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Mass spectrometry-driven BLAST (MS BLAST) is a data-
base search protocol for identifying unknown proteins by
sequence similarity to homologous proteins available in a
database. MS BLAST utilizes redundant, degenerate, and
partially inaccurate peptide sequence data obtained by de
novo interpretation of tandem mass spectra and has be-
come a powerful tool in functional proteomic research.
Using computational modeling, we evaluated the poten-
tial of MS BLAST for proteome-wide identification of un-
known proteins. We determined how the success rate of
protein identification depends on the full-length sequence
identity between the queried protein and its closest ho-
mologue in a database. We also estimated phylogenetic
distances between organisms under study and related
reference organisms with completely sequenced ge-
nomes that allow substantial coverage of unknown
proteomes. Molecular & Cellular Proteomics 3:238–249,
2004.

Proteomics has become a powerful tool to understand the
function and regulation of genes through the large-scale study
of proteins in living cells (reviewed in Refs. 1–4). Proteomics
efforts are supported by the identification of proteins and their
post-translational modifications by mass spectrometry, as it
offers the femtomole sensitivity, high throughput, and is able
to decipher complex mixtures of proteins. Proteins are typi-
cally digested in-gel or in-solution with proteolytic enzymes,
and the digests are analyzed by peptide mass mapping
and/or tandem mass spectrometry (reviewed in Refs. 4 and 5).
Conventional methods of database searching heavily rely on
matching masses of intact peptides (peptide mass mapping)
or their fragments (tandem mass spectrometry) to the corre-
sponding masses of peptides and/or peptide fragments ob-
tained by in silico processing of protein sequences from da-
tabase entries (reviewed in Ref. 6). Stringent matching of

computed and measured masses dramatically increases the
specificity and the speed of database searching (7), yet re-
stricts the reach of proteomics down to a handful of model
species, for which either a complete genome and/or a sub-
stantial number of cDNA sequences is available in a database.
Despite spectacular progress of genomic sequencing, many
important model organisms yet have not been adequately
covered (8).

If a protein of interest is not present in a database, peptide
sequences can be deduced by de novo interpretation of tan-
dem mass spectra (reviewed in Ref. 9) and used for designing
degenerate oligonulcleotide probes. The cognate gene can
subsequently be cloned by a PCR-based method. However,
cloning experiments are expensive, laborious, require long
and accurate stretches of peptide sequence, and, despite pre-
viously demonstrated success (10–13), have never been ap-
plied for the high-throughput characterization of proteomes.

Peptide sequences can also be employed in identifying
proteins by sequence similarity searches (14–17). These
search methods represent an attractive alternative to cloning
because the identification of unknown proteins can be
achieved without further “wet” biochemistry experiments, and
it is possible to utilize less-accurately determined peptide
sequences (reviewed in Refs. 8 and 18). However, mass spec-
trometry and sequence similarity searches are difficult to
combine. Conventional database search algorithms like
BLAST (19) or FASTA (20) are optimized for accurate se-
quence queries that are longer than 35 amino acid residues
(21, 22). Usually peptide sequences obtained by tandem
mass spectrometry do not exceed the length of a tryptic
peptide, typically comprising 10–15 amino acid residues, and
therefore the statistical significance of retrieved hits is often
ambiguous.

Recently, several database searching approaches were re-
ported that accommodate specific requirements of tandem
mass spectrometric sequencing (14–17, 23). Shevchenko et
al. developed a BLAST2-based search protocol termed MS
BLAST (15). MS BLAST takes advantage of several search
options in WU-BLAST2 (21, 24) and employs a scoring matrix
optimized for peptide sequences produced by tandem mass
spectrometry. MS BLAST does not allow gaps within individ-
ual peptides, while gaps between peptides are not penalized
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and can be of arbitrary length. Therefore all peptide se-
quences obtained by the interpretation of acquired tandem
mass spectra are assembled into a single searching string in
arbitrary order (18). MS BLAST identifies a set of high-scoring
segment pairs (HSPs)1 between the queried peptides and
sequences from database entries and scores these HSPs
independently of their respective location on a protein back-
bone and in the queried string. Because the smallest sum
probability computed by WU-BLAST2 does not adequately
merit the statistical significance of reported hits, the MS
BLAST scoring scheme maximizes the raw score, rather than
minimizing the smallest sum probability of reported align-
ments. The total score of the hit is additive over scores of
individual HSPs and is then compared with the precomputed
significance thresholds. The span1 filter replaces multiple
HSPs aligned to the same segment of a database sequence
by a single HSP with the highest score. Therefore, an MS
BLAST query can contain hundreds of redundant, degener-
ate, and partially accurate peptide sequence candidates and
can directly import the output of automated de novo interpre-
tation of multiple tandem mass spectra obtained in liquid
chromatography tandem mass spectrometry (LC MS/MS)
(25, 26), nanoelectrospray tandem mass spectrometry
(Nano ES MS/MS) (18), or matrix-assisted laser desorption/
ionization tandem mass spectrometry (MALDI-MS/MS) (27,
28) experiments.

