described in Refs. [13, 14].
More details are given here in Section 4.2.

1.4 Our Contributions

? We provide here new parametric models for the gradient and Laplace distributions
of images. Instead of modeling the probability density functions (PDF) in log-scale,
we model the cumulative distribution functions (CDF). We show that the resulting
models are more accurate and computationally more efficient than previous models.

? We show that the distance between the gradient/Laplace distributions of a given im-
age and the learned prior distributions is correlated with image quality. Therefore,
imposing these priors is expected to improve image quality.

? We provide an algorithm for image enhancement by gradient/Laplace distribution
specification through a remapping function. A nonlinear remapping function can
be approximated by a linear function, which has only one scalar variable.

? The proposed image enhancement process is parameter-free, which avoids manual
parameter tuning.

? First- and second-order priors are imposed simultaneously by solving a single Pois-
son equation.

? We provide a simple scalar number that measures how close the gradient distribu-
tion of an image is to the prior. This number can be used to evaluate image quality
in cases where ground-truth is unknown.

2 The Naturalization Prior

The naturalization prior proposed here is a linear combination of a gradient distribu-
tion prior and the consistent Laplace operator prior, i.e., the one corresponding to the
divergence of the gradient. We learn these priors from a large dataset of natural-scene
images. We then study the variability of the data around the priors. We provide novel
parametric models for both priors and an efficient algorithm for imposing them on any
given image. Finally, we define an “image naturalness factor” based on our models.

We use seven datasets of natural-scene images as shown in Table 1. Each image
I(x, y) was converted to 8-bit gray-scale. The gradient field G is defined as

G(x, y) = (∇xI(x, y),∇yI(x, y)), (3)
where we use the first-order finite-difference approximations: ∇xI = I(x + 1, y) −
I(x, y) and ∇yI = I(x, y + 1) − I(x, y). We use homogeneous Dirichlet boundary
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Table 1: Natural-scene image datasets: sources and sizes.

Dataset 1a 2b 3c 4d 5e 6f 7g Total
#images 1005 1000 5063 832 1491 6033 8189 23613

conditions at the image borders. Due to the use of 8-bit gray-scale images, possible
gradients are in the integer domain [−255, 255] × [−255, 255], where we can easily
construct the two-dimensional histogram of G. We use Gx and Gy to denote the re-
spective components of G.

The Laplace field L is defined as
L(x, y) = ∆I(x, y), (4)

where ∆ is the Laplace operator, which is discretized using the second-order 5-point
finite-difference stencil. Possible values are in the integer domain [−1020, 1020].

In order to turn the histograms into probability distributions, we divide all bins by
the total number of pixels mn in the image where m and n are the numbers of pixels
along the x and y axes of the image. After aggregating data from all images in the
dataset, we further normalize the histogram by the total number of images in the dataset.
This yields the average distributions ppr1 and ppr2 of the gradient and Laplace operators.
For color images, the priors are learned and applied separately for each color channel,
performing all operations channel-wise.

2.1 Variability

We analyze how closely the natural-scene images in the training dataset match the av-
erage gradient and Laplace priors learned from them. The first row of Fig. 3 show his-
tograms of the Root Mean Square (RMS) distances (left), Hellinger distance (middle),
and Kullback Leibler divergence (right) between each image’s individual distribution
and the prior. The second row of Fig. 3 shows the RMS distribution for the Laplace
operator for grayscale (left) and color (right) images, respectively.

