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The localization of a protein is intrinsically linked to its role in the structural and functional organization
of the cell. Advances in transgenic technology have streamlined the use of protein localization as a
function discovery tool. Here we review the use of large genomic DNA constructs such as bacterial
artificial chromosomes as a transgenic platform for systematic tag-based protein function exploration.

� 2015 Published by Elsevier Inc.
1. Introduction

For decades, immunostaining with protein specific antibodies
has provided a reliable method for protein localization and anti-
bodies are now available for a large number of proteins. Over the
last 10 years the Human Protein Atlas program (HPA) has gener-
ated a collection of over 50,000 polyclonal antibodies targeting
19,100 (95%) human protein-coding genes [1]. Many of them have
already been used to generate validated protein expression profiles
and to systematically map the subcellular localization in fixed cells
[2–5]. Antibodies are a versatile affinity reagent and can be applied
in any cell line or tissue from the target species and even across
species when the epitope is conserved. However, antibodies have
a number of known limitations that have to be taken into account
in every experiment. Although in vivo localization approaches
based on fluorescently labeled single chain Fab fragments (scFabs)
or camelid single chain antibodies (often referred as nanobodies) is
possible [6–8], the vast majority of the available antibodies require
cell fixation and permeabilization, which can cause cell shrinkage
or leakage of endogenous components [9,10]. Antibodies are also
prone to cross-reactivity and often cannot discriminate between
protein isoforms that have different subcellular localizations [11].

The ability to observe protein localization in vivo can often
reveal functionally relevant dynamics that cannot be inferred from
immunostaining [12–14]. Since the first use of the Aequorea victo-
ria green fluorescent protein (GFP) over 20 years ago [15] a large
array of fluorescent proteins with various properties and methods
for expression of fluorescently tagged proteins (Table 1) have been
developed [16,17]. The cloning of cDNA derived open reading
frames (ORFs) into standard expression vectors was one of the
early approaches for systematic tag-based protein localization
mapping [18]. A proteome-scale localization map was generated
in budding yeast through the systematic cloning of ORFs into
plasmid vectors for inducible overexpression of V5 tagged proteins,
followed by immunostaining with an anti-V5 antibody [19] and
similar approaches have been used in other systems [20–22].
Due to its simplicity this approach remains very popular and large
scale ORF resources are now available for many commonly used
model systems, typically in vector formats that allow the easy
shuffling to expression vectors containing fluorescent or epitope
tags [20,23–26]. However, the heterologous promoters and 30

regulatory elements often used with these type of vectors do not
reflect the endogenous expression levels of most proteins and
can disturb cellular functions. Since certain diseases can be caused
by abnormally high protein levels [27], cDNA transgenes have been
used in systematic screens for such phenotypes, for example in an
activator screen for the antioxidant response element in human
cells [28]. In addition, overexpression may lead to saturation of
the specific binding sites of a protein leading to lead to mislocaliza-
tion and/or obscuring of the normal localization pattern.

The most reliable way to ensure endogenous regulatory control
of the tagged protein expression is the direct targeting of the geno-
mic locus. Two major strategies, the transposon or viral vector
mediated random insertion and the homology directed precise

http://dx.doi.org/10.1016/j.ymeth.2015.10.005
http://dx.doi.org/10.1016/j.ymeth.2015.10.005
http://www.sciencedirect.com/science/journal/10462023
http://www.elsevier.com/locate/ymeth
http://dx.doi.org/10.1016/j.ymeth.2015.10.005


Table 1
Comparison of various methods for system-scale protein localization.