To streamline the analysis of the output of MS BLAST
database searches, a parsing script was developed to evalu-
ate and sort hits according to the MS BLAST scoring scheme.
Regardless of their total scores (which depends on the num-
ber of aligned HSPs), hits significant in MS BLAST sense are
color-coded and placed at the top of the output list. MS
BLAST running with this parsing script has been installed at
a web-accessible server (dove.embl-heidelberg.de/Blast2/
msblast.html).

Modified FASTA-based algorithms, such as FASTS and
FASTF (14, 16, 17), evaluate hits by original scoring proce-
dures and statistical significance criteria. Despite higher flex-
ibility (allowing gapped and nongapped alignments, consid-
eration of isobaric permutations in peptide sequences, and
other useful features), FASTA-based search software requires
time-intense computations, and the significance of hits de-
clines with increasing numbers of redundant peptide se-
quence candidates in the query.

BLAST and FASTA-based approaches have been success-
fully applied to identify proteins from organisms with unse-
quenced genomes using peptide queries generated by mass
spectrometry. Comparative testing of MS-Shotgun, FASTS,
and MS BLAST on a small dataset of peptide sequences from
14 proteins of the 20S proteasome of Trypanosoma brucei

suggested similar performance of these three search engines
(16, 17).2 In a recent study, sequence similarity searches by
MS BLAST almost doubled the number of identified microtu-
bule-associated proteins from African clawed frog Xenopus
laevis (29) compared with a conventional database searching
method that utilizes stringent cross-species matching of un-
interpreted tandem mass spectra to peptides from database
entries (30). However, no evidence is yet available if sequence
similarity identification methods might have a significant im-
pact on the characterization of entire proteomes. It is not clear
what percentage of sequence identity to homologous proteins
in a database is required for the identification of yet unknown
proteins. In a broader perspective, it is not known what phy-
logenetic distance between a studied organism and reference
organism(s) with sequenced genomes enables substantial
coverage of its proteome. It is equally difficult to estimate
what length and number of fragmented peptides would be
sufficient for identifying homologous proteins by mass spec-
trometry-driven sequence database searches and how accu-
rate de novo sequencing should be. We applied computa-
tional modeling to evaluate the potential of the MS BLAST
protocol for the cross-species identification of proteins. We
estimated how the success rate of protein identification de-
pends on the full-length sequence identity between the que-
ried protein and its closest homologue in a database. By
evaluating the success rate of protein identification on the
proteome scale, we estimated acceptable phylogenetic dis-
tances between an organism under study and related refer-
ence organisms with completely sequenced genomes.

EXPERIMENTAL PROCEDURES

Computer Simulation Experiments—The WU-BLAST2 program (24)
was installed on a local server. Three species were selected from the
fungal (Sacharomyces cerevisiae, Candida albicans, and Schizosac-
charomyces pombe) and vertebrate (Takifugu rubripes, Mus muscu-
lus, and Homo sapiens) lineages. Full-length WU-BLAST2 searches
and MS BLAST searches were carried out between the members of
each lineage, so that proteins from each of the species were searched
against the protein databases of the other two species in the same
lineage (see Fig. 1A). One thousand proteins from S. cerevisiae from
chromosomes II, X, and XIV, 1,000 proteins from C. albicans, as well
as 1,000 proteins from S. pombe were randomly selected for the
fungal group (see Fig. 1B). Five hundred proteins each from T. ru-
bripes, M. musculus, and H. sapiens were randomly selected for the
vertebrate group. Low-complexity regions from protein queries were
filtered with pseg (31). Homologues of queried proteins in the neigh-
boring proteomes were determined by WU-BLAST2 searches per-
formed under standard settings (substitution matrix BLOSUM62, Ex-
pect cutoff 1) (21, 24) using their full-length sequences, and hits with
E-values lower than 1E-05 were fetched from the output by a special
sorting script. Sequence identity between the queried protein and
retrieved hits was expressed as the percentage of identical residues
normalized to the length of the query. To simulate MS BLAST queries,
peptide sequences of 10 amino acid residues were randomly selected
from proteins and merged into search strings. Queries containing 1, 3,

1 The abbreviations used are: HSP, high-scoring segment pair; LC
MS/MS, liquid chromatography tandem mass spectrometry; Nano ES
MS/MS, nanoelectrospray tandem mass spectrometry.

