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A Natural-Scene Gradient Distribution Prior and its
Application in Light-Microscopy Image Processing
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Abstract—Signal processing in light-microscopy and cell
imaging is concerned with reconstructing latent ground truth
from imperfect images. This typically requires assuming prior
knowledge about the latent ground truth. While this assumption
regularizes the problem to an extent where it can be solved, it
also biases the result toward the expected. It thus often remains
unclear what prior to use for a given practical problem. We argue
here that the gradient distribution of natural-scene images may
provide a versatile and well-founded prior for light-microscopy
images that does not impose assumptions about the geometry of
the ground-truth signal, but only about its gradient spectrum. We
provide motivation for this choice from different points of view,
and we illustrate the resulting regularizer for use on light-mi-
croscopy images. We provide a simple parametric model for the
resulting prior, leading to efficiently solvable variational problems.
We demonstrate the use of these models and solvers in a variety
of common image-processing tasks, including contrast enhance-
ment, noise-level estimation, denoising, blind deconvolution, and
dehazing. We conclude by discussing the limitations and possible
interpretations of the prior.
Index Terms—Deconvolution, dehazing, denoising, gradient dis-

tribution, naturalization, noise-level estimation, parametric prior,
variational method.

I. INTRODUCTION

V IRTUALLY all light-microscopy modalities rely on
signal processing and computational image analysis.

Image enhancement, including deconvolution and denoising, is
often a necessary first step in an analysis pipeline, preceding
higher-level analyses like image segmentation [1] and motion
tracking [2]. These image-enhancement tasks are often generic
to a wide range of applications and imaging modalities. They
are, however, inverse problems, as one attempts to reconstruct
a latent “perfect image” (i.e., ground truth) from the given
imperfect (noisy, blurry, hazy, etc.) observation.
Inverse problems are almost always ill-posed or ill-condi-

tioned, especially if the transformation between ground truth
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and observation is nonlinear or unknown. In order to be able to
solve such problems, additional knowledge about the unknown
ground truth has to be assumed.
Conceptually, there are two approaches to including addi-

tional knowledge: interpolation (smoothing or filtering) and
model fitting (Bayesian inference). In the former approach, the
additionally assumed prior knowledge is encoded in the choice
of the interpolation basis, or in the filter kernels used. These
choices typically impose certain geometric properties of the
perfect image, such as connectivity, smoothness, sparsity, or
curvature. In the Bayesian approach, one attempts to recon-
struct a latent image such that it resembles as much as possible
the observed image when run though the imaging (blurring,
noise, etc.) transformation. Bayesian inference requires prior
knowledge in the form of a prior probability distribution that
sufficiently constrains the reconstruction problem to render it
well-posed. Frequently used priors in light-microscopy image
processing include sparsity in the spatial and/or frequency
domain [3], total variation (TV) [4]–[6], mean curvature (MC)
[7]–[9], Gaussian curvature (GC) [8], [10]–[12], and hybrid
priors [13], [14].
While prior knowledge can regularize the inverse problem to

an extent where it can be solved, it also biases the result toward
the expected. Inappropriate priors may obscure features in the
image, or lead to reconstruction artifacts like fringes or ringing.
Choosing the “right” prior, however, is as hard as solving
the original problem, since the latent ground-truth image is
unknown. The main drawback of frequently used priors is that
they are not adaptive to the image contents, and often entirely
unrelated to it. They merely postulate geometric properties of
the latent image. The popular TV prior [4]–[6], for example,
presupposes that the latent image be a collection of uniformly
bright regions, i.e., to be piece-wise constant. Imposing this
prior leads to removal of image detail and processing artifacts
if this presumption is not justified.
Spectral priors have been introduced in order to relax the

geometric constraints. They do not directly impose knowledge
about a property of the latent image, but only about the his-
togram (or distribution, i.e., the spectrum) of that property. As
such, they are weaker priors. A particularly popular spectral
prior is the Gradient Distribution Prior (GDP), which presup-
poses a certain statistical distribution of the gradients in the
image, i.e., a certain gradient histogram. It has been shown to
lead to better results than the TV prior in many image-pro-
cessing tasks [15]–[21], where the weaker regularization is suf-
ficient. This is because the GDP does not constrain the solution
to be piecewise constant in this case, but allowsmore flexible re-
constructions. A review about signal processing in the gradient
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Fig. 1. Concept of using natural-scene GDPs in light-microscopy imaging. The
prior is learned from natural-scene images, which are largely aberration-free
because the imaged objects are much larger than the wavelength of the light.
Since they obey the same physical laws as light-microscopy images, we propose
to use this prior also in that case. We hence learn the GDP from natural-scene
images and then use it on light-microscopy images. The human vision system
links the two, as it has evolved to process natural-scene images, but is also used
to look at microscopy images.

domain can be found in [22]. Some recent advances in this area
are described in [23]–[27].
Conceptually, GDPs are related to histogram equalization.

However, while the latter presupposes a uniform distribution
in the intensity domain, the former operates in the gradient
domain, and the presupposed distribution is not uniform, but
learned from examples.
Despite their flexibility and success in signal processing,

GDPs learned from natural-scene images have to the best of
our knowledge never been adopted in light-microscopy image
processing. Natural-scene images are images of nature-made
objects, such as landscapes, animals, and plants, where the
size of the imaged objects is much larger than the wavelength
of the imaging light. Large collections of natural-scene im-
ages are readily available from public sources. When taken
under good conditions, these images can be largely free of the
aberrations often found in light microscopy. Since both image
natural objects according to the same physical laws, albeit on
different length scales, we propose using GDPs learned from
high-quality natural-scene images as priors in light-microscopy
image processing. This philosophy is illustrated in Fig. 1.
We motivate this proposition from different points of view.

We further provide a parametric model for the resulting GDP
and design efficient algorithms for variational problems in-
cluding the corresponding regularizer. We illustrate the use of
the natural-scene GDP on light-microscopy images in a range
of applications, comparing with state-of-the-art methods.

A. Why not Directly Learn the GDP From Microscopy
Images?

A natural question to ask is why one should process light-mi-
croscopy images using a GDP learned from natural-scene im-
ages. This seems unintuitive at first. Why not directly learn a
GDP from light-microscopy images, maybe even of a certain
imaging modality, and then use that? The first answer is that (1)

learning the GDP from natural-scene images avoids learning un-
wanted aberrations, like diffraction blur, noise, etc., which are
present in light-microscopy images. Since removing these aber-
rations is often the aim of image processing, the prior assump-
tion about the latent ground truth must not contain their signa-
tures. Natural-scene images are near-perfect in the sense of very
high SNR, low diffraction (the imaged objects are much larger
than the wavelength of the light), and low aberrations.
Additional reasons are: (2) The ground truth of light-mi-

croscopy images is unknown. Even when using noise-robust
gradient estimation, it would remain unclear whether the
learned prior is dominated by the objects, the imaging noise, or
the gradient estimation scheme. (3) Human vision is adapted to
processing natural-scene images (Fig. 1). Therefore, learning
a GDP from natural-scene images likely improves perceived
image quality.
This is confirmed for denoising in Section VII-C. As the

results in Table VII show, using a GDP learned directly
from microscopy images gives the worst results. Using the
GDP learned from natural-scene images, however, yields
state-of-the-art performance.

