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Turing instabilities of reaction-diffusion systems can only arise if the diffusivities of the chemical species
are sufficiently different. This threshold is unphysical in most systems with 𝑁 = 2 diffusing species, forcing
experimental realizations of the instability to rely on fluctuations or additional nondiffusing species. Here
we ask whether this diffusive threshold lowers for 𝑁 > 2 to allow “true” Turing instabilities. Inspired by
May’s analysis of the stability of random ecological communities, we analyze the probability distribution of
the diffusive threshold in reaction-diffusion systems defined by random matrices describing linearized dynamics
near a homogeneous fixed point. In the numerically tractable cases 𝑁 6 6, we find that the diffusive threshold
becomes more likely to be smaller and physical as 𝑁 increases and that most of these many-species instabilities
cannot be described by reduced models with fewer species.

In 1952, Turing described the pattern-forming instability
that now bears his name [1]: diffusion can destabilize a fixed
point of a system of reactions that is stable in well-mixed con-
ditions. Nigh on threescore and ten years on, the contribution
of Turing’s mechanism to chemical and biological morpho-
genesis remains debated, not least because of the diffusive
threshold inherent in the mechanism: chemical species in re-
action systems are expected to have roughly equal diffusivities,
yet Turing instabilities cannot arise at equal diffusivities [2, 3].
It remains an open problem to determine how much of a diffu-
sivity difference is required for generic systems to undergo this
instability, yet this diffusive threshold has been recognized at
least since reduced models of the Belousov–Zhabotinsky reac-
tion [4, 5] only produced Turing patterns at unphysically large
diffusivity differences.
For this reason, the first experimental realizations of Tur-

ing instabilities [6–8] obviated the threshold by using gel
reactors that greatly reduced the effective diffusivity of one
species [9, 10]. (Analogously, biological membrane transport
dynamics can increase the effective diffusivity difference [11].)
Later work showed how binding to an immobile substrate, or
more generally, a third, nondiffusing species, can allow Turing
instabilities even if the 𝑁 = 2 diffusing species have equal
diffusivities [12–14]. Such nondiffusing species continue to
permeate more recent work on the network topology of Turing
systems [15, 16].
Moreover, Turing instabilities need not be deterministic:

fluctuation-driven instabilities in reaction-diffusion systems
have noise-amplifying properties that allow their pattern am-
plitude to be comparable to that of deterministic Turing pat-
terns [17], with a lower diffusive threshold than the determin-
istic one [18–21]. A synthetic bacterial population with 𝑁 = 2
species that exhibits patterns in agreement with such a stochas-
tic Turing instability, but does not satisfy the conditions for a
deterministic instability [22], was reported recently.
These experimental instabilities relying on fluctuations or

the dynamics of additional nondiffusing species and the nonlin-
ear instabilities arising from finite-amplitude perturbations [2]

are not however instabilities in Turing’s own image. Can such
instabilities be realized instead in systems with 𝑁 > 2 diffus-
ing species? Equivalently, is the diffusive threshold lower in
such systems? These questions have remained unanswered,
perhaps because, in contrast to the textbook case 𝑁 = 2 and
the concomitant picture of an “inhibitor” out-diffusing an “ac-
tivator” [23, 24], the complicated instability conditions for
𝑁 > 2 [25] do not lend themselves to analytical progress.
Here, we analyze the diffusive threshold for Turing insta-

bilities with 2 6 𝑁 6 6 diffusing species. Inspired by May’s
work on the stability of random ecological communities [26],
we analyze random Turing instabilities by sampling random
matrices that represent the linearized reaction dynamics of oth-
erwise unspecified reaction-diffusion systems. A semianalytic
approach shows that the diffusive threshold is more likely to
be smaller and physical for 𝑁 = 3 compared to 𝑁 = 2, and that
two of the three diffusivities are equal at the transition to insta-
bility. We extend these results to the remaining numerically
tractable cases of reaction-diffusion systems with 4 6 𝑁 6 6
and two different diffusivities: their Turing instabilities are still
more likely to have a smaller and physical diffusive threshold,
but most of them cannot be described by reduced models with
fewer species.
We begin with the simplest case, 𝑁 = 2, in which species 𝑢,

𝑣 obey

¤𝑢 = 𝑓 (𝑢, 𝑣) + 𝑑𝑢∇2𝑢, ¤𝑣 = 𝑔(𝑢, 𝑣) + 𝑑𝑣∇2𝑣. (1)

The conditions for Turing instability in this system [24] only
depend on the four entries of the Jacobian

J =

(
𝑓𝑢 𝑓𝑣
𝑔𝑢 𝑔𝑣

)
, (2)

the partial derivatives of the reaction system at a fixed point
(𝑢∗, 𝑣∗) of the homogeneous system. This fixed point is
stable to homogeneous perturbations iff 𝐽 ≡ det J > 0 and
𝐼1 ≡ tr J < 0. A stable fixed point of this kind is unstable
to a Turing instability only if 𝑝 ≡ − 𝑓𝑢𝑔𝑣 > 0 [24]. Defining
the diffusion coefficient ratio 𝐷2 = max {𝑑𝑢/𝑑𝑣 , 𝑑𝑣/𝑑𝑢} > 1,
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FIG. 1. Turing’s diffusive threshold for 𝑁 = 2. (a) Cartoon of
the diffusive threshold and the fine-tuning (FT) problem for 𝑅 ≈ 1
and 𝑅 � 1. The diffusivity difference required mathematically is
unphysical in the hatched region D 6 𝐷∗

2 6 𝐷
max
2 . (b) Distribution

𝑃(𝐷∗
2), supported on the (scaled) interval [1, 𝐷max2 (𝑅)], estimated

for different 𝑅. (c) Plot of P(𝐷∗
2 < D) [shaded areas in panels (a) and

(b)] against 𝑅, revealing the diffusive threshold. Markers: estimates
from panel (b); solid line: exact result [27] for 𝑅 > D [33].

a Turing instability occurs iff these conditions hold along
with [27]

𝐷2 > 𝐷∗
2 ≡

( √
𝐽 + √

𝐽 + 𝑝
min {| 𝑓𝑢 |, |𝑔𝑣 |}

)2
. (3)

This diffusivity difference 𝐷∗
2, which is required mathemat-

ically for instability, is unphysical [Fig. 1(a)] if it exceeds the
diffusivity difference D > 1 of the physical system: D ≈ 1 for
similarly sized molecules in solution, but, e.g., D ≈ 20 for the
stochastic Turing instability observed in Ref. [22]. Hereinafter
we take D = 5 arbitrarily (but have checked that the value of
D does not affect results qualitatively). To quantify 𝐷∗

