
Efficient Raycasting of Volumetric Depth Images for Remote Visualization
of Large Volumes at High Frame Rates

Aryaman Gupta*

Technische Universität Dresden
Center for Systems Biology Dresden

MPI-CBG, Dresden

Ulrik Günther
CASUS, Görlitz

Center for Systems Biology Dresden
MPI-CBG, Dresden

Pietro Incardona
Technische Universität Dresden

Center for Systems Biology Dresden
MPI-CBG, Dresden

Guido Reina
Visualization Research

Center, University of
Stuttgart

Steffen Frey
University of Groningen

Stefan Gumhold
Technische Universität Dresden

Ivo F. Sbalzarini†
Technische Universität Dresden

Center for Systems Biology Dresden
MPI-CBG, Dresden

VDI at VN = 30ºReference at VN = 30ºReference at VN = 5º VDI at VN = 5º
121fps, SSIM = 0.990, PSNR = 43.3227fps

27fps 17fps

13fps

107fps, SSIM = 0.977, PSNR = 40.94

91fps, SSIM = 0.956, PSNR = 36.48

31fps

13fps

33fps, SSIM = 0.977, PSNR = 36.80

32fps, SSIM = 0.968, PSNR = 36.20

27fps, SSIM = 0.937, PSNR = 34.87

Figure 1: Visual comparison of VDI rendering quality with direct volume rendering (DVR) for the Kingsnake (top), Rayleigh-
Taylor (middle), and Richtmyer-Meshkov (bottom) datasets. All frame rates are reported without empty-space skipping for
comparability. Image quality metrics are computed w.r.t. the DVR image at the same angle.

ABSTRACT

We present an efficient raycasting algorithm for rendering Volu-
metric Depth Images (VDIs), and we show how it can be used in
a remote visualization setting with VDIs generated and streamed
from a remote server. VDIs are compact view-dependent volume
representations that enable interactive visualization of large volumes
at high frame rates by decoupling viewpoint changes from expensive
rendering calculations. However, current rendering approaches for
VDIs struggle with achieving interactive frame rates at high image
resolutions. Here, we exploit the properties of perspective projection
to simplify intersections of rays with the view-dependent frustums
in a VDI and leverage spatial smoothness in the volume data to min-
imize memory accesses. Benchmarks show that responsive frame
rates can be achieved close to the viewpoint of generation for HD

*e-mail: aryaman.gupta@tu-dresden.de
†e-mail: ivo.sbalzarini@tu-dresden.de

display resolutions, providing high-fidelity approximate renderings
of Gigabyte-sized volumes. We also propose a method to subsample
the VDI for preview rendering, maintaining high frame rates even
for large viewpoint deviations. We provide our implementation as
an extension of an established open-source visualization library.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms Human-centered
computing—Visualization—Visualization techniques

1 INTRODUCTION

Interactive direct volume rendering is commonly used in the explo-
ration and analysis of three-dimensional volume data. Rendering at
high, consistent frame rates is crucial for enabling interactive view-
point changes and zooming, which are important for gaining depth
perception and spatial understanding. As scientific simulations and
experimental devices generate larger data, however, it is increasingly
challenging to achieve high, consistent volume rendering frame rates.
In remote visualization applications, such as live in situ visualization
of numerical simulations, fluent user interaction is potentially also
hindered by network latency to the server.

61

2023 IEEE 16th Pacific Visualization Symposium (PacificVis)

2165-8773/23/$31.00 ©2023 IEEE
DOI 10.1109/PacificVis56936.2023.00014

20
23

 IE
EE

 1
6t

h
Pa

ci
fic

 V
is

ua
liz

at
io

n
Sy

m
po

si
um

 (P
ac

ifi
cV

is
) |

 9
79

-8
-3

50
3-

21
24

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Pa

ci
fic

V
is

56
93

6.
20

23
.0

00
14

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

View-dependent, piecewise constant representations of volumet-
ric data, also known as Volumetric Depth Images (VDIs) [10], pro-
vide a potential solution by decoupling expensive rendering from
interactive viewpoint changes. These representations decompose
the volume rendering integral into segments that store composited
color and opacity. Rendering such a representation involves com-
positing these segments, which is less expensive than performing
the full integration [18] and produces high-fidelity approximations
for camera viewpoints near the viewpoint from which the represen-
tation was generated [10, 21]. Additionally, VDIs are more compact
than the original volume data and can be generated and streamed
efficiently [9, 10]. This provides an attractive potential solution for
interactive remote rendering. However, the large number of seg-
ments and their shape (pyramidal frustums when using perspective
projection) makes VDIs challenging to render efficiently. Existing
VDI rendering methods are thus unable to maintain interactive frame
rates for high-definition (HD) displays.

Here, we present an efficient raycasting-based VDI rendering
method designed to scale to large volumes and high-resolution (full
HD) displays. At the core of our raycasting algorithm is a simpli-
fied way of intersecting rays with segments by computing them in
Normalized Device Coordinate (NDC) space, as well as minimizing
memory accesses by exploiting spatial homogeneity in the data. We
additionally show how empty regions can be skipped in VDI ray-
casting. In comparison to the previous state-of-the-art object-order
rendering algorithm for VDIs [10], we report frame rates that are an
order of magnitude higher near the viewpoint of generation, while
maintaining the same rendering quality with respect to ground-truth
volume rendering. In comparison to a previously proposed ray-
casting approach [21], our method further reduces calculations and
memory accesses.

Generating a VDI requires a dataset and transfer-function depen-
dent sensitivity parameter to control the partitioning of rays into
segments. In previous works, this parameter needed to be tuned
manually, further hampering interactivity. We here instead propose
a technique to automatically optimize the VDI generation parameter
for given constraints. Importantly, this enables the parameter to be in-
dividually tuned for each ray, generating effectively content-adaptive
VDIs that provide better-quality visualizations.

We particularly target a use case in which VDIs are generated at
a remote server from the user’s most recent viewpoint and streamed
to a visualization client. A VDI at the client enables local renderings
of user interactions until an updated VDI becomes available from
the server. To account for the fact that the rendering frame rate
decreases with increasing deviation in camera viewpoint—due to
the anisotropic shape of the VDI—, we propose a technique to
adaptively adjust the sampling along a ray so as to maintain a set
frame rate.

In summary, we contribute an efficient raycasting method for
VDIs that outperforms the current state of the art [10, 21]. We
also suggest a downsampling method for preview rendering at set
frame rates and a method to automatically adjust the VDI gener-
ation parameter individually for each ray, removing the need for
manual tuning. We benchmark the proposed algorithms on several
datasets and provide an open-source implementation as part of the
visualization library scenery [14].

2 RELATED WORK AND BACKGROUND

Recent work in remote rendering has leveraged hardware-accelerated
video encoding [13, 20], client-side reprojections [3, 27], and mo-
tion prediction [12] to achieve high frame rates and low interaction
latency. However, for direct volume rendering of large data, the
primary bottleneck remains the rendering time itself. We review
the literature in explorable image representations (Sect. 2.1) and
deep-learning novel view synthesis (Sect. 2.2), which both provide
potential solutions. Then, we provide some background about the

specific explorable image representation we use here, the VDI [10]
(Sect. 2.3).