2 B. Habermann, S. Sunyaev, and A. Shevchenko, unpublished
observations.
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5, 8, 10, 15, and 20 unique peptides were assembled from peptide
sequences from S. cerevisiae and C. albicans, and queries containing
3, 8, and 15 unique peptides were assembled from S. pombe proteins
and from the three vertebrate species. To simulate possible ambigu-
ities of de novo interpretation of tandem mass spectra, one or two
randomly selected amino acid residues in each peptide sequence
were replaced with an X symbol, which has a score of 0 in the
PAM30MS substitution matrix. MS BLAST searches with assembled
queries were performed as described previously (15) with the excep-
tion that the Expect cutoff was 1,000. In order to avoid a bias resulting
from random selection of peptides for MS BLAST queries, peptide
selection for each protein sequence was repeated five times, resulting
in 5,000 MS BLAST queries for the fungal species and 2,500 MS
BLAST queries for the vertebrates.

Calculation of Threshold Scores of Statistical Significance for the
MS BLAST Scoring Matrix—To determine the thresholds of statistical
significance of MS BLAST hits, we analyzed raw scores of nonrelated
peptide sequence alignments essentially as described previously (15).
Thresholds were calculated by performing 5,000 MS BLAST searches
for each query composed from a given number of peptide sequences.
The number of peptides in queries was within the range from 1 to 20.
Queries were assembled from 10 amino acid residues peptides,
which were obtained by five independent rounds of random selection
from 1,000 unique proteins. MS BLAST queries were searched
against an inverted comprehensive nonredundant database. The
source database (release February, 2003), comprising 1,339,046 en-
tries (644,844,000 amino acid residues), was downloaded from the
National Center for Biotechnology Information. Scores of top hits
were collected in a Microsoft Excel spreadsheet and sorted by the
number of peptides in the query and by the number of reported HSPs.
For each size of the query (ranging from 1 to 20 peptides), threshold
scores were determined so that they exceeded scores of best hits
(with a given number of HSPs) of 99% of searches. The table of
precomputed threshold scores is available in the supplemental
materials (Table 1S).

Threshold scores control the rate of expected false-positive hits, but
not the rate of false-negative hits, and are independent of the compo-
sition of search queries. Calculating thresholds from searches against
an inverted comprehensive nonredundant database and employing
them to evaluate searches against much smaller species-specific
databases provided a conserved estimate of MS BLAST perform-
ance. The large sample size of a nonredundant database also repre-
sented “averaged” statistical properties of many known proteomes.

Evaluation of the Sensitivity and Specificity of MS BLAST Searches—
The significance of hits was evaluated according to the MS BLAST
scoring scheme as described previously (15, 18): for every reported
hit, the score of the top-ranked HSP was compared with the corre-
sponding threshold score for a single-matched HSP from the MS
BLAST scoring table. If the score exceeded the threshold, the hit was
considered positively identified. If the score was below the threshold,
the score from the first- and second-ranked HSP were summed up. In
case the summed score exceeded the threshold for two matched
HSPs, the identification was positive. Otherwise, adding the third-
ranking HSP and so forth continued the procedure. Examples of the
application of the MS BLAST scoring scheme are provided in Table I.
The dataset for the organisms M. musculus and S. pombe can be
downloaded from www.mpi-cbg.de/�habermann. The complete
dataset is available upon request.

Estimation of Evolutionary Distances—For evaluating evolutionary
distances, a phylogenetic tree was constructed for the fungal and
vertebrate lineages based on the sequence of the mitochondrial
small-subunit ribosomal RNA. Multiple sequence alignments were
constructed using the ClustalX program (32). The evolutionary dis-

tance between species was calculated using the program dnadist
from the Phylip package (33).

RESULTS AND DISCUSSION

Sensitivity of MS BLAST Identification—We were interested
in the MS BLAST performance in cross-species protein iden-
tification with peptide queries produced by the interpretation
of tandem mass spectra (MS queries). The success rate of
protein identification by sequence-similarity searches de-
pends on the molecular properties of analyzed proteins, the
evolutionary conservation between analyzed proteins and
their homologues in a database, and on the employed ana-
lytical methodology (34). Many of these factors are poorly
understood and could not be controlled directly while con-
structing a dataset. To create a dataset that adequately mim-
ics MS queries, we first generated a set of protein sequences
that adequately represents the entire proteome of a model
organism. Second, from this set of proteins we generated MS
queries that closely resembled peptide sequences typically
obtained by the interpretation of tandem mass spectra.

We employed random selection of protein sequences to
create a dataset that is statistically homogeneous within the
entire proteome of a given organism. We note that popular
computational methods, such as bootstrap and Monte Carlo
that are very sensitive to representative and unbiased sam-
pling, are also based on random selection of data (35). The
software randomly sampled 1,000 proteins from each of three
fungal species and 500 proteins from each of the vertebrate
species. The sampling strategy was validated on a dataset of
S. cerevisiae proteins (datasets from other species were built
similarly). To this end, we first computed the distribution of the
length of proteins within the S. cerevisiae dataset, compared
it to the distribution of the length of proteins in the whole
budding yeast proteome, and found that these distributions
overlapped within the margin �3% (Fig. 1S A in the supple-
mental materials). Next, we performed BLAST2p searches
with full-length sequences of proteins from the S. cerevisiae
dataset against the complete proteome of C. albicans. In each
search, the top hit was fetched and the percentage of identity
of its sequence to the sequence of the queried S. cerevisiae
protein was calculated. The percentage of budding yeast
proteins that share a given percentage of sequence identify
with C. abicans homologues was plotted. In a separate ex-
periment, all proteins from the proteome of S. cerevisiae were
searched against the complete proteome of C. albicans. The
results of the two experiments suggested that the two distri-
butions overlapped within the margin of �5% (Fig. 1S B in the
supplemental materials). We therefore concluded that data-
sets built by random sampling of a large number of proteins
reasonably represent physicochemical properties and evolu-
tionary conservation of sequences of proteomes of model
organisms.

