
An Architecture for Interactive In Situ Visualization and its
Transparent Implementation in OpenFPM

Aryaman Gupta∗
Technische Universität Dresden

Center for Systems Biology Dresden
MPI-CBG Dresden

Pietro Incardona
Technische Universität Dresden

Center for Systems Biology Dresden
MPI-CBG Dresden

Ata Deniz Aydin
Center for Systems Biology Dresden

MPI-CBG Dresden

Stefan Gumhold
Technische Universität Dresden

Cluster of Excellence Physics of Life

Ulrik Günther
Center for Advanced Systems

Understanding, Görlitz
MPI-CBG Dresden

Ivo F. Sbalzarini†
Technische Universität Dresden

Center for Systems Biology Dresden
MPI-CBG Dresden

Cluster of Excellence Physics of Life

ABSTRACT
Live in situ visualization of numerical simulations – interactive
visualization while the simulation is running – can enable new
modes of interaction, including computational steering. Designing
easy-to-use distributed in situ architectures, with viewing latency
low enough, and frame rate high enough, for interactive use, is
challenging. Here, we propose a fully asynchronous, hybrid CPU–
GPU in situ architecture that emphasizes interactivity. We also
present a transparent implementation of this architecture embedded
into the OpenFPM simulation framework. The benchmarks show
that our architecture minimizes visual latencies, and achieves frame
rates between 6 and 60 frames/second – depending on simulation
data size and degree of parallelism – by changing only a few lines
of an existing simulation code.

CCS CONCEPTS
• Human-centered computing → Visualization; • Computing
methodologies→ Parallel algorithms; Simulation support systems.

KEYWORDS
in situ visualization, distributed rendering, computational steering,
parallel simulation software

ACM Reference Format:
Aryaman Gupta, Pietro Incardona, Ata Deniz Aydin, Stefan Gumhold, Ulrik
Günther, and Ivo F. Sbalzarini. 2020. An Architecture for Interactive In Situ
Visualization and its Transparent Implementation in OpenFPM. In ISAV’20
In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV’20), November 12, 2020, Atlanta, GA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3426462.3426472

∗argupta@mpi-cbg.de
†ivos@mpi-cbg.de

ISAV’20, November 12, 2020, Atlanta, GA, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8812-2/20/11.
https://doi.org/10.1145/3426462.3426472

1 INTRODUCTION
In situ visualization, i.e., the visualization or analysis of a simulation
as it runs, is becoming increasingly important as the disparity
between computational throughput and file I/O grows for large-
scale parallel simulations. In addition, in situ visualization, when
performed interactively, enables new modes of interacting with a
simulation, including online visual analytics [14] and computational
steering [20]. Such interaction can help the scientist develop a better
understanding of the simulated physics.

Live and interactive in situ visualization of distributed-memory
parallel simulations has therefore received much interest in the
recent past. A common challenge is achieving visualization frame
rates that are high enough, and latency that is low enough, for
interactivity.

Here, we address these challenges by proposing a fully asyn-
chronous, hybrid CPU–GPU architecture that emphasizes interac-
tivity in in situ visualization of distributed numerical simulations.
We present the design choices made to optimize performance and
interactivity of in situ visualization. We provide a transparent im-
plementation of the proposed architecture in the open-source C++
simulation framework OpenFPM [15] for scalable particle- and
mesh-based simulations across application domains. Our imple-
mentation follows the design goal of OpenFPM in that it provides
easy-to-use, high-level abstractions to the user. We demonstrate
how live in situ visualization of both particle- and mesh-based simu-
lations can be configured in a few lines of C++ code, requiring only
minimal changes to the simulation application. With visualization
functionality built into OpenFPM, users do not need to download,
install, or link their simulation with any third-party in situ tool.

We describe and benchmark our implementation for varying sim-
ulation sizes and degrees of parallelism, showing that it achieves
high-enough frame rates for smooth interactive viewpoint changes
and zooming. We also show that the asynchronous architecture pro-
posed here reduces the time delay for visual interaction commands.
In particular, we contribute the following:

• We present an asynchronous embedded architecture for in
situ visualization that optimizes interactivity.

• We extend OpenFPM to transparently support interactive in
situ visualization with minimal simulation code changes.

20

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3426462.3426472
https://doi.org/10.1145/3426462.3426472
https://creativecommons.org/licenses/by/4.0/

ISAV’20, November 12, 2020, Atlanta, GA, USA Aryaman Gupta, Pietro Incardona, Ata Deniz Aydin, Stefan Gumhold, Ulrik Günther, and Ivo F. Sbalzarini

2 BACKGROUND
Before presenting our proposed in situ architecture, we review
existing solutions, rationalizing our design choices.

2.1 Simulation Frameworks
Several frameworks offer high-level abstractions to more rapidly
implement parallel numerical simulations. Most of these are spe-
cific to a numerical method. OpenFOAM [17], for example, is for
finite-volume simulations, FEniCS [2], DUNE [5], and AMDiS [24]
for finite-elements, DualSPHysics [7] for Smoothed-Particle Hydro-
dynamics (SPH), LAMMPS [21] for Molecular Dynamics (MD) and
Dissipative Particle Dynamics (DPD), and AMReX [26] for Adaptive
Mesh Refinement (AMR). In addition to method-specific simulation
frameworks, more generic ones cover entire data-structure classes.