2, we
introduce the range 𝑅 of kinetic parameters,

𝑅 ≡ max {| 𝑓𝑢 |, | 𝑓𝑣 |, |𝑔𝑢 |, |𝑔𝑣 |}
min {| 𝑓𝑢 |, | 𝑓𝑣 |, |𝑔𝑢 |, |𝑔𝑣 |} . (4)

Equivalently, 𝑓𝑢 , 𝑓𝑣 , 𝑔𝑢 , 𝑔𝑣 ∈ 𝐼 ≡ [−𝑅,−1] ∪ [1, 𝑅] up to
scaling, with one parameter equal to ±1 and one equal to ±𝑅.
One deduces [27] that

𝐷∗
2 6 𝐷

max
2 (𝑅) ≡

(
𝑅 +

√︁
𝑅2 − 1

)2
, (5)

as shown in Fig. 1(a). Note that 𝐷max2 → 1 as 𝑅→ 1; in this
limit, there is no diffusive threshold: 𝑅 ≈ 1 is a particular
instance of the converse fine-tuning problem for the reaction
kinetics that allows Turing instabilities at nearly equal diffu-
sivities more generally [3]. If 𝑅 � 1, then 𝐷max2 = 𝑂

(
𝑅2

)
.

This does not imply the existence of a threshold, for it does
not preclude most systems with range 𝑅 having 𝐷∗

2 � 𝐷max2 .
The existence of a diffusive threshold therefore relates to the
distribution of 𝐷∗

2 for systems with range 𝑅.
To understand this distribution, we draw inspiration from

May’s statistical analysis of the stability of ecological commu-
nities [26], which studies random Jacobians, corresponding to
equilibria of otherwise unspecified population dynamics. By

analogy, we study random Turing instabilities, sampling uni-
formly and independently random Jacobians corresponding to
equilibria of otherwise unspecified reaction kinetics, and an-
alyze the criteria for them to be Turing unstable. There is of
course no more reason to expect the kinetic parameters to be
independent or uniformly distributed than there is reason to ex-
pect the linearized population dynamics inMay’s analysis [26]
to be independent or normally distributed. Yet, in the absence
of experimental understanding of what the distributions of
these parameters should be (in either context), the potential of
the random matrix approach to reveal stability principles has
been amply demonstrated in population dynamics [34–44].
We sample the kinetic parameters in Eq. (2) independently

and uniformly from 𝐼, set one of them equal to ±1 and one
equal to ±𝑅, and thus estimate the probability distribution
𝑃(𝐷∗

2) for fixed 𝑅 [Fig. 1(b)]. The threshold is quantified by
the probability of a Turing instability being physical,

P(𝐷∗
2 < D) =

∫ D

1
𝑃(𝐷∗

2) d𝐷∗
2. (6)

Both from the estimates in Fig. 1(b) and by evaluating the
integral in closed form [27], we find that P(𝐷∗

2 < D) is
tiny [Fig. 1(c)], except if 𝑅 is small, which is the fine-tuning
problem again. In other words, the required diffusivity differ-
ence is very likely to be unphysical. This expresses Turing’s
diffusive threshold for 𝑁 = 2.
To investigate how this threshold changes with 𝑁 we con-

sider next the 𝑁 = 3 system

¤𝑢 = 𝑓 (𝑢, 𝑣, 𝑤) + 𝑑𝑢∇2𝑢, (7a)
¤𝑣 = 𝑔(𝑢, 𝑣, 𝑤) + 𝑑𝑣∇2𝑣, (7b)
¤𝑤 = ℎ(𝑢, 𝑣, 𝑤) + ∇2𝑤, (7c)

where we have rescaled space to set 𝑑𝑤 = 1. We introduce the
matrix of diffusivities and the reaction Jacobian,

D =
©«
𝑑𝑢 0 0
0 𝑑𝑣 0
0 0 1

ª®¬
, J =

©«
𝑓𝑢 𝑓𝑣 𝑓𝑤
𝑔𝑢 𝑔𝑣 𝑔𝑤
ℎ𝑢 ℎ𝑣 ℎ𝑤

ª®¬
, (8)

in which the entries of J are again the partial derivatives eval-
uated at a fixed point (𝑢∗, 𝑣∗, 𝑤∗) of the homogeneous sys-
tem. This fixed point is unstable to a Turing instability if
it is stable but, for some eigenvalue −𝑘2 < 0 of the Lapla-
cian, J

(
𝑘2

)
= J − 𝑘2D is unstable [3], i.e. has an eigenvalue

𝜆 such that Re(𝜆) < 0. More precisely, a Turing instability
arises when a real eigenvalue of J

(
𝑘2

)
crosses zero, i.e. when

J (
𝑘2

) ≡ det J(𝑘2) = 0, and therefore arises first at awavenum-
ber 𝑘 = 𝑘∗ with J

(
𝑘2∗

)
= 𝜕J /𝜕𝑘2 (𝑘2∗ ) = 0 [3]. Hence J , a

cubic polynomial in 𝑘2, has a double root at 𝑘2 = 𝑘2∗ > 0, so
its discriminant [29] vanishes. This discriminant, Δ(𝑑𝑢 , 𝑑𝑣 ),
is a polynomial in 𝑑𝑢 , 𝑑𝑣 . We denote by 𝐾 (𝑑𝑢 , 𝑑𝑣 ) the dou-
ble root of J corresponding to a point (𝑑𝑢 , 𝑑𝑣 ) on the curve
Δ(𝑑𝑢 , 𝑑𝑣 ) = 0.
Determining the diffusive threshold for Turing instability in

Eqs. (7) thus requires solving the problem

minimize 𝐷3 (𝑑𝑢 , 𝑑𝑣 ) subject to
{
Δ(𝑑𝑢 , 𝑑𝑣 ) = 0,
𝐾 (𝑑𝑢 , 𝑑𝑣 ) > 0, (9)
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in which the diffusion coefficient ratio is

𝐷3 (𝑑𝑢 , 𝑑𝑣 )=max{𝑑𝑢 , 1/𝑑𝑢 , 𝑑𝑣 , 1/𝑑𝑣 , 𝑑𝑢/𝑑𝑣 , 𝑑𝑣/𝑑𝑢}. (10)

