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Abstract The feedback arc (vertex) set problem, shortened FASP (FVSP), is to trans-
form a given multi digraph G = (V , E) into an acyclic graph by deleting as few
arcs (vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one of
the classic NP-complete problems. An important contribution of this paper is that the
subgraphs Gel(e), Gsi(e) of all elementary cycles or simple cycles running through
some arc e ∈ E, can be computed in O

(|E|2) and O(|E|4), respectively. We use
this fact and introduce the notion of the essential minor and isolated cycles, which
yield a priori problem size reductions and in the special case of so called resolv-
able graphs an exact solution in O(|V ||E|3). We show that weighted versions of
the FASP and FVSP possess a Bellman decomposition, which yields exact solu-
tions using a dynamic programming technique in times O

(
2m|E|4 log(|V |)) and

O
(
2nΔ(G)4|V |4 log(|E|)), where m ≤ |E|−|V |+1, n ≤ (Δ(G)−1)|V |−|E|+1,

respectively. The parameters m, n can be computed in O(|E|3), O(Δ(G)3|V |3),
respectively and denote the maximal dimension of the cycle space of all appearing
meta graphs, decoding the intersection behavior of the cycles. Consequently, m, n

equal zero if all meta graphs are trees. Moreover, we deliver several heuristics and
discuss how to control their variation from the optimum. Summarizing, the presented
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results allow us to suggest a strategy for an implementation of a fast and accurate
FASP/FVSP-SOLVER.

Keywords Feedback set problem · Acyclic subgraph problem · Linear ordering
problem · Elementary cycle · Simple cycle

1 Introduction

The feedback arc set problem, shortened FASP, is to delete as less as possible arcs
of a graph such that the resulting subgraph is acyclic, i.e., it contains no directed
cycle. Another equivalent formulation is to find a linear ordering of the vertices of
the graph such that the number of back arcs is minimized. Therefore the problem is
also known as maximum acyclic subgraph problem or linear ordering problem. For
directed graphs this problem is one of the classic NP-complete problems [22]. The
problem of deleting a smallest subset of vertices to result in an acyclic subgraph is
known as feedback vertex set problem (FVSP). The FASP and FVSP are linear time
reducible among each other, by keeping the relevant parameters fix as we will assert
in Section 2.1, alternatively see [13]. Therefore algorithmic properties of the two
problems are transferable. In particular, the FVSP is also NP-complete. Analogous
problems for undirected graphs can be defined. As shown in [22] the feedback vertex
set problem remains NP-complete, while the feedback arc set problem can be solved
efficiently by solving a maximum spanning tree problem. An excellent overview on
feedback sets can be found in [4]. The problem of finding minimal transversals of
directed cuts is closely related to the FASP, see [26]. The FASP stays NP-complete
for graphs where every node has an in-degree and out-degree of at most three or line
digraphs even when every clique has at most size three [15]. It is also NP-complete
for tournament graphs [1]. However, there also exist graph classes possessing poly-
nomial time algorithms, e.g., planar directed graphs or more general weakly acyclic
digraphs [16], and reducible flow graphs [29]. The FASP or FVSP has a multitude
of applications, e.g., retiming synchronous circuitry [25], circuit testing [24], com-
putational biology and neuroscience [19], network analysis and operating systems
[33].

1.1 Outline

In Section 2 we provide the graph theoretical concepts, which are fundamental for
this article. In Section 3 we present our main results. The fact that the FASP/FVSP on
multi-digraphs can be reduced to simple graphs is asserted in Section 4 and the first
a priori problem size reduction is deduced. In Section 5 we construct an algorithm
determing the induced subgraph of all cycles with one arc in common efficently.
This knowledge is used in Section 6 to introduce the concept of isolated cycles and
resolvable graphs and providing an efficent solution of the FASP/FVSP on resolvable
graphs. Moreover, the second a priori problem size reduction is given. Afterwards
we concentrate on the main result of the article. Namely, that the FASP/FVSP pos-
sesses a Bellmann decomposition and present exact solutions using this fact to
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apply a dynamic programming technique in Section 7. In Section 8, we discuss how
greedy approaches behave with respect to the problems and develope a strategy for a
general FASP/FVSP-SOLVER. Finally, we discuss our results and other alternatives
in Section 9.

2 Preliminaries

Before we can introduce the FASP (FVSP) formally, some basic concepts of graphs
and cycles need to be mentioned.

2.1 Graphs and Cycles

A multi-directed graph, or multi-digraph, G = (V , E) consists of a set of vertices
V and a multi-set of arcs E containing elements from V × V . A directed graph or
digraph is a multi-digraph with a simple arc set E, i.e., E ⊆ V × V and therefore
every e ∈ E occurs exactly once. A digraph is called simple if there are no loops, i.e.,
E ∩ D(V × V ) = ∅, where D(V × V ) = {(v, v) ∈ V × V | v ∈ V } denotes the
diagonal.

If not stated otherwise throughout the article G = (V , E) denotes a finite, con-
nected, directed and loop-free multi-digraph and G\e, G\v denote the graphs which
occur by deleting the arc e and possibly occurring isolated vertices or the vertex v

and all its adjacent arcs. For ε ⊆ E and ν ⊆ V the graphs G \ ε, G \ ν are anal-
ogously defined. Moreover, G(·), E(·), V(·) denote the induced graph, the set of all
arcs, the set of all vertices which are inherited by a set or set system of graphs, arcs
or vertices. With P(A) we denote the power set of a given set A.