B. Our Contribution

Our contribution is three-fold: (1) We test the natural-scene
GDP on light-microscopy images, illustrating its use as a de-
fault regularizer in the absence of more specific prior knowl-
edge. (2)We provide a novel parametric model for GDPs, which
includes for the first time the correlation between the and
components of the gradient. This correlation has been ig-

nored in the well-known hyper-Laplace model [20], [21]. As
we show here, the gradient components in an image are corre-
lated. Ignoring these correlations may not only lead to artifacts
in the result, but also complicates solving the resulting vari-
ational problem, frequently requiring alternating optimization
over the gradient components. (3) We provide efficient solver
algorithms for variational models containing the new parametric
model as a regularizer.

C. Organization of This Paper

Before presenting our results, we formalize the problem
in Section II and provide a motivation for our proposal in
Section III. Variability of the GDP on light-microscopy im-
ages is studied in Section IV. In Section V, we provide novel
parametric models for the GDP in one and two dimensions.
In Section VI, we demonstrate how to use the present GDP
as a regularizer in a variational framework. In Section VII,
we illustrate several applications from light-microscopy image
processing. We conclude and discuss this work in Section VIII.

II. MATHEMATICAL FRAMEWORK

We aim at computing an estimate ( is the spatial co-
ordinate) of the unknown, latent perfect image from the
observed discrete samples , which are the
pixels of the data image. The data image
has been generated from the underlying truth by the imaging
process , introducing aberrations, such as blur, noise, scat-
tering, down-sampling, etc.
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The reconstruction problem can be expressed in a Bayesian
framework as MAP estimation:

(1)

where the scalar regularization parameter is introduced to bal-
ance the likelihood and the prior . From this MAP
formulation, it is clear that the estimate only converges to-
ward if the prior characterizes the latter.
In variational form, this leads to a minimization problem over

an energyE where the prior becomes a regularizer:

E

(2)
where is a data-fitting cost function, which models the (gen-
erally unknown) imaging transformation in order to quantify
how well a certain hypothetical reconstruction fits the data
. Assuming a Gaussian distribution for the measurement er-
rors, e.g., leads to an norm in the data fitting term. is the
regularization function acting on . This term imposes prior
knowledge (sparsity, smoothness, etc.) about the unknown per-
fect image . is the image domain, and is the postulated
function space in which lives. has a close relationship with

and with .
When using a spectrally regularized model, the regulariza-

tion term does not directly act on , but on a distribution or
histogram of some features of :

(3)

where is a filter (map, feature, differential operator, etc.)
and is the corresponding spectral prior. In GDPs, the filter

, and is the gradient distribution.
The hard spectral constraint can be relaxed by introducing an

auxiliary variable for decoupling:

(4)

This decoupling technique is generic to variational models
with hard constraints. It has previously been used, e.g., in
split-Bregman [28], TGV [14], and hyper-Laplacian [20]
models.

III. MOTIVATION: WHY THE GRADIENT DISTRIBUTION?

Spectral priors are typically learned or estimated from image
collections. Given a sufficiently diverse collection of images,
the histogram or probability distribution of a spectral prior is
estimated by averaging over all images . There are
many features that can be computed, including color and texture
features, but the image gradient is particularly in-
teresting. This is first because it is remarkably invariant across
images [29]. Second, it is easy to compute and can hence be

TABLE I
NATURAL-SCENE IMAGE DATASETS USED TO LEARN THE PRIOR. SOURCE

URLS ARE GIVEN IN THE FOOTNOTES.1234567

learned from large image collections. Third, the gradient has a
simple intuitive meaning as the first-order approximation to .
In the following, we use the term gradient field to denote the

gradient image, i.e., an image that has the same size as the
original data image , but where each pixel stores two values
that are the two components of the gradient of at that loca-
tion. The gradient distribution is the histogram or probability
distribution of these values across all pixels, and/or across mul-
tiple images. We restrict our discussion to two-dimensional im-
ages where the gradient has two components. Extensions to
higher-dimensional images are possible by adding additional
gradient components.
GDPs have been used in Bayesian frameworks for image de-

noising [15], deblurring [17], restoration [21], super resolution
[30], and others [16]–[21]. Deblurring in the gradient domain is
more efficient than working with the original pixel values [17],
[18]. This can be explained by the reduced correlation in the
gradient domain [31].
Reconstructing an image from its gradient field amounts to

integration with one point constraint [22], [23], [32]–[37]. One
way of doing this is by solving a Poisson equation. With proper
boundary conditions, the solution is unique, and there exists a
wealth of stable, efficient, and accurate numerical solvers for
this equation. We hence prefer this way of performing the nu-
merical integration.

IV. THE GRADIENT DISTRIBUTION PRIOR (GDP)

In order to learn the GDP from natural-scene images, we col-
lect 23613 images of natural scenes. We compute the resulting
gradient distributions and assess the variability of the training
images around the average distribution.

A. Training Dataset and Gradient Approximation

We collected seven datasets of natural-scene images as shown
in Table I. Each image was converted to 8-bit gray-scale.
The gradient field is defined as:

(5)

where here we use the first-order forward finite-difference ap-
proximations .
Certain features of the resulting gradient histogram are artifacts
of this discretization scheme used to compute the gradient. The
high-probability lines at 0, 45, and 90 degrees in Fig. 2 are
artifacts of using forward differences. When using backward
differences, the 45-degree line rotates to . Using
central differences, the 0 and 90-degree lines disappear, but
smoothing artifacts at high gradients appear, since central dif-
ferences cannot capture edges in the image. However, as long as
the discretization scheme used to learn the GDP is the same as
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Fig. 2. Average gradient distribution from the training set of 23613 natural-
scene images used here. Color codes normalized probability in log-scale.

the one later used to apply the model, the method is consistent,
as the artifacts cancel out.1–7
We choose the first-order finite-difference scheme for our

computations because it has the highest spatial resolution. We
compute the gradient at interior pixels, using the outermost
pixel layers as boundary condition. Due to the use of 8-bit
gray-scale images, possible gradients are in the discrete do-
main , where we can construct the
2D histogram of . We use and to denote respective
components of .
In order to normalize the histogram, we divide all bins by the

total number of pixels in the image, i.e., by where and
are the number of pixels along the and edges of the image.
After aggregating data from all images in the training set, we
further normalize by the total number of images in the dataset.
The resulting empirical distribution is shown in Fig. 2. It has
previously been shown that this GDP is stable on the training
dataset, in the sense that the gradient histograms of individual
training images cluster around the GDP learned across the entire
dataset [31].