Examples of application-agnostic simulation frameworks include
Liszt [8] for stencil codes, and FDPS [16] and OpenFPM [15] for
particle-mesh codes. OpenFPM is open source (http://openfpm.mpi-
cbg.de) and actively developed. It provides high-level abstractions,
including domain decomposition, dynamic load balancing, and dis-
tributed particle and mesh data structures to implement simulations
across application domains, including SPH, MD, DPD, AMR, and
stencil codes. Despite this universality, simulations written using
OpenFPM have been shown to be as, or more, efficient than simula-
tions using more specific libraries, and OpenFPM can also be used
for simulations for which there exists no dedicated library, such as
Vortex Methods [6]. Therefore, we chose to implement the present
in situ architecture in OpenFPM.

2.2 In Situ Architectures and Libraries
Bauer et al. [4] provide an extensive review of existing libraries for
in situ visualization, as well as the diverse architectures they are
based on. In situ visualization can run in close proximity with the
simulation, on the same compute nodes, or it can be executed on
a different set of compute nodes, called in transit processing. On-
node proximity between simulation and visualization reduces data
transfer, but in-transit processing can achieve better resource uti-
lization [18]. Architectures utilizing on-node proximity are further
distinguished into those where visualization and simulation run
synchronously, time-partitioning their access to shared resources,
and those running asynchronously.

Several libraries, including ParaView Catalyst [3], VisIt Libsim
[25] and ISAAC [19], run visualization synchronously and on the
same nodes as the simulation, while Catalyst and Libsim can also
perform asynchronous in-transit processing, e.g., enabled by the
libIs library [23]. ADIOS [27] can be used for in situ visualization
with either in-transit or on-node proximity, running either syn-
chronously or asynchronously. ExaViz [10] and Damaris/Viz [9]
perform asynchronous in situ on the same node as the simulation,
with visualization running on dedicated CPU cores, while ExaViz
also performs in-transit processing. All of these libraries can enable
live in situ visualization. The Cinema framework [1], on the other
hand, enables post hoc interactive visualization using a database of
images generated in situ over a range of visualization parameters.

In situ libraries can also be distinguished between those that are
embedded into a simulation system, and are therefore more light-
weight, and those that are general-purpose and enable better code

reuse. Since general-purpose libraries require a bridge to be imple-
mented between the simulation and visualization data structures,
we choose an embedded design, which allows users of OpenFPM
to activate in situ visualization by adjusting only a few lines of the
simulation code.

3 IN SITU ARCHITECTURE
We propose an on-node, asynchronous, embedded architecture that
emphasizes interactivity in live in situ visualization and computa-
tional steering of distributed-memory parallel simulations.

We choose on-node processing to minimize communication over-
head, which can be significant in large distributed simulations. Sim-
ulation data computed on a particular node is therefore rendered
on that node itself. While previous work has achieved interactive
frame rates using in-transit processing [23], the present on-node
architecture enhances interactivity in computational steering. This
is because any change in simulation data is reflected in the visu-
alization at the earliest, without having to first transmit the new
simulation data for visualization.

To further improve interactivity, we choose fully asynchronous
execution of simulation and visualization, allowing them both to
proceed at their own frequencies, never having to wait for the other.
A simulation time step often takes a few seconds or longer. In a
synchronous in situ architecture, any change to visualization param-
eters would only take effect after completing the next simulation
time step.

Figure 1 compares the timing and message flow in synchronous
vs. asynchronous in situ architectures. In both cases, the worst-case
delay in visual feedback occurs when a visual interaction command,
e.g. a viewpoint change, arrives just after a visualization time step
has begun, too late to be incorporated. The visual feedback of the
interactionwould then be visible only after the completion of the on-
going and the next visualization time step. In the fully synchronous
case, the simulation time step comes in between. The maximum
delay in visual feedback in the synchronous case is therefore just
below tsim+2tvis, while in the asynchronous case it is less than 2tvis.
While visualization time steps can be longer in the asynchronous
case due to resource sharing, our benchmarks in Section 5 show
that asynchronous execution still has less latency. In both cases,
network latency is additional.

While other frameworks, e.g. Damaris/Viz [9], also use on-node,
asynchronous architectures, we aim to enhance interactivity by
leveraging the heterogeneous CPU–GPU architecture increasingly
found in high-performance computers. Within each compute node,
the simulation runs on the CPU, while rendering takes place asyn-
chronously on the GPU. Not only does the GPU accelerate ren-
dering, further reducing visualization latency, it also helps min-
imize competition for resources. To control GPU rendering and
data transfer, a small number of cores on the CPU are dedicated to
visualization while the others perform simulation.