With the aim in mind of obtaining statistics for the minimal
value 𝐷∗

3, direct numerical solution of this constrained opti-
mization problem is obviously not a feasible approach. In the
Supplemental Material [27], we therefore show how to reduce
solving problem (9) to polynomial root finding. This semian-
alytic approach reveals a particular class of minima, attained
at the vertices of the contours of 𝐷3 (𝑑𝑢 , 𝑑𝑣 ) [Fig. 2(a)], i.e.
at 𝑑𝑢 = 1, 𝑑𝑣 = 1, or 𝑑𝑢 = 𝑑𝑣 . In these cases, Δ(𝑑𝑢 , 𝑑𝑣 ) = 0
is a (sextic) polynomial in the single variable 𝑑𝑣 , 𝑑𝑢 , or
𝑑 = 𝑑𝑢 = 𝑑𝑣 , respectively. We call these minima “binary”,
since the corresponding systems have only two different dif-
fusivities. We implement this approach numerically [27], and
sample random systems similarly to the case 𝑁 = 2, drawing
the entries of J in Eq. (8) uniformly and independently at fixed
range 𝑅.
Remarkably, all global minima we found numerically were

binary [27]. This means that the minimizing systems come
in two flavors: those with two “fast” diffusers and one “slow”
diffuser, and those with one “fast” diffuser and two “slow”
diffusers. Systems with a nondiffusing species are a limit of
the former; this point will be discussed below. The latter arise
inmodels of scale pattern formation in fish and lizards [45, 46],
in which short-range pigments respectively activate and inhibit
a long-range factor.
The distribution of 𝐷∗

3, shown for different values of 𝑅
in Fig. 2(b), has a different shape from that of 𝐷∗

2 [Figs. 1(a)
and 2(b), inset]. While the support of the distribution of
𝐷∗
3 does not appear to be bounded, Fig. 2(c) shows that
P(𝐷∗

3 < D) > P(𝐷∗
2 < D). Hence the diffusivity difference
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FIG. 2. Results for 𝑁 = 3. (a) Contours of 𝐷3 (𝑑𝑢 , 𝑑𝑣 ) in the positive
(𝑑𝑢 , 𝑑𝑣 ) quadrant. (b) Smoothed distribution 𝑃(𝐷∗

3), estimated for
different 𝑅. Inset: same plot, scaled to [1, 𝐷max2 (𝑅)] for comparison
to 𝑁 = 2 in Fig. 1(a). (c) P(𝐷∗

𝑁 < D) against 𝑅 for 𝑁 ∈ {2, 3}: the
diffusive threshold lowers for 𝑁 = 3 compared to 𝑁 = 2. (d) Pro-
portion 𝜙𝑁 (D) of random Jacobians that have a physical Turing
instability, plotted against 𝑅, for 𝑁 ∈ {2, 3}. Inset: proportion 𝜏𝑁 of
random Jacobians that have a (physical or unphysical) Turing insta-
bility, averaged over 𝑅, for 𝑁 ∈ {2, 3} [33].

is more likely to be physical for 𝑁 = 3 than for 𝑁 = 2: the
diffusive threshold is lowered.
The proportion 𝜏𝑁 of random kinetic Jacobians that have a

Turing instability (be it physical or unphysical) is smaller for
𝑁 = 3 than for 𝑁 = 2 [Fig. 2(d), inset]. This is not surprising,
because a random Jacobian is less likely to correspond to a
stable fixed point (which, we recall, is a necessary condition
for Turing instability) for 𝑁 = 3 than for 𝑁 = 2, essentially
because its entries have to satisfy more conditions for stability
if 𝑁 = 3. It is therefore striking that the threshold is reduced
sufficiently for 𝑁 = 3 compared to 𝑁 = 2 for the proportion
𝜙𝑁 (D) = 𝜏𝑁P(𝐷∗

𝑁 < D) of random Jacobians that have a
physical Turing instability to be larger for 𝑁 = 3 than for
𝑁 = 2 [Fig. 2(d)], even though a Turing instability of any kind
is more likely if 𝑁 = 2.
To extend these results to 𝑁 > 3 diffusing species, we

consider the (linearized) reaction-diffusion system

¤𝒖 = J · 𝒖 + D · ∇2𝒖, (11)

where J is a random kinetic Jacobian, and D is a diagonal
matrix of diffusivities. Even with our semianalytic approach,
this cannot be analyzed for general D: not even for 𝑁 = 4
were we able to obtain closed forms of the required polynomi-
als. To make further progress, we therefore restrict to binary
D in which the 𝑁 diffusivities take two different values only,
since we showed above that 𝐷∗

3 is attained for such binary
D. As in the case 𝑁 = 3, this reduces the discriminant con-
dition Δ(D) = 0 to polynomial equations in one variable that
determine the minimum diffusivity difference 𝐷∗

𝑁 for Turing
instability in these binary systems [27].
Figure 3(a) shows that the diffusive threshold lowers further

for 4 6 𝑁 6 6 in these systems. At the same time, the fact that
most stable random kinetic Jacobians undergo such a binary
Turing instability [Fig. 3(b)] suggests that these provide a use-
ful picture of the diffusive threshold. However, 𝜏𝑁 decreases
further for 𝑁 > 4 [Fig. 3(c), inset], and the widening of the
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FIG. 3. Results for “binary” systems with 4 6 𝑁 6 6.
(a) P(𝐷∗

𝑁 < D) against 𝑅 for 3 6 𝑁 6 6, revealing further lowering
of the diffusive threshold compared to the case 𝑁 = 3. (b) Pro-
portion 𝜎𝑁 of random stable kinetic Jacobian that have a (binary,
if 𝑁 > 3) Turing instability, averaged over 𝑅, and plotted against
𝑁 . (c) Proportion 𝜙𝑁 (D) of random Jacobians that have a physical
Turing instability plotted against 𝑅, for 3 6 𝑁 6 6. Inset: proportion
𝜏𝑁 of random Jacobians that have a (physical or unphysical) Turing
instability, averaged over 𝑅, for 3 6 𝑁 6 6 [33].
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bottleneck is not sufficient to prevent 𝜙𝑁 (D) from decreasing
for 𝑁 > 4. Nonetheless, since both P(𝐷∗