B. Variability of the Prior

The first step in studying the natural-scene GDP on light-
microscopy images is to check that good microscopy images
cluster around the GDP. For this, we manually collect a test
dataset of 40 high-quality microscopy images from public in-
ternet sources. Some examples are shown in Fig. 3.
We compute the RMS distance from the GDP for each

image's gradient distribution. The distance histogram is shown
in Fig. 4. It confirms that the gradient distributions tested cluster
around the GDP learned from natural-scene images.

C. Correlation With Image Quality

The second step in studying the natural-sceneGDP is to check
that it is correlated with perceived image quality. Only then,

1HTTP://WWW.VISION.EE.ETHZ.CH/SHOWROOM/ZUBUD/
2HTTP://SEE.XIDIAN.EDU.CN/FACULTY/WSDONG/DATA/FLICKR_IMAGES.RAR
3HTTP://WWW.ROBOTS.OX.AC.UK/~VGG/DATA/OXBUILDINGS/
4HTTP://WWW.COMP.LEEDS.AC.UK/SCS6JWKS/DATASET/LEEDSBUTTERFLY/
5HTTP://LEAR.INRIALPES.FR/~JEGOU/DATA.PHP
6HTTP://WWW.VISION.CALTECH.EDU/VISIPEDIA/CUB-200.HTML
7HTTP://WWW.ROBOTS.OX.AC.UK/~VGG/DATA/FLOWERS/102/INDEX.HTML

Fig. 3. Seven examples from the 40 microscopy test images.

Fig. 4. Histogram of the RMS distances between the natural-scene GDP and
the gradient distributions of the 40 test images.

imposing the prior in light-microscopy images is expected to
improve the result. As we have shown before, the distance be-
tween the gradient distribution of any given image and the GDP
is highly correlated with subjectively perceived image quality
[31]. We use the standard LIVE benchmark dataset for image
quality assessment [38] in order to show that the Hellinger dis-
tance is a good metric to use in this context. For this, we test the
-norm, -norm, cosine distance, the Earth Mover Distance

(EMD), distance, and theHellinger distance. Using these dis-
tances, we form the score:

(6)

If the ground-truth image is unknown (i.e., in a real-world
application rather than a benchmark setting), the score is defined
with respect to the GDP:

(7)

A measure of subjectively perceived image quality is pro-
vided by the LIVE benchmark's DMOS (difference mean
opinion score). Different correlations between DMOS and
our objective score are reported in Table II. In all cases, the
Hellinger distance between the gradient distributions shows
the best correlation with DMOS. Together with its stability,
this renders the natural-scene GDP a good default prior for
light-microscopy applications, in the absence of more specific
prior knowledge.
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TABLE II
CORRELATIONS BETWEEN SUBJECTIVELY PERCEIVED IMAGE QUALITY
(DMOS FROM LIVE BENCHMARK [38]) AND OUR OBJECTIVE SCORE

USING DIFFERENT DISTANCE METRICS. THE FOLLOWING CORRELATIONS
ARE REPORTED: PEARSON'S LINEAR CORRELATION COEFFICIENT (PCC),
SPEARMAN'S RANK-ORDER CORRELATION COEFFICIENT (SCC), AND

KENDALL'S RANK-ORDER CORRELATION COEFFICIENT (KCC).

V. PARAMETRIC MODEL FOR THE GDP

In order to efficiently use the GDP as a regularization term,
a parametric model is desirable. We here provide parametric
models for the marginal and joint gradient distributions, and
we assess their approximation accuracy. We compare these new
models with traditional gradient-distribution models, such as
hyper-Laplace models, and with TV in 1D and 2D. We then dis-
cuss the convexity, sparsity, and entropy of the new models.

A. 1D Marginal Model

Traditionally, image gradient histograms have been modeled
as component-wise generalized Gaussian distributions:

(8)

where , , and are the model parameters. Here and else-
where, this model is treated as a function rather than a distri-
bution. Therefore, is an independent parameter, instead of
being the normalization constant. This is inconsequential for
the later variational model, since the normalization constant be-
comes an additive offset to the total energy, which has no im-
pact on the location of energy minima. We do, however, use the
normalized models and histograms whenever we compute prob-
abilistic quantities, such as entropies. The model in (8) includes
Gaussian , Laplacian , and hyper-Laplacian
distributions as special cases [20].
Combining considerations of model simplicity, computa-

tional efficiency, and solvability of the resulting variational
optimization problem, we propose the following new model for
the 1D marginal gradient histogram:

(9)

where , , and are the parameters (again, the fitting func-
tion need not be normalized to a probability distribution, for
the reasons outlined above). The results of fitting this model to
the training data are shown in Table III, compared with other
models. As shown in Table III and Fig. 5, ourmodel outperforms
the previously used Laplacian, Gaussian, and hyper-Laplacian
models in terms of fitting quality.
In addition to the increased fitting accuracy, our model has

several other advantages:
• Integrability: Our model is integrable, which is convenient
for use in optimization algorithms and for analytically
computing the cumulative distribution function (CDF).
As shown in Fig. 5(b), the CDF of our model is still
meaningful when other models become invalid (Gaussian,

Fig. 5. Comparison of (a) marginal models (log scale) and (b) their cumulative
sums (linear scale). Optimal parameters are used for each model. The quantita-
tive fits are given in Table III. Lines are distinguished by color, as reproduced
in the electronic version.

TABLE III
GOODNESS OF FIT COMPARISON FOR ALL MODELS: OUR MODEL (9),

HYPER-LAPLACIAN, LAPLACIAN, GAUSSIAN.

Laplacian, and hyper-Laplacian have asymptotes ) or
hard to integrate (hyper-Laplacian).

• Computational efficiency: our model has a simple mathe-
matical form that can efficiently be evaluated. The gain is
substantial, as shown in Suppl. Fig. 1.

• Optimization efficiency: the variational problem resulting
from our model can be written as the difference of two
convex functions. Optimization problems involving our
model can hence efficiently be solved using D.C. program-
ming (short for: difference of convex).