2.1 Explorable Image Representations
Several explorable image representations have been proposed in
the literature, often with the goal of decoupling rendering from
interaction in remote-rendering applications. Shade et al. [26] in-
troduced the view-dependent Layered Depth Image (LDI), storing
multiple pixels along each line of sight. This allows for deferred
rendering, but is limited to surface and geometry data. Stone et
al. [29] rendered and streamed omni-directional stereoscopic images
of molecular dynamics simulations from remote compute clusters,
using local reprojections at frame rates suitable for Virtual Reality
(VR). However, omni-directional stereoscopic images require warp-
ing to prevent distortions [28], which depends on depth information
and therefore cannot be applied to volume data. For reprojecting
volume data, Zellmann et al. [37,38] transmitted a single depth layer
along with the color buffer from the rendering server and provided
a number of heuristics to generate the depth buffer. While the use
of a single depth value per pixel minimizes message sizes, it only
yields low-quality reprojections with visible holes where rays do not
intersect the depth layer. VDIs were introduced by Frey et al. [10]
and store a piecewise constant discretization of the volume rendering
integral with no gaps or holes. They have been shown to produce
higher-quality renderings [10].

Tikhonova et al. [30, 31] proposed compact view-dependent rep-
resentations that support interactive transfer function changes. Re-
cently, Rapp et al. [25] modeled scalar densities along each ray in
the Fourier domain, generating more compact representations of the
volume while still supporting interactive transfer function changes.
The focus of these works, however, is on interactive transfer func-
tion changes. This differs from the works mentioned in the first
paragraph, which all consider a given transfer function, but focus on
rendering speed from novel viewpoints. While Rapp et al. [25] do
support viewpoint changes, they require slow bilinear interpolation
of Lagrange multipliers.

In another fundamentally different approach, Ahrens et al. [1]
proposed Cinema for post hoc explorative visualization of numerical
simulations from a database of images generated in situ using differ-
ent visualization parameters and camera viewpoints. All parameters
and viewpoints, however, must be specified in advance, and the
database becomes large if many viewpoints are considered.

2.2 Deep Learning for Novel View Synthesis
More generally, explorable image representations can be seen as
approaches to novel view synthesis, i.e., to the problem of using
“images” of a scene to generate an image from a new viewpoint.
In recent years, this problem has also been addressed using deep
learning techniques. Mildenhall et al. [23], for example, proposed
the NeRF (Neural Radiation Fields) representation. Their neural
network encodes a continuous volume using weights approximating
pre-classified RGBα values at any point in space. More recent
works explored implicit neural representations of large volume data,
achieving high compression ratios [16, 22, 34]. Unlike NeRF, these
methods do not approximate classified values (i.e., with the transfer
function applied), but directly predict the data at the query point.

Importantly, implicit neural representations can be rendered from
new viewpoints by raycasting. Collecting samples by neural infer-
ence, however, is slow [22, 23]. Higher frame rates are achieved
by efficiently distributing samples along the ray [24], varying the
step size using an acceleration data structure [35], or by sampling a
discretized grid [11] or octree [36]. Large, dense regions in volumes,
however, still require many samples to be taken, limiting the frame
rate. The present VDI approach is complementary, as it could, in
fact, be used to cache a neural representation for efficient rendering
by VDI raycasting at high frame rates.

62

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

Original View Direction

Ra
ys

 c
as

t f
ro

m
 o

rig
ina

l v
iew

po
int

Volume Bounding Box

Ne
ar

 P
lan

e

Su
pe

rs
eg

m
en

t L
ist

New viewpoint

(a) World space. The structure of a Volumetric Depth Image [10] and the rendering

calculations that are performed in world space. S and L form pyramidal frustums in

world space. The start and end points for ray marching are determined by intersecting the

viewport and the volume bounding box. Once S
i
j intersection points are determined in

NDC space, they are converted back to world space to determine the length of intersection.

(b) NDC space. Raycasting the VDI in NDC space of VO for determining S intersections.

The start and end points of the ray are converted to NDC space, and the ray steps through

L, determining S intersections. The intersection points are converted back to world space

to determine intersection length.

Figure 2: The structure of a Volumetric Depth Image (VDI) and the coordinate transformations involved in VDI rendering.

2.3 Volumetric Depth Image and Rendering

A VDI is a compressed, view-dependent piecewise constant ex-
plorable representation of volumetric data. We recall it here using
the original notation by Frey et al. [10]. Fig. 2a illustrates the
structure of a VDI. Each ray cast into the volume from the original
viewpoint (VO) decomposes the rendering integral into so-called
supersegments. Each ray i generates a list Li of supersegments Si

j
that store the distances between the near-plane and their front and
back faces, f (Si

j) and b(Si
j), respectively. Each S

i
j contains classi-

fied accumulated color and opacity between f (Si
j) and b(Si

j). Fully

transparent regions in the volume are not included in supersegments.

Given perspective projection during VDI generation, L subdivide
the space spanned by the perspective view frustum. As such, all Li
and S

i
j are irregular pyramidal frustums. During VDI generation,

the number of supersegments in each list, NS, is limited to a pre-set
maximum [5,10,21]. This, together with the viewport resolution, i.e.,
the number of lists NL, determines the size of the VDI. Typically,
the number of lists is much larger than the number of supersegments
per list, i.e., NL� NS.

Different criteria have been proposed to determine supersegment
lengths. Brady et al. [5] generate equal sized supersegments along
each ray. This, however, composites supersegments over potentially
highly heterogeneous samples, hampering the quality of rendering
from a new viewpoint VN. Lochmann et al. [21] therefore divide the
accumulated opacity along a ray equally among the supersegments.
This, however, does not account for potentially varying color values
within supersegments. Frey et al. [10] generated accurate VDIs using
homogeneity as the criterion for supersegment lengths. Samples
along the ray are accumulated into a supersegment until they differ
from the supersegment by more than a user-defined threshold γ ,
in which case a new supersegment is started. Here, we extend
this method by automatically determining γ separately for each ray,
eliminating manual tuning and further improving quality.

Rendering a VDI requires integrating over the S
i
j instead of the

original data voxels. Several methods have been proposed for this.
Brady et al. [5] rely on equal-sized supersegments in each list for
their alpha-blending rendering. This, however, cannot generalize to
supersegments of arbitrary lengths. Frey et al. [10] thus proposed
an object-space approach that creates a frustum geometry for each
supersegment Si

j. The supersegment lists Li are then sorted from

the new viewpoint and rendered using alpha blending. The opacity

Dataset Dimensions Datatype

Engine 256×256×256 uint8
Kingsnake 1024×1024×795 uint8
Rayleigh-Taylor [7] 1024×1024×1024 uint16
Richtmyer-Meshkov [6] 2048×2048×1920 uint8

Table 1: Datasets used to evaluate the presented algorithms.

contribution from S
i
j is based on the intersection length with a ray

from the new viewpoint. This approach, however, requires creating
six triangles for each S

i
j, becoming prohibitive for large VDIs.