For an arc e = (u, v) ∈ E we denote e+ = u as the tail and e− = v as the
head of the arc. Two arcs e and f are called consecutive if e− = f + and are called
connected if {e−, e+} ∩ {f −, f +} �= ∅. A directed path from a vertex u to a ver-
tex v is a sequence of consecutive arcs where u is the tail of the first arc and v is
the head of the last. A connected path from a vertex u to a vertex v is a sequence
of connected arcs containing u and v as vertices. A digraph is connected if there is
a connected path between every pair of its vertices. A weighted digraph (G, ω) or
(V , E, ω), is a digraph with an additional weight function ω : E −→ R, which
assigns a (usually positive) weight to each arc. For a given vertex v ∈ V the sets
N+

V (v) := {u ∈ V | (v, u) ∈ E} , N−
V (v) := {u ∈ V | (u, v) ∈ E}, N±

E (v) :={
e ∈ E | e± = v

}
shall denote the set of all outgoing or incoming vertices or arcs

of v respectively. The indegree (respectively out degree) of a vertex u is given by
deg±(u) = |N±

E (u)| and the degree of a vertex is deg(u) = deg−(u) + deg+(u).
Δ±(G), Δ(G) shall denote the maximal (in/out) degree, respectively.

A directed (connected) cycle of a digraph is a multiset of arcs {e0, . . . , ek}
such that there is a permutation φ : {0, . . . , k} −→ {0, . . . , k} with eφ(i) and
eφ(i)+1 mod k+1 are consecutive (connected), for 1 ≤ i ≤ k. A loop is a cycle con-
taining only a single arc. A cycle is simple if the set of contained arcs {e1, . . . , ek} is
a simple set, i.e., it visits every arc, it contains, exactly once. A cycle is elementary
if each vertex it contains is visited exactly once. We denote with O(G) the set of all
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Fig. 1 The natural hyper graph H(G) of G

directed cycles and with Oel(G), Osi(G) the set of all elementary or simple cycles,
respectively. Analogously, O0

el(G) and O0
si(G) shall denote the set of all connected

(and not necessarily directed) elementary and simple cycles respectively. If not stated
otherwise in the whole article a cycle is assumed to be directed and elementary. A
feedback vertex set (FVS) of G is a set ν ∈ P(V ) such that G\ν is acyclic, i.e., G\ν

contains no directed cycle. A feedback arc set (FAS) of G is a set ε ∈ P(E) such that
G \ ε is acyclic.

Definition 1 (line graph, natural hypergraph) The directed line graph L(G) =
(VL, EL) of a digraph G is a digraph where each vertex represents one of the arcs of
G and two vertices are connected by an arc if and only if the corresponding arcs are
consecutive. In contrast the natural hypergraph H(G) = (V̄ , Ē) of G is constructed
by identifying the arcs of G with the vertices of H(G), i.e., V̄ is a simple set of
vertices such that |V | = |E|, where |E| is counted with multiplicities. By fixing the
identification V̄ ∼= E we introduce a directed hyperarc hv for every vertex v ∈ V by
requiring that head and tail coincide with all outgoing and ingoing arcs respectively,
i.e., hv = (

N−
E (v), N+

E (v)
)
. Consequently, Ē ∼= V and therefore every hyperarc can

be labeled by its corresponding vertex. See Fig. 1 for an example.

The directed, elementary cycles of the line graph L(G) of G are in 1 to 1 cor-
respondence to the directed, simple cycles of G while the directed simple cycles of
H(G), i.e., directed cycles which run through every hyper arc exactly once are called
Berge cycles, [5]. Note that if G is a simple digraph, i.e., there are no multi arcs, then
the set of all Berge cycles of H(G) are in 1 to 1 correspondence to the set of all ele-
mentary cycles of G. For a set of hyperarcs ε̄ ⊆ Ē of H(G) we denote with ε ⊆ V

the corresponding vertices in G. We summarize some facts in this regard.

Proposition 1 Let G = (V , E) be a graph.

i) The line graph L(G) = (VL, EL) can be constructed in O
(|E|2).

ii) The natural hypergraphH(G) = (V̄ , Ē) can be constructed in O (Δ(G)|V |).
iii) ν ⊆ VL is a FVS of L(G) if and only if ν is a FAS of G.
iv) ε̄ ⊆ Ē is a FAS of H(G), with respect to the notion of Berge cycles, if and only

if ε is a FVS of G.
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Proof Storing G as a adjacency list and following the definitions immediately
implies i) and ii). Since any two vertices e, f of the line graph L(G) are adjacent if
and only if the corresponding arcs are consecutive in G and any two arcs hu, hv of
H(G) are consecutive, i.e., h−

u ∩ h+
v �= ∅, if and only if the corresponding vertices u

and v are adjacent in G, ii) and iii) follow.

Remark 1 Note that by introducing an additional arc h∗
v between head and tail of

every hyperarc hv = (N−
E (v), N+

E (v)) of H(G), the natural hypergraph becomes a
directed graph G∗ = (V ∗, E∗) with |V ∗| = |E| + 2|V |, |E∗| ≤ Δ(G)|V | + |V |. The
directed cycles of G∗ are in 1 to 1 correspondence to the Berge cycles of H(G) and a
FAS ε of G∗ is in 1 to 1 correspondence to a FAS ε̄ of H(G) by identifying ε̄ with the
additional introduced arcs belonging to the hyperarcs in ε̄ and identifying ε with the
hyperarcs corresponding to the bipartite graphs cutted by ε. If γ : Ē −→ R+ is an
arc weight on H(G) then setting γ ∗(h) ≡ γ (hv) for all h ∈ N−

E (v) ∪ N+
E (v) ∪ {h∗

v}
yields the translated weight.