𝑁 < D) and the
proportion 𝜎𝑁 of stable random Jacobians that are Turing un-
stable increase [Figs. 3(a) and 3(b)], so does the proportion of
stable random Jacobians that have a physical Turing instability.
How then to realize “true” Turing instabilities experimen-

tally? Our analysis shows that the diffusive threshold of a Tur-
ing instability is more likely to be physical the more species
there are, but how to find an experimental Turing instability
in the first place? Turing instabilities remain rare in random
reaction systems even as the number of species is increased,
but the above shows that this rareness mainly results from the
rareness of stable equilibria in such systems. The proverbial
search for the needle in a haystack can therefore be avoided by
exploring biochemical systems that admit a stable equilibrium,
and evolving them towards a “true” Turing instability.
This analysis does not however reveal whether these insta-

bilities lead to patterns that are observable at the physical scale
of the system. Analysis of the wavenumber at which the lin-
ear instability first arises [27] suggests that we can extend our
conclusions: Turing instabilities with more species are more
likely to have physical diffusivity differences and to be observ-
able. However, our statistical, linearized analysis cannot fully
answer this question of observability, because it fundamentally
depends on the system through details of the nonlinearities of
its reaction kinetics, which set the precise nature and scale
of the Turing patterns that develop beyond onset of the in-
stability; this is why we have relegated this discussion to the
Supplemental Material [27].
The different species in the systems with 3 6 𝑁 6 6 an-

alyzed above separate into “fast” and “slow” diffusers. The
diffusion of these “slow” species is often ignored in the analy-
sis of systems of many chemical reactions [30], such as the full
Belousov–Zhabotinsky reaction [47]. Corresponding reduced
models are obtained by substituting the steady-state kinetics of
the “slow” species into the remaining equations, thereby elim-
inating them from the system [30]. The conditions for Turing
instability in these reduced models are (almost) equivalent to
those for the full model with nondiffusing “slow” species [30].
However, the diffusion of the “slow” species cannot in general
be ignored: up to reordering species and rescaling space,

D =

(
I 0
0 𝑑I

)
, J =

(
J11 J12

J21 J22

)
, (12)

where 𝑑 < 1 is the common diffusivity of the slow diffusers.
Results of Ref. [30] imply that there is a Turing instability
with nondiffusing “slow” species, i.e. with 𝑑 = 0, only if
J11 − J12J−122 J21 has a positive (real) eigenvalue [27]. Although
the proportion of Turing unstable systems that have 𝑛 > 2
fast diffusers (and hence could a priori still undergo a Turing
instability with 𝑑 = 0) is large [Fig. 4(a)], the proportion of
systems that do undergo such an instability is small, even if
we restrict to those systems with physical diffusivity differ-
ences [Fig. 4(b)]. Hence most of these Turing instabilities
with 𝑁 > 2 species require all species to diffuse.
These many-species Turing instabilities, although binary,

are thus more general than the instabilities of systems with

3 4 5 6
0
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binary
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FIG. 4. “Slow” diffusers in binary Turing instabilities with 3 6 𝑁 6
6. (a) Proportion 𝑓𝑁 of Turing unstable systems with 𝑛 > 2 “fast”
diffusers plotted against 𝑁 , averaged over 𝑅. (b) Proportion 𝑟𝑁 of
systems that remain Turing unstable at 𝑑 = 0, plotted against 𝑁 ,
averaged over 𝑅. Closed markers: all Turing systems; open markers:
physical Turing systems with 𝐷∗

𝑁 < D [33].

nondiffusing species realized experimentally in gel reactors [6–
8] and analyzed theoretically in Ref. [30]. In particular, this
shows that reduced models give but an incomplete picture of
Turing instabilities. Together with our main result, that the
diffusive threshold lowers as 𝑁 increases, this implies that the
failure of a reduced model to produce a physical Turing insta-
bility cannot be taken as an indication that a Turing instability
cannot exist in the full system that the reduced model seeks to
describe.
In this Letter, we have analyzed random Turing instabilities

to show how the diffusive threshold that has hampered experi-
mental efforts to generate “true” Turing instabilities in systems
of 𝑁 = 2 diffusing species lowers for systemswith 𝑁 > 3, most
of whose instabilities cannot be described by reduced models
with fewer species. All of this does not, however, explain
the existence of a “large” threshold in the first place: even
though Turing instabilities at equal diffusivities are impossi-
ble [2, 3], this does not mean that the threshold needs to be
“large”. In this context, we prove an asymptotic result in the
Supplemental Material [27]: for a Jacobian J to allow a Turing
instability at almost equal diffusivities D ≈ I, J must be even
closer to a singular matrix J0, i.e. J − J0 � D − I. In this
sense, the threshold D − I is asymptotically “large”. Under-
standing how a large threshold arises more generally outside
this asymptotic regime and lowers as 𝑁 increases remains an
open problem, as do extending the present analysis to include
the nonlocal interactions [48, 49] that arise for example in
vegetation patterns [50] and extending previous work [16, 51]
on the robustness of Turing patterns to 𝑁 > 3. The latter
in particular may help to identify those chemical or biological
pattern forming systems with 𝑁 > 3 in which the “true” Turing
instabilities discussed here can be realized experimentally.
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This Supplemental Material is divided into five sections,
which provide (i) details of calculations for 𝑁 = 2, (ii) the
derivation of the semianalytic approach for 𝑁 = 3 and a dis-
cussion of its numerical implementation, (iii) an analysis of
the statistics of the wavenumber at which a Turing instability
first arises, (iv) a discussion of Turing instabilities with nondif-
fusing “slow” species, and (v) a proof of the asymptotic result
claimed in the conclusion of our Letter.

I. DETAILS OF CALCULATIONS FOR 𝑵 = 2

A. Derivation of Eq. (3)

The form of the condition for Turing instability in Eq. (3)
follows from that in Eq. (2.26) on page 85 ofVol. II of Ref. [S1]
which, in our notation, reads

𝑓𝑢 + 𝑑𝑔𝑣 > 2
√
𝑑𝐽, (S1)

a quadratic in 𝑑 = 𝑑𝑢/𝑑𝑣 . Hence
√
𝑑 ≷

√︁
𝑑∗ ≡

√
𝐽 ± √

𝐽 − 𝑓𝑢𝑔𝑣
𝑔𝑣

if 𝑔𝑣 ≷ 0. (S2)

We notice that Eq. (S1) requires 𝑓𝑢 + 𝑑𝑔𝑣 > 0. Since 𝐼1 < 0,
this implies that 𝑑 ≷ 1 if 𝑔𝑣 ≷ 0. Hence 𝐷∗

2 = 𝑑∗ if 𝑔𝑣 > 0,
but 𝐷∗

2 = 1/𝑑∗ if 𝑔𝑣 < 0. Now, if 𝑔𝑣 ≷ 0, then | 𝑓𝑢 | ≷ |𝑔𝑣 |
because 𝐼1 < 0 and 𝑝 > 0. Equation (3) then follows, since

𝑔𝑣√
𝐽 − √

𝐽 + 𝑝 =

√
𝐽 + √

𝐽 + 𝑝
𝑓𝑢

. (S3)