The number of peptides sequenced de novo by tandem
mass spectrometry varies greatly between experiments; how-
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ever, it rarely exceeds 20 if the amount of analyzed proteins is
at the low-picomole level (11). Therefore computations were
performed with MS queries comprising from 1 and up to 20
unique peptides, which were randomly fetched from se-
quences of the protein dataset. Each unique peptide con-
sisted of 10 amino acid residues, which is close to the average
length of a tryptic peptide. We further assumed that de novo
interpretation of tandem mass spectra often does not render
fully accurate peptide sequences, but rather yields complete
sequence variants in which compatible isobaric combinations
of amino acid residues fill sequence gaps. All these sequence
variants may be included into the MS BLAST query without
affecting the confidence of protein identification, as was ex-
plained above. Therefore, to mimic the limited accuracy of de
novo sequencing, we randomly replaced one or two amino
acid residues in each peptide sequence by null-scoring X
symbols. This represents a realistic scenario, which assumes
that for each fragmented precursor even the most accurate
candidate sequence still contains two false amino acid
residues (12, 13).

The queries were then used for MS BLAST searches
against protein databases of the two remaining species within
the same phylogenetic lineage (Fig. 1). To identify homolo-
gous proteins in other organisms, we performed BLAST
searches with the full-length sequences of the proteins from
which MS BLAST queries were generated. In full-length
BLAST searches, E-value of 1E-05 was used as a cutoff
threshold, so that all hits with higher E-values were disre-
garded. By re-examining the output of full-length BLAST
searches, we estimated that in total more than 90% of hits
had E-values lower than 1E-20 and concluded that full-length
BLAST hits were statistically significant.

Genes are often multiplied during the evolution. For exam-
ple, a single gene in S. cerevisae might have two or more
homologues in S. pombe (36), which share substantial identity
of their sequences and display similar structural domains.
Therefore, if a full-length BLAST search hit more than one
protein, confident matching of the corresponding MS BLAST
query to any of these proteins was regarded as a positive
identification. The percentage of full-length sequence identity
between the queried protein and the homologous protein from
another organism was collected from full-length BLAST
searches performed as described above and was normalized
to the length of the queried protein.

MS BLAST hits were regarded as positive only if they met
the significance criteria according to the MS BLAST scoring
scheme (15, 18). Some typical examples are provided in Table
I. In the first example, an MS BLAST query was assembled
from peptides from the mouse protein AK002456.1. MS
BLAST search identified a T. rubripes protein (ID 15391) with
six out of eight peptides reported as HSPs. The MS BLAST
scoring scheme ignores E-values, p values, and bit scores of
individual HSPs. Instead, their raw scores are compared with
precomputed significance thresholds that are set condition-

ally depending on the number of aligned HSPs and on the
number of unique peptides in the query (see “Experimental
Procedures” for details. A full list of precomputed threshold
scores is provided in Table 1S in the supplemental materials).
First, the score of the top-ranked HSP (in this example, 64) is
compared with the threshold score for a single-aligned HSP
(59). Because 64 is more than 59, the protein is positively
identified and it is not even necessary to consider other re-

FIG. 1. Computational strategy for evaluating MS BLAST per-
formance. A, cross-species WU-BLAST2 and MS BLAST searches
were carried out for selected species from the fungal and vertebrate
lineages. In the case of S. pombe (Sp), T. rubripes (Tr), M. musculus
(Mm), and H. sapiens (Hs), 3, 8, and 15 peptides were used for MS
queries. In the case of C. albicans (Ca) and S. cerevisiae (Sc), 1, 3, 5,
8, 10, 15, and 20 peptides were used. B, a strategy for MS BLAST
evaluation. First, the threshold values were calculated based on ran-
dom alignments of MS queries with sequences from the inverted
nonredundant database. Second, MS BLAST and full-length BLAST
searches were carried out using randomly sampled proteins from the
selected species. Third, the percentage of true-positive, false-nega-
tive, and false-positive hits of MS BLAST searches was determined
by comparing the hits obtained by MS BLAST to the homologues
identified by full-length BLAST searches. Finally, the percentage of
true-positive hits was related to the phylogenetic distance between
the selected species.
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TABLE I
Examples of true-positive, false-negative, and false-positive identifications by MS BLAST

MS BLAST queries were assembled from M. musculus proteins and searched against the T. rubripes protein database. The precomputed
significance threshold scores were: for 1 HSP, 59; for 2 HSPs, 99; 3 HSPs, 131; 4 HSPs, 167 and are reported in bold in the “MS BLAST
scoring” column. A full list of threshold scores is provided in the supplemental materials.