To give a more algebraic notion of cycles we consider

X(G) :=
⊕

e∈E

Ze

the free Z-module generated by E. If we choose coordinates, i.e., a numbering for
E and V then we can identify E with {e1, . . . , e|E|}, V with {v1, . . . , v|V |} and X

with Z
|E|. In this case an element x ∈ X(G) is a tuple x = (x1, . . . , x|E|), which

can be interpreted as a set of paths through G where xi ∈ Z indicates how often
we pass the arc ei and the sign of xi determines in which direction this is done. We
denote with I(G) the incidence matrix of G with respect to these identifications, i.e.,
I(G) = (ιij ) 1≤i≤|V |

1≤j≤|E|
with

ιij =
⎧
⎨

⎩

0 , if ei
+ �= vj and ei

− �= vj

1 , if ei
+ = vj and ei

− �= vj

−1 , if ei
+ �= vj and ei

− = vj

.

It is a well known fact, see for instance [8], that x ∈ X(G) is a cycle of G if and
only if Ix = 0, i.e., the submodule of all cycles of G coincides with the set of
homogeneous solutions Λ(G) = ker I(G). In particular, this implies that Λ(G) is a
free Z-module with

dimZ Λ(G) = dimZ(ker I(G)) = |E| − |V | + #G, (1)

where #G denotes the number of connected components of G and therefore equals
1 by our assumption on G. Note that the vector space Λ0(G) := Λ(G)/Z

|E|
2 can

be understood as the cycle space of connected cycles, given by the kernel of the
incidence matrix I0(G) defined with respect to Z2 coefficients. In this case

dimZ2 Λ0(G) = dimZ2 ker(I0(G)) = |E| − |V | + #G, (2)

still holds, see again [8].
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Fig. 2 Elementary and non-elementary cycles in G, see Example 1

Remark 2 If c ∈ Oel(G) then 1 is the only non vanishing entry of c, i.e., c ∈ {0, 1}|E|.
Moreover, no elementary cycle is subset of another elementary cycle. Indeed assume
the opposite and consider two elementary cycles c, c′ ∈ Oel(G) with c ⊆ c′, then
I(G)(c′ − c) = I(G)c′ − I(G)c = 0 − 0 = 0. Thus, c′ − c �= 0 is also a positive
oriented cycle and therefore we have c′ = (c′ − c) + c �∈ Oel(G). A contradiction!

Not that every simple cycle is given by the union of arc disjoint elementary cycles.
The following example illustrates this fact.

Example 1 Consider the graph G in Fig. 2. Then one observes that the cycle c =
{e, f, g, h, i} is a simple, non-elementary cycle while the cycles {e, f, i}, {f, h} and
{h, g} are elementary cycles.

2.2 The Feedback Arc Set Problem (FASP)

Now we have all ingredients to give a formal definition of the FASP.

Problem 1 Let G = (V , E) be a finite, connected, directed, and loop-free graph,
ω : E −→ N

+ be a weight function. Then the weighted FASP is to find a set of arcs
ε ∈ P(E) such that G \ ε is acyclic, i.e., Oel (G \ ε) = ∅ and

ΩG,ω(ε) :=
∑

e∈ε

ω(e)

is minimized. We denote the set of solutions of this problem with S(G, ω) and denote
with Ω(G,ω) := ΩG,ω(ε), ε ∈ S(G, ω) the optimal weight or feedback length. If ω

is constant, e.g., equal to 1, then the problem coincides with the unweighted minimal
FASP.

Remark 3 The condition on G to be loop-free is not an essential restriction. This is
because every loop is contained in any solution of the minimal FASP.

Remark 4 Note that, every cycle c ∈ O(G) can be generated by elementary cycles
c1, . . . , cn ∈ Oel(G) using only non-negative coefficients. Thus, if ε is a solution of
Problem 1 then certainly O (G \ ε) = ∅, which implies that our notion of acyclic
graphs is consistent for the problem.
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Remark 5 Note that for given graph G = (V , E) the smallest subgraph Go ⊆ G,
which contains all cycles of G, i.e., G′ = Go whenever G′ ⊆ Go and Oel(G) =
Oel(G

′) can be constructed in O(|E|2). Indeed the arc set of Go is constructed from
E by removing arcs (u, v) if there is no directed path from v to u. For every arc
this can be done by depth-first search in linear time if G is stored in an adjacency
list. Since removing arcs does not generate new cycles it suffices to check every
arc once yielding the estimated runtime performance. Certainly a solution for Go

is a solution for G. We shortly denote with Go(G) := Go and with G0
o(G) := G0

o

the analogous graph appearing by considering connected cycles instead of directed
ones. In particular, by the argumentation above, an elementary or directed cycle c ∈
Oel(G), c′ ∈ Osi(G) can be found in O(|E|2) or no cycle exist.

Remark 6 If G = (V , E) is a simple graph then denoting with �·� the Gauss bracket
we observe that at most �|E|/2� arcs have to be deleted to obtain a graph where no
connected path of length 2 exists anymore. In particular, the graph is acyclic in this
case and therefore

Ω(G,ω) ≤ max
e∈E

ω(e) · |E|/2.

See also [32].