B. Derivation of Eq. (5)

Equation (3) shows that 𝐷∗
2 is continuous on 𝐼

4, so attains
its maximum value on that domain. Since 𝑝 > 0 and 𝐽 > 0,
𝑞 ≡ − 𝑓𝑣𝑔𝑢 > 0, so that 𝐽 + 𝑝 = 𝑞. Now 𝐷∗

2 only depends on
𝑓𝑣 , 𝑔𝑢 through 𝑞, and, by direct computation from Eq. (3),

𝜕𝐷∗
2

𝜕𝑞
=

𝐷∗
2√︁

𝐽 (𝐽 + 𝑝)
> 0. (S4)

Hence 𝐷∗
2 increases with 𝑞, so ( 𝑓𝑣 , 𝑔𝑢) = ±(𝑅,−𝑅) at the

maximum.
Now assume that | 𝑓𝑢 | > |𝑔𝑣 |. Since 𝐼1 < 0 and | 𝑓𝑢 | > |𝑔𝑣 |,

it follows that 𝑓𝑢 < 0 and 𝑔𝑣 > 0. Then

𝜕𝐷∗
2

𝜕 𝑓𝑢
=

√
𝐽 + √

𝑞

𝑔𝑣
√
𝐽

> 0,
𝜕𝐷∗

2
𝜕𝑔𝑣

= −
(√
𝐽 + √

𝑞
)3

𝑔3𝑣
√
𝐽

< 0, (S5)

and so ( 𝑓𝑢 , 𝑔𝑣 ) = (1,−1) at the maximum. If | 𝑓𝑢 | 6 |𝑔𝑣 |,
we similarly find that ( 𝑓𝑢 , 𝑔𝑣 ) = (−1, 1) at the maximum.
Substituting these values into Eq. (3) yields Eq. (5).

C. Calculation of PPP(𝑫∗
2 < D) for D 6 𝑹

There are 48 ways of assigning values ±1 and ±𝑅 to two
of the entries 𝑓𝑢 , 𝑓𝑣 , 𝑔𝑢 , 𝑔𝑣 of J. Integrating the conditions
for Turing instability of the remaining entries in each of these
cases using Mathematica (Wolfram, Inc.) gives the area of
parameter space in which a Turing instability arises,

⨌

𝐼 4
𝟙

©«

𝐽 > 0, 𝐼1 < 0
𝑝 > 0

max |J| = 𝑅
min |J| = 1

ª®®®¬
dJ = 12(𝑅 − 1)2, (S6)

where we use the shorthand dJ = d 𝑓𝑢 d 𝑓𝑣 d𝑔𝑢 d𝑔𝑣 . To analyze
the condition 𝐷∗

2 < 𝑅, we note that the expression for 𝐷∗
2 in

Eq. (3) shows that we may swap 𝑓𝑢 , 𝑔𝑣 and 𝑓𝑣 , 𝑔𝑢 . Hence the
48 cases reduce to 4 cases (corresponding to the entries ±1 or
±𝑅 being on the the same or on different diagonals):

(1) | 𝑓𝑢 | = 𝑅, |𝑔𝑣 | = 1; (2) | 𝑓𝑣 | = 𝑅, |𝑔𝑢 | = 1;
(3) | 𝑓𝑢 | = 𝑅, | 𝑓𝑣 | = 1; (4) | 𝑓𝑢 | = 1, | 𝑓𝑣 | = 𝑅.

Moreover, since 𝑞 > 0, wemay take 𝑓𝑣 > 0 and 𝑔𝑢 < 0without
loss of generality. We now discuss these cases separately.

(1) 𝐼1 < 0 implies 𝑓𝑢 = −𝑅, 𝑔𝑣 = 1, and so

𝐷∗
2 =

(√︁
𝑞 +

√︁
𝑞 − 𝑅

)2
> 𝑅. (S7)

(2) 𝑓𝑢𝑔𝑣 = −𝑅 since 𝑞 > 0, so 𝐽 = 𝑓𝑢𝑔𝑣 + 𝑅.
(3) 𝑓𝑢 = −𝑅 because 𝐼1 < 0. Now 𝑝, 𝑞 > 0, and so
0 < 𝐽 = −𝑅 |𝑔𝑣 | − |𝑔𝑢 | < 0. This is a contradiction.

(4) 𝑓𝑢 = 1 as 𝐼1 < 0. Since 𝑔𝑣 6 −1, it follows that

𝐷∗
2 =

(√︁
−𝑔𝑢𝑅 +

√︁
−𝑔𝑢𝑅 − 𝑔𝑣

)2
> 𝑅. (S8)

In this way, 𝐷∗
2 < 𝑅 quantifies the diffusive threshold in a

natural way. In particular, 𝐷∗
2 < 𝑅 is only possible in case (2).

Since 𝐽 > 0, we require 𝑓𝑢𝑔𝑣 +𝑅 > 0 in that case. Now 𝐼1 < 0
and 𝑝 > 0, so 1 < 𝑓𝑢 < −𝑅/𝑔𝑣 or 1 < 𝑔𝑣 < −𝑅/ 𝑓𝑢 depending
on 𝑓𝑢 > 0, 𝑔𝑣 < 0 or 𝑓𝑢 < 0, 𝑔𝑣 > 0. Assume without loss
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S2

of generality that | 𝑓𝑢 | > |𝑔𝑣 |. Then 𝑓𝑢 < 0, 𝑔𝑣 > 0 as 𝐼1 < 0.
Moreover, using Eq. (3), 𝐷∗

2 = 𝑅 if and only if 𝑔𝑣 = 2 + 𝑓𝑢/𝑅.
From Eqs. (S5), 𝐷∗

2 decreases as 𝑔𝑣 increases. Hence

𝐷∗
2 < 𝑅 ⇐⇒ 2 + 𝑓𝑢/𝑅 < 𝑔𝑣 6 −𝑅/ 𝑓𝑢 and 𝑓𝑢 + 𝑔𝑣 < 0,

(S9)

using the conditions derived previously. Note that −𝑅/ 𝑓𝑢 < 𝑅
and 2 + 𝑓𝑢/𝑅 > 1 for −𝑅 < 𝑓𝑢 < −1. If | 𝑓𝑢 | < |𝑔𝑣 |, 𝑓𝑢 , 𝑔𝑣
are swapped in these conditions. Moreover, since 𝑞 > 0, case
(2) corresponds to 4 of the 48 cases. Hence we obtain, again
usingMathematica,

⨌

𝐼 4
𝟙

©«

𝐽 > 0, 𝐼1 < 0
𝑝 > 0, 𝐷∗

2 < 𝑅
max |J| = 𝑅
min |J| = 1

ª®®®¬
dJ = 4

(
2𝑅(1 − 𝑅)
1 + 𝑅 + 𝑅 log 𝑅

)
.