3.1 Simulation Data Handling
In order to reduce memory usage on the CPU, communication of
data from the simulation processes to the visualization process
within a compute node takes place via shared memory. In order to

21

http://openfpm.mpi-cbg.de
http://openfpm.mpi-cbg.de

An Architecture for Interactive In Situ Visualization and its Transparent Implementation in OpenFPM ISAV’20, November 12, 2020, Atlanta, GA, USA

Sim Vis User

Buffer

(a) Synchronous execution

Sim Vis User

(b) Asynchronous execution

Figure 1: Sequence diagram comparing latency for vi-
sual interactions (e.g., camera pose change) between syn-
chronous (a) and asynchronous (b) in situ architectures.
Time increases linearly downward. Interactionmessages are
buffered (shown in red) until the beginning of the next visu-
alization time step.

reduce the data sent to the GPU, simulation data (typically double-
precision floating point) are converted to 16-bit unsigned integers.
Any data structure selected by the user for visualization is trans-
parently converted by OpenFPM to unsigned integers at the end of
each simulation time step. The unsigned int buffer is allocated on a
block of memory that can be shared with the visualization process,
instead of on normal heap memory.

The use of shared memory allows the visualization process to
asynchronously read from the unsigned int buffer at any time and
with zero copy. Since the visualization process only reads data
from the shared buffer, but never writes to it, no synchronization
is required between the simulation process and the visualization
process. This enables fully asynchronous execution as shown in
Figure 1b. Since the unsigned int buffer is updated only at the end
of a simulation time step, visualization artifacts that may result
from this lack of synchronization are short-lived (around a hundred
milliseconds in the benchmarks presented here) and hardly visually
perceived, since numerical stability requires the simulation to only
change slightly between time steps. Changes and re-allocations in
the OpenFPM data structure, e.g. due to dynamic load balancing,
are transparently handled using a double-buffer protocol.

4 IMPLEMENTATION IN OPENFPM
We describe the software implementation of the architecture from
Section 3 and describe how a simulation application uses it.

4.1 Software Architecture
All visualization and simulation processes are part of the same MPI
job. This means that an OpenFPM simulation with in situ visualiza-
tion enabled can be launched with a single mpirun command. If in
situ visualization has been activated by the user, the process with
MPI rank 0 is converted to a master process responsible for receiv-
ing incoming messages on a TCP socket, e.g., for computational
steering and visual interaction. Of the remaining processes, the

…
openfpm_init(&argc, &argv,
 init_options::in_situ_visualization);
…
/* vd is the data structure containing
 * the grid or particles to be visualized */
vd.visualize<0>(); //called in the time loop
…

Figure 2: A code snippet showing the lines of code required
to configure in situ visualization in an OpenFPM simula-
tion.

lowest-ranked process on each compute node is converted to a visu-
alization process. All other processes proceed with the simulation,
as normal.

The master process and all visualization processes are grouped in
anMPI communicator, called the visualization communicator, where
they can send messages for changes in visualization parameters.
Similarly, the master process is placed in the steering communicator
together with all simulation processes, for communicating com-
putational steering messages. All visualization processes are also
part of the rendering communicator, where they can communicate
for the purpose of compositing images. All simulation processes
are part of the compute communicator, used for communications of
distributed solvers and dynamic load balancing.

These communicators are only created if the user activates in
situ visualization. Without it, all processes are launched as simula-
tion processes. This fulfills one of our design goals: The in situ in-
frastructure has minimal impact on an OpenFPM simulation when
not in use. The impact when not in use is limited to an increased res-
ident set size (RSS) and a few additional conditional branches that
are traversed once when the application starts. Existing OpenFPM
simulation code does not require any changes when not using in
situ visualization.

4.2 Distributed Rendering
For rendering images of simulation data, the rendering processes
launch an application written using the open-source rendering
library scenery [12]. Scenery uses the high-performance, low-level
Vulkan API instead of OpenGL, as still predominantly used in most
in situ tools, to better leverage the power of modern GPUs. Scenery
also provides hardware-accelerated H.264/HEVC video encoding,
used for streaming the final rendered images off the compute cluster
to a potentially remote display client.

For scalability, we perform sort-last compositing of images using
the direct-send algorithm [11], which has previously been used
for in situ visualization of simulations scaling to 216,000 cores
[13]. Rendering and compositing of volume data is performed us-
ing Vulkan compute shaders, while rendering of particles uses
fragment shaders. The rendering application, provided embed-
ded with OpenFPM, is also available stand-alone as open source
(https://github.com/scenerygraphics/scenery-insitu).

22

https://github.com/scenerygraphics/scenery-insitu

ISAV’20, November 12, 2020, Atlanta, GA, USA Aryaman Gupta, Pietro Incardona, Ata Deniz Aydin, Stefan Gumhold, Ulrik Günther, and Ivo F. Sbalzarini

4.3 Usage Example
Using our implementation, in situ visualization can be configured
in OpenFPM with just a couple of lines of code, illustrated in the
snippet in Figure 2. When initializing OpenFPM, the user needs to
specify that they would like to activate in situ visualization. Then,
in the time loop of the simulation, the user calls the .visualize()
method of any data structure to be visualized, specifying the field
to be rendered as a C++ template parameter. For the Gray-Scott
and Vortex-in-cell simulations in Figure 3, only 2 of the 116 and
531 lines of code, respectively, of the OpenFPM simulation appli-
cation needed to be changed. The type of rendering, particle or
volume, is determined automatically based on the data structure.
The .visualize() method also accepts optional parameters, e.g.,
to specify whether to visualize the magnitude or a component of a
vector field. All optional parameters, along with transfer function
and camera pose, can also be interactively changed at run-time
from the provided display client.