2.3 The Feedback Vertex Problem (FVSP)

Let G = (V , E) be given and γ : V −→ R
+ be a vertex weight. The feedback

vertex set problem (FVSP) on (G, γ ) is obtained by replacing the role of arcs by ver-
tices in Problem 1. In regard of Proposition 1, by introducing the hyperarc weight
ω̄(hv) := γ (v), we realize that the FVSP is equivalent to the the FASP on the nat-
ural hypergraph H(G) of G, with respect to the notion of Berge cycles. Already
in Remark 1 we mentioned how to treat this case. Vice versa the FASP on an arc
weighted graph (G, ω) is equivalent to the FVSP on the line graph L(G) of G by
introducing the vertex weight γ (v) = ω(v), v ∈ VL = E. Since the described trans-
formations can be done efficently, see Proposition 1, an efficent solution of the FASP
or FVSP for an arc and vertex weighted instance (G, ω, γ ) yields an efficent solution
of the FVSP or FASP for the transformed instances and vice versa. In particular, by
summarizing some already known results we obtain:

Theorem 1 The unweighted FASP and FVSP are APX complete.

Proof Since there is an L-reduction of the Minimum Vertex Cover Problem, which
is APX complete due to [12], to the FVSP, see [22], the FVSP is APX complete.
Due to [21] it is known that the FASP is APX-hard. Proposition 1 shows that the
FASP on (G, ω) is equivalent to the FVSP on (L(G), γ ). Thus, the feedback length
of any solution remains unchanged yielding an L-reduction of the FASP to the FVSP
implying the claim.
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We expect that the theorem above still holds for the weighted versions. However,
due to the observations made so far, we will focus our studies on the FASP to increase
the understanding of the localisation of feedback sets.

3 Main Results

Though the FASP and FVSP are equivalent problems in graph theory and computer
sciences the only exact solutions of the FVSP known to us is are the algorithms
of [30] with complexity O(1, 9977|V |) and [9] requiring O

(|E|44ΩΩ3Ω!), where
Ω denotes the feedback length. A detailed comparison to our approach is given in
Section 9. For now we just mention our results:

Theorem A Let (G, ω) be a graph. Then there is an algorithm testing whether
(G, ω) is resolvable and determing a solution of the weighted FASP on G in case of
resolvability in O(|V ||E|3).

Though there are infinitely many resolvable graphs not all graphs are resolvable.
However, if the graph (G, ω) is not resolvable, we still can find an exact solution:

Theorem B Let (G, ω) be a graph then there is a parameter m ∈ N, m ≤
dimZ2 Λ0(G) = |E|−|V |+1, which can be determined inO(|E|3) and an algorithm
CUT with run time O

(
2m|E|4 log(|V |)) solving the weighted FASP.

Due to Proposition 1 the analogous results with respect to the FVSP hold. In par-
ticular, we call a vertex weighted graph (G, ν) resolvable iff its natural hypergraph
is resolvable, see Section 2.3 again. If we replace every hyperarc of H(G) = (V̄ , Ē)

with its corresponding bipartite graph then by following Remark 1 we have |V ∗| =
|E| + 2|V |, |E∗| ≤ (Δ(G) + 1)|V | for the resulting graph G∗ = (V ∗, E∗). The
translated results therefore become:

Theorem C Let (G, ν), ν : V −→ R
+ be a vertex weighted graph. Then there is

an algorithm testing whether (G, ν) is resolvable and determing a solution of the
weighted FVSP on G in case of resolvability in O(Δ(G)3|V |3|E|).

In case of non-resolvability we have:

Theorem D Let (G, ν) be a graph then there is a parameter m ∈ N, m ≤ (Δ(G) −
1)|V | − |E| + 1, which can be determined in O(Δ(G)3|V |3) and an algorithm CUT
with run time O

(
2mΔ(G)4|V |4 log(|E|)) solving the weighted FVSP.

Note that there are infinitely many instances where m = 0 and m ≤ |V | on
homogenous graphs, i.e., if Δ(G) ≤ (|E| − 1)/|V | + 2. Thus, by computing the
bound or directly m we can decide whether the algorithm of [30] or our approach
will be faster for a given instance and choose the better alternative. Moreover, the
feedback length Ω can not assumed to be constantly bounded. Thus, the algorithm of
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[9] actually possesses a complexity of O
(
4|V ||V |3|E|4|V |!), which is much slower

than our approach. Finally, we want to mention that all theorems are based on the
following crucial fact:

Theorem E Let G = (V , E) be a graph and e ∈ E. Then there exist algorithms
which compute:

i) The subgraph Gel(e) ⊆ G induced by all elementary cycles c ∈ Oel(G) with
e ∈ E(c) in O(|E|2).

ii) The subgraphGsi(e) ⊆ G induced by all simple cycles c ∈ Osi(G)with e ∈ E(c)

in O(|E|4).

A proof and a more precise version of the statement are given in Theorem 2.

4 The Essential Minor

In this section we introduce the notion of the essential minor (C, δ) of given graph
(G, ω), which is a simple, weighted digraph that decodes the topological structure of
G in a compact way and is therefore very helpful. Even though there are some crucial
differences we want to mention that similar concepts were already introduced in [6].

Definition 2 (parallel arcs) Let G be a graph and e = (u, v) ∈ E then we denote
with

F+(e) := {
f ∈ E | f + = u , f − = v

}
and

F−(e) := {
f ∈ E | f + = v , f − = u

}

the sets of all parallel and anti-parallel arcs and set F(e) = F+(e) ∪ F−(e).