Ray-based techniques do not explicitly create any geometry and
therefore scale better to large VDIs. They also allow for early ray
termination and can better leverage the anisotropy of the VDI, as
rays can march quickly along the lists. In the raycasting method by
Lochmann et al. [21], a ray from VN is projected onto VO, raster-
ized, and traversed using a DDA (digital differential analyzer) to
determine the intersected lists. It then computes intersections with
the pyramidal frustums of the supersegments.

The present raycasting method instead computes Si
j intersections

in the Normalized Device Coordinate (NDC) space of VO, where
all Si

j and Li are cuboids (Fig. 2b). This enables the use of voxel

stepping [2] to traverse L and simplifies the computation of the
intersections. Additionally, we exploit the spatial smoothness across
lists to reduce memory accesses, and we propose methods to skip
empty regions and to sub-sample rays for preview rendering.

Throughout this manuscript, we rationalize our design decisions
in benchmarks using the four volume datasets listed in Table 1. The
Engine dataset is a CT scan of two cylinders of an engine block. The
Kingsnake dataset is an X-ray CT scan of an egg of the Lampropeltis
getula snake species. The Rayleigh-Taylor dataset is the density
field at a single time step of a computer simulation of the fluid
instability of same name [7]. The Richtmyer-Meshkov dataset is
the entropy field at a single simulation time step of the so-named
instability [6]. Unless otherwise stated, measurements were done on
a workstation with an Nvidia GeForce RTX 3090 GPU and an AMD
Ryzen Threadripper 3990x 64-core CPU running Ubuntu 20.04.
Volume raycasting, both for generating VDIs and for direct volume
rendering (DVR), used an emission-absorption illumination model.
Due to a buffer size limitation in the runtime system, datasets larger
than 2 GB were distributed across multiple buffers for DVR.

63

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

Dataset NL=1280×720 NL=1920×1080

Kingsnake 0.21 / 0.23 / 0.25 0.40 / 0.42 / 0.46
Rayleigh-Taylor 0.43 / 0.40 / 0.55 0.73 / 0.63 / 0.80
Richtmyer-Meshkov 0.75 / 0.82 / 0.82 1.55 / 1.36 / 1.36

Table 2: Wall-clock times in seconds to generate a single VDI with
NS= 15 / 20 / 30 for the datasets from Table 1. The camera is
rotated about the data in 10° increments, and means over 30 camera
positions are reported. See Fig. 1 for transfer functions.

3 RAY-ADAPTIVE GENERATION OF SUPERSEGMENTS

In order to generate accurate VDIs, Frey et al. [10] proposed a
homogeneity criterion τ for supersegment termination:

τ : γ > ||C(S)α(S)−C′α ′||2, (1)

where C′ and α ′ are the color and the length-adjusted opacity of
the next sample. In words, a sample along the ray is merged into
the current S unless it differs from the pre-multiplied color of S by
more than a user-defined sensitivity parameter γ , in which case a
new S is started. This criterion generates homogeneous S, but the
sensitivity parameter γ is constant across rays and must be carefully
tuned manually for a given dataset and transfer function so as to
prevent visual artefacts. Too high values of γ generate insufficient
supersegments to represent the data. Too low values exhaust the
supersegment budget NS, potentially causing “smearing” artefacts
as the last S must contain all remaining data. We address this
issue by proposing a method to automatically determine a suitable
γ independently for each ray, while guaranteeing a maximum of
NS supersegments per ray.

Leveraging the fact that the number of supersegments produced
decreases monotonically with increasing γ , we perform bisection
search between the highest and lowest possible values of γ until a
value is found that generates NS supersegments, i.e., we optimize
the resolution along rays without violating the constraint NS (see
Supplement for pseudo-code of the algorithm). Since the distance
metric in Equation 1 is an L2 distance between pre-multiplied color

vectors with 3 elements each, the highest possible γ value is
√

3
and the lowest is 0. Each iteration of bisection search samples the
volume along the ray to determine the number of supersegments
generated for the current γ . Since many iterations may be required to
determine a γ that generates exactly NS supersegments, a tolerance
of up to δ fewer supersegments than NS is permitted, but never more
than NS as this would cause “smearing” artefacts. We empirically
find a δ of 15% of NS to provide a good trade-off between perfor-
mance and quality. To eliminate rays that pass through empty or
homogeneous regions, we initialize γ to a small positive value, here

10−5. If the first iteration then generates fewer supersegments than
NS, the samples along that ray are homogeneous, and that ray can
immediately terminate, freeing computational resources for other
rays. Measured VDI generation times for different datasets and
resolutions are given in Table 2. In some cases, generation times are
lower for larger NS, which is because γ search converged faster.

While bisection search for γ requires each ray to pass through
the volume multiple times, it generates more accurate VDIs with
each ray adaptively finding a near-optimal γ , instead of using one
manually-tuned value across all rays. Importantly, automatic γ deter-
mination enables remote VDI generation without user intervention
and streaming to a display client.

4 VDI RENDERING BY RAYCASTING

For each pixel in the viewport, we cast a ray into the VDI. The ray
passes through supersegment lists L, searches for supersegments S
within them, and calculates the intersection length with each S. It

(-1, -1, -1)

(1, -1, -1)

(1, -1, 1)

(1, 1, 1)Original View Direction

List Width

List Height

(0, 1, 1)

Figure 3: The supersegment lists L form a regular 2D grid of cuboids
in the NDC space of VO. In the OpenGL convention used in this
figure, NDC range from -1 to 1 along all axes. The width and height
of each cell (List Width and List Height) are therefore 2/w and
2/h, respectively, where w and h are the x- and y-resolutions of the
viewport used for generating the VDI.

uses this to adjust the color contribution from each supersegment
before accumulating them by alpha compositing.

4.1 Ray Traversal Through Lists
The traversal of a ray is illustrated in Fig. 2. The start and end points
for the ray marching are determined by the intersection of ray with
the viewport that was used to create the VDI and the bounding box
of the volume in the scene. In Fig. 2, for example, the ray marching
begins at tnear and ends at tfar.

To simplify traversing through L and determining intersection
points with S, the calculations are done in the perspective-deformed
Normalized Device Coordinate (NDC) space of VO. In world space,
S and L form pyramidal frustums. In perspective NDC space, they
are cuboids (Fig. 2b), with L forming a regular 2D grid as illustrated
in Fig. 3. A ray then traverses this grid using the fast voxel traversal
algorithm by Amanatides and Woo [2]. With only two floating-point
and two integer additions, and one floating-point and one integer
comparison per iteration, the L intersected next is determined, along
with the intersection points with a given Li, which are then used to
search for Si

j within Li.

4.2 Supersegment Search with Spatial Smoothness
For each intersected L, we find the S that cover the region between
the entry and exit points of the ray. Once the first of these S is
determined (if any), the next is found by adjacency search, since the
S within L are sorted by their position. The algorithm only needs to
check the next or preceding index, depending on the direction of the
ray, which is defined by the sign of the scalar product between the
ray and the original ray vector in world space.