2.2 Gradient Distribution Models

Considering Gx and Gy individually, both satisfy the heavy-tail characteristic in log-
scale, which can be modeled as a hyper-Laplacian distribution [3]. Those traditional
one-dimensional models fit p(Gx) in log-scale, which is why

∫ +∞
−∞ p(Gx)dGx = 1

a http://www.vision.ee.ethz.ch/showroom/zubud/
b http://see.xidian.edu.cn/faculty/wsdong/Data/Flickr Images.rar
c http://www.robots.ox.ac.uk/˜vgg/data/oxbuildings/
d http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/
e http://lear.inrialpes.fr/ jegou/data.php
f http://www.vision.caltech.edu/visipedia/CUB-200.html
g http://www.robots.ox.ac.uk/ vgg/data/flowers/102/index.html
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Fig. 3: Histograms of different distances between the priors and the gradient (top row)
and Laplace (bottom row) distributions of individual training images.

cannot be guaranteed. Unlike previous works, we hence propose to do the modeling on
the CDF instead.

The CDF of the gradient is defined as:

C(G) =

∫ Gx

−255

∫ Gy

−255
P ((u, v)) dudv . (5)

Observing the step property of C(G), we propose to approximate the CDF with the
parametric model:

C̃(G) =

(
atan(T1G

x)

π
+

1

2

)(
atan(T1G

y)

π
+

1

2

)
. (6)

The choice of the atan function is motivated by the Student-T distribution or Cauchy
distribution. This model has only one parameter to be fitted: T1. The fitting results are
shown in Table 2.

Table 2: Fits of the parametric 2D CDF model to the image datasets.
Image set 1 2 3 4 5 6 7 all

T1 0.37 0.26 0.38 0.35 0.56 0.37 0.7 0.46
SSE 20.71 23.11 19.08 23.7 22.94 19.64 22.97 18.75

R-square 0.9995 0.9995 0.9996 0.9995 0.9995 0.9996 0.9995 0.9996

The corresponding marginal model for the distribution of Gx (analogously Gy) is:

log(P (Gx)) = log

(
T1
π

)
− log

(
1 + (T1G

x)2
)
. (7)
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Fig. 4: Comparison of models in log scale, linear scale, and CDF.

Table 3: Comparison of our model (Eq. 7, top row) with generalized Laplace models
(Eq. 1) for α = 0.6, 1, 2 (rows two to four).

Image set 1 2 3 4 5 6 7
SSE 40.5 43.0 67.7 23.8 34.1 37.9 25.4
R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99
SSE 576 301 537 45.4 389 70.5 250
R2 0.92 0.93 0.91 0.98 0.96 0.98 0.97

SSE×10−3 1.86 3.01 3.02 3.95 2.34 3.90 3.95
R2 0.74 0.30 0.52 0.13 0.81 0.10 0.57

SSE×10−4 0.83 1.02 1.10 1.24 1.32 1.23 1.64
R2 -0.12 -1.3 -0.72 -2.6 -0.046 -2.5 -0.75

We compare our model with other models in Fig. 4 and Table 3 using the optimal
parameters for each model. In all cases, the present model describes the data best.

In Fig. 5, different images and their corresponding CDFs are shown. For the blurred
image (Gaussian blur, σ = 3), the frequency of small gradients is increased. For the
noisy image (10% Gaussian noise), the frequency of large gradients is increased. For
the super-resolution (SR) image (upsampling factor 9), the frequency of small gradients
is increased. For the bilateral filter (w = 5, σs = 3, σc = 0.1) and the guided filter
(r = 10, ε = 0.01), the frequency of small gradients is increased.

2.3 Laplace Distribution Models

Also for the distribution of the Laplace operator response, we use the CDF to model the
statistics:

L(t) =

∫ t

−∞
p(∆I(x))d∆I(x) . (8)

For the Laplace CDF, we propose the parametric model:

L̃(t) =
atan(T2t)

π
+

1

2
, (9)

where T2 is the only free parameter. The Laplace CDFs for different images are shown
in Fig. 5. The figure also shows that the steps in the CDF indicate edge preservation in
the spatial domain.
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Fig. 5: Row 1: images; Row 2: their gradient CDFs; Row 3: their Laplace CDFs

We test the present parametric model by adding Gaussian noise with σ = [0.02 :

0.02 : 0.8] to the Lena image and computing the difference L̃− L. The result is shown
in Fig. 6. Even the maximum difference is small compared to the absolute value of L.
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Fig. 6: Left: L, middle: L̃, right: L̃− L. The noise level σ is indicated by color.