We recall that for a given set A and an equivalence relation ∼ on A×A the quotient
A/∼ is given by the set of all equivalence classes [a]∼ = {x ∈ A | x ∼ a}.

Definition 3 (contracted graph) Let G = (V , E) be a graph and u, v ∈ V . An
equivalence relation ∼u,v on V is defined by

x ∼u,v y ⇐⇒ x = y or x, y ∈ {u, v}.
The equivalence class of x ∈ V is denoted by [x]∼u,v and V/∼u,v gives the quotient
of V with respect to ∼u,v . A multiset E/∼u,v is defined by

E/∼u,v = {
(p, q) ∈ V/∼u,v × V/∼u,v | ∃(x, y) ∈ E : [x]∼u,v = p , [y]∼u,v = q

}
.

The contracted graph of G with respect to e ∈ E is defined as the topological minor

G/e :=
(
V/∼e+,e− , (E \ F(e))/∼e+,e−

)
. (3)

If e, f ∈ E then one can check easily that by identifying e, f with their images in
G/e, G/f respectively we have (G/e)/f = (G/f )/e. Thus, the definition does not
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depend on the order of the contracted edges. Hence, if G′ ⊆ G is a subgraph then
G/G′ := G/E(G′) can be defined by contracting E(G′) in arbitrary order.

Definition 4 (essential minor) Let G = (V , E, ω) be a positively weighted graph.
The equivalence relation ∼Γ on E is defined by e ∼Γ f if and only if e =
f or there exists a directed, branch-point-free path (w0, w1, . . . , wn, wn+1) with
{(w0, w1), (wn, wn+1)} = {e, f } and n ∈ N

+, i.e., for i = 1, . . . , n it holds that
deg−(wi) = deg+(wi) = 1. We represent an equivalence class [e]∼Γ by an arc
(u, v), where u and v coincide with the start and endpoint of the longest directed,
branch-point-free path running through e. The positively weighted graph

(G/Γ , ω/Γ )) := (V/Γ , E/Γ , ω/Γ ))

is defined by

i) V/Γ := {v ∈ V | deg−(v) > 1 ∨ deg+(v) > 1},
ii) E/Γ := {

(u, v) ∈ V/Γ × V/Γ | ∃ [e]/∼Γ ∈ E/∼Γ represented by (u, v)
}

iii) ω/Γ : E/Γ −→ N
+ with ω/Γ (e) := mine′∈[e]/∼Γ

ω(e′).

Let ∼Φ be an equivalence relation on E with e ∼Φ f ⇐⇒ e, f ∈ F+(e). For
(G, ω) the positively weighted graph

(G/Φ, ω/Φ) := (V/Φ, E/Φ, ω/Φ)

is defined by

i) V/Φ := V .
ii) E/Φ := E/∼Φ , where we identify each equivalence class [e]∼Φ with an

arbitrary representative of F+(e).
iii) ω/Φ : E/Φ −→ N

+ , ω/Φ(e) := ∑
e′∈[e]∼Φ

ω(e′) .

Starting with G0 := G for k > 0 we define

(Gk, ωk) := (G′
k−1/Φ, ω′

k−1/Φ) with (G′
k−1, ω

′
k−1) := (Gk−1/Γ , ωk−1/Γ ) .

The weighted graph (GK, ωK) with GK = GK+1, K ≥ 0, is called the essential
minor of G and is denoted by (C, δ) := (VC, EC, δ).

Example 2 In Fig. 3 the construction of the essential minor is illustrated. Further-
more, for a graph G with D diamonds connected in a cycle as in the example we
obtain deg(G) = 3 and |Oel(G)| = 2D = 2|E|/5 = 2|V |/4. In contrast the essential
minor C of such a graph satisfies |Oel(C)| = 1. Hence, even though the number of
cycles in G increases exponentially in |E| and |V | by adding further diamonds, the
number of cycles in C remains constant equal to 1 while the weight ξ decodes the
number of cycles of the original graph G.

Since the following results are quite canonically their simple but technical proofs
are given in Appendix A.
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Fig. 3 The construction of (C, δ), with respect to (G,ω)

Proposition 2 Let G = (V , E, ω) be a positively weighted graph with essential
minor (C, ωC) and let ε ∈ P(E) and εC be the image of ε in (C, δ). Then

ε ∈ S(G, ω) ⇐⇒ εC ∈ S(C, δ) .

In particular Ω(G,ω) = Ω(C,ωC).

Proposition 2 states that solving the FASP for the essential minor is equivalent
to solving the FASP on the original graph. Even though it is possible that (C, δ) =
(G, ω) the construction might yields an a priori problem size reduction in many cases
as in Example 2.

Proposition 3 Let G = (V , E, ω) be a finite, connected, directed, weighted multi-
graph then we can construct (C, δ) in time O(|E|2). Furthermore, there is an
algorithm with run time O(|E|2) which constructs a solution ε ∈ S(G, ω) given a
solution εC ∈ S(C, δ).

Remark 7 Since for given εC ∈ S(C, δ) the construction of some εG ∈ F(εC) is easy
to compute (Proposition 2) Proposition 2 states that it suffices to solve a the weighted
FASP for the essential minor instead of the original graph. As a consequence multi-
graphs do not need to be considered and the number of elementary cycles of the
essential minor can be drastically reduced, see for instance Example 2.