(S10)

Equations (S6) and (S10) imply

P
(
𝐷∗
2 < 𝑅

)
=
𝑅 [(𝑅 + 1) log 𝑅 − 2(𝑅 − 1)]

3(𝑅 − 1)2 (𝑅 + 1) . (S11)

In particular, P
(
𝐷∗
2 < 𝑅

)
= 𝑂 (log 𝑅/𝑅) � 1 for 𝑅 � 1. This

statement expresses the existence of the diffusive bottleneck
mathematically.
From a more physical point of view, as discussed in our Let-

ter, it is more natural to consider the probability P
(
𝐷∗
2 < D)

,
for some constantD > 1. Since “small” values 𝑅 6 D require
fine-tuning of the reaction kinetics, we restrict to D 6 𝑅, so
that 𝐷∗

2 < D is only possible in case (2) above. We consider
again the case 𝑔𝑣 > 0, 𝑓𝑢 < 0. Similarly to the derivation of
conditions (S9), we find

𝐷∗
2 < D ⇐⇒ 𝑔𝑣 >

√︂
𝑅

D , − 𝑅

𝑔𝑣
6 𝑓𝑢 < D𝑔𝑣 − 2

√
D𝑅

and 𝑓𝑢 + 𝑔𝑣 < 0. (S12)

In particular,

− 𝑅

𝑔𝑣
=max

{
−𝑅,− 𝑅

𝑔𝑣

}
6 𝑓𝑢 < min

{
−1,−𝑔𝑣 ,D𝑔𝑣−2

√
D𝑅

}
,

(S13a)

in which, since 𝑔𝑣 > 1,

min
{
−1,−𝑔𝑣 ,D𝑔𝑣−2

√
D𝑅

}
=




−𝑔𝑣 if 𝑔𝑣 >
2
√
D𝑅

D + 1 ;
D𝑔𝑣−2

√
D𝑅 otherwise.

(S13b)

We notice that
√
𝑅 > 2

√
D𝑅/(D+1)>

√︁
𝑅/D sinceD > 1, and

also that D𝑔𝑣 − 2
√
D𝑅 > −𝑅/𝑔𝑣 ⇐⇒ (√D𝑔𝑣 − √

𝑅
)2
> 0,

but −𝑔𝑣/−𝑅/𝑔𝑣 ⇐⇒ 𝑔𝑣 <
√
𝑅. The area of parameter space

described by conditions (S12) is therefore

∫ √
𝑅

2
√
D𝑅

D+1

(∫ −𝑔𝑣

− 𝑅
𝑔𝑣

d 𝑓𝑢

)
d𝑔𝑣 +

∫ 2
√
D𝑅

D+1
√

𝑅
D

(∫ D𝑔𝑣−2
√
D𝑅

− 𝑅
𝑔𝑣

d 𝑓𝑢

)
d𝑔𝑣

=
𝑅

2
logD − D − 1

D + 1 𝑅. (S14a)

Hence [S2]

⨌

𝐼 4
𝟙

©«

𝐽 > 0, 𝐼1 < 0
𝑝 > 0, 𝐷∗

2 < D
max |J| = 𝑅
min |J| = 1

ª®®®¬
dJ = 4

[
2
(
𝑅

2
logD − D − 1

D + 1 𝑅
)]
,

(S14b)

for 𝑅 > D, and, as above, we conclude that, for 𝑅 > D,

P
(
𝐷∗
2 < D)

=
𝑅

3(𝑅 − 1)2
[
logD − 2(D − 1)

D + 1

]
. (S15)

D. Nondimensionalization

We close by remarking on the (absence of) nondimension-
alization of the reaction system. Indeed, up to rescaling time,
one among 𝑓𝑢 , 𝑓𝑣 , 𝑔𝑢 , 𝑔𝑣 can be set equal to ±1. Moreover,
one more parameter can be set equal to ±1 by rescaling 𝑢, 𝑣
differently. However, if we made those choices, we could no
longer sample from a fixed interval.

II. SEMIANALYTIC METHOD FOR 𝑵 = 3

A. Derivation of the semianalytic method

1. Preliminary observations

Before deriving the semianalytic method, we need to make
two preliminary observations.
First, the necessary and sufficient (Routh–Hurwitz) con-

ditions for the homogeneous system to be stable include
𝐼1 ≡ tr J < 0 and 𝐽 ≡ det J < 0 [S1]. By definition, J

(
𝑘2∗

)
has one zero eigenvalue. The other two eigenvalues are either
real or two complex conjugates 𝜆, 𝜆∗. In the second case, they
are both stable (i.e. have negative real parts) since

2Re(𝜆) = 0 + 𝜆 + 𝜆∗ = tr J(𝑘2∗ ) = 𝐼1 − 𝑘2∗ trD < 𝐼1 < 0.
(S16)

Hence Eqs. (7) are not unstable to an oscillatory (Turing–
Hopf) instability at (𝑑∗𝑢 , 𝑑∗𝑣 ), so, by minimality of (𝑑∗𝑢 , 𝑑∗𝑣 ),
the system destabilizes to a Turing instability there.
Moreover, since J , viewed as a polynomial in 𝑘2∗ , has lead-

ing coefficient −𝑑𝑢𝑑𝑣 and constant term J (0) = 𝐽 < 0, the
double root 𝐾 (𝑑𝑢 , 𝑑𝑣 ) varies continuously with 𝑑𝑢 , 𝑑𝑣 and
cannot change sign on a branch of Δ(𝑑𝑢 , 𝑑𝑣 ) = 0 in the posi-
tive (𝑑𝑢 , 𝑑𝑣 ) quadrant.