B. 2D Joint Model
In previous works, the 2D gradient distribution has been as-

sumed to be the product of two independent 1D marginals along
and [17]–[21]. This is not necessarily the case, as there

can be correlations between the gradient components. We hence
estimate the joint 2D gradient distribution from the training
dataset and provide a 2D parametric model for it.
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Fig. 6. Visual comparison of model fits for 2D joint gradient distributions in log scale. (a,e) Empirical 2D gradient distribution of the training data. (b,f) Best fit
of our new model from (11). (c,d,g,h) Best fits of the hyper-Laplacian and Laplacian models. For each model, we show contour lines of values , , and

. The area included by isoline of our model is 3% of the whole domain, but the total probability mass in that area is 99%. Moreover, our new model is
rotationally symmetric, not imposing any a priori preferred gradient orientation. (a) data (b) our model (c) hyper-Laplacian (d) Laplacian (e) data iso lines (f) our
model's iso lines (g) hypLap iso lines (h) Laplace iso lines.

TABLE IV
CORRELATION BETWEEN AND .

As shown in Table IV, the two gradient components are
weakly negatively correlated in the training dataset (from edges
in the images). This weak correlation between the gradient
components explains why alternating minimization had to be
used in previous works that considered the marginal models
independently, and why the results were still good even though
the prior was not strictly correct.
The traditional model (8) can easily be extended to 2D:

(10)

where , , and are the parameters. This model, including
the hyper-Laplacian as a special case, treats the and compo-
nents of the gradient as independent and identically distributed.
Considering that a correlation between the gradient compo-

nents may exist, we instead propose the following model (de-
rived from (9)) for the 2D joint gradient histogram:

(11)
This model is based on the weaker assumption that the differ-
ences between gradients at neighboring pixels are uniformly
randomly distributed.
The fitted parameters are shown in Table V. Fig. 6 compares

the model with previous models. The gradient histogram of the
training data is shown in Figs. 6(a), 6(e) whereas the best-fit
parametric models are plotted in the remaining panels. The area
included by isoline (blue isoline) of our model is only
3% of the whole domain, but the total probability mass in that
area is 99%, indicating a high sparsity of our model (see also
Section V-D). Moreover, the new model is rotationally sym-
metric, which is desirable for two reasons: (1) It renders the

TABLE V
PARAMETERS AND GOODNESS OF FIT OF THE 2D MODEL.

model robust against discretization artifacts of how the gradient
has been computed (cf. Section IV). (2) Except for special im-
ages (e.g., architecture) there is no a priori reason why certain
gradient directions should be preferred.
The cumulative distribution function (CDF) of the 2D model

(12)

is sensitive to image transformations (see Suppl. Fig. 2), ren-
dering the parameters identifiable and the model useful for de-
tecting and undoing such transformations. This inspires us to
define a single CDF parameter that quantifies how close the gra-
dient distribution of an image is to the GDP expected for a nat-
ural-scene image.

C. The Naturalness Factor
We define a scalar number measuring the distance between an

image's gradient histogram and the natural-scene GDP. For this,
however, we need to simplify the model to a single parameter.
Since the model is most sensitive w.r.t. parameter (see Suppl.
Fig. 3), we define and set , leading to:

(13)

Using integration by parts, the CDF of this simplified model can
be analytically computed:

(14)

where is the Heaviside and the error function.
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Fig. 7. Naturalness factor distribution for the natural-scene images of
the training set. Blue bars indicate , red bars . The black line
is a log-normal distribution with parameters and . The
median is 1.

This model has only one single scalar parameter, , which
can be determined by solving the convex problem:

(15)

which has the unique analytical solution:

(16)
where is the marginal distribution. Therefore, the param-
eter can explicitly be computed for any given image.
Comparing an image's parameter with the expected value
from natural-scene images, i.e., from the GDP, we define:
Definition: For any image , the naturalness factor is

defined as and the image generated from
such that is called the naturalized image.
Since is obtained as an average over natural-scene im-

ages, and natural-scene images cluster around the GDP, the
of a natural-scene image is expected to be distributed around 1,
as confirmed in Fig. 7. The range of values in our training set
is , and the naturalness factors of the training
images satisfy a log-normal distribution, as expected from the
definition of .

D. Convexity, Sparsity, and Entropy of the GDP
1) Convexity: The TV (Laplacian) prior is popular because it

leads to convex variational models. While the hyper-Laplacian
would fit the data better, it leads to a non-convex variational
model, which is hard to solve. We show here that our model (9)
and its 2D variant (11) are quasi-concave, which means that all
iso-sets are convex, simplifying optimization while still fitting
the data better.
Lemma V.1: Equations (9) and (11) are quasi-concave.
Proof: For (9), we have:

(17)
(18)

This monotonicity property with respect to 0 ensures that (9) is
quasi-concave. Equation (11) is a rotation of (9) with respect to
the axis. Therefore, the set is convex

.

TABLE VI
COMPARISON OF DIFFERENT MODELS.

Fig. 8. Sparsity of the GDP. (a) 98.2% of the information can be encoded with
only 2.5% of the dictionary at a cutoff level of . (b) The present
model is almost as sparse as the data, and sparser than previous models. Lines
are distinguished by color, as reproduced in the electronic version.

The resulting variational energy functional when using
this model as a regularizer, however, is not quasi-concave.
Nevertheless it can be written as the difference of two convex
functions. Such optimization problems are known as D.C.
problems (short for: difference of convex), and efficient solvers
are available for them. The present model hence leads to
efficiently solvable variational problems, while fitting the data
best. Table VI qualitatively compares different models.
2) Sparsity: The gradient distribution balances sparsity and

signal encoding.We quantify the sparsity of using the clas-
sical -norm sparsity measure:

(19)

where is an indicator function. Further:

(20)

which is the total probability mass on levels larger than . The
sparsity measures how many words (of some dictionary)
are needed to encode the information in with an accu-
racy or tolerance . The relationship between and is
shown in Fig. 8(a) for the images from our training set. We ob-
serve that the gradient signal is sparse already at a low cutoff
. Fig. 8(b) shows the sparsity/information curves for different

parametric models of the GDP. Our model is about as sparse
as the data, whereas all other models are less sparse and throw
away more information.
3) Entropy: The entropy of a 2D distribution is defined as:

(21)

Since the entropy is entirely determined by the distribution, im-
posing a GDP implies imposing an entropy prior (rather than
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Fig. 9. Entropy distribution of the natural-scene images from the
training set. The average is 5.88. The red line is the Gaussian

.

simply minimizing or maximizing entropy). The entropy distri-
bution of the natural-scene images from the training dataset is
show in Fig. 9. It is normally distributed with mean 5.88. This
suggests that neither a maximum-entropy nor a minimum-en-
tropy estimator is appropriate, but entropy should follow a prior
distribution similar to the one shown in Fig. 9.