The procedure to determine the first intersected supersegment in a
list is detailed in Alg. 1. The algorithm minimizes memory accesses
by leveraging spatial smoothness in the volume data: neighboring L

are created from rays that pass nearby in the data, and they are thus
likely to have similar sized S. The index p of the last supersegment

S
h
p intersected in the previous list Lh is therefore used as an initial

64

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Find the first supersegment intersected in Li

if Li is the first list intersected then
return binary search from 0 to NS

end if
p ← index of last supersegment intersected in previous list
if Si

p is the first intersected supersegment in Li then
return p

else
if ray position is behind S

i
p then

return binary search between 0 and p−1
else

return binary search between p+1 and NS

end if
end if

Figure 4: Speed-up in VDI rendering frame rates when using Alg. 1
compared to, in each case, the best-performing among linear or
binary search for the first S. A VDI generated from VO is rendered
at rotating viewpoints for three different datasets (symbols).

guess for the first S in the current list Li. If no S was intersected
in Lh, p is the index of the closest S from the previous exit point.
In Fig. 2b, for example, when the ray enters L2, it first tests for
intersection with S

2
2, since 2 was the last index intersected in L3.

The algorithm is further analyzed in the Supplement.
Fig. 4 reports the relative speed-up in VDI rendering frame rates

when using Alg. 1 compared to the respective best of binary or linear
search for the first supersegment in a list. Baseline binary search
is initialized with the middle S in the L, and linear search with the
first S. In all cases, subsequent S are found by adjacency search;
the only difference is in how the first S is found. Alg. 1 yields up to
40% better frame rates.

For each intersected supersegment, the opacity accumulated by
the ray needs to be adjusted by the intersection length of the ray with
the supersegment, as [8]:

˜α = 1− (1−α)l (2)

where ˜α is the adjusted opacity, α is the opacity stored in the super-
segment, and l is the intersection length. Intersections are computed
in NDC space, but adjusting opacity requires the intersection length
l in world space. This needs two additional matrix-vector multiplica-
tions to convert both intersection points to world space. Raycasting
in the NDC space of VO, in comparison to a world (or view) space
technique, such as the one proposed by Lochmann et al. [21], there-
fore optimizes intersections with supersegment lists, but has a higher
cost for each supersegment intersected. Fig. 5 plots the number of
supersegment lists L and supersegments S intersected during VDI
rendering at various viewpoint deviations around VO. The number of
L traversed is larger than the number of S intersected, since for the
majority of lists no supersegments are found. While the difference
is particularly stark for the sparse Kingsnake dataset plotted here,
this is true for more dense datasets, too. The difference between the
number of S and L intersected also grows with viewpoint deviation
due to the anisotropic shape of the VDI. Early ray termination limits

Figure 5: The total number of supersegment lists L and superseg-
ments S (symbols) intersected by all rays for different VN around
VO for an NL=1920×1080, NS=20 VDI of the Kingsnake dataset.

the number of S intersected, while there is no limit on the number
of L intersected. The present strategy thus optimizes the costliest
part of the rendering, which is the traversal of L.

4.3 Empty-Space Skipping

The performance of the present method depends on the number of
memory accesses along a ray. We optimize this by an acceleration
data structure on top of the VDI to skip empty regions. The VDI
implicitly contains the information required to skip empty space
within a L, since S are sorted by front and back depths defining their
position in L. However, this cannot be queried based on the ray
position when moving from one L to the next. Consider the example
in Fig. 6, where Ray A must sample each Li at least once, even in
empty areas, to determine that no S

i
j in those Li is intersected.

We therefore supplement the VDI with a grid acceleration data
structure that stores the number of S overlapping with each grid
cell (black numbers in Fig. 6). This count, rather than just a binary
indicator, is needed for preview rendering as explained in the next
section. When a ray hits a cell storing a 0, it jumps to the other end
of that cell. This way, Ray B skips several L in the empty regions
covered by the first and third cell it traverses. Querying the grid data
structure requires one memory access per cell.

The grid cells have a constant depth extent in view space. In NDC
space, this corresponds to cells that are larger toward the near plane,
and smaller toward the far plane. Each cell spans an equal number
of L along both dimensions of the viewing plane. The depth of a cell
in view space is larger than its width or height, due to the anisotropic
nature of a VDI (there are fewer Si

j in Li than there are Li).

The 3D regular grid could be replaced by hierarchical grids that
provide better empty-space skipping performance, such as an octree
[19] or SparseLeap [15]. However, we chose the current structure
since it can be created during VDI generation with each S

i
j generated

triggering an atomic add on the appropriate grid cell.

4.4 Dynamic Subsampling for Preview Rendering

The performance of the proposed raycasting algorithm depends on
the number of memory accesses and calculations made by the rays
as they traverse the VDI. Around the original view direction (VO),
high frame rates can be achieved as the VDI is compressed along VO.
For larger viewpoint deviations, rendering performance reduces, as
larger portions of the rays go along one of the view plane dimensions.
As illustrated in Fig. 5, the number of intersected supersegment lists
L increases with increasing viewpoint deviation. Each L intersected
in a non-empty cell requires memory accesses to search for S.

In the proposed remote visualization application, new VDIs are
generated when the user’s viewpoint changes. If large deviations
from VO occur at the display client faster than a new VDI can be
generated and streamed, however, the old VDI is used to bridge the

65

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

Original View Direction

2
0

2

381

0
4

2A B C

Ra
ys

 c
as

t f
ro

m
 o

rig
ina

l v
iew

po
int

Figure 6: The grid data structure used for empty-space skipping and
for preview rendering. Numbers in lower right corners are the values
stored in each cell, which indicate the number of supersegments
intersecting that cell. The rays of different color illustrate traversal
strategies: Ray A is the base raycasting algorithm, ray B skips empty
cells, and ray C subsamples the VDI for preview rendering. Dots
indicate points at which the rays query the VDI to search for a
supersegment in a list.

time, trading off quality. In order to maintain frame rates, this uses
dynamic sub-sampling for preview rendering.

One way to achieve preview rendering would be to decrease the
number of rays cast, followed by upsampling to the desired display
resolution. Another way is to sub-sample along rays. We analyze
the influence of both on VDI rendering performance and quality.
Quality is measured using the SSIM [32] w.r.t. fully resolved DVR.
Higher SSIM indicate better rendering quality, with 1.0 indicating
identical images. Fig. 7 shows the results for a NL=1920× 1080,
NS=20 VDI generated on the Richtmyer-Meshkov dataset, rendered
at 30° from VO. The VDI is the same in all cases.

The largest circles of each color, highlighted with a black outline,
indicate the quality and performance obtained at various levels of
downsampling (DI) in image space, i.e., by decreasing number of
rays. DI is indicated by color, with 1.0 indicating a full-resolution
rendering. At DI=1.0 (yellow), the VDI renders at 45 fps. Frame
rates increase when decreasing DI , but only slowly. To achieve a
frame rate of ≈150 fps for example requires DI=0.2, which generates
an image with SSIM=0.88. This is significantly worse than the SSIM
of 0.97 for DI=1.0.

We therefore propose to additionally sub-sample the rendering
along the view ray, limiting the number of memory accesses and
allowing higher values of DI for the same set frame rate. In order
to sample the VDI according to its information content, we use the
acceleration data structure (Sect. 4.3) to distribute samples along the
ray proportional to the number of S in each grid cell. The samples
are then uniformly thinned by a factor DR. Rendering is further
simplified by not calculating S intersections. As the ray marches, it

simply queries which S
i
j a given sample point lies within, if any, and

obtains the color from S
i
j. Length-based opacity correction (Eq. 2)

is approximated using the distance from the previous sample. Since
S

i
j intersections are not computed, sampling is done in world space.