2. Reduction of problem (9) to polynomial equations

The discriminant of J , viewed as a polynomial in the two
variables 𝑑𝑢 , 𝑑𝑣 , is

Δ(𝑑𝑢 , 𝑑𝑣 ) =
4∑︁
𝑚=0

4∑︁
𝑛=0

𝛿𝑚𝑛𝑑
𝑚
𝑢 𝑑

𝑛
𝑣 , (S17)
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where 𝛿00 = 𝛿10 = 𝛿01 = 𝛿34 = 𝛿43 = 𝛿44 = 0 and (com-
plicated) expressions for the 19 non-zero coefficients can be
found in terms of the entries of J using Mathematica (Wol-
fram, Inc.).
The second remark above implies that, at a local minimum

of 𝐷3 (𝑑𝑢 , 𝑑𝑣 ) on Δ(𝑑𝑢 , 𝑑𝑣 ) = 0, one of the following occurs:
(i) Δ(𝑑𝑢 , 𝑑𝑣 ) = 0 is tangent to a contour of 𝐷3 (𝑑𝑢 , 𝑑𝑣 );
(ii) Δ(𝑑𝑢 , 𝑑𝑣 ) intersects a vertex of a contour of 𝐷3 (𝑑𝑢 , 𝑑𝑣 );
(iii) Δ(𝑑𝑢 , 𝑑𝑣 ) is singular.
The contours of 𝐷3 (𝑑𝑢 , 𝑑𝑣 ) are drawn in Fig. 2(a) of our Letter
and show that tangency to a contour in case (i) requires

d𝑑𝑢 = 0 or d𝑑𝑣 = 0 or d𝑑𝑣/d𝑑𝑢 = 𝑑𝑣/𝑑𝑢 . (S18)

Since Δ(𝑑𝑢 , 𝑑𝑣 ) = 0, the chain rule reads

0 = dΔ =
𝜕Δ
𝜕𝑑𝑢

d𝑑𝑢 + 𝜕Δ
𝜕𝑑𝑣

d𝑑𝑣 . (S19)

Hence there are two subcases:

(a)
𝜕Δ
𝜕𝑑𝑣

= 0 or
𝜕Δ
𝜕𝑑𝑢

= 0;

(b) 𝑑𝑢
𝜕Δ
𝜕𝑑𝑢

+ 𝑑𝑣 𝜕Δ
𝜕𝑑𝑣

= 0.

In subcase (a), Δ viewed as a polynomial in 𝑑𝑣 or 𝑑𝑢 has a
double root, and so its discriminant [S3] must vanish. On
removing zero roots, this discriminant of a discriminant is
found to be a polynomial of degree 20 in 𝑑𝑢 or 𝑑𝑣 , respec-
tively; complicated expressions for its coefficients in terms of
the non-zero coefficients 𝛿𝑚𝑛 in Eq. (S17) are obtained using
Mathematica. Similarly, in subcase (b), the resultant [S3]
of Δ and 𝑑𝑢𝜕Δ/𝜕𝑑𝑢 + 𝑑𝑣𝜕Δ/𝜕𝑑𝑣 , viewed as polynomials in
𝑑𝑢 or 𝑑𝑣 must vanish. This resultant is another polynomial of
degree 20 in 𝑑𝑣 or 𝑑𝑢 .
Next, in case (ii), 𝑑𝑢 = 1 or 𝑑𝑣 = 1 or 𝑑𝑢 = 𝑑𝑣 [Fig. 2(a)],

which reduces Δ to three different polynomials in the single
variable 𝑑𝑣 , 𝑑𝑢 , or 𝑑 = 𝑑𝑢 = 𝑑𝑣 , respectively. These polyno-
mials have degree 6.
Finally, in case (iii), we note that, at a singular point,

Δ = 𝜕Δ/𝜕𝑑𝑢 = 𝜕Δ/𝜕𝑑𝑣 = 0, and so we are back in case (i),
subcase (a).
Thus, we have reduced finding candidates for local min-

ima in (9) to solving polynomial equations: this defines our
semianalytic approach. The global minimum is found among
those local minima with 𝐾 (𝑑𝑢 , 𝑑𝑣 ) > 0; in case (i), the roots
only correspond to local minima if additionally 𝑑𝑢 , 𝑑𝑣 > 1 or
𝑑𝑢 , 𝑑𝑣 < 1 in subcase (a) and 𝑑𝑢 < 1 < 𝑑𝑣 or 𝑑𝑣 < 1 < 𝑑𝑢 in
subcase (b) [Fig. 2(a)].

3. Extension to binary systems with 𝑁 > 3

For binary systems, the diagonal entries of D take two dif-
ferent values, 𝑑1, 𝑑2 only. Up to rescaling space, 𝑑1 = 1 and
𝑑2 = 𝑑, which turns the condition Δ(D) = 0 into 2𝑁−1 − 1

different polynomial equations in the single variable 𝑑, cor-
responding to the different combinatorial ways of assigning
diffusivities 𝑑1, 𝑑2 to the 𝑁 species (in such a way that not all
species have the same diffusivity). Determining the minimum
value 𝐷∗

𝑁 of 𝐷𝑁 = max {𝑑, 1/𝑑} for these binary systems is
thus reduced, again, to solving polynomial equations.
The argument we used above to show that coexistence of

Turing and Turing–Hopf instabilities is not possible for 𝑁 = 3
does not, however, carry over to 𝑁 > 3. Numerically, it turns
out, however, that systems in which Turing and Turing–Hopf
instabilities coexist are rare. We therefore treat these systems
in the same way as we treat systems for which the numerics
fail (as discussed below).

B. Numerical implementation

Implementing the semi-analytical approach for 𝑁 = 3 and
its extension to binary systems with 4 6 𝑁 6 6 numerically
takes some care as the coefficients of the polynomials that
arise can range over many orders of magnitude. Our python3
implementation therefore uses the mpmath library for variable
precision arithmetic [S4].
To determine the positive real roots of the polynomials

that arise in the semi-analytical approach, we complement
the Durand–Kerner complex root finding implemented in the
mpmath library [S4] with a test based on Sturm’s theorem [S3],
to ensure that all positive real roots are found. Those systems in
which root finding fails—either because the Durand–Kerner
algorithm fails to converge or because it finds an incorrect
number of positive real roots—are discarded, but included in
error estimates where reported.

C. Numerical samples

Table S1 gives the number of random Turing unstable sys-
tems from which distributions, averages, and probabilities
were estimated for each 𝑅 ∈ {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20}.
For 𝑁 = 3, we ran both a search for general, non-binary

systems and a (larger but numerically less expensive) search
for binary systems only. Since the first search only yielded

TABLE S1. Number of random Turing unstable systems used to
estimate distributions, averages, and probabilities for the different
values of 𝑁 , and corresponding figures.

𝑁 Type max𝑇a Referenceb

𝑁 = 2 non-binary 107 Figs. 1, S1
𝑁 = 3 non-binary 104

𝑁 = 3 binary 105 Figs. 2, 4, S1
𝑁 = 4 binary 105 Figs. 3, 4, S1
𝑁 = 5 binary 2 · 104 Figs. 3, 4, S1
𝑁 = 6 binary 2 · 103 Figs. 3, 4, S1

a Maximal number of Turing unstable systems.
b Figure (if any) in which results are shown.
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binary global minima (as stated in our Letter), we used the
results of the second, larger search for Figs. 3 and 4.