Example codes are provided in the OpenFPM repository to show
how in situ visualization can be activated and configured in real-
world applications.

5 BENCHMARKS
We perform benchmarks to test the performance of our implemen-
tation, the validity of the asynchronous architecture, and its impact
on the simulation. In all cases, images of resolution 1200x1200 pixels
are generated and frame-rates are averaged over a realistic inter-
active session, with a script triggering camera movements from a
remote display client. Unless otherwise stated, the Gray-Scott sim-
ulation of Figure 3a is used, distributed across 12 nodes, generating
volume data of size 15003.

Figure 4 shows the rendering frame rate, i.e., the number of
images generated in situ per second, versus the number of 20-core
nodes used, for two different data sizes.

The frame rates are sufficiently high for interactive visualization
and remain steady during a visualization session. We also explore
the effect of increasing the number of CPU cores available to the
visualization process on each node. Launching fewer simulation
processes per node (see inset legend) improves the performance of
visualization, which is consistent with previous observations [22].
While OpenFPM simulation processes are single-threaded, the visu-
alization process is multi-threaded. The user can choose the number
of cores to use for visualization by choosing the total number of
processes per node when launching the MPI job.

We further observe that frame rates decrease with increasing
number of nodes. The reason for this is revealed by profiling the
visualization process. We find that the slow-down is caused by
increased network communication. Profiling is performed using
the Gray-Scott simulation with grid resolution 15003. We run the
simulation on 4, 8, and 12 nodes, with both 15 and 18 simulation
processes per node. In every case, we find that at least 97% of the
time required for image compositing is spent in network communi-
cation. The absolute wall-clock times for network communication
are also found to increase for higher numbers of nodes, resulting in
reduced rendering frame rates. The present strong-scaling bench-
mark, where a fixed data size is distributed onto an increasing

Type tvis/s tsim/s Max delay/s

Asynchronous 0.065 0.891 0.130
Synchronous 0.020 0.566 0.606

Table 1: Wall-clock times in seconds and maximum visual-
ization delay/latency.

Number of nodes Simulation
all 20 cores,
no vis.

Simulation
18 cores
+ vis.

Simulation
18 cores, no
vis.

12 114 s 137 s 111 s
Table 2: Overall wall-clock time to complete 200 simulation
time steps with and without in situ visualization.

number of compute nodes, leads to increased communication be-
tween the simulation processes, which further adds to the network
overhead. Alongside compositing, rendering the simulation data
on any node takes place asynchronously on the GPU, controlled by
another thread of the visualization process on the CPU. This results
in the overall visualization frame rates being limited by the net-
work communication required by the direct-send [11] compositing
algorithm.

In a second benchmark, we assess the visualization latency. As
illustrated in Figure 1, a synchronous architecture has a maximum
delay in visual feedback of 2tvis + tsim, whereas asynchronous ex-
ecution has a maximum delay of 2tvis, where tvis and tsim are the
visualization and simulation time step duration, respectively. It is
not obvious, which number is smaller, as the time steps can be
longer in asynchronous execution due to resource sharing. While
for simulations with time steps in the tens of seconds it is clear
that asynchronous execution provides faster response, we test la-
tency for a simulation with sub-second time step. Table 1 shows
the results, suggesting that our asynchronous architecture has sig-
nificantly lower latency even for fast simulation time steps.

Lastly, we benchmark the impact in situ visualization has on
the overall run-time of an OpenFPM simulation. We run the same
Gray-Scott simulation in three scenarios: (1) 20 simulation pro-
cesses per node, occupying all 20 cores of a node; (2) 18 simulation
processes and 1 multi-threaded visualization process per node; (3)
18 simulation processes per node, but no visualization process. In
each scenario, we measure the time to complete 200 simulation
time steps. The results in Table 2 indicate that in situ visualization
has an impact on the performance of the simulation. This impact is
not due to network communication, as the time for communicating
ghost data between simulation processes is not found to increase
significantly when enabling in situ visualization. As mentioned in
Section 3.1, each simulation process is responsible for scaling and
converting its data to an unsigned integer buffer for visualization.
Profiling the code shows that this scaling is the reason for the in-
creased overall runtime of the simulation when in situ visualization
is enabled. For a 15003 grid size distributed across 12 nodes, con-
version and scaling to the unsigned int buffer incurred a constant
overhead of 0.12 s per time step.

23

An Architecture for Interactive In Situ Visualization and its Transparent Implementation in OpenFPM ISAV’20, November 12, 2020, Atlanta, GA, USA

(a) Gray-Scott reaction-diffusion simulation (b) Vortex-in-cell simulation

Figure 3: Example in situ rendering outputs of OpenFPM simulations using the provided remote display client. (a) AGray-Scott
reaction-diffusion simulation using central finite differences on a regular Cartesian mesh. The concentration in 3D space is
visualized as color. (b) A hybrid particle-mesh simulation of the incompressible Navier-Stokes equations in vorticity formula-
tion, initialized as a vortex-ring. The magnitude of the vorticity vector field is visualized. Both simulations were distributed
across 8 compute nodes with 20 cores per node. The thin black lines indicate locations of compute-node boundaries.