5 Subgraphs of Elementary Cycles

There are several approaches for generating the set Oel(G) of all elementary cycles
of a graph, see [28] for an overview. Since there can be an exponential number of
cycles in a graph, generating algorithms have an exponential worst case run time.
The best algorithms available today are the ones of [34] and [20] solving the problem
in O (|Oel(G)|(|V | + |E|)). Of course counting all cycles might be less expansive
than generating them. However, by reducing to the Hamiltonian cycle problem, see
for instance [2], counting all cycles is a NP-hard problem. For our concerns, and
supposedly in many other situations, the generation of all cycles is not necessary,
but the knowledge of the arc set of all cycles including a common arc suffices. In
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the following an algorithm for determing the smallest subgraph Gel(e) ⊆ G which
contains all elementary cycles that include the arc e is given.

Definition 5 Let G = (V , E) be a graph and u, v ∈ V we denote with with
P(u, v), Pel(u, v), Psi(u, v) the set of all directed, elementary or simple paths from
u to v respectively. For an arc e ∈ E we let

Oel(e) := {c ∈ Oel(G) | c ∩ e �= ∅} = {e} ∪ Pel(e
−, e+) and

Osi(e) := {c ∈ Osi(G) | c ∩ e �= ∅} = {e} ∪ Psi(e
−, e+)

be the set of all elementary and simple cycles running through e. If ε ∈ P(E)

then we set Oel(ε) := ∪e∈εOel(e), Osi(ε) := ∪e∈εOsi(e). Moreover, we denote
with G(u, v) := G(P (u, v)), Gel(u, v) := G (Pel(u, v)), Gsi(u, v) := G (Psi(u, v))

the by the corresponding paths induced graphs and with G(e) := G(P (u, v)),
Gel(e) := G

(
Pel(e

−, e+) ∪ {e}), Gsi(e) := G
(
Psi(e

−, e+) ∪ {e}) by the correspond-
ing cycles induced graphs. Moreover, P 0(u, v), P0

el(u, v), P0
si(u, v), O(e), O0

el(e),
O0

si(u, v), G0(e), G0
el(e), G0

si(e) shall denote the connected (and not necessarily
directed) analagons of the introduced sets and graphs.

Note that Pel(u, v) ⊆ Psi(u, v) and therefore Oel(e) ⊆ Osi(e). Moreover, the
graphs G(u, v), G(e) can be determined in O(|E|2) by applying a depht first search
technique similar to Remark 5. In the other cases we observe:

Theorem 2 Let G = (V , E) be a graph and u, v ∈ V , e ∈ E. Then there exist
algorithms which compute:

i) The graphs Gel(u, v), G0
el(u, v), Gel(e), G

0
el(e) in O(|E|2).

ii) The graphs Gsi(u, v), G0
si(u, v), Gsi(e), G0

si(e) in O(|E|4).

Proof Let p ∈ Pel(u, v) then no vertex w ∈ V(p) is passed twice of p. Thus, for
every f ∈ E(p) there is a path q ∈ P(u, f −) with respect to G \ (

N−
E (f −) \ {f }).

Vice versa if p ∈ P(u, v) is such that E(p) �⊆ Gel(u, v) then has to be a vertex
w ∈ V(p), which is passed at least twice by p implying that there is f ∈ E(p) such
that

P (u, f −) = ∅ with respect to G \ (
N−

E (f −) \ {f }) . (4)

Thus, by setting G′ := G \ {f ∈ E | f fulfills (4)}, every path p ∈ P(u, v) with
G(p) �⊆ Gel(u, v) is interrupted in G′. Hence, G′(u, v) = G(P (u, v)) with respect
to G′ coincides with Gel(u, v). Algorithm 1 formalizes this procedure and runs in
O(|E|2) if G is stored in an adjacency list, enabling us to test whether P(u, v) = ∅ in
O(|E|). The other cases of i) can now be solved by replacing u, v with e and directed
paths or cycles with connected ones.
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Algorithm 1 The induced subgraph Gel(u, v)

Input: G = (V , E), e = (u, v) ∈ E

Output: Gel(e)

G ← G(u, v);
E∗ ← ∅;
for f ∈ E′ do

if P(u, f −) = ∅ w.r.t. G′ \ (
N−

E (f −) \ {f }) then
E∗ ← E∗ ∪ {f };

end
end
Gel(u, v) ← G(u, v) w.r.t. G \ E∗;
return Gel(u, v)

To show ii) we add two arcs u∗ = (x, u), v∗ = (v, y), x, y �∈ V denote with G∗
the resulting graph and consider the line graph L(G∗) = (V ∗

L, E∗
L). We recall that

|VL| = |E|, |EL| ≤ |E2| and apply the fact that the elementary paths of L(G) are
in 1 to 1 correspondence to the simple paths of G and therefore V (Gel(u

∗, v∗)) \
{u∗, v∗} = E (Gsi(u, v)). Hence ii) follows analogue to i).

Remark 8 Note that if (C, δ) is the essential minor of (G, ω). Then the treatment of
“parallel” paths is avoided by the essential minor construction. Thus, we expect that
if C is significant smaller than G the run time performance will increase drastically.

6 Isolated Cycles

Of course the question arises whether a solution of the FASP on Gel(e) can be deter-
mined independently of the rest of the graph. The notion of isolated cycles is our
starting point of investigations in this manner and as it will turn out it is a very helpful
concept of answering this question.

We recall that a Min-s-t-Cut with source s = u and sink t = v is given by a set
ε ⊆ E such that P (u, v) = ∅ in G \ ε and ΩG,ω(ε) = ∑

e∈ε ω(e) is minimized.