Cost Scalability Signal strength Isoform
selectivity

Major advantages Major limitations

Immunostaining High Low Varies Low Applicable to any sample Cross-reactivity, cost
cDNA transgenes Low Good High Good Ease of cloning Position effects, overexpression
gDNA transgenes Low Good Near native

levels
Good Comparable with targeting at a lower cost,

hypomorphic or lethal protein variants can be
studied

Position effects, fragmentation

Gene targeting High Low Native levels Good Endogenous expression levels High costs, the tag can affect gene
function
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targeting, have been developed in parallel with their own
advantages and limitations. The main advantage of the random
approach is the ability to rapidly generate and map a large number
of insertions. The tag can be either inserted directly or through an
exchange of a previously inserted gene trap cassette by recombi-
nase mediated cassette exchange (RMCE) [19,29–35]. Some of
the technical limitations of this approach, including a insertion bias
towards a particular sequence content, were mostly overcome
with later generations of these vectors. However, all random
approaches suffer from diminishing returns, where the number
of repeatedly hit genes grows and the number of new genes rapidly
declines, and only a fraction of the inserts can result in a functional
tagged protein. Until recently, homology directed repair (HDR) was
only practical in a small number of model systems and has only
been used for proteome-scale localization studies in a few species
including Saccharomyces cerevisiae [36]. The discovery of the
CRISPR/Cas technology has dramatically increased the efficiency
of gene targeting in systems where such tools were already
available and has made genome engineering feasible in species
that so far appeared resistant to this approach. However, a number
of technical and logistic challenges still need to be addressed
before systematic genome-wide HDR targeting based tagging in
mammalian systems becomes reality.

Genomic DNA (gDNA) transgenes provide an alternative that
combines the ease and efficiency of cDNA transgenics with
preservation of the endogenous regulatory expression control
comparable with gene targeting. In this review, we explore various
applications of the gDNA transgene approach and compare it to
other methods for protein localization.
2. gDNA transgenesis as platform for protein function
exploration

2.1. Methods for gDNA transgene engineering

The first attempts to use gDNA for large scale GFP tagging was
cloning of random fragments of the fission yeast genome into
expression vectors, resulting in one of the early protein localization
maps [37]. This approach is not practical for metazoan genes,
which can be orders of magnitude bigger than in yeast. However,
large insert gDNA libraries of bacterial artificial chromosomes
(BACs), P1-derived artificial chromosomes (PACs), or yeast artificial
chromosomes (YACs) that can cover most genes with their
endogenous cis regulatory context are available for many model
systems. When used as transgenes, these clones typically exhibit
near-physiological levels and patterns of gene expression and are
routinely used in mapping mutations by complementation [38].
YACs can be engineered in vivo by homologous recombination in
yeast [39,40] and the development of efficient methods for
homologous recombination mediated engineering in Escherichia
coli [41,42] made it possible to apply this approach to the easier
to handle fosmid/BAC/PAC constructs. Most E. coli cloning hosts
exhibit very low levels of spontaneous recombination, which
Please cite this article in press as: S. Hasse et al., Methods (2015), http://dx.do
ensures a stable maintenance of large and repetitive clones. A
simple two-component recombination system, consisting of an
exonuclease and a strand annealing protein from the phage lambda
or related phages, is sufficient for an efficient and precise homolo-
gous recombination in E. coli with only 30–50 bp of homology
[41,43,44]. As recombineering is independent of the availability
of restriction sites and can be used to insert, delete, change or
retrieve any sequence of interest to and from any DNA that can
be propagated in E. coli it was soon adapted to a wide spectrum
of applications. BAC recombineering provided an efficient way to
engineer point mutations, create translational or transcriptional
reporters and targeting constructs for genome editing [45–48] for
almost any gene of interest in a range of model organisms (mam-
mals: [49–51]; fly: [52,53]; worm: [54–57]). With recombineering,
the tag coding sequence can be inserted into the gene of interest at
the N- or the C-terminus or at any internal position of choice,
allowing the tagging of specific splice forms. The tag is typically
inserted as a cassette with a selectable marker, which can
be removed by site-specific excision through recombinases like
Cre or Flp. Methods have been developed to allow the easy
exchange of the tag in the transgene by either homologous
recombination [45] or RMCE [58].
2.2. System-scale gDNA transgenesis