Queried protein/
MS BLAST query

MS BLAST
hit HSPs MS BLAST

scoring/result
aFull-length BLAST

hit (% identity) Hit

AK002456.1 ID 15391 Score � 64 64 � 59 ID 15391 (61%) TRUE POSITIVE
Query: 67 CEHXVNGXRP 76 POSITIVE

VNVXVSAEDL- CEH VNG RP

GAFTXXSDFL- Sbjct: 184 CEHHVNGSRP 193

XEGDTPRXNK-

GVYNXHVXCL- Score � 51

QIRDQXSXGS- Query: 45 QIRDQXSXGS 54

VXFGEDIDLP- �IRDQ S GS

CEHXVNGXRP- Sbjt: 96 EIRDQGSCGS 105

YKXEAGDXMG

Score � 42

Query: 1 VNVXVSAEDL 10

� V SAEDL

Sbjct: 127 ISVELSAEDL 136

Score � 41

Query: 12 GAFTXXSDF 20

GAFT DF

Sbjct: 249 GAFTVYEDF 257

Score � 39

Query: 34 GVYNXHVXC 42

G Y� H� C

Sbjct: 168 GLYDSHIGC 176

Score � 30

Query: 78 YKXEAG 83

Y EAG

Sbjct: 207 YRCEAG 212

AK002456.1 ID 15391 Score � 50 50 � 59 ID 15391 (61%) FALSE NEGATIVE
Query: 56 VNVEXSAEDL 65

CNKSCXAXYS- � VE SAEDL

AGRNFYXXDI- Sbjct: 127 ISVELSAEDL 136

XSYSVSXSVK-

XLGGPKLPGR- Score � 37 50 � 37 � 99
EDIDLPXTFD- Query: 12 AGRNF 16

VNVEXSAEDL- AGRNF

YKHXAGXMMG- Sbjct: 41 AGRNF 45

LPGXVAFXED

Score � 35 50 � 37 � 35 � 131
Query: 24 SYSVS 28

SYSVS

Sbjct: 227 SYSVS 231

Score � 34 50 � 37 � 35 � 34 � 167
Query: 37 GPKLP 41 NEGATIVE

GPKLP

Sbjct: 63 GPKLP 67

BAB31737.1 ID 13094 Score � 60 60 � 59 No hit FALSE POSITIVE
Query: 56 LFVSFLXRAL 65 POSITIVE

WXTFGLTDTN- LFVSF� RA�

XPLSCSLLLV- Sbjct: 137 LFVSFILRAI146

XTGXLGLNLA-

XQLITQAKQT-

GPMXKLVXKL-

LFVSFLXRAL-

SFLNRAXRTD-

XQLTLALXSA
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ported HSPs. In the second example in Table I, a query
composed from another selection of peptides from the same
mouse protein hit the same protein from T. rubripes. The
score of the top HSP (50) was lower than the threshold score
for a single-aligned HSP (59). Therefore, the alignment of the
two top-scoring HSPs was considered. Their additive score
(50 � 37 � 87) was also lower than the threshold score for
two-aligned HSPs (99). Because the additive score of three
HSPs (50 � 37 � 35 � 131) and of four HSPs (50 � 37 � 35 �

34 � 167) also did not exceed the corresponding thresholds,
the identification was considered negative in this case. Fol-
lowing the same scoring scheme, in the third example, a
query of eight peptides from the mouse protein BAB31737.1
positively identified the protein ID 13094 by a single-reported
HSP (60 � 59), albeit no other peptides were aligned. We note
that at the MS BLAST web interface (see above) the same
scoring procedure is performed by a special script.

We further compared the results of MS BLAST identification
with the results of full-length BLAST searches. A BLAST
search with the complete sequence of the protein
AK002456.1 also identified the protein ID 15391, and 61% of
the sequence identity was reported. The MS BLAST identifi-
cation in the first example was therefore considered as “true
positive” because the protein ID 15391 was identified by both

MS BLAST and full-length BLAST searches. The second ex-
ample was considered as “false negative” because the full-
length BLAST identified a homologous protein in a database,
but MS BLAST failed to do so. In the third case, MS BLAST
confidently identified ID 13094 in the database, but this pro-
tein was not among the hits of the full-length BLAST search,
and this MS BLAST identification was considered as a “false
positive.”