VI. IMPOSING THE GDP IN VARIATIONAL PROBLEMS

In a variational framework, there are two ways of imposing
a prior: as a hard constraint and as a soft constraint. Both are
possible for the GDP. For a hard constraint, the GDP is imposed
by gradient remapping. The mapped gradient field is then used
to reconstruct the output image by solving a Poisson equation
with Dirichlet boundary conditions. For a soft constraint, the
GDP can be imposed as a regularization term, leading to a D.C.
minimization problem. As shown in Section VII, the decision
between using a soft or hard constraint depends on the specific
application.

A. As a Hard Constraint
We impose the GDP as a hard constraint by gradient-field

remapping. The idea is to map the original gradient field, using
a nonlinear mapping function, into a new gradient field that ex-
actly satisfies the GDP. From this remapped gradient field, the
output image is reconstructed by solving a Poisson equation. In
the special case of a linear mapping function, the reconstruction
simplifies to rescaling the image pixel values.
In order to guarantee integrability of the result and a well-

posed reconstruction problem, we propose the use of parametric
mapping functions, determined by exact histogram specification
[39], [40].
1) Gradient Field Remapping: Let Map remap the gradient

field to a new field that satisfies the GDP:

(22)

This mapping is nonlinear in general, but can be approximated
by a linear mapping. While bi-variate mapping is non-trivial in
general, using the parametric models introduced here renders it
straightforward.
Fig. 10 illustrates the effects of linear vs. nonlinear remap-

ping. The nonlinear remapping uses exact histogram specifica-
tion [39] in order to make the gradient histogram of the resulting

Fig. 10. Comparison of different gradient field remapping methods: original
image (converted to grayscale at ) and its gradient distribution (a,b),
image reconstructed from the original gradient field without any remapping
(c,d), with linear remapping (e,f), and with nonlinear remapping (g,h). The ab-
solute RMS errors of the reconstructions are 0.0, 1.9, 20, and 38, respectively,
with respect to the original image. The corresponding gradient distributions after
remapping are shown to the right of the images. The linear and nonlinear remap-
ping functions used are shown in (i), as determined by exact histogram speci-
fication [39]. Lines are distinguished by color, as reproduced in the electronic
version.

image match the GDP exactly (Fig. 10(h)). The linear approxi-
mation leads to an approximate fit (Fig. 10(f))8.

8Figs. 10(b), 10(d), 10(f), 10(h) shows plots of the average of the two
marginals for better visualization. The actual remapping is done on the full 2D
joint distribution.
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Linear remapping amounts to a simple rescaling of the pixel
intensities, such that the gradient distribution fits the GDP in
average. This is reminiscent of histogram equalization, with the
important difference that the scaling parameter is not user-ad-
justable, but automatically determined such that the GDP is best
fit. The output image is reconstructed from the remapped gra-
dient field, as described next.
2) Image Reconstruction: Reconstructing the output image

from the remapped gradient field amounts to minimizing the
following q-Dirichlet energy:

(23)

where , is the standard -norm, and is the
space of Lipschitz-continuous functions on domain .
Existence and uniqueness of the solution of (23) with

Dirichlet boundary conditions have been proven [41]. We use
Dirichlet boundary conditions by solving only on the internal
pixels of the image, fixing the boundary pixels as a boundary
condition. Commonly used norms are and ,
which correspond to reducing measurement errors (unspecific)
and gross errors (outliers), respectively.
Taking the norm in (23), we recover the output image

from the remapped gradient field by solving the Poisson
equation

(24)

with Dirichlet boundary conditions given by the boundary
pixels of the original image. Using different values of leads
to fractional Poisson equations with Caputo-type fractional
derivatives.
The standard Poisson equation can be solved efficiently,

e.g., by FFT-based algorithms or wavelet [42] solvers. A short
summary of available Poisson solvers is given in Suppl. Table 1.
Reconstructing an image from its gradient field is accurate.

An example is shown in Fig. 10(c). The original image (a) is
an 8-bit grayscale image from the 2015 Nikon Photomicrog-
raphy Competition (C. Maolagain, Wellington, New Zealand)
showing a reflected-light microscopy image of foraminifera
shells from the sea (40x). The relative RMS error of the recon-
struction without remapping (c) is . Reconstruction using
the wavelet Poisson solver [42] in Matlab takes 3.5 seconds
on an Apple MacBook Pro (early 2011). When reconstructing
after linear or nonlinear remapping to the natural-scene GDP
(e-h). The mapping functions as determined by exact histogram
specification [39] are shown in Fig. 10(i).

B. As a Soft Constraint
Imposing the GDP as a soft constraint is done by using it as a

regularization term. For a variational energyE this can be
done by evolving the Partial Differential Equation (PDE)

E
(25)

over pseudo-time (i.e., the iterations of the algorithm). Since
the energyE is non-convex in general, minimization should be
performed in a multi-scale space in order to avoid local minima
and accelerate the computation. This can, e.g., be done using

multi-scale anisotropic diffusion, similar to the Perona-Malik
model [43].
When using our parametric model for the GDP, the mini-

mization problem simplifies. In this case, the variational en-
ergy is the difference of two convex functions, and the min-
imization problem can efficiently be solved using algorithms
based on D.C. programming [44], eliminating the need for PDE
pseudo-time evolution. For the present GDP model, the fol-
lowing decomposition holds:

E E E (26)

where

E (27)

E (28)

are differentiable convex functions, is the norm used in the
data-fitting term, and , are the GDP model parameters.
In the rest of this paper, we useR denote the regularization

term derived from our model when using the natural-scene GDP
as a soft constraint:

R (29)

where and are the param-
eters and of the natural-scene GDP prior (see Table V).
The parameter is an additive constant and plays no role in the
regularization. The integration over the image domain is valid
under the assumption that gradients at neighboring pixels are
statistically independent, which is the assumption underlying
our model. The functional form
is a generalization of many well-known priors, including the TV
prior for .
For the above GDP regularizer, we have the functional

derivative (Euler-Lagrange equation):

R

(30)

The resulting model can efficiently be solved using D.C.
programming [44]. In this case, one needs to choose a convex
Bregman function , the choice of which however does not
matter much to the algorithm performance [44]. Then, (26) can
be minimized using Algorithm 1. The convergence proof can be
found in Refs. [44], [45]. In the special case when is chosen
to be a quadratic function (corresponding to an data-fitting
energy), Algorithm 1 reduces to the standard proximal point
algorithm.

Algorithm 1Minimization using D.C. programming

Require:E ,E , , step size ,
1: while do
2: E E

3: end while
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Fig. 11. Comparison of image naturalization with other image-enhancement methods for fluorescence microscopy. From left to right: original, histogram equal-
ized, [48], [23], [49], [50], [24], and naturalized. Naturalization preserves the original signal while increasing the contrast without artifacts. The naturalness factors

for the three input images are 1.5, 1.8, and 2. Image sources from top to bottom: (Maryann Martone, CCDB), (Lee & Matus, U Hawaii, amicros.org), (Gaertig
lab, U Georgia, bmc.uga.edu).