4 8 12 16

10

30

50

70

Number of 20-core nodes

Re
nd

er
in
g
fr
am

e
ra
te

[f
ra
m
es
/s
ec
on

d] Size: 15003. 15 sim + 1 vis per node
Size: 20483. 15 sim + 1 vis per node
Size: 15003. 18 sim + 1 vis per node
Size: 20483. 18 sim + 1 vis per node

Figure 4: Rendering frame rate vs. number of nodes.

6 CONCLUSIONS
We have presented a fully asynchronous, hybrid CPU–GPU in
situ visualization architecture for distributed parallel simulations, as
well as its transparent embedded implementation in OpenFPM [15].
This enables OpenFPM-based simulations to use remote, live in
situ visualization by changing just a few lines of code. When not
in use, the in situ capability has no code side-effects and minimal
overhead on the performance of a simulation. Using the present in
situ visualization framework also does not depend on the availabil-
ity or installation of additional software dependencies. For these
three reasons, we call our architecture “transparent”.

The design choices of the present transparent in situ architecture
emphasize interactivity. Throughout the architecture, care was
taken to minimize the latency from an interaction command to the
visual feedback, and to maximize rendering frame rate. Therefore,

we chose a zero-copy shared-memory layout and leveraged hybrid
CPU–GPU hardware using the Vulkan graphics API.

We have benchmarked the performance of our framework, and
have shown that it minimizes visualization latency, and can achieve
frame rates in excess of 15 frames/second even for large data sizes,
if the visualization is provided with sufficient resources.

However, this speed comes at a cost to the simulation, as simula-
tion data needs to be converted to unsigned integers to reduce the
data to be sent to the GPU. While optimizing the implementation
could help reduce overhead, our results inform about the trade-offs
inherent in designing interactive in situ visualization.

In the future, we could spin off the in situ application, currently
tightly-integrated into OpenFPM, so it can also be used with other
simulation frameworks. We will also explore methods to reduce the
amount of rendering data sent over the interconnect, which proved
to be a bottleneck in our benchmarks.

Taken together, we believe that the presented in situ architecture
and its transparent implementation add to the user experience of
OpenFPM-based simulations. Moreover, they provide insights into
best practices when designing in situ architectures, especially for
interactive applications like computational steering.

ACKNOWLEDGMENTS
We thank Prof. Dr. Raimund Dachselt, TU Dresden, for inspiring
discussions. We thank Oscar Gonzalez and the Scientific Computing
Facility of MPI-CBG for providing access to the furiosa HPC system.
This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC-2068 – 390729961 – Cluster of Excellence “Physics
of Life” of TU Dresden. P.I. was supported by a grant from the
German Federal Ministry of Science and Education (BMBF), grant
number 031L0160. U.G. was funded by the Center for Advanced
Systems Understanding (CASUS), financed by Germany’s Federal
Ministry of Education and Research (BMBF) and by the Saxon
Ministry for Science, Culture and Tourism (SMWK) with tax funds
on the basis of the budget approved by the Saxon State Parliament.

24

ISAV’20, November 12, 2020, Atlanta, GA, USA Aryaman Gupta, Pietro Incardona, Ata Deniz Aydin, Stefan Gumhold, Ulrik Günther, and Ivo F. Sbalzarini

REFERENCES
[1] James Ahrens, Sébastien Jourdain, Patrick O’Leary, John Patchett, David H.

Rogers, and Mark Petersen. 2014. An Image-Based Approach to Extreme Scale in
situ Visualization and Analysis. In SC’14: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. IEEE,
424–434.

[2] Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet,
Anders Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N.
Wells. 2015. The FEniCS project version 1.5. Archive of Numerical Software 3, 100
(2015).

[3] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, KennethMoreland,
Nathan Fabian, and Jeffrey Mauldin. 2015. ParaView Catalyst: Enabling In Situ
Data Analysis and Visualization. In Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (Austin, TX,
USA) (ISAV2015). Association for Computing Machinery, New York, NY, USA,
25–29. https://doi.org/10.1145/2828612.2828624

[4] Andrew C. Bauer, Hasan Abbasi, James Ahrens, Hank Childs, Berk Geveci, Scott
Klasky, Kenneth Moreland, Patrick O’Leary, Venkatram Vishwanath, Brad Whit-
lock, and E. W. Bethel. 2016. In Situ Methods, Infrastructures, and Applications
on High Performance Computing Platforms. Computer Graphics Forum 35, 3,
577–597. https://doi.org/10.1111/cgf.12930

[5] Markus Blatt, Ansgar Burchardt, Andreas Dedner, Christian Engwer, Jorrit Fahlke,
Bernd Flemisch, Christoph Gersbacher, Carsten Gräser, Felix Gruber, Christoph
Grüninger, Dominic Kempf, Robert Klöfkorn, Tobias Malkmus, Steffen Müthin,
Martin Nolte, Marian Piatkowski, and Oliver Sander. 2016. The Distributed and
Unified Numerics Environment, version 2.4. Archive of Numerical Software 4, 100
(2016), 13–29.

[6] Georges-Henri Cottet and Petros D. Koumoutsakos. 2000. Vortex Methods: Theory
and Practice. Vol. 8. Cambridge university press Cambridge.