III. WAVENUMBER STATISTICS

In this Section, we discuss the wavenumber 𝑘∗𝑁 at which a
Turing instability first arises at 𝐷𝑁 = 𝐷∗

𝑁 . In particular, as
discussed in our Letter, we must ask whether a Turing insta-
bility is “observable at the system size”. This observability
requires the lengthscale 1/𝑘∗𝑁 of the linear instability to be
(a) smaller than the system 𝐿 and (b) larger than 𝐿/ℓ, for
some scale difference ℓ > 1. We are thus led to consider the
probability P(𝐾 < 𝑘∗𝑁 < ℓ𝐾), where 𝐾 = 1/𝐿.
It is instructive to start by considering the case 𝑁 = 2. For

the reaction-diffusion system in Eq. (1), a Turing instability
arises for 𝐷2 = 𝐷∗

2 at a wavenumber 𝑘
∗
2 = (𝐽/𝑑𝑢𝑑𝑣 )1/4 [S1].

We stress that this value depends on 𝑑𝑢 , 𝑑𝑣 not only through
their ratio 𝑑 = 𝑑𝑢/𝑑𝑣 . To absorb the dependence on the
dimensional system scale, it is natural to consider

𝜅2 (ℓ) = max
𝐾

{
P

(
𝐾 < 𝑘∗2 < ℓ𝐾

)}
, (S20a)

as the maximal probability of a Turing instability being ob-
servable at some inverse system scale 𝐾 over a fixed scale
difference ℓ. We denote by 𝐾2 (ℓ) the corresponding maximiz-
ing inverse system size.
For 𝑁 > 2, we correspondingly ask: what is the probability

of a Turing instability being observable at this inverse system
size? We therefore define

𝜅𝑁 (ℓ) = P (
𝐾2 (ℓ) < 𝑘∗𝑁 < ℓ𝐾2 (ℓ)

)
for 𝑁 > 2. (S20b)

Figure S1 plots 𝜅𝑁 (ℓ) against 𝑁 , for fixed values of 𝑅 and ℓ,
but the qualitative behaviour is independent of 𝑅 and ℓ. We
notice that 𝜅𝑁 (ℓ) increases slightly with 𝑁 . If we restrict the
analysis to those Turing unstable systems with 𝐷∗

𝑁 6 D, the
probability is reduced somewhat for 𝑁 > 2 compared to the
case 𝑁 = 2. This merely reflects the “fine-tuning problem”:
the wavenumber is strongly constrained for those very rare

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

binary

all Turing unstable systems
Turing unstable systems
with 𝐷∗

𝑁 <D

𝑁

𝜅𝑁 (ℓ)

FIG. S1. Wavenumber statistics. Probability 𝜅𝑁 (ℓ) of a Turing
instability being “observable” at a scale difference ℓ plotted against
𝑁; see text for further explanation. Larger markers: 𝜅𝑁 (ℓ) estimated
from all Turing unstable systems; smaller markers: 𝜅𝑁 (ℓ) estimated
from only those Turing unstable systems with 𝐷∗

𝑁 < D. Parameter
values: 𝑅 = 10, ℓ = 10, D = 5. Asymmetric error bars again
correspond to 95% confidence intervals larger than the plot markers,
corrected for systems for which the numerics failed.

systems that have a “small” diffusive threshold at 𝑁 = 2.
Moreover, about three quarters of the Turing instabilities at
𝑁 > 2 do arise at physical wavenumbers, so we can extend the
observations in Figs. 2(d) and 3(c) to note that random kinetic
Jacobians are still more likely to be unstable to an observable
Turing instability with small diffusive threshold for 𝑁 > 2 than
for 𝑁 = 2.

IV. DIFFUSION OF “SLOW” SPECIES

In the notation of Eq. (12) of our Letter, Ref. [S5] shows
that Turing instability at 𝑑 = 0 requires J22 to be stable (i.e.
all its eigenvalues to have negative real part): if it is not,
instabilities arise at arbitrarily small and therefore unphysical
lengthscales. In particular, det J22 ≠ 0, and so, using another
result of Ref. [S5],

det
(
J − 𝑘2D)

= det J22 det
(
j − 𝑘2I) , (S21)

where j = J11 − J12J−122 J21. Hence a Turing instability occurs
at 𝑑 = 0 only if j has a positive real eigenvalue, as claimed in
our Letter.

V. THE ASYMPTOTIC DIFFUSIVE THRESHOLD

Let J = 𝑂 (1) be a Turing unstable kinetic Jacobian, with
an eigenvalue 𝜆 destabilising at nearly equal diffusivities, so
that D = I + d with d = 𝑜(1). The following claim extends an
argument of Ref. [S6]:

Claim. J has a defective zero eigenspace.

Proof. Because J − 𝑘2I has a stable eigenvalue 𝜆 − 𝑘2 and
−𝑘2d � J − 𝑘2I, the corresponding eigenvalue of

J − 𝑘2D =
(
J − 𝑘2I) − 𝑘2d

can only have positive real part if 𝜆− 𝑘2 = 𝑜(1) i.e. if 𝜆 = 𝑜(1)
and 𝑘2 = 𝑜(1) since Re(𝜆) < 0. Hence J and J − 𝑘2I have a
zero eigenvalue at leading order. Additionally, the eigenvalue
correction from −𝑘2d = 𝑜

(
𝑘2

)
must be 𝑂

(
𝑘2

)
at least, which

occurs iff the (leading-order) zero eigenspaces of J − 𝑘2I and
J are defective [S7]; this final implication is discussed in more
detail in Ref. [S8]. �

The generic case is therefore J = J0 + 𝑂 (𝜀), where 𝜀 � 1
and J0 has a defective double zero eigenvalue.

Claim. d & 𝑂
(√
𝜀
)
; in particular, D − I � J − J0.

Proof. Since J0 has a defective double zero eigenvalue, J has
two 𝑂 (√𝜀) eigenvalues [S7], assumed to be stable (i.e. to
have negative real parts). With 𝑘 = 𝑂 (𝜀𝜅 ), d = 𝑂

(
𝜀𝛿

)
,

destabilizing one of these requires, using the proof of the first
claim above, −𝑘2d & 𝑂 (𝜀) and −𝑘2I . 𝑂 (√𝜀), i.e. 2𝜅 + 𝛿 6 1
and 𝜅 > 1/4. Hence 𝛿 6 1/2. This proves the claim. �
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SUPPLEMENTAL CODE

The online Supplemental Material also includes excerpts
from the python3 code that we have written to implement the
semianalytic approach for 𝑁 > 3.
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