C. Implementation Details

For hard GDP constraints, we implement nonlinear remap-
ping with a map determined by exact histogram specification
[39] based on our parametric 2D GDP model. For image re-
construction, we implement FFT-based and wavelet-based [42]
Poisson solvers.
For soft GDP constraints, we implement the general diffusion

solver, which is valid for all priors, and the D.C. solver in Al-
gorithm 1 for our parametric GDP model.
The source code is available from our website asMatlab code,

C++ code included in the OpenCV library, and Java code as
an ImageJ/Fiji plugin. All applications shown below were done
using the C++ implementation.

VII. EXAMPLE APPLICATIONS

We exemplify the use of the present GDP, the parametric
models, and the solvers in a variety of image-processing
tasks, ranging from contrast enhancement, to noise-level es-
timation, denoising, deconvolution, and dehazing. We do not
compete with specialist methods for every single case, like
state-of-the-art denoising methods that were especially de-
signed for biomedical images [46], [47]. However, we achieve
comparable results across all applications using one and the
same simple method. This indicates that the natural-scene GDP
might be a good standard choice when better-founded prior
knowledge is unavailable.

A. Image Naturalization

Image naturalization is an image enhancement method that
we have proposed earlier [31]. It solves the variational model:

E (31)

Imposing the hard GDP constraint is done, as detailed in
Section VI-A, by remapping the gradient field of the input
image to match the GDP, and then reconstructing the output
image. This output image looks more “natural”.
Since the natural-scene GDP correlates with image quality,

this makes the image look more appealing. We hence propose

to use image naturalization when displaying light-microscopy
images to a human observer.
Some examples of fluorescence microscopy images are

shown in Fig. 11 along with their naturalized versions (last
column) and results from six other image-enhancement
methods. In all cases, the naturalized image looks more ap-
pealing than the results from the other image-enhancement
methods. This extends to microscopy images our previous
observation that image naturalization provides better results
than many other known image-enhancement methods [31].
When using a linear remapping function, naturalization can

also be used to automatically determine a good scaling param-
eter for standard histogram equalization. Naturalization then
amounts to a simple rescaling of pixel intensities, albeit with
a scaling factor that renders the naturalness factor of the result
as close to 1 as possible.

B. Noise-Level Estimation

Denoising methods often rely on having an estimate of the
noise level in order to adjust algorithm parameters. In prac-
tical applications, however, the true noise level is unknown. We
show how the GDP can be used to estimate the noise level of
an image. As shown in Suppl. Fig. 2, the CDF model is sensi-
tive to noise. This can be exploited to estimate the noise level
by relating the fitted parameter of the simplified 1D CDF
(see Section V-C) of a given image to noise level through a
calibration curve. We construct such a calibration curve ( vs.
true noise level) by randomly choosing images from our nat-
ural-scene training dataset and adding to them Gaussian noise
of varying . The dependence of on
shows a distinct characteristic, which is almost independent

of image content (Fig. 12(a)). We fit this dependence using the
mixture of exponentials:

(32)

where , , and are parameters to be deter-
mined. For our dataset, we find the best fit ,

, . The goodness of



GONG AND SBALZARINI: NATURAL-SCENE GRADIENT DISTRIBUTION PRIOR 109

Fig. 12. (a) We build the noise-level estimation model (solid blue line) from
seven natural-scene images (individual lines with symbols), including ,
for which two insets are shown to illustrate noise appearance. (b) We test this
model on ten images from the BSDS500 benchmark [51]. The black line is the
prediction from our model, while the colored dots are the true noise levels for
the images named in the inset legend. (a) build model (b) test model. Lines are
distinguished by color, as reproduced in the electronic version.

fit is: , , . This model
is shown by the solid blue line in Fig. 12(a).
We test the model by adding Gaussian noise of different,

known to a disjoint randomly selected set of 10 test images
from the standard BSDS500 benchmark [51]. The differences
between the noise levels estimated by our model (solid black
line) and the ground truth (colored dots) are shown in Fig. 12(b).
87% of the predictions have an accuracy . We
find similar results also for other random image sets tested.
This suggests that the parameter can provide accurate and

robust noise-level estimation. A particularly favorable property
of this estimator is its high sensitivity to changes in for low
noise levels . Correctly estimating low noise levels is
particularly hard for traditional, pixel-based estimators.

C. Denoising

The high sensitivity of the cumulative gradient distribution to
small amounts of noise makes the GDP a good prior for image
denoising. Small non-zero gradients play a key role to recov-
ering image detail. Traditional denoising methods with spatial

Fig. 13. Behavior of the diffusion coefficient vs. the square gradient mag-
nitude for the and values of the natural-scene GDP.

regularization (such as TV and its variants, GC, etc.) remove
both noise and small signal gradients. In contrast, the spectral
GDP can distinguish between noise and small signal gradients
based on their frequency of occurrence.
This is compatible with many researchers' observation that

split-Bregman solvers for TV- models achieve better results
in the sense of PSNR [1], [28]. This is because the auxiliary
variable introduced in Bregman splitting changes the model to
allow for small gradients. These small gradients improve the re-
sult. Another example is non-local TV, using spatially repeated
patterns to allow for small signal gradients [52]. A third example
is stochastic (Monte Carlo) denoising [53]. While all of these
methods allow for small image gradients, distinguishing them
from noise is mostly ad hoc.
Here, the GDP can provide additional information. This has

recently been demonstrated in aMAPBayesian framework [21],
which also has the capability of recovering image details. Using
our novel parametric GDP model as a soft constraint, we have:

E R (33)

This denoising model is differentiable with respect to and
can be efficiently solved by gradient descent (Algorithm 2).
From (30), this model can be interpreted as a combination of
anisotropic and inverse diffusion.

Algorithm 2 Denoising with GDP

Require , , step size , , ,
1:
2: while do
3:
4:
5:
6: end while

The regularization term is a hybrid of diffusion and inverse
diffusion, which is different from traditional approaches that
only depend on one of them. For example, the traditional
anisotropic diffusion only tries to smooth the
image, while inverse diffusion only enhances the image [54].
The behavior of the diffusion coefficient in Algorithm 2 is
illustrated in Fig. 13.
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TABLE VII
QUALITY COMPARISON OF DENOISING RESULTS FROM DIFFERENT MODELS.
USING THE GDP DIRECTLY LEARNED FROM MICROSCOPY IMAGES YIELDS
THE WORST RESULT. THE PRESENT METHOD USING THE NATURAL-SCENE

GDP YIELDS THE BEST RESULT.