We investigated the relationship between the rate of true-
positive, false-negative, and false-positive identifications by
MS BLAST, overall sequence identity between homologous
proteins and the number of peptides in a query (Fig. 2). Only
a minor fraction of hits were false positives, typically not
exceeding 3% of all queried proteins (Fig. 2A), well in agree-
ment with the 1% false positives anticipated from the method
of calculation of threshold scores. Most false-positive hits
were observed in queries with a small number of peptides,
and their percentage dropped with increasing the sequence
identity between the query and the database sequence. The
percentage of false-negative hits was typically in the range
between 0 and 40%, and this number decreased with increas-
ing the sequence identity or the number of queried peptides
(Fig. 2B). Even though the maximal rate of false-negative hits
seems quite high, it is not surprising considering that the

FIG. 2. Distribution of false-positive, false-negative, and true-positive identifications by MS BLAST. The percentage of MS BLAST
queries identified as false-positive, false-negative, and true positive hits (at the y-axes) was related to the percentage identity between the
sequence of the protein from which the MS BLAST query was composed and the sequence of its homologue determined by the full-length
BLAST search (at the x-axes). Calculations were performed for different numbers of peptides in MS BLAST queries. A, false-positive hits of MS
BLAST searches. B, false-negative hits of MS BLAST searches. C, true-positive hits of MS BLAST searches. The results of searches with
queries composed from S. cerevisiae peptides against the C. albicans proteome are presented.
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percentage of identical residues was calculated based on the
entire length of the queried protein. Two proteins might share
a single domain or display high enough similarity to be iden-
tified by a full-length BLAST search. In case of only local
sequence similarity, normalization of the percentage of iden-
tical residues to the length of the query lowers the overall
identity considerably. In MS BLAST searches, peptides in the
query might, for instance, not coincide with the region of
similarity between the query and the hit. With increasing the
number of unique peptides in the query, the sensitivity of MS
BLAST searches almost reaches the sensitivity of full-length
BLAST searches for proteins sharing substantial sequence
identity with their homologues in a database. While the peak
of false negatives could be at as high as 90% of sequence
identity for queries comprising only one peptide, it peaked at
roughly 40% identity when 20 input peptides were used. The
percentage of true-positive hits grew steadily with increasing
the percentage of sequence identity or the size of the query
(Fig. 2C). Using three peptides as an input, 100% of proteins
could only be identified when they shared between 90 and
100% sequence identity, and 60% sequence identity was
required to identify more than half of the input queries. In case
of eight peptides, 50% sequence identity was sufficient to
identify over 50% of input queries. It is therefore safe to
assume that very few hits will be missed by MS BLAST
searches, once the sequence identity to a homologue in a
database exceeds 60%. Although this estimate might not look
very exciting, we note that it is well beyond the reach of
stringent database searching, because on average one out of
three amino acid residues in the protein sequence is expected
to differ from the sequence of a homologous protein. We
noted that the success rate of MS BLAST identification almost
reached its maximum when 15 peptides were assembled in
the query, and further increase in the number of sequenced
peptides (for example, up to 20 peptides) did not enhance its
performance substantially.

We next asked whether the percentage of true-positive,
false-negative, and false-positive hits in MS BLAST searches
would differ depending on the proteome-wide sequence sim-
ilarity between organisms. To this end, we selected 500 pro-
teins each from the vertebrates T. rubripes, M. musculus, and
H. sapiens and repeated the computer simulation experi-
ments as described above. As shown in Fig. 3, A–D, the most
notable difference is the number of false-negative hits. While
the percentage of false negatives never exceeded 20% in the
vertebrate lineage (Fig. 3, C and D), it was twice as high
among the fungal species (Fig. 3, A and B). This agrees with
the difference in the overall similarity between the selected
proteomes. The number of proteins with less than 40% se-
quence identity between human and mouse was, for instance,
considerably smaller as compared with the fungal species
(see Fig. 5A) and correlated with the observed rate of false-
negative identifications. Furthermore, the similarity of closely
related proteins between human, mouse, and T. rubripes

more likely covers the entire sequence, while in the fungal
lineage it is often restricted to a segment of the full sequence.