[7] Alejandro J. C. Crespo, José M. Domínguez, Benedict D. Rogers, Moncho Gómez-
Gesteira, S. Longshaw, R. Canelas, Renato Vacondio, Anxo Barreiro, and O. García-
Feal. 2015. DualSPHysics: Open-Source Parallel CFD Solver Based on Smoothed
Particle Hydrodynamics (SPH). Computer Physics Communications 187 (2015),
204 – 216. https://doi.org/10.1016/j.cpc.2014.10.004

[8] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat
Medina,Mike Barrientos, Erich Elsen, FrankHam, AlexAiken, Karthik Duraisamy,
Eric Darve, Juan Alonso, and Pat Hanrahan. 2011. Liszt: A Domain Specific
Language for Building Portable Mesh-Based PDE Solvers. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and
Analysis (Seattle, Washington) (SC ’11). Association for Computing Machinery,
New York, NY, USA, Article 9, 12 pages. https://doi.org/10.1145/2063384.2063396

[9] Matthieu Dorier, Robert Sisneros, Tom Peterka, Gabriel Antoniu, and Dave Se-
meraro. 2013. Damaris/Viz: A Nonintrusive, Adaptable and User-Friendly in situ
Visualization Framework. In 2013 IEEE Symposium on Large-Scale Data Analysis
and Visualization (LDAV). IEEE, 67–75.

[10] Matthieu Dreher, Jessica Prevoteau-Jonquet, Mikael Trellet, Marc Piuzzi, Marc
Baaden, Bruno Raffin, Nicolas Férey, Sophie Robert, and Sébastien Limet. 2014.
ExaViz: A Flexible Framework to Analyse, Steer and Interact with Molecular
Dynamics Simulations. Faraday discussions 169 (2014), 119–142.

[11] Stefan Eilemann and Renato Pajarola. 2007. Direct Send Compositing for Parallel
Sort-Last Rendering. In Proceedings Eurographics Symposium on Parallel Graphics
and Visualization. 29–36. https://doi.org/10.5167/uzh-47723

[12] Ulrik Günther, Tobias Pietzsch, Aryaman Gupta, Kyle I. S. Harrington, Pavel
Tomancak, Stefan Gumhold, and Ivo F. Sbalzarini. 2019. scenery: Flexible Virtual
Reality Visualization on the Java VM. In 2019 IEEE Visualization Conference (VIS).
IEEE, 1–5.

[13] Mark Howison, E. Wes Bethel, and Hank Childs. 2011. Hybrid Parallelism for
Volume Rendering on Large-, Multi-, and Many-Core Systems. IEEE Transactions
on Visualization and Computer Graphics 18, 1 (2011), 17–29.

[14] Seif Ibrahim, Thomas Stitt, Matthew Larsen, and Cyrus Harrison. 2019. Interactive
in Situ Visualization and Analysis Using Ascent and Jupyter. In Proceedings of
the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization (Denver, Colorado, USA) (ISAV ’19). Association for Computing
Machinery, New York, NY, USA, 44–48. https://doi.org/10.1145/3364228.3364232

[15] Pietro Incardona, Antonio Leo, Yaroslav Zaluzhnyi, Rajesh Ramaswamy, and
Ivo F. Sbalzarini. 2019. OpenFPM: A Scalable Open Framework for Particle and
Particle-Mesh Codes on Parallel Computers. Computer Physics Communications
241 (2019), 155–177.

[16] Masaki Iwasawa, Ataru Tanikawa, Natsuki Hosono, Keigo Nitadori, Takayuki Mu-
ranushi, and JunichiroMakino. 2016. Implementation and Performance of FDPS: A
Framework for Developing Parallel Particle Simulation Codes. Publications of the
Astronomical Society of Japan 68, 4 (06 2016). https://doi.org/10.1093/pasj/psw053
arXiv:https://academic.oup.com/pasj/article-pdf/68/4/54/6847738/psw053.pdf 54.

[17] Hrvoje Jasak, Aleksandar Jemcov, and Zeljko Tukovic. 2007. OpenFOAM: A C++
library for Complex Physics Simulations. In International workshop on coupled
methods in numerical dynamics, Vol. 1000. IUC Dubrovnik Croatia, 1–20.

[18] James Kress, Matthew Larsen, Jong Choi, Mark Kim, Matthew Wolf, Norbert
Podhorszki, Scott Klasky, Hank Childs, and David Pugmire. 2019. Comparing the

Efficiency of in situ Visualization Paradigms at Scale. In International Conference
on High Performance Computing. Springer, 99–117.

[19] Alexander Matthes, Axel Huebl, RenéWidera, Sebastian Grottel, Stefan Gumhold,
and Michael Bussmann. 2016. In situ, Steerable, Hardware-Independent and
Data-Structure Agnostic Visualization with ISAAC. Supercomputing Frontiers
and Innovations 3, 4 (2016). https://superfri.org/superfri/article/view/114

[20] Steven G. Parker and Christopher R. Johnson. 1995. SCIRun: A Scientific Program-
ming Environment for Computational Steering. In Supercomputing ’95:Proceedings
of the 1995 ACM/IEEE Conference on Supercomputing. 52–52.