Lemma VII.1: In Algorithm 2, let , if
, then . If , then there are two fixed

points and such that
if
else.

(34)

The proof is given in the Supplement. For the values of
and (see Table V), has two fixed

points. This means that gets enhanced (inverse diffusion,
) or smoothed (diffusion, ) depending on the local

gradient magnitude . Even though this behavior is similar
to forward-backward diffusion [55], the difference is that our
model is derived from a distribution prior, rather than from the
gradient itself. As a result, the parameters and are learned
from datasets and not manually adjusted, as in forward-back-
ward diffusion [55].
Results from using Algorithm 2 on an example test image are

shown in Table VII. The test image was synthetically corrupted
by additive Gaussian noise of the indicated input SNR. The
present model achieves state-of-the-art PSNR with better image
quality, as quantified by the SSIM [38] quality measure. For
comparison, we also use the present method with a GDP learned
from the 40 high-quality microscopy test images. When using
natural-scene GDPs learned from random subsets of 40 training
images, the PSNR are between 25.4 and 26.4, the SSIM between
0.60 to 0.72. This confirms that learning the GDP directly from
(good) microscopy images is undesirable (see Section I-A).

D. Blind Deconvolution
Light-microscopy images are often blurred. In deconvolution

problems, the assumption is that the blur can be described by
a convolution of the latent ground-truth image with a blur
kernel . The task of deconvolution is to estimate from the
observed blurred image . If the blur kernel is unknown and
to be estimated along, the problem is referred to as blind decon-
volution. This is an ill-posed inverse problem.

and can be estimated either in the spatial and/or the gra-
dient domain. We provide here an algorithm for blind deconvo-
lution using the natural-scene GDP. The algorithm is inspired
by the observation that pixel auto-correlation is significantly re-
duced in the gradient domain [31], which is a favorable prop-
erty for blur-kernel estimation. The latent image, however, is
better estimated in the spatial domain, where the auto-correla-
tion signal can be exploited. Different combinations of spatial/
gradient-domain deconvolution have already been previously
presented (see Table VIII). The present algorithm, however, is
the first one to combine gradient-domain kernel estimation with
spatial-domain image estimation.
Besides the working domain, the regularizer used is of key

importance. Mostly, sparsity of the kernel and minimum-TV of

TABLE VIII
SUMMARY OF BLIND DECONVOLUTION ALGORITHMS.

the latent image are imposed in deconvolution [58]–[61]. How-
ever, a GDP on the latent image can provide a better choice,
removing less image detail than TV [17]–[20], [57].
Here, we use the present parametric natural-scene GDP

model as a soft constraint for the latent image, but impose no
prior on the kernel other than a hard non-negativity constraint.
This renders our method generic to a wide variety of different
blur kernels that do not have to be previously known.
We use alternating minimization to estimate the kernel and

the latent image by minimizing:

E

(35)

E R (36)

where is the iteration number of the alternating minimization
scheme and is the convolution operator. Equation (35) is a
convex function with convex constraints, guaranteeing a glob-
ally optimal solution. In Algorithm 3 we hence solve this part
of the problem analytically by projection. Equation (36) is not
convex, but can be solved by the diffusion process in Algorithm
2. Algorithm 3 summaries the resulting overall blind decon-
volution process, which is performed in a multi-scale fashion
to avoid local minima and accelerate computation ( denotes
point-wise multiplication).

Algorithm 3 Blind Deconvolution with GDP

Require: , , , ,
1:
2: while do
3:

4:

5:
6: run Algorithm 2 with input
7: end while

An example with a complicated blur kernel is shown in
Fig. 14 and Table IX. The ground-truth image (Fig. 14(a))
is blurred with a known kernel (Fig. 14(b)). Figs. 14(c),
14(d) show the reconstructed images using two different
non-blind deconvolution methods with the ground-truth kernel
provided to them. Figs. 14(e), 14(f) show the results of two
blind deconvolution methods along with the estimated kernels
(insets). Fig. 14(g) shows the estimated at different scales of
the multi-scale process used in the present method. As evident
from Table IX and visual comparison, the result from the
present GDP method is closest to the ground-truth image and
achieves high image quality (measured by the quality metrics
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Fig. 14. Deconvolution example. (a) Ground truth image (Fluorescence con-
focal microscopy image of peace lily pollen, 63x, M. Guervos, University of
Oviedo, 2015 Nikon Photomicrography Competition). (b) Input image to the
deconvolution methods, obtained by blurring the image in (a) with the kernel
shown in the inset. (c,d) Results from two non-blind deconvolution methods
with the ground truth blur kernel given; the classical Lucy-Richardson algo-
rithm [62] and the hyper-Laplace method [20]. (e,f) Results from two blind de-
convolution methods ([60] and our Algorithm 3) along with the estimated blur
kernels (insets). (g) Blur kernel estimated by our method on different levels
of the multi-scale process. (a) ground truth image (b) blurred image (c) Lucy-
Richardson (d) hyper-Laplace prior (e) normalized sparsity (f) present GDP re-
sult (g) estimated at different scales of our method.

TABLE IX
QUALITY COMPARISON OF DECONVOLUTION RESULTS.

PSNR and SSIM [38]) combined with good estimation of the
hidden blur kernel.
As shown in the Supplement, the same model and algorithm

can also be used for image zooming when fixing the blur kernel.

E. Scatter Light Removal and Dehazing
Scatter light is a common nuisance in light microscopy when

imaging thick samples. The light propagating though the sample
is scattered, similarly to how fog and haze scatter light in pho-
tographs. The resulting image is the superposition of the scatter
light and the latent image.Dehazing aims at reducing the scatter
light in the observed image. In classical dehazing methods, the
observed image is modeled as [63]:

(37)

where is the latent image, is the unknown
scattering map, and is the environment light constant. The
unknown scattering coefficient is a material property of the
medium, and is the distance from the object to the camera.

Fig. 15. Scatter light removal in a fluorescence microscopy image of a whole
Drosophila melanogaster embryo with the nuclei labeled by fluorescence.
(a) Original image as recorded by SPIM (single-plane illumination microscopy;
source: Tomancak lab, MPI-CBG). Due to the thickness of the sample, there
is significant scatter light. (b) Result from the present dehazing method,
significantly reducing scatter light.

Solving this model for is ill-posed. A popular prior to reg-
ularize the problem in the spatial domain is the dark-channel
prior [63]. Alternatively, the problem can be regularized in a
Bayesian framework [64]. Here, we impose the natural-scene
GDP for the latent image as a hard constraint, while using TV
regularization for the scattering map :

E

(38)

This hard-constrained model, however, is difficult to solve.
Moreover, (37) does not hold anymore in this model. Therefore,
we relax the model to a soft constraint and solve:

E

R (39)

with the parameter by default, balancing the priors for
and . We use alternating minimization over and to obtain
the final result.
An example is shown in Fig. 15. After dehazing using the

present method, the image appears largely free of scatter haze.
This facilitates visual inspection, as well as further downstream
processing and analysis.