MS BLAST Searches at the Proteome Scale—We next
wanted to know what fraction of the proteomes of the se-
lected species could be identified by MS BLAST, irrespective
of the rate of divergence between homologous sequences.
We therefore calculated the percentage of true-positive iden-
tifications by MS BLAST, depending on the number of unique
peptides in the input query. Within the fungal lineage
(S. pombe, C. albicans, and S. cerevisiae), MS BLAST could
identify less than 30% of queried proteins, even when 15
unique peptides were used as an MS query (Fig. 4, A and B).
The MS BLAST success rate was significantly higher for ver-
tebrates (T. rubripes, M. musculus, and H. sapiens) (Fig. 4, C
and D). Using as few as three peptides per query, MS BLAST
could match over 60% of M. musculus proteins to human
sequences (Fig. 4D), and over 80% of queries could be iden-
tified with 15 queried peptides. Still, 50% of true positives
were found when mouse MS queries were searched against
the T. rubripes proteome (Fig. 4C). Our simulations suggested
that within the vertebrate, or rather the mammalian subking-
dom, entire proteomes could be covered by MS BLAST. We
speculate that the identification of a variety of mammalian
proteins might not require any further knowledge of genomes,
but can be attained on the basis of already available sequence
resources, yet the completeness of the annotation of pro-
teomes is undeniably an important factor. Searching against a
database of mouse proteins, the percentage of true-positive
human hits dropped below 50% even with 15 unique peptides
in the query (Fig. 4E), as compared with the over 80% in the
reverse direction, apparently because the current database of
mouse proteins is less complete than the one from humans. A
considerable fraction of human proteins cannot be identified
by sequence similarity searches against mouse, because the
murine homologues are currently absent in the mouse protein
database. Improved annotation of genomic sequence would
likely solve this problem in the near future. A majority of
missing proteins could still be identified by MS BLAST
searches against expressed sequence tag databases. MS
BLAST could be applied using the tBLASTn program to
search DNA databases. Because sequence matching in this
case also relies on protein sequences, the threshold scores
obtained for peptide against protein matching will be valid. At
the same time, MS BLAST performance within the fungal
lineage was less encouraging and it could not be improved
substantially. Our simulations suggested that a vast majority
of true-positive hits were matched to proteins from the most
related species. For example, the success rate was almost
unchanged when queries from C. albicans proteins were
searched against the closely related organism S. cerevisiae or
against the complete nonredundant database (data not
shown). Therefore, enlarging the size of a database by merg-
ing sequences from distantly related species does not com-
pensate the lack of proteins from closely related species.
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Prediction of the Success Rate of MS BLAST Identification
Based on Phylogenetic Distances—We further estimated
which proteomes could be covered by MS BLAST in respect
to their distance to the closest related organism having a
completely sequenced genome. Phylogenetic analysis is usu-
ally based on multiple sequence alignments of sequences of
a conserved RNA or protein family, such as mitochondrial
small-subunit ribosomal RNA or cytochrome c (37), both of
which are generally available for a wide range of species. The

phylogenetic position of studied organisms relative to a ref-
erence organism with a complete genome could help to pre-
dict an average success rate of a proteomic study. Another
way of estimating the rate of divergence between proteomes
is to determine the amount of dissimilar sequences they con-
tain. In other words, the higher the average dissimilarity be-
tween proteins of two organisms, the more their proteomes
would have diverged. We related the overall success rate of
protein identification by MS BLAST to both the percentage of

FIG. 3. Comparative analysis of the percentage of false positives, false negatives, and true positives for different combinations of
species. A, S. cerevisiae searched against C. albicans. B, C. albicans searched against S. pombe. C, T. rubripes searched against H. sapiens.
D, M. musculus searched against H. sapiens. The major difference is in the percentage of false negatives in fungal and vertebrate searches:
the number of false negatives in the fungal lineage is twice as high as is found between vertebrate species. Squares, false positives; diamonds,
false negatives; circles, true positives; green, 3 peptides; blue, 8 peptides; red, 15 peptides.
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dissimilar sequences between studied organisms and to the
phylogenetic distance based on the alignment of mitochon-
drial small-subunit ribosomal RNAs. To estimate the diver-
gence of proteomes, we calculated the percentage of dissim-
ilar sequences (i.e., below 20% sequence identity) present in
our dataset (Fig. 5A). The mouse and human proteomes di-
verged the least (containing less than 10% of dissimilar se-

quences), while for the fungal species, nearly half of the
proteins in our dataset were considered dissimilar. For exam-
ple, in the yeasts S. cerevisiae and S. pombe over 60% of the
selected sequences fell into this category. The correlation
between the MS BLAST success rate and the divergence of
proteomes showed an exponential drop from �80% of iden-
tified proteins, in the case of mouse and human, down to less

FIG. 4. The performance of MS BLAST searches in cross-species identification of proteins. The number of peptides was related to the
percentage false-positive (green), false-negative (blue), and true-positive (red) hits identified by MS BLAST. A, S. cerevisiae searched against
C. albicans. B, S. cerevisiae searched against S. pombe. C, M. musculus searched against T. rubripes. D, M. musculus searched against H.
sapiens. E, H. sapiens searched against M. musculus.
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than 30% for the budding and fission yeasts (Fig. 5B). Yet for
many organisms the paucity of available sequences would not
enable calculating the distance to their closest neighbor with
a completely sequenced genome using the divergence of their
proteomes. In these cases, distances between neighboring
organisms can be estimated by the phylogenetic analysis of
ribosomal RNA or cytochrome c. We performed the phyloge-
netic analysis of the mitochondrial small-subunit ribosomal
RNA family for the fungal and vertebrate lineages. We esti-
mated phylogenetic distances between the model species
and related them to the proteome-wide success rate of MS
BLAST identification (Fig. 5C). Based on phylogenetic analy-
sis of mitochondrial 12S rRNA, the human genome is the
closest completed genome to the M. musculus genome, with
a phylogenetic distance of 0.32. Within this range, more than
60% of proteins could be identified by MS BLAST with as few
as three peptide sequences and over 80% with 15 peptide
sequences in a query. At the same time, sequence-similarity
identification between organisms with a distance around 1.0
became problematic. The selected fungal species C. albicans,
S. cerevisiae, and S. pombe all have a distance close to 1.0,
and, on average, only 30% of their proteins could be matched