Lemma 1 Let (G, ω) be a weighted graph and e ∈ E. Then there is an algo-
rithm, which determines a solution ε ∈ S (Gel(e), ω) of the FASP on (Gel(e), ω) in
O (|V ||E| log(|V |)), where we slightly abused notion by still denoting ω for the the
restriction of ω to Gel(e).

Proof Observe that by interpreting ω as a capacity function on Gel(e) a solution of
the FASP on ε is given by {e} or a Min-s-t-Cut ε with source s = e− and sink
t = e+. The option with the smaller weight is chosen. Due to the famous Min-
Cut-Max-Flow Theorem a Min-s-t-Cut can be determined by solving a Max-Flow
problem with respect to ω and s = e−, t = e+. The algorithm of [10] solves the
Max-Flow problem for arbitrary weights in time O(|V |2|E|) and can be speedend up
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Algorithm 2 The isolated cycles of a graph

Input: e = (u, v) ∈ E

Output: GI (e)

G ← Gel(e);
E∗ ← {f ∈ Eel | Oel(f ) �= ∅ in G \ e};
GI (e) ← Gel(e) with respect to G \ E∗ ;
return GI (e)

to O (|V ||E| log(|V |)), [11] by using the data structure of dynamic trees. Thus the
statement is proven.

Remark 9 Note that if (C, δ) is the essential minor of (G, ω) then the absence of
“parallel” paths might speeds up the time required to determine a Min-s-t-Cut dras-
tically. Moreover, the Max-Flow-Problem is very well understood, yielding many
alternatives to the algorithm of [10] and providing faster solutions in special cases,
see [11] and [3] for an overview.

Definition 6 Let G be a graph and c ∈ Oel(G) then we denote with

I (c) := {
e ∈ E(c) | c ∩ c′ = ∅ , ∀c′ ∈ Oel(G) \ Oel

(
F+(e)

)}

the set of isolating arcs of c, i.e., if e ∈ I (c) then c has empty intersection with every
cycle c′ that does not contain e or an parallel arc of e. For an arc e ∈ E or set of arcs
ε ⊆ E we set

OI (e) := {c ∈ Oel(G) | e ∈ I (c)} , OI (ε) =
⋃

e∈ε

OI (e)

and GI(e) := G
(
OI (F

+(e))
)
.

Remark 10 Note, that the sets of isolated cycles possess a flat hierarchy in the fol-
lowing sense. If e, f ∈ E, e �= f , with OI (e) �= OI (f ) then OI (e) ∩ OI (f ) = ∅. If
vice versa OI (e) = OI (f ) then by definition we obtain Oel(F

+(e)) = Oel(F
+(f )).

Remark 11 Let c ∈ OI (G) be an isolated cycle and I (c) the set of all isolating arcs
of c. If we contract I (c) then the resulting graph G/I (c) fulfills

〈
c′, c′′〉 = 0 , for all c′ ∈ OI (e)/I (c), c′′ ∈ (Oel(G/I (c)) \ (OI (e)/I (c)) ,

where 〈·, ·〉 denotes the standard scalar product on R
n, n = |E/I (c)|. Thus, by

detecting isolated cycles we obtain an orthogonal splitting

Λ(G/I (c)) = span (OI (e)/I (c)) ⊕ span (Oel(G/I (c)) \ (OI (e)/I (c)) .

Such a splitting is certainly helpful whenever one wants to find a basis of Λ(G), e.g.,
a minimal cycle basis of span (OI (e)) can be extended to a minimal basis of Λ(G).

Consider an isolating arc e of a graph (G, ω) or its essential minor (C, δ). The
isolated cycles OI (e) running through e can be cut either by removing the arc set
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Fig. 4 A graph (G,ω) and its essential minor (C, δ). The numbers at the arcs of C indicate the value of
δ. {e1, f1}, {e2, f3}, {e3, f3}, {e4, f4}, {e5, e6, e7, f5, f4}, and {e5, e8, e9, e7, f5, f4} are isolated cycles of
G and I (G) = {f1, f3, f4}

ε0 = F+(e) or another feedback set ε1 of GI(e). By definition the arc set ε0 cuts at
least the cycles in OI (ε0). By Remark 10 the feedback set ε1 cuts only the isolated
cycles OI (ε0) or is given by ε1 = F+(f ) of another isolating arc f ∈ OI (e) with
Oel(ε0) = Oel(ε1). Thus, if the weight of ε0 equals the weight of a solution of the
FASP on GI (e) then there is a solution ε of the FASP on G with ε0 ⊆ ε. The
following definition reflects this idea more formally.

Definition 7 Let (G, ω) be a graph. We define a maximal list of graphs
(G0, ω0), . . . , (Gk, ωk) with (G0, ω0) = (G, ω), (Gi, ωi) �= (Gi+1, ωi+1) , ∀ i ∈
[1 : k − 1] as follows. Let (Ci, δi), with Ci = (VCi

, ECi
), be the essential minor of

(Gi, ωi) and E∗
i ⊆ I (Ci) be a maximal subset of pairwise different isolating arcs of

Ci such that ∀e ∈ E∗
i :

δ(e) = Ω
(
GI (e), δ|GI (e)

)
, Gel(e) �= Gel(f ) , whenever e �= f . (5)

Then the weighted graph (Gi+1, ωi+1) is given by

Gi+1 := (Vi, Ei) = Go

(
ECi

\ E∗
i

)
, ω := δi|E′

i

where δi+1 := δi|Ei+1 denotes the restriction of δi to Ei+1. If Gk+1 = Gk for some
k ∈ N then (S, τ ) := ((VS, ES), τ ) = (Ck, δk), k ∈ N is called the resolved graph
of G, which we shortly denote with (S, τ ) = (S(G), τ (ω)). A graph (G, ω) is called
resolvable if and only if S = ∅.