VIII. CONCLUSION AND DISCUSSION

We proposed learning a gradient distribution prior (GDP) for
light-microscopy images from natural-scene images. Both types
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of images use the same physical laws to image objects of nature,
albeit at different length scales. While light-microscopy images
are often corrupted by significant aberrations, such aberrations
can be absent in natural-scene images taken under good con-
ditions. The latter may hence provide a good standard GDP in
the absence of more specific prior knowledge. We have con-
firmed that the resulting GDP is stable and correlated with image
quality. We have provided a novel parametric model for nat-
ural-scene GDPs in 1D and 2D. This model fits the data better
than previous models, is sparse, and leads to efficiently solvable
quasi-convex optimization problems when used as a regularizer
in a variational framework.
We have provided the variational frameworks to impose the

model either as a soft or a hard constraint. When imposed as
a hard constraint, the natural-scene GDP model amounts to
nonlinear gradient-field remapping. The resulting image can
be reconstructed by solving a Poisson equation. When a linear
remapping function is used, standard histogram rescaling is
recovered, albeit with automatically determined parameter.
When imposed as a soft constraint, the present GDP model
leads to difference-of-convex (D.C.) optimization problems
with analytically known energy gradient. They can efficiently
be solved using D.C. programming.
Based on a simplified 1D Cumulative Distribution Function

(CDF) model of the natural-scene GDP, we defined the natural-
ness factor of an image in order to quantify how far its gradient
histogram is from the one expected for a natural-scene image.
This can be used as an image feature or an image-quality indi-
cator, for example when calibrating microscopes.
We have illustrated the use of the new GDP model in various

applications, ranging from contrast enhancement to denoising,
blind deconvolution, and dehazing. This has illustrated that the
GDP is versatile. However, it may not be the optimal choice in
every given application, and it was not our goal to beat specialist
solutions for individual tasks. We do believe, though, that the
natural-scene GDP is a good choice in the absence of better-
founded priors.
An important advantage of the presented methods is their low

number of parameters. There are no user-adjustable scaling fac-
tors, thresholds, or noise levels. The only parameter is the reg-
ularization constant when using the GDP as a soft constraint.
When using it as a hard constraint, such as in image naturaliza-
tion, the method is entirely parameter-free.
While the present natural-scene GDP can help achieve better

results in light-microscopy image processing, the resulting im-
ages are biased by the prior to look more like natural-scene im-
ages. If quantitative fluorometry or single-molecule quantifica-
tion are the goal, this prior should not be used, since the inten-
sities in the resulting image are altered, and no longer reflect
chemical concentrations of fluorophores.
Moreover, we have only considered 8-bit grayscale images

here. Naturally, the GDP for other bit depths looks different,
and the model parameters have to be re-estimated. The func-
tional shape of the model, however, remains unchanged. It is
important, though, that the discrete operator used to approxi-
mate the gradient in the training data is the same that is also used
later when using the GDP. This ensures that the unavoidable
discretization artifacts cancel out. Unfortunately, a continuous

model seems infeasible, since the gradient magnitude cannot be
bounded.
The GDP model presented here is based on a number of as-

sumptions: First, we assumed gradients at neighboring pixels to
be independent, in order for the integration over the image do-
main to be valid. This is a standard assumption. Second, we as-
sumed that the GDP models are un-normalized fitting functions
and not proper probability distributions. This makes the param-
eter a true free parameter, givingmore freedom to the fit. At the
same time, it does not harm, since the normalization becomes
irrelevant when going from the Bayesian to the variational for-
mulation. Third, we assumed the gradient components to be
identically distributed, but not necessarily independent. This as-
sumption seems reasonable for microscopy images, where we
do not expect any preferential gradient orientation. Fourth, our
parametric GDP model is rotationally symmetric, assuming that
there are no preferred gradient orientations. While this seems
reasonable for natural and microscopy images, it may not hold,
e.g., for architecture images or modern art.
Certainly, the gradient distribution also varies within the set

of natural-scene images. Images of trees have a different gra-
dient distribution than images of beaches. Nevertheless, the dif-
ference between tree and beach GDPs is less than the differ-
ence between natural-scene and non-natural-scene GDPs. It is a
matter of scale, which differences one considers important and
hence interesting. Our aim was to make light-microscopy im-
ages look more natural, in order for the human eye and auto-
matic image analysis methods to be able to better process them,
since both the eye and the methods of computer vision have de-
veloped for natural-scene images. Our goal was not to claim in-
variance of gradient distributions across natural-scene images,
nor to make microscopy images look more like images of trees,
or beaches. This defines the choice of scale at which we attribute
importance to differences.
While we have exclusively focused on the image gradient, the

same work could also be done for higher-order derivatives, like
the Laplace operator. Statistics of higher-order differential op-
erators can provide additional regularization in the same frame-
work [31]. Of special interest could also be the Gaussian curva-
ture (GC) distribution [12], as it directly relates to the geometry
of cell membranes through the Willmore membrane energy. As
shown in Suppl. Fig. 4(a), these second-order quantities satisfy
similar distributions as the gradient. An interesting observation
is that the naturalness factor derived from the distribution of the
Laplacian is highly correlated with the one derived from the gra-
dient distribution (Suppl. Fig. 4(b)). This suggests that the natu-
ralness factor is a universal image feature that does not depend
on the order of the statistic over which it is defined. Confirming
this, however, is still outstanding.
Another potential extension would be to exploit the spar-

sity of the presented GDP model for compressive sensing [65],
where it could be interesting that the present GDP model is
sparser than the hyper-Laplace prior, while still leading to quasi-
convex variational problems. The present work can also be ex-
tended to higher-dimensional images. Constructing and using,
e.g., a GDP for 3D light-microscopy images is straightforward.
The parametric models presented here are sums or products of
1D models and can easily be extended to higher dimensions.
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However, it will not be easy to estimate the parameters, because
there exist almost no 3D natural-scene images.
Notwithstanding these open questions and limitations,

GDPs have repeatedly proven useful and competitive in image
processing. The results presented here confirm many of the
known favorable properties of spectral regularizers in image
processing, and extend the use of GDPs to light-microscopy
images. We believe, for the arguments set out here, that efficient
parametric models of GDP learned from natural-scene images
are a powerful and well-founded tool for light-microscopy
image processing. In order to make this available to the commu-
nity, we provide open-source codes of all algorithms presented
here on the MOSAIC Group web page.
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