[21] Steve Plimpton. 1995. Fast Parallel Algorithms for Short-Range Molecular Dy-
namics. Journal of computational physics 117, 1 (1995), 1–19.

[22] Tobias Rau, Patrick Gralka, Oliver Fernandes, Guido Reina, Steffen Frey, and
Thomas Ertl. 2019. The Impact of Work Distribution on in Situ Visualization: A
Case Study. In Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (Denver, Colorado, USA) (ISAV ’19).
Association for Computing Machinery, New York, NY, USA, 17–22. https://doi.
org/10.1145/3364228.3364233

[23] Will Usher, Silvio Rizzi, Ingo Wald, Jefferson Amstutz, Joseph Insley, Venkatram
Vishwanath, Nicola Ferrier, Michael E. Papka, and Valerio Pascucci. 2018. LibIS:
A Lightweight Library for Flexible in Transit Visualization. In Proceedings of the
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visu-
alization (Dallas, Texas, USA) (ISAV ’18). Association for Computing Machinery,
New York, NY, USA, 33–38. https://doi.org/10.1145/3281464.3281466

[24] Simon Vey and Axel Voigt. 2007. AMDiS: Adaptive Multidimensional Simulations.
Computing and Visualization in Science 10, 1 (2007), 57–67.

[25] Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. 2011. Parallel In Situ
Coupling of Simulation with a Fully Featured Visualization System. In Euro-
graphics Symposium on Parallel Graphics and Visualization, Torsten Kuhlen,
Renato Pajarola, and Kun Zhou (Eds.). The Eurographics Association. https:
//doi.org/10.2312/EGPGV/EGPGV11/101-109

[26] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke,
Cy Chan, Marcus Day, Brian Friesen, Kevin Gott, Daniel Graves, Max P. Katz,
Andrew Myers, Tan Nguyen, Andrew Nonaka, Michele Rosso, Samuel Williams,
and Michael Zingale. 2019. AMReX: A Framework for Block-Structured Adaptive
Mesh Refinement. Journal of Open Source Software 4, 37 (2019), 1370–1370.

[27] Fang Zheng, Hongbo Zou, Greg Eisenhauer, Karsten Schwan, Matthew Wolf, Jai
Dayal, Tuan-Anh Nguyen, Jianting Cao, Hasan Abbasi, Scott Klasky, Norbert
Podhorszki, and Hongfeng Yu. 2013. FlexIO: I/OMiddleware for Location-Flexible
Scientific Data Analytics. In 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing. 320–331.

REPRODUCIBILITY APPENDIX
For reference, we provide information regarding the open-source
software artifacts developed in this work, and further details re-
garding the experimental setup.

A SOFTWARE ARTIFACTS
All software created through the course of this work is open-source
and maintained in public repositories.

• The OpenFPM framework [15] for particle-mesh simula-
tions, which we implement our in situ architecture into, is
available at: https://git.mpi-cbg.de/openfpm/openfpmpdata.
The code for the in situ architecture is currently in the
insitu_visualization branch, and will soon be merged
into the master branch.

• The distributed rendering application that OpenFPM uses
for in situ visualization is available at https://github.com/sce
nerygraphics/scenery-insitu.

• The application for the display client, which enables remote
interactive visualization of the simulation is available at
https://git.mpi-cbg.de/mosaic/insituclient.

• Both the distributed rendering application and the display
client are based on the scenery [12] visualization frame-
work, which is open source and available at https://github.c
om/scenerygraphics/scenery. Some additions were made to
scenery through the course of this work. Those are currently

25

https://doi.org/10.1145/2828612.2828624
https://doi.org/10.1111/cgf.12930
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.5167/uzh-47723
https://doi.org/10.1145/3364228.3364232
https://doi.org/10.1093/pasj/psw053
https://arxiv.org/abs/https://academic.oup.com/pasj/article-pdf/68/4/54/6847738/psw053.pdf
https://superfri.org/superfri/article/view/114
https://doi.org/10.1145/3364228.3364233
https://doi.org/10.1145/3364228.3364233
https://doi.org/10.1145/3281464.3281466
https://doi.org/10.2312/EGPGV/EGPGV11/101-109
https://doi.org/10.2312/EGPGV/EGPGV11/101-109
https://git.mpi-cbg.de/openfpm/openfpm_pdata
https://github.com/scenerygraphics/scenery-insitu
https://github.com/scenerygraphics/scenery-insitu
https://git.mpi-cbg.de/mosaic/insituclient
https://github.com/scenerygraphics/scenery
https://github.com/scenerygraphics/scenery

An Architecture for Interactive In Situ Visualization and its Transparent Implementation in OpenFPM ISAV’20, November 12, 2020, Atlanta, GA, USA

in the parallel-rendering branch of the repository, and
will be merged into the master branch in the future.

B EXPERIMENTAL SETUP
The benchmarks described in Section 5 were carried out on the
furiosa high-performance computer at the MPI-CBG Dresden. The
GPU partition of the clusterwas used, which houses 23 Intel Broadwell-
EP nodes that host 2 Nvidia GeForce GTX 1080 GPUs each. The
GPUs are Pascal-generation, GP104-400-A1 chips with 8 GiB of
DRAM. Each node holds 2 CPU sockets, each of which hosts an
Intel Xeon E5-2698v4 2.20GHz CPU with 20 cores and a total of 512
GiB of RAM. The cluster runs CentOs 7.0, and the batch-system
scheduler is Slurm, version 18.08.5-2.