2.4 Naturalness Factor and Image Naturalization

For a given image, it is easy to fit T1 and T2 using the above parametric distribution
models. The corresponding values for the priors learned from the natural-scene dataset
are: T pr

1 = 0.38 and T pr
2 = 0.14. Comparing the values of an image to these expected

ones from natural-scene images tells how close the image is to a natural-scene one.

For any image I , the naturalness factor Nf is defined as

Nf = (1− θ) T1
T pr
1

+ θ
T2
T pr
2

, (10)

where θ ∈ [0, 1] is a weight parameter. The naturalness factor N c
f of a color image

is defined separately for each color channel c. The naturalized image In is generated
from I such that Ti ≈ T pr

i (i ∈ {1, 2}). This process is called image naturalization.
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In our C++ implementation, we use the ternary search algorithm to find T1 and T2.
On a 2011 MacBook Pro, this code achieves 290 Mpixel/second for 8-bit three-channel
color images. We provide a Matlab implementation in the supplementary material. Im-
plementations in Matlab, C++, and Java will be publicly available from the MOSAIC
Group web site mosaic.mpi-cbg.de after the conference.

3 Correlation with Image Quality

We show that the naturalization prior is correlated with subjectively perceived image
quality. Therefore, image naturalization is expected to improve image quality. We test
both the non-parametric priors and the above parametric models on the standard image
quality assessment dataset LIVE [15], containing 779 images with five different types
of distortions (degradations). The subjective image quality score (DMOS, difference
mean opinion score) for each image is provided by LIVE. Our objective score is the
average Hellinger distance (HD) between the ground truth image and distorted image,
defined as:

score =
1

2
HD(p(∇Itrue), p(∇Idistort)) + 1

2
HD(p(∆Itrue), p(∆Idistort)). (11)

We also define a score from the naturalization factor Nf . We compute Nf for both
the ground-truth image and the distorted image and use the absolute differenc as an
objective quality score:

scoreNf
= |N true

f −Ndistort
f | . (12)

In the case where ground truth is unknown or unavailable, the score is defined with
respect to the naturalization prior:

scorepr =
1

2
HD(ppr1 , p(∇Idistort)) +

1

2
HD(ppr2 , p(∆I

distort)). (13)

Table 4: Pearson, Spearman, and Kendall correlation coefficients between DMOS and
the different image quality measures on the LIVE benchmark dataset.

PSNR SSIM FSIM SFF score Nf (θ=0) Nf (θ=1) scorepr
PCC -0.8585 -0.8252 -0.8586 -0.8126 0.8687 0.6692 0.5199 0.761
SCC -0.8756 -0.9104 -0.9634 -0.9649 0.8630 0.7118 0.5817 0.706
KCC -0.6865 -0.7311 -0.8337 -0.8365 0.6745 0.5123 0.4134 0.522

The correlations between DMOS and all of these scores are shown in Fig. 7 and
Table 4. Correlations are reported as Pearson linear correlation coefficients (PCC),
Spearman rank-order correlation coefficients (SCC), and Kendall rank-order correla-
tion coefficients (KCC). We use the HD in our score because it outperforms all other
tested distances (L2, L1, cos, χ2) for these correlation coefficients. We compare the
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Fig. 7: Correlation of different objective image quality measures with subjectively per-
ceived image quality (DMOS) on the LIVE benchmark dataset. First row: PSNR, SSIM,
FSIM, SFF; second row: score, scoreNf

for θ = 0 and 1, scorepr.

present score with the state-of-the-art image quality assessment methods SSIM [15],
FSIM [16], and SFF [17]. Among all approaches, our nonparametric method shows the
best linearity between score and DMOS, which is preferable for image enhancement
tasks. Our result is comparable with PSNR, but does not require knowing the noise level
in the image, or any other geometric information about the ground truth.