The Li of a sample is found from its x- and y-coordinates in NDC
space. The S

i
j in Li is found using the algorithm from Sect. 4.2.

The number of samples within each cell of the acceleration grid
is found by multiplying the sampling rate DR with the intersection
length of the ray with the cell and with the number of S in the cell,

Figure 7: Performance (fps) and quality (SSIM w.r.t. DVR) of adap-
tively sub-sampling VDI rendering along image dimensions (DI) and
along the ray (DR). Color is used to represent DI , smaller circle radii
indicate smaller DR. Circles with black outlines use full-resolution
rendering along the ray. Display resolution is always 1920×1080.
Images rendered with DI<1.0 are upsampled for display using bilin-
ear interpolation.

which is stored in the grid (Sect. 4.3). Samples are then placed
at regular intervals along the ray within each cell. This amounts
to adaptive sampling, as empty cells are not sampled and regions
covered by more S are sampled more finely. Ray C in Fig. 6 shows
an example.

Adaptively sub-sampling the VDI enables rendering higher-
quality images with larger DI for the same frame rate, as shown
in Fig. 7. Circles with white outline represent adaptive sub-sampling
with smaller values of DR shown by smaller radii. The same ≈150
fps can now be achieved with significantly higher SSIM of 0.94 with
DI=0.6 in image space and DR=0.14 along the rays.

Sub-sampling the VDI for preview rendering requires choosing
DI and DR to obtain good image quality for a given target frame
rate. We analyzed several datasets at multiple view configurations
(see Supplement for details) and, while the results are qualitatively
similar to Fig. 7, the values at which a set of parameters becomes
better than another one vary widely. The present remote visualization
application (Sect. 5) therefore uses a dynamic PI (Proportional-
Integral) controller to modulate DI , while allowing the user to choose
the target frame rate and DR.

5 INTERACTIVE REMOTE VISUALIZATION USING VDIS
Using the described methods to adaptively generate VDIs and to
render them efficiently, we present the design of an application that
enables remote visualization of large data volumes at high frame
rates. VDIs are generated on a server and streamed to a display
client where they are rendered. Compared to remote DVR and
streaming of rendered images, the proposed approach affords better
interactive responsiveness, since the VDI is rendered locally on the
client, bypassing network latency for small viewpoint changes.

Each time the user changes the camera viewpoint on the display
client, the camera pose is communicated to the server. As soon
as the server finishes generating a VDI, it reads the most recent
camera pose from the network. If the pose is different from the
one of the previous VDI, or if the data themselves changed, a new
VDI is generated. The data can change, e.g., if the server provides
live in situ visualization of a simulation. The VDI can optionally
be compressed before transmission to the client. Compression and

66

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

Dataset
VDI resolution
with NS = 20

VN

10º 20º 40º

Engine
512×512

28 28 27
1174 428 291

1024×1024
9 9 9
454 80 60

Kingsnake
512×512

31 31 30
359 298 234

1024×1024
11 10 10
441 50 44

Rayleigh-
Taylor

512×512
20 18 18
710 589 401

1024×1024
5 5 5
226 167 124

Table 3: Comparing the performance (in fps) of our approach (bold)
for rendering VDIs with the rasterization-based technique from [10].

streaming of the VDI are done asynchronously, interleaved with the
generation of the next VDI, using separate CPU threads. Streaming
of VDIs and communication of viewpoint changes is implemented
using the networking library ZeroMQ (see zeromq.org).

At the display client, receiving, decompressing, and uploading
the VDI to the GPU are done asynchronously with VDI rendering
on the GPU. Double buffering is used on the GPU to ensure that the
previous VDI can be rendered while a new one is uploaded. The
client always receives only the most recent VDI generated by the
server. Near the viewpoint from which the VDI was generated (VO),
full-resolution VDI rendering is performed, maintaining high image
quality at high frame rates. If frame rates drop below a user-set mini-
mum at larger deviations from VO, rendering transparently switches
to adaptive sub-sampling for preview rendering until the new VDI is
received from the server. At that moment, full-resolution rendering
resumes. Note, however, that rendering of the new VDI need not
begin from the viewpoint of generation, as the user may already
have changed the camera position meanwhile. Future extensions
could explore techniques that predict the user’s camera movements
to speculatively generate a VDI from the predicted viewpoint.

We implemented this remote visualization application in the open-
source visualization library scenery [14]. The source code is avail-
able under the BSD license at github.com/scenerygraphics/scenery.
The implementation uses the high-performance Vulkan graphics
API, enabling it to run across GPUs from different manufacturers.
Both rendering and generation of VDIs are implemented using com-
pute shaders. For work distribution in the compute shaders, a local
workgroup size of 16×16 is used, i.e., the screen space is divided
into 2D blocks of that size. Each ray within a block corresponds
to a thread on the GPU and a single pixel on screen. Each VDI
consists of two floating-point textures: one for storing color and
opacity of supersegments (type RGBA32F) and one for the depth
of the supersegments (type R32F), with both front and back depth
stored within.

6 EVALUATION

We evaluate our implementation of the present algorithms on the real-
world datasets from Table 1. For evaluation, VDIs were generated
from one or more viewpoints (VO) and rendered at one or more
new viewpoints VN. The VN were rotations of the camera about
the dataset center with the camera always facing the dataset center.
Unless otherwise stated, results are reported as frame rates, i.e., the
inverse of the frame time at a given camera pose.

6.1 Comparison with other VDI Rendering Techniques
We first compare the present raycasting-based VDI rendering with
the rasterization-based method of Frey et al. [10]. To ensure that

both methods render identical VDIs, the VDIs were generated using
the implementation of Frey et al. and imported into our software
for rendering. We also disabled empty-space skipping (Sect. 4.3)
in our implementation, since the code by Frey et al. does not have
it. Table 3 reports the results. We could only use the three smaller
datasets, and smaller viewport resolutions, for this comparison, due
to technical limitations in the implementation by Frey et al.

In all cases, the present method outperforms the rasterization-
based approach, often by more than an order of magnitude. For
the implementation by Frey at al., performance is similar to that
reported in the original 2013 paper, indicating that their technique of
sorting supersegment lists L in front-to-back order for a given ren-
dering viewpoint VN, followed by α-blending, does not substantially
benefit from recent advances in GPUs.

The performance of Frey et al. [10] remains similar at all tested
VN. The present raycasting method, however, is faster at smaller
viewpoint deviations. This is because raycasting can take advantage
of the anisotropic view-dependent shape of the VDI, where rays can
march quickly along supersegment lists, leading to higher frame
rates near VO. Another advantage of the raycasting approach can
be observed for the dense Rayleigh-Taylor dataset, where early ray
termination provides significant speed-ups not possible with object-
space approaches like that of Frey et al. The Kingsnake dataset
is challenging when disabling empty-space skipping, because it
contains large empty regions. Still, the present method outperforms
Frey et al., even without empty-space skipping.