even with 15 peptides in a query. Because increasing the
number of sequenced peptides over 15 did not improve the
success rate, we reasoned that the phylogenetic distance of
�0.5 represents a reasonable limit for reliable coverage of at
least 50% of an unknown proteome. However, this estimate
should be treated with caution, as the success rate computed
over a whole proteome may not apply to identifying members
of different protein families, because their conservation
strongly varies.

Statistically confident identification of a protein by mass
spectrometry does not necessarily imply the direct, unambig-
uous, and accurate assignment of the biological function.
Proteins are typically identified by matching a few MS/MS
peptide spectra to the protein sequence in a database, and no
credible information on peptides that happened to escape the
fragmentation is provided. Often mass spectrometric identifi-
cation can only point to a gene (or to a family of related genes)
within the same organism, rather than identifying a unique
protein product (38). This is also true for sequence similarity
identifications. A homology-based identification only implies
that statistically significant similarity between peptide se-
quence(s) in the query and sequence(s) in a database has

FIG. 5. Relationship of true-positive identifications by MS BLAST to the phylogenetic distance between species. The percentage of
true-positive identifications by MS BLAST searches depends on the distance to the next completely sequenced genome. A, the divergence
of proteomes is estimated based on the percentage dissimilar sequences between selected species. B, correlation of overall success rate of
MS BLAST searches to the percentage of dissimilar sequences in the data set. C, correlation of overall success rate of MS BLAST searches
to the phylogenetic distance between selected organisms based on the mitochondrial small-subunit ribosomal RNA. The R2 value of trend line
fitting is indicated.
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been registered. However, the functional significance of this
observation depends on many indirect factors, such as the
number of matched peptides or the functional diversity of
proteins that were identified with the same or similar peptide
sequences. Although the identification helps to formulate a
plausible working hypothesis on what the function of the
protein might be, the ultimate proof always rests with a clear
biological experiment (39). We note that even if full-length
sequences of homologous proteins would become available
(for example, from a cloning experiment), the identity of their
function still might not be confidently established (36, 40)

CONCLUSION AND PERSPECTIVES

Recent developments in bioinformatics and mass spec-
trometry effectively argue against the common notion that the
availability of the complete genome of an organism is an
ultimate prerequisite for successful characterization of its pro-
teome by mass spectrometry. Sequence similarity searches
extend the scope of proteomics beyond the boundaries of
genomic sequencing, bridging gaps between organisms with
rich sequence information. Within the mammalian subking-
dom, over 80% of proteins could be positively identified by
sequence similarity searches, because orthologous proteins
share substantial sequence identity. Considering the phylo-
genetic relatedness between vertebrates and the availability
of the human, mouse, fugu, and zebrafish genomes, it should
already be possible to cover most proteomes in this lineage.
The availability of the genomes of Arabidopsis thaliana, Zea
mays, Oryza sativa, and Tritium aestivum, currently being se-
quenced, will advance proteomics in many economically im-
portant plants. However, the success rate of sequence simi-
larity searches will be inevitably smaller for earlier diverged
lineages, such as fungi, and further genomic or expressed
sequence tag sequencing efforts will be required for mining
their proteomes by mass spectrometry.

MS BLAST, as opposed to FASTS and FASTF, maximizes
the raw score, rather than minimizing the smallest sum prob-
ability of an alignment. Contrary to the calculated E-value of
alignments, the raw score used by MS BLAST is not affected
by redundant and/or false peptide sequences. MS BLAST
enables high-throughput identification of “unknown” proteins
by tandem mass spectrometry, because very accurate inter-
pretation of spectra and hand-picking of reliable peptide se-
quences is no longer absolutely required. However, accurate
de novo sequencing will remain important for cloning of new
genes (41) that do not have close homologues in a database.

How might the power of search algorithms like MS BLAST
be extended to more distantly related organisms? It might be
possible to either deduce longer sequence stretches by frag-
menting multiply charged ions of large protein fragments or
even intact proteins in a top-down approach (reviewed in Ref.
42) or to increase the number of sequenced peptides using
advanced LC MS/MS combinations (43). Recent progress in
Fourier transform mass spectroscopy technology (reviewed in

Ref. 4) has had strong impact on the performance of both
top-down and bottom-up protein characterization ap-
proaches in proteomics, and we might also anticipate that
proteomes of species phylogenetically distant from organ-
isms with completely sequenced genomes could be charac-
terized with high sensitivity and throughput.
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