Taken together, these results confirm that imposing the gradient and Laplace distri-
bution priors is expected to improve image quality, therefore making then good candi-
dates for image enhancement priors.

4 Image Naturalization Algorithm

The image naturalization process consists in remapping the gradient field of the im-
age to satisfy the prior distributions, followed by reconstructing the naturalized output
image from the remapped field.
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Fig. 8: Two example images and their nonlinear Map functions (color indicates the
different color channels).
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Fig. 9: Comparison of different types of remapping. The reconstruction errors (RMS)
are 2.0, 33, and 23, respectively. The corresponding gradient distributions after remap-
ping are shown in comparison with the naturalization prior next to the image.

4.1 Gradient Distribution Specification

LetMap be a function that maps the gradient field G to a new gradient field Gn, which
satisfies the naturalization prior:

Gn =Map(G), s.t. p(Gn) = ppr1 , p(∇ ·Gn) = ppr2 . (14)
In general, Map can be non-parametric and nonlinear. More specifically, we use here
modified exact histogram specification [18] as the Map function. Two example images
and their nonlinear non-parametric Map functions are shown in Fig. 8.

4.2 Image Reconstruction

We reconstruct the naturalized image In from the remapped gradient field by solving
the variational model:

min

{∫
x∈Ω
‖∇In −Gn‖22 dx

}
, (15)

which leads to the Poisson equation
∆In = ∇ ·Gn . (16)

This equation can be solved efficiently by FFT-based algorithms or wavelet solvers. A
short summary of commonly available Poisson solvers is shown in Table 5.

Reconstructing an image from its gradient field is accurate and computationally ef-
ficient. An example is shown in Fig. 9. The original image (Fig. 9a) is an 8-bit grayscale

h dense Cholesky decomposition
i sparse Cholesky decomposition
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Table 5: Summary of Poisson solvers (we implemented FFT and wavelet solvers).
Solver Choleskyh Jacobi Gauss-Seidel SOR
Type direct iterative iterative iterative

(mn)3 (mn)2 (mn)2 (mn)3/2

Solver Choleskyi FFT Multigrid Wavelet
Type direct direct iterative direct

(mn)3/2 (mn)log(mn) (mn) (mn)

image. The absolute pixel-wise RMS of the reconstruction without remapping (Fig. 9b)
is 2.0 while the average intensity value is 105. The size of the image is 1881 × 2400
pixels and the reconstruction took 3.5 seconds using our MATLAB implementation of
the wavelet Poisson solver on a 2 GHz Intel i7 processor. The naturalized image after
nonlinear remapping is shown in Fig. 9c.

(a) original (b) nonlinear map (c) linear map (d) HE (e) CLAHE

(f) Retinex (t=4) (g) Retinex (t=5) (h) Retinex (t=6) (i) Retinex (t=8) (j) Retinex (t=10)

(k) original (l) AM [19] (m) DT [20] (n) GF [21]

(o) L0 [22] (p) RTV [23] (q) WLS [14] (r) Naturalization

Fig. 10: Comparison of image enhancement methods: nonlinear and linear naturaliza-
tion, HE (Histogram Equalization), CLAHE (Contrast Limited Adaptive Histogram
Equalization), Retinex (for different parameters), AM (Adaptive Manifold), DT (Do-
main Transform), GF (Guided Filter), L0 norm, RTV (Relative Total Variation), WLS
(Weighted Least Square), and Naturalization.
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4.3 Linear Approximation of Map

Our one-parameter model results in a linear approximation of the remapping function
Map:

Gn = NfG , (17)

which is equivalent to scaling the original image:

In = NfI . (18)

Simply scaling the image with Nf significantly accelerates the naturalization process
while still avoiding halo artifacts in the result. An example of a naturalized image after
linear remapping is shown in Fig. 9d.