The present raycasting approach is also more consistent in its
memory requirement, since no geometry needs to be generated. The
memory required by the code of Frey et al. [10] depends heavily on
the dataset. For the dense Rayleigh-Taylor dataset at 1024×1024
viewport resolution, Frey et al. generate 3473 MB of geometry
and for the sparse Kingsnake dataset only 349 MB. Our code has
a constant memory requirement of 480 MB across all datasets for
1024×1024 viewport resolution. In addition to providing faster
rendering performance, our raycasting approach does not require
creation of geometry which is a one-time per-VDI cost for Frey et
al. The rendering quality produced by the two methods is the same,
and therefore not compared.

We were unable to perform empirical performance comparisons
with the raycasting technique proposed by Lochmann et al. [21] for
a similar data structure, since their code is not publicly available. As
explained in Sect. 4, however, our technique of traversing the VDI in
the NDC space of VO reduces the number of calculations compared
to the strategy described by Lochmann et al., where traversal is
performed in view space requiring intersections with pyramidal
frustums (confirmed by original authors in personal communication).
While Lochmann et al. do not provide details on how supersegments
are searched for within supersegment lists, our optimized search
strategy leveraging spatial homogeneity provides speed-ups of up to
40% over binary search (Fig. 4). Lochmann et al. also did not use
empty-space skipping, likely losing further performance (Fig. 8).

6.2 Comparison with Direct Volume Rendering

Next, we compare the present approach with DVR. VDIs are gen-
erated from four different VO, placed around the dataset at 90° ro-
tations, rendered at different deviations VN about each VO, and
compared with DVR from the same viewpoint. Fig. 8 plots the
mean frame rates over the four VO for two different viewport reso-
lutions, NL=1280×720 (standard HD) and NL=1920×1080 (full
HD). VDI frame rates are reported with and without empty-space
skipping (ESS) for comparability with DVR, which does not use
empty-space skipping.

At small VN=5°, VDI rendering achieves significant speed-
ups over DVR in the range of 4.5. . .24.5× for standard HD and
3.5. . .7.5× for full HD across datasets. VDI raycasting frame rates
decrease for increasing VN, as rays have to do more work due to the

67

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

(a) Rendering frame rates for 1280×720, NS=20, VDIs. (b) Rendering frame rates for 1920×1080, NS=20, VDIs.

Figure 8: VDI rendering frame rates without (“ours”, blue/green filled symbols) and with empty-space skipping (“ours+ESS”, blue/green open
symbols) for different datasets, compared with direct volume rendering (“DVR”, gray symbols) from the same viewpoint.

Richtmyer-Meshkov

Figure 9: SSIM image similarity between VDI rendering and DVR
from the same viewpoint for 1280×720 (top) and 1920×1080 (bot-
tom) with NS=20 for different datasets (symbols).

anisotropic view-dependent shape of the VDI. However, they remain
higher than DVR at all VN except for the full HD rendering of the
Kingsnake beyond 30°. The lower speed-ups for full HD resolution
compared to standard HD are expected, since the sizes of the VDI
and the rendering viewport both increase. Empty-space skipping
mostly increased VDI rendering frame rates, particularly for the
sparse Kingsnake and Richtmyer-Meshkov datasets, but occasion-
ally reduced them slightly for the dense Rayleigh-Taylor dataset.

We also compared the quality of the images generated by VDI ren-
dering with those from DVR. Fig. 9 provides the results in terms of
the SSIM (Structural Similarity Index Measure) [32], where higher
values are better and 1.0 corresponds to identical images. Fig. 1
provides visual comparisons (see Supplement for full resolution
images). Like frame rates, SSIM values are also higher for smaller
VN, as view rays are better aligned with the rays that generated the
VDI. The reduction in rendering quality, however, is minor even at
high VN of up to 40°. Similar results are observed when using the
PSNR quality metric (see Supplement).

VDI rendering quality can further be increased by increasing
NS at the cost of larger VDI size and reduced frame rates. Render-
ing frame rates, however, were found to reduce sub-linearly with
increasing NS, falling to between 0.61× and 0.89× when doubling
NS.

Videos can be found in the Supplementary material showing
interactive visualization sessions using both DVR and VDI rendering
on all datasets.

6.3 Comparison with Remote Volume Visualization

Finally, we compare the present VDI-based remote visualization
system with remote DVR using NVENC video encoding for image
streaming. For network streaming, our implementation compresses
VDIs using the lossless LZ4 algorithm, which we found to provide
the best trade-off between speed and compression in our bench-
marks, in comparison with zstd and Snappy. LZ4 yields compressed
VDIs of ≈100 MiB for standard HD (1280× 720) resolution and
≈225 MiB for full HD (1920×1080). The corresponding uncom-
pressed VDI sizes are 422 MiB and 950 MiB, respectively. In addi-
tion, the empty-space skipping data structure (2.5 MiB for full HD)
and the metadata about VO (≈200 Bytes) are also transmitted.

To evaluate the performance of the present system in its en-
tirety, we compare with existing remote visualization functional-
ity in scenery [14], which offers video streaming with hardware-
accelerated encoding and decoding using NVENC and CUVID, re-
spectively. The volume data reside on a server with Nvidia GeForce
RTX 3090 GPU, where DVR and VDI generation take place. The
display client is a standard office workstation with an AMD Radeon
RX 5700XT GPU, connected via 1 Gbit/s Ethernet across rooms.

All camera viewpoint changes are applied synchronously at the
client in order to ensure frame-to-frame comparability. Overall frame
times are measured to estimate the “motion-to-photon” latency, i.e.,
the time between the user making a movement and the movement
being fully reflected on the display. For the VDI, this is the rendering
frame time of the VDI at the client. For remote DVR, it is the
rendering frame time plus the streaming time, which includes the
time to send the new camera pose to the server, encode the rendered
frame, stream, and decode the frame at the client.

A camera path is pre-recorded, consisting of four phases that eval-
uate different modes of interactive visualization: Phases 1 (frames
0-500) and 4 (frames 1500-2000) show steady camera movements
for data exploration; Phase 2 (frames 500-1000) consists of fast
movements for navigation, and in Phase 3 (frames 100-1500) the
camera zooms in on a point of interest and then out again. Screen-
casts of the interactive sessions with DVR and VDI rendering are
provided in the Supplement. Fig. 10 reports the performance mea-
surements for full HD resolution of the Richtmyer-Meshkov dataset.

Streaming time was found to add only a marginal overhead on
DVR timings in our setup. While we were unable to measure decod-
ing timings on the AMD Radeon RX 5700XT due to incompatibility
with scenery’s CUVID decoding, on the RTX 3090 we found decod-
ing times < 0.5 ms per frame. NVENC encoding added a consistent
overhead of approximately 5 ms. Fig. 10 also reports the frame num-
bers at which new VDIs become available for rendering, providing
an estimate of the “VDI latency”, which includes VDI generation,

68

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

Steady movement Steady movementFast Navigation Zoom movement

Figure 10: Top panel: end-to-end frame times for remote visualiza-
tion of the Richtmyer-Meshkov dataset in full HD resolution using
remote DVR (on an RTX 3090) and VDI rendering (on a Radeon RX
5700XT) over an interactive session of 2000 frames (see video in
Supplement). Bottom panel: VDI rendering and VDI subsampling
quality at every 20th frame as SSIM w.r.t. DVR images.

transmission, compression and decompression, as well as GPU up-
load. Note that this latency is hidden from the user through double
buffering (Sect. 5).