The high recombineering efficiency, near absence of unintended
recombination background and the ease of handling E. coli in liquid
culture lead to the development of high throughput pipelines for
multi-step recombineering in a 96 well plate format for parallel
engineering of a large number of constructs in Caenorhabditis
elegans [59], mammals [60] and Drosophila [52,53,61] (Fig. 1).
Using this approach a C. elegans library of 14637 tagged fosmid
transgenes was constructed, which enabled the in vivo localization
or affinity purification of 73% of the proteome [54]. The fosmid
collection was used to create over 580 transgenic C. elegans lines.
All constructs, lines and associated localization patterns are
accessible at https://transgeneome.mpi-cbg.de. Since the release
of the C. elegans TrangeneOme resource, 2806 constructs have been
distributed to labs around the world in a community-wide effort to
generate a proteome scale resource of tagged transgenic lines.
Using a similar approach [52,53,61] a collection covering approxi-
mately 10000 Drosophila genes was recently created, from which
transgenic lines for 826 genes were already established. The
‘tagged FlyTransgeneOme’ (fTRG) lines are available at the VDRC
stock centre (http://stockcenter.vdrc.at) [61]. Systematic BAC
transgenesis in mammalian cell lines [60] has led to the generation
of over 6000 BAC-tagged cell lines, including HeLa, U2OS, mouse
embryonic stem cells and MDCK (http://hymanlab.mpi-cbg.de/
bac). Over 5800 lines have been sent to 160 labs in 26 countries.
Their applications spanned from the investigation of small
amounts of different lines [62,63] to studies involving several hun-
dred BAC-lines [49–51,64]. Hutchins et al. studied 696 tagged
human proteins that carried a C-terminal localization and
i.org/10.1016/j.ymeth.2015.10.005
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Fig. 1. Selected examples of gDNA transgene derived specific subcellular localization patterns. (A) D. melanogaster. GFP fluorescence is shown in green, DAPI staining for DNA
in magenta. All proteins show expression patterns consistent with their known function, for example the maternal effect protein Staufen localizes to the posterior pole of the
egg, while Ash-1 localizes in the nucleus. (B) Transgenic HeLa cells. An antibody staining enhanced GFP-signal (green), Actin (red) and DAPI stained DNA (blue). The receptor
protein Bmpr1a localizes to the plasma membrane; as one of the core subunits of the SMN complex, SMN1 forms granules in the cytoplasm corresponding to the cytosolic
assembly of small nuclear ribonucleoprotein particles (snRNPs) by the SMN complex and subnuclear bodies consistent with the final maturation of the snRNPs within Cajal
bodies of the nucleus [93]; Small dots are formed as well by Pml, presumably Pml-bodies; Utp3 localizes specifically to the nucleolus; the kinetochore protein Cenpq localizes
where it is required for proper kinetochore function and mitotic progression [94]; while the nuclear pore complex protein Nup-107 localizes to the nuclear membrane.
(C) C. elegans. GFP fluorescence is shown. Actinin-1 (Atn-1) and Profilin-2 (Pfn-2) localize to muscles, while the nuclear pore complex protein Npp-1 can be found at the
nuclear envelope. Gei-11 is a transcription factor that specifically regulates the expression of the snRNA genes, which are clustered on chromosome IV, resulting in specific
punctate subnuclear localization; Syp-1 is a member of the synaptonemal complex; Cnd-1 is the worm NeuroD ortholog.; Images taken (with permission) from:
http://tomancak-srv1.mpi-cbg.de/DOT/main.html, http://hymanlab.mpi-cbg.de/bac/login.jsp, https://transgeneome.mpi-cbg.de.
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Fig. 2. BAC transgenes as a versatile resource. (A, B) The tagged BAC transgenes can
be easily engineered for various downstream applications that increase their utility.
Homology directed recombineering (HDR) allows the insertion of mutations (A) to
investigate the function of protein variants and/or to make the transgenes resistant
to RNAi (B) targeting the endogenous counterpart, which can be used to rescue
RNAi phenotypes to confirm their specificity or for structure–function studies.
(C) Several methods have been generated that allow the easy exchange of the tag
coding sequence in the transgene through HDR or site-specific recombinase
mediated cassette exchange (RMCE). (D, E) Various methods for random or site-
specific single copy insertion of intact BAC transgenes have been developed. BACs
can be easily retrofitted for these approaches by either inserting inverted repeats
for transposons (D) or the phiC31 recombinase recognition site attB (E). The tagged
BACs are also an intermediate step in the generation of targeting constructs (F).
Subcloning by recombineering is efficient as homology arms of any designed length
can be subcloned. It is not affected by the specific sequence composition (high/low
GC content) as with other PCR-based methods.
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affinity-purification tag (LAP-tag) for investigating protein com-
plexes in mitosis. The exploration of their localization and physical
interaction partners led to the discovery of complexes essential for
spindle assembly and chromosome segregation [50]. Maliga et al.
used BAC transgenics to explore the function of 243 mouse and
human motor proteins [51].