Compute nodes in the cluster are connected using a 4-lane FDR
InfiniBand network (Fourteen Data Rate, at 14 Gb/s per lane). It has
a bandwidth of 56 Gbps and a latency of 0.7 microseconds.

We compiled OpenFPM and ran our experiments using gcc
6.2.0 and OpenMPI 4.0.0. The distributed rendering application,
scenery-insitu, was built using AdoptOpenJDK 11.0.7.

In the experiments described in Section 5, for every compute
node used, all tasks were launched on the same CPU socket. The
number of processes launched per node was therefore limited to 20
(the number of cores in the socket), and all processes were bound
to the CPU socket. Nodes were requested with exclusive access.

For the measurement of rendering frame rates (Figure 4), a total
of either 16 or 19 processes were launched on each compute node,
depending on the testing instance as mentioned in the legend inset
in the figure. Processes were not bound to CPU-core, but to socket,
allowing the multi-threaded visualization process to make use of
multiple CPU cores within the socket, as available. On each node,
one process performed visualization, while all others performed
simulation, except on one node, where one process performed TCP
communication with a remote client instead of simulation. To il-
lustrate with an example, if 12 compute nodes were used with 16
processes each, 11 of the nodes would run 1 visualization process

and 15 simulation process, while the 12th node would run 1 visu-
alization process, 14 simulation processes, and 1 master process
performing TCP communication.

The benchmarks were carried out in interactive sessions, with
a script triggering camera viewpoint changes from a remote dis-
play client. The script looped between 4 viewpoints inside and
around the data, with an interval of between 2 and 5 seconds
between successive viewpoint changes. To ensure that the data
occupied a large part of the camera viewport, different values of
pixel-to-world-ratio in scenery ’s Volume Manager were se-
lected for the different data sizes; for grid resolution of 15003, the
value was 0.0036, while for 20483 it was 0.002. The code for the dis-
play client, which also triggered the camera viewpoint changes used
in the benchmarks, can be found at https://git.mpi-cbg.de/mosaic/in
situclient/-/blob/afe500ccb9f3bc4e5a89f35d08ff88f31db2c0e3/src/te
st/kotlin/graphics/scenery/insituclient/client.kt while the initializa-
tion set up used in the Gray-Scott simulation for benchmarking can
be found at https://git.mpi-cbg.de/openfpm/openfpmpdata/-/blob/
7a5dd37a43d39bb66b10f3a32490a24b5c4ca4ac/example/Grid/3grays
cott3d/mainmodified.cpp.

We explain the measurement of simulation time step tsim and
visualization time step tvis, as reported in Table 1. In case of the
synchronous execution we measured tsim with in situ visualization
turned off and the simulation running on all cores within one socket
of each node. Visualization time, tvis, was measured by running the
simulation for a single time step, and launching the visualization
thereafter, allowing it access to the complete set of resources. In
case of asynchronous execution, tsim and tvis were measured with
the simulation instrumented with in situ visualization and running
using our asynchronous architecture.

When measuring the overhead of in situ visualization on the sim-
ulation (Table 2), eleven of the 12 nodes ran a total of 19 processes
(18 simulation + 1 visualization), while the 12th node ran 20, with
the master process additional to the simulation and visualization
processes.

26

https://git.mpi-cbg.de/mosaic/insituclient/-/blob/afe500ccb9f3bc4e5a89f35d08ff88f31db2c0e3/src/test/kotlin/graphics/scenery/insituclient/client.kt
https://git.mpi-cbg.de/mosaic/insituclient/-/blob/afe500ccb9f3bc4e5a89f35d08ff88f31db2c0e3/src/test/kotlin/graphics/scenery/insituclient/client.kt
https://git.mpi-cbg.de/mosaic/insituclient/-/blob/afe500ccb9f3bc4e5a89f35d08ff88f31db2c0e3/src/test/kotlin/graphics/scenery/insituclient/client.kt
https://git.mpi-cbg.de/openfpm/openfpm_pdata/-/blob/7a5dd37a43d39bb66b10f3a32490a24b5c4ca4ac/example/Grid/3_gray_scott_3d/main_modified.cpp
https://git.mpi-cbg.de/openfpm/openfpm_pdata/-/blob/7a5dd37a43d39bb66b10f3a32490a24b5c4ca4ac/example/Grid/3_gray_scott_3d/main_modified.cpp
https://git.mpi-cbg.de/openfpm/openfpm_pdata/-/blob/7a5dd37a43d39bb66b10f3a32490a24b5c4ca4ac/example/Grid/3_gray_scott_3d/main_modified.cpp

	Abstract
	1 Introduction
	2 Background
	2.1 Simulation Frameworks
	2.2 In Situ Architectures and Libraries

	3 In Situ Architecture
	3.1 Simulation Data Handling

	4 Implementation in OpenFPM
	4.1 Software Architecture
	4.2 Distributed Rendering
	4.3 Usage Example

	5 Benchmarks
	6 Conclusions
	Acknowledgments
	References
	A Software Artifacts
	B Experimental Setup