During the steady camera movements of Phases 1 and 4, new
VDIs that arrive from the server are rendered at not-too-distant
viewpoints from VO. This results in smooth interactive frame rates
with frame-times significantly shorter than those achieved by remote
DVR, while maintaining high rendering quality. VDI frame times
are also significantly shorter than those of remote DVR during the
zooming Phase 3. As the camera zooms back out towards the end
of Phase 3, missing regions are visible in the VDI rendering. This
is because the VDI generated from the zoomed-in viewpoint is still
rendered, representing only data within its viewport. This leads to
the drop in SSIM towards the end of Phase 3, until the new VDI for
the zoomed-out viewpoint arrives.

The fast navigation in Phase 2 is challenging for VDI rendering,
as large deviations from VO occur. This leads to increasing VDI
frame times, eventually becoming comparable to those of DVR in
this phase. Note, however, that VDI rendering runs on an AMD
Radeon RX 5700XT, which is significantly less powerful (0.24×
computational throughput, 0.44× peak memory bandwidth) than the
RTX 3090 used for DVR.

We also evaluate the adaptive preview rendering strategy of
Sect. 4.4 and demonstrate how the PI controller dynamically ad-
justs DI to maintain a target frame rate. Adaptive sampling along
the ray is manually activated during Phase 2 with DR=0.3. The PI
controller is able to maintain a steady frame rate of 25 fps through
most of the session, though jerkiness was observed during Phase 2.

7 CONCLUSIONS

We have presented an efficient raycasting-based rendering method
for VDIs and its use in remote visualization of large volume data. At
its core is an efficient way of intersecting supersegment lists L and
supersegments S by ray marching in the NDC space of VO, where
all L are transformed from irregular pyramidal frustums to cuboids.
These can then be traversed by voxel stepping [2]. We presented
an efficient method for finding S within L by leveraging spatial
smoothness in the data. This increases frame rates by up to 40%
over the binary search baseline. We also presented a method for
skipping empty space during raycasting.

The presented method significantly outperforms the rasterization-

based VDI rendering by Frey et al. [10] (Table 3), which we found
to not scale well to modern GPUs. Our raycasting approach also
has a few inherent advantages: it does not require the creation of
geometry, benefits from early ray termination, and better leverages
the anisotropy of the VDI near VO. While we were unable to present
a direct comparison with the raycasting approach by Lochmann
et al. [21] due to unavailability of their code, we argue that our
L traversal, S search, and empty-space skipping are likely to result
in better performance. We also found that our VDI rendering frame
rates are significantly higher than DVR (Fig. 8) close to VO, while
providing high-quality approximations (Fig. 9).

Finally, we have shown how the present method can be used in a
remote visualization application. In this context, we have proposed
an extension to the VDI generation technique of Frey et al. [10],
where γ values are adaptively determined for each ray, generating
more accurate VDIs without manual parameter tuning. To perform
preview rendering at large viewpoint deviations before the next VDI
arrives, we proposed an adaptive sub-sampling along the ray, which
we have shown to combine well with image-space sub-sampling
to yield consistently high frame rates. Overall, the entire remote
visualization application sustained higher frame rates than remote
DVR (Fig. 10).

A current limitation of our implementation is that the adaptive
subsampling along the rays needs to be activated and tuned manually,
while subsampling in image space is dynamically controlled by a PI
controller. Future extensions could relax this limitation by exploring
Multi Input Multi Output (MIMO) controllers. A limitation of the
VDI data structure itself is that while it can model non-directional
lighting, such as local ambient occlusion [17], directional effects,
such as specular lighting, cannot be realized because the VDI stores
classified color and opacity.

We see the presented rendering approach to VDIs as a step toward
remote visualization of large volumes. The frame rates achieved
by the present implementation are consistently higher than those of
DVR and of other VDI rendering approaches. Further improvements,
such as foveated rendering [4, 33], can potentially increase them
even further in the future.

ACKNOWLEDGMENTS

This work was supported by the Center for Scalable Data Analyt-
ics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig. This
work was partially funded by the Center for Advanced Systems
Understanding (CASUS), financed by Germany’s Federal Ministry
of Education and Research (BMBF) and by the Saxon Ministry for
Science, Culture and Tourism (SMWK) with tax funds on the basis
of the budget approved by the Saxon State Parliament. We thank the
University of Texas High-Resolution X-ray CT Facility (UTCT) for
the Kingsnake dataset.

REFERENCES

[1] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Pe-

tersen. An image-based approach to extreme scale in situ visualization

and analysis. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’14,

pp. 424–434. IEEE Press, Piscataway, NJ, USA, 2014. doi: 10.1109/SC

.2014.40

[2] J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for

Ray Tracing. In EG 1987-Technical Papers. Eurographics Association,

1987. doi: 10.2312/egtp.19871000

[3] M. Aumüller. Hybrid Remote Visualization in Immersive Virtual

Environments with Vistle. In H. Childs and S. Frey, eds., Eurographics
Symposium on Parallel Graphics and Visualization. The Eurographics

Association, 2019. doi: 10.2312/pgv.20191113

[4] D. Bauer, Q. Wu, and K.-L. Ma. Fovolnet: Fast volume rendering using

foveated deep neural networks. IEEE Transactions on Visualization
and Computer Graphics, pp. 1–11, 2022. doi: 10.1109/TVCG.2022.

3209498

69

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

[5] M. Brady, K. Jung, H. Nguyen, and T. Nguyen. Two-phase perspec-

tive ray casting for interactive volume navigation. In Proceedings.
Visualization ’97 (Cat. No. 97CB36155), pp. 183–189, 1997. doi: 10.

1109/VISUAL.1997.663878

[6] R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A.

Mirin, Y. Zhou, D. H. Porter, and P. R. Woodward. Three-dimensional

simulation of a Richtmyer–Meshkov instability with a two-scale initial

perturbation. Physics of Fluids, 14(10):3692–3709, 2002. doi: 10.

1063/1.1504452

[7] A. W. Cook, W. Cabot, and P. L. Miller. The mixing transition in

Rayleigh-Taylor instability. Journal of Fluid Mechanics, 511:333–362,

2004. doi: 10.1017/S0022112004009681

[8] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, and

D. Weiskopf. Real-time volume graphics. In ACM SIGGRAPH 2004
Course Notes, SIGGRAPH ’04, p. 29–es. Association for Comput-

ing Machinery, New York, NY, USA, 2004. doi: 10.1145/1103900.

1103929

[9] O. Fernandes, S. Frey, F. Sadlo, and T. Ertl. Space-time volumetric

depth images for in-situ visualization. In 2014 IEEE 4th Symposium
on Large Data Analysis and Visualization (LDAV), pp. 59–65, 2014.

doi: 10.1109/LDAV.2014.7013205

[10] S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images

from raycasting. In 2013 XXVI Conference on Graphics, Patterns and
Images, pp. 123–130, 2013. doi: 10.1109/SIBGRAPI.2013.26

[11] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin.