2.3. Advantages and known limitations of the gDNA transgene
approach

The main advantage of the gDNA/BAC approach is the high
efficiency of engineering and transgenesis, which can reach the
80–90% range in mammalian tissue culture applications [60].
Combined with the low costs of this approach, gDNA transgenesis
provides a way to quickly explore the function for large sets of
genes. Due to their large size, BACs appear more resistant to
position effects than smaller plasmid transgenes, but are prone
to fragmentation and rearrangement during transgenesis and
independent lines should be obtained and compared to verify the
observed patterns. The integrity and localization of the BAC can
be determined by targeted locus amplification (TLA) [65]. This
issue can be overcome through various techniques that ensure
intact, single copy transgene integration. In Drosophila, the
efficient phiC31 integrase mediated insertion of a fosmid/BAC
transgene at a pre-defined genomic position is reliable and a large
number of insertion sites are available [35,66,67]. In mammalian
cells the PiggyBac and the Sleeping Beauty transposons have been
shown to efficiently jump into the genome with intact BAC sized
cargo, typically as a single copy [68,69]. A similar approach using
the Drosophila Mauritania transposon Mos1 works efficiently in C.
elegans [70]. Recently, an approach was developed that utilizes
programmable nucleases like Zn fingers, TALENs or Cas9 to induce
NHEJ mediated insertion of transgenes at any point of interest in
the target genome that appears suitable for large inserts [71].

Typically, gDNA transgenes do not suffer from the strong
overexpression common for cDNA transgenes [11], however, they
are still present in addition to the endogenous alleles. As many
proteins tend to have similar expression levels as their binding
partners, in some cases even a slight overexpression can perturb
this balance causing mislocalisation and abnormal phenotypes
[72]. On the other hand, a slight overexpression would in most
cases be tolerated by the cell and may even be beneficial for the
localization of proteins expressed at levels close to the detection
limit for in vivo imaging.

A known limitation of any tagging approach is the potential for
the tag to interfere with the normal protein function by altering its
charge and size or by affecting protein folding, degradation, the
binding of interaction partners etc. However, improvements in
tag design, the use of flexible linkers and rational design of the
tag insertion points (to avoid interference with signaling peptides
or catalytic domains for example) have helped to minimize this
problem, and systematic comparisons with immunofluorescent
labeling or rescue of mutant phenotypes [61] with tagged transge-
nes [11] show that this is a minor issue that can be controlled for
and typically overcome. This is particularly straightforward with
gDNA transgene recombineering as there are practically no
restrictions on the tag insertion position.