Fig. 11: Comparison of images (left column) enhanced with AM (column 2), GF (col-
umn 3), RTV (column 4), and naturalization (θ = 0.5, column 5).
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(0.88, 0.99, 1.25)
(1.22, 1.32, 1.44)

(0.51, 0.64, 0.80)
(0.45, 0.53, 0.66)

(0.58, 0.69, 0.96)
(0.57, 0.63, 0.82)

(0.74, 0.90, 1.24)
(0.63, 0.74, 1.11)

(1.45, 1.45, 1.42)
(2.02, 2.05, 1.91)

(0.88, 0.91, 0.87)
(0.87, 0.89, 0.83)

(0.91, 0.91, 0.90)
(0.87, 0.87, 0.85)

(1.40, 1.41, 1.41)
(1.64, 1.64, 1.60)

(1.29, 1.34, 1.32)
(1.32, 1.37, 1.31)

(1.31, 1.37, 1.35)
(1.41, 1.47, 1.41)

(0.80, 0.81, 0.73)
(1.01, 1.01, 0.92)

(0.96, 0.98, 0.87)
(1.23, 1.25, 1.12)

(1.66, 1.70, 1.69)
(2.88, 2.95, 2.68)

(1.41, 1.44, 1.49)
(1.82, 1.85, 1.82)

(1.85, 1.93, 2.12)
(2.29, 2.50, 2.89)

(1.58, 1.67, 1.62)
(1.85, 1.92, 1.72)

(1.01, 0.90, 0.99)
(1.12, 1.06, 1.10)

(1.06, 1.06, 1.03)
(1.00, 1.01, 0.99)

(1.12, 1.15, 1.21)
(1.22, 1.25, 1.25)

(1.63, 1.68, 1.54)
(2.91, 3.16, 2.64)

(1.18, 1.18, 1.21), (1.44, 1.44, 1.44)

Fig. 12: Objective evaluation of image-processing results:Nf for each color channel (in
RGB order). Better-quality results show values closer to 1.



14 Y. Gong and I. F. Sbalzarini

5 Experiments

In the past decades, image smoothing and sharpening have received a lot of attention.
However, there is to date no objective measure to decide if an image should be smoothed
or sharpened. Nf can be used to automatically determine whether an image should be
smoothed or sharpened. It is clear from Eq. 17 that an image gets smoothed for Nf < 1
and sharpened for Nf > 1. Two examples are shown in Fig. 10 and compared with
other methods using their respective default parameters. More results and comparisons
are shown in Fig. 11.

5.1 Objective Image Quality Evaluation

In addition to image naturalization, the prior can be used for objective evaluation of
results from various algorithms, such as deblurring, image editing, image synthesis,
etc. Significant progress has recently been made in image deblurring, High Dynamic
Range (HDR) compression, Poisson image editing, etc. In all these applications, the
ground truth is unknown. The naturalness factor can provide an objective evaluation
of the results. To the best of our knowledge, this is the first proposal of an objective
measure to evaluate such processing results.

In Fig. 12, the first two rows show deblurring results (original, [24], [25], [26]);
the third row considers object adding and removing by Poisson editing (original, add,
original, remove); the fourth row shows HDR results ([27]); the fifth row scene render-
ing results (realistic image synthesis); the sixth row gives an evaluation of a panorama-
stitched image. It is obvious that visually pleasing results satisfy the naturalization prior
better.

6 Conclusion

We have presented novel parametric models for the gradient and Laplace distributions
of natural-scene images. We have shown that the models are more accurate than previ-
ous models and are easy to compute. We have further shown that prior models learned
from natural-scene images are correlated with image quality. Therefore, remapping an
image to satisfy the learned gradient prior yields a quality-improved image. We call
this novel image enhancement method “image naturalization”. The remapping function
has a linear approximation, which further simplifies the algorithm. The corresponding
linear factor is called the “naturalness factor” and can be used to evaluate the quality of
image-processing result when ground truth is unavailable.
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