Fastnerf: High-fidelity neural rendering at 200fps. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 14346–14355, October 2021.

[12] S. Gül, D. Podborski, T. Buchholz, T. Schierl, and C. Hellge. Low-

latency cloud-based volumetric video streaming using head motion

prediction. In Proceedings of the 30th ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video, NOSSDAV

’20, p. 27–33. Association for Computing Machinery, New York, NY,

USA, 2020. doi: 10.1145/3386290.3396933

[13] S. Gül, D. Podborski, J. Son, G. S. Bhullar, T. Buchholz, T. Schierl,

and C. Hellge. Cloud rendering-based volumetric video streaming

system for mixed reality services. In Proceedings of the 11th ACM
Multimedia Systems Conference, MMSys ’20, p. 357–360. Association

for Computing Machinery, New York, NY, USA, 2020. doi: 10.1145/

3339825.3393583

[14] U. Günther, T. Pietzsch, A. Gupta, K. I. Harrington, P. Tomancak,

S. Gumhold, and I. F. Sbalzarini. scenery: Flexible virtual reality

visualization on the Java VM. In 2019 IEEE Visualization Conference
(VIS), pp. 1–5, 2019. doi: 10.1109/VISUAL.2019.8933605

[15] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister.

Sparseleap: Efficient empty space skipping for large-scale volume

rendering. IEEE Transactions on Visualization and Computer Graphics,

24(1):974–983, 2018. doi: 10.1109/TVCG.2017.2744238

[16] J. Han and C. Wang. Coordnet: Data generation and visualization

generation for time-varying volumes via a coordinate-based neural

network. IEEE Transactions on Visualization and Computer Graphics,

pp. 1–12, 2022. doi: 10.1109/TVCG.2022.3197203

[17] F. Hernell, P. Ljung, and A. Ynnerman. Local ambient occlusion in

direct volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 16(4):548–559, 2010. doi: 10.1109/TVCG.2009.

45

[18] A. Kaufman and K. Mueller. 7 - overview of volume rendering. In

C. D. Hansen and C. R. Johnson, eds., Visualization Handbook, pp.

127–174. Butterworth-Heinemann, Burlington, 2005. doi: 10.1016/

B978-012387582-2/50009-5

[19] B. Liu, G. J. Clapworthy, F. Dong, and E. C. Prakash. Octree ras-

terization: Accelerating high-quality out-of-core GPU volume ren-

dering. IEEE Transactions on Visualization and Computer Graphics,

19(10):1732–1745, 2013. doi: 10.1109/TVCG.2012.151

[20] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and

M. Gruteser. Cutting the cord: Designing a high-quality untethered VR

system with low latency remote rendering. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’18, p. 68–80. Association for Computing Machin-

ery, New York, NY, USA, 2018. doi: 10.1145/3210240.3210313

[21] G. Lochmann, B. Reinert, A. Buchacher, and T. Ritschel. Real-

time Novel-view Synthesis for Volume Rendering Using a Piecewise-

analytic Representation. In M. Hullin, M. Stamminger, and

T. Weinkauf, eds., Vision, Modeling & Visualization. The Eurographics

Association, 2016. doi: 10.2312/vmv.20161346

[22] Y. Lu, K. Jiang, J. A. Levine, and M. Berger. Compressive neural

representations of volumetric scalar fields. Computer Graphics Forum,

40(3):135–146, 2021. doi: 10.1111/cgf.14295

[23] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-

thi, and R. Ng. Nerf: Representing scenes as neural radiance fields

for view synthesis. Commun. ACM, 65(1):99–106, dec 2021. doi: 10.

1145/3503250

[24] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics

primitives with a multiresolution hash encoding. ACM Trans. Graph.,
41(4):102:1–102:15, July 2022. doi: 10.1145/3528223.3530127

[25] T. Rapp, C. Peters, and C. Dachsbacher. Image-based visualization

of large volumetric data using moments. IEEE Transactions on Visu-
alization and Computer Graphics, 28(6):2314–2325, 2022. doi: 10.

1109/TVCG.2022.3165346

[26] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered Depth Images.

In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’98, p. 231–242. Association

for Computing Machinery, New York, NY, USA, 1998. doi: 10.1145/

280814.280882

[27] S. Shi, V. Gupta, M. Hwang, and R. Jana. Mobile VR on edge cloud:

A latency-driven design. In Proceedings of the 10th ACM Multimedia
Systems Conference, MMSys ’19, p. 222–231. Association for Com-

puting Machinery, New York, NY, USA, 2019. doi: 10.1145/3304109.

3306217

[28] A. Simon, R. Smith, and R. Pawlicki. Omnistereo for panoramic

virtual environment display systems. In IEEE Virtual Reality 2004, pp.

67–279, 2004. doi: 10.1109/VR.2004.1310057

[29] J. E. Stone, W. R. Sherman, and K. Schulten. Immersive molecular

visualization with omnidirectional stereoscopic ray tracing and remote

rendering. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pp. 1048–1057, 2016. doi:

10.1109/IPDPSW.2016.121

[30] A. Tikhonova, C. D. Correa, and K.-L. Ma. Explorable images for

visualizing volume data. In 2010 IEEE Pacific Visualization Sympo-
sium (PacificVis), pp. 177–184, 2010. doi: 10.1109/PACIFICVIS.2010.

5429595

[31] A. Tikhonova, C. D. Correa, and K.-L. Ma. An exploratory technique

for coherent visualization of time-varying volume data. Computer
Graphics Forum, 29(3):783–792, 2010. doi: 10.1111/j.1467-8659.

2009.01690.x

[32] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assess-

ment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, 2004. doi: 10.1109/TIP.2003.

819861

[33] A. Waschk and J. Krüger. FAVR - accelerating direct volume rendering

for Virtual Reality systems. In 2020 IEEE Visualization Conference
(VIS), pp. 106–110, 2020. doi: 10.1109/VIS47514.2020.00028

[34] S. Weiss, P. Hermüller, and R. Westermann. Fast neural representations

for direct volume rendering. Computer Graphics Forum, 41(6):196–

211, 2022. doi: 10.1111/cgf.14578

[35] Q. Wu, D. Bauer, M. J. Doyle, and K.-L. Ma. Instant neural represen-

tation for interactive volume rendering, 2022. doi: 10.48550/ARXIV.

2207.11620

[36] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa. PlenOctrees

for real-time rendering of neural radiance fields. In ICCV, 2021.

[37] S. Zellmann. Remote Volume Rendering with a Decoupled, Ray-Traced

Display Phase. In P. Frosini, D. Giorgi, S. Melzi, and E. Rodolà, eds.,

Smart Tools and Apps for Graphics - Eurographics Italian Chapter
Conference. The Eurographics Association, 2021. doi: 10.2312/stag.

20211479

[38] S. Zellmann, M. Aumüller, and U. Lang. Image-Based Remote Real-

Time Volume Rendering: Decoupling Rendering From View Point

Updates. In International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, pp. 1385–

1394, 08 2012. doi: 10.1115/DETC2012-70811

70

Authorized licensed use limited to: Institut fuer molekulare Zellbiologie und Genetik. Downloaded on June 19,2023 at 07:41:13 UTC from IEEE Xplore. Restrictions apply.