2.4. Applications of BAC transgenics beyond localization

Once generated, the BAC transgenes can be used with any cell
line or a model organism that can be efficiently transfected and
have many additional applications (Fig. 2). A large variety of tag-
ging cassettes are now available that reflect the specifics of the
model organism and the biological question they are used to
address. Most tagging cassettes use a combination of fluorescent
Please cite this article in press as: S. Hasse et al., Methods (2015), http://dx.do
and affinity epitopes and can be used for both localization and
purification [45,52,60,73]. Earlier affinity purification protocols
favored a multi-step approach to ensure highly pure complexes,
but with the development of stable isotope labeling (SILAC) or
label-free quantitative mass-spec methods, a single step purifica-
tion is often sufficient and can preserve weaker integrations that
might otherwise be missed [74–76]. Tag specific purification
makes other affinity applications such as chromatin immunopurifi-
cation (ChIP) [45,60,77–80], photoactivatable-ribonucleoside-enh
anced crosslinking and immunoprecipitation (PAR-Clip) [81] more
comparable and reliable as it removes variability in non-specific
antibody interaction.

Beyond the simple tagging with the commonly used fluorescent
proteins and affinity epitopes the tagging cassettes can add useful
properties that cannot be achieved with the antibody based
techniques. For example, poly-cistronic expression cassettes have
been developed for various species including mammalian cells,
C. elegans [55,82] and Drosophila [83,84], which can be used to
drive the expression of a selection marker or to facilitate the iden-
tification of the expressing cell by targeting a fluorescent reporter
to a specific and easy to identify compartment like the cell nucleus
[55]. Identifying the expressing cell in complex tissues with anti-
body staining can be non-trivial, especially for highly polarized
and irregularly shaped cells like neurons where a protein can local-
ize far away from the cell body. The expression of multiple proteins
from the same mRNA can be facilitated by the use of viral 2A and
internal ribosomal entry site (IRES) sequences. The 2A sequence
induces a ‘‘ribosomal skip” during translation, which results in a
release of the first peptide without interrupting translation of the
i.org/10.1016/j.ymeth.2015.10.005

http://dx.doi.org/10.1016/j.ymeth.2015.10.005


S. Hasse et al. /Methods xxx (2015) xxx–xxx 5
following peptide [85]. IRES sequences work by causing additional
initiation of translation from the same transcript. In C. elegans a
bi-cistronic expression has been achieved using the trans-splice
leader 2 (SL2) sequence, which results in the expression of 2
mRNAs [55]. As the expression levels may vary depending on
the inter-cistronic region used, the viral 2A peptides should be
preferred over the IRES [86] or SL2 [55] sequences when near-
stoichiometric expression levels are required [87].

BACs and fosmids can be used to explore the changes in the
localization dynamics of gene variants (SNPs, insertions, deletions)
that can be easily introduced into the transgene by recombineer-
ing. Since the endogenous gene locus is not disrupted, the function
of gene mutations that would otherwise be lethal could also be
studied. RNA interference against the endogenous protein in com-
bination with an RNAi-resistant fusion protein can be used to
knock down the endogenous protein for structure–function stud-
ies. This approach can be used in reverse to confirm the specificity
of an RNAi experiment in human cells using RNAi-resistant BACs
carrying the orthologous mouse gene [88]. A similar strategy can
be applied to make a BAC-transgene resistant to Cas9 cleavage of
the endogenous locus.

3. Summary and perspective

In the last two decades, we have seen an enormous progress in
our ability to understand protein function though localization and
many tools and resources have made these studies much more
straightforward and routine. So far the only comprehensive local-
ization pattern resources in model organisms more complex than
yeast are based on antibody staining, which limits our ability to
understand protein localization dynamics in vivo. The large-scale
BAC transgenesis applications demonstrate that systems scale pro-
tein tagging is feasible and these efforts will likely accelerate with
the arrival of the CRISPRS/Cas technology for direct genome edit-
ing, allowing the in vivo interrogation of any protein of interest
at near-physiological expression levels. In recent years new tech-
niques for organ-like induced pluripotent stems cells [89–91]
and organoids [92] have made it possible to address a number of
experimental questions in human cells that would have previously
required the use of potentially less disease relevant model organ-
isms. In combination with modern imaging techniques like SPIM
that allow for long-term live imaging of mesoscale samples with
minimal photodamage, these tools would allow us to understand
the restructuring of the cellular proteome in development and
disease, and to assign functions to thousands of previously
uncharacterized human proteins.
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