Example 3 Note that (C, δ) in Fig. 4 is resolvable, while (G, ω) in Fig. 6 is not
resolvable, but becomes resolvable for uniform weight ω ≡ 1.

The construction has an immediate consequence.

Theorem 3 Let (G, ω) be a graph. Then there is an algorithm testing whether
(G, ω) is resolvable and determing a solution of the weighted FASP on G in case of
resolvability in O(|V ||E|3).

Theory Comput Syst (2018) 62:1048–10841062



Fig. 5 The smallest graph without isolated cycles

Proof Due to Proposition 3 the construction of the essential minor (Ci, δi) can be
achieved in O(|E|2) for every 1 ≤ i ≤ k. Since checking whether Oel(f ) �= ∅ can be
done in O (|E|) by storing G in an adjacency list and using depht first search to figure
out whether P(f +, f −) �= ∅ the Algorithm 2 computes the set GI (e) in O(|E|2)
and therefore computing GI (e) for all arcs requires at most O(|E|3) computation
steps. Furthermore, a solution of the FASP on GI (e) can be computed due to Lemma
1 in O(|E|2). Due to the fact that during the construction of (S, τ ) no parallel arcs
appear, we have to recompute the isolated cycles at most |V | times. Thus, (S, τ ) can
be determined in O(|V ||E|3). Furthermore, we can use the backtracking procedure
of Proposition 3 to compute a solution of the FASP in O(|V ||E|2) once (S, τ ) is
known.

Observe that Theorem 3 was already stated in Section 3 as Theorem A. However,
the result leads to the question : What are fast (linear, quadratic time) checkable
conditions a graph (G, ω) has to satisfy to be resolvable. Though, we can easily
construct resolvable graphs as (C, δ) in Fig. 4 or modified versions of (C, δ) by
adding additional isolated cycles a characterization of resolvable graphs is still open.
A better understanding of the non-resolvable graphs might help to solve that problem.
In order to investigate these graphs the class of graphs without isolated cycles at all,
seems to be interesting. Therefore, the next result might be a good starting point for
further studies.

Proposition 4 The directed clique D3 = (V , E) in Fig. 5 is the smallest graph with
Oel(G) �= ∅ and OI (G) = ∅, i.e. any non-isomorphic graph G′ = (V ′, E′) with
O(G′) �= ∅ and OI (G

′) = ∅ satisfies |V ′| + |E′| > |V | + |E| .

Proof If G′ is a graph with O(G′) �= ∅, OI (G
′) = ∅ then G′ possesses at least three

vertices and
∣∣O(G′)

∣∣ ≥ 3 has to hold. We claim that there are at least three linear
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Fig. 6 The computation of the relative weights with respect to c3

independent cycles. Indeed if d1, d2, d3 ∈ O(G′) with λd1+μd2+ηd3 = 0, λ,μ, η ∈
Z then due to Remark 2 we know that d1, d2, d3 ∈ {0, 1}|E| and no elementary cycle is
subset of another. So w.l.o.g. we can assume that d1 = d2 +d3, which contradicts that
all cycles are elementary. Thus, dimZ Λ(G′) = |E′| − |V ′| + 1 ≥ dimZ O(G′) ≥ 3.
This observation implies that |E′| ≥ |E| whenever |V ′| > 3. Since D3 is an directed
clique we can identify any smaller graph G′ with a subgraph of D3. It is easy to see
that deletion of any arc e ∈ E produces an isolated cycle in D3. For instance if we
delete e4 then c3 will be isolated, if we delete e5 then c2 will be isolated and so on.
Hence G′ ∼= D3.

If G is a non-resolvable graph then one can think about different methods to solve
the FASP of the resolved graph (S, τ ). One possibility is discussed in the next section.

7 The Bellman Decomposition

In this section we formulate an solution of the FASP based on a dynamic program-
ming technique. Such an approach can be applied to optimization problems whenever
there is a decomposition of the problem into subproblems which satisfy the Bell-
man principle, i.e., every optimal solution consists only of optimal subsolutions. To
motivate the following definitions we first consider an example.

Example 4 Consider the graph (G, ω) in Fig. 6. If we want to know, which arc of
c3 we have to cut for an optimal solution then this depends on the cycles c1, c2. The
benefit of cutting e1 instead of e2 or e3 is that we do not have to cut c1 anymore
which costs at least 2. Thus we introduce a new weight σ , which equals ω on E \{e1}
and is set to σ(e1) = ω(e1) − 2 = 3 on e1. Since no other cycles than c3 are cut by
d3 the weight of d3 remains unchanged. Now we consider He3,d3 = Gel(e3) \ d3 and
Hd3,e3 = Gel(d3) \ e3 and compute

(
ω(e3) − Ω(He3,d3, σ )

) − (
ω(d3) − Ω(Hd3,e3 , σ )

)

= (ω(e3) − 3) − (ω(d3) − 0) = 1 (6)
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The best solution, which contains e3 is {e3, d1} and the best solution containing d3 is
{d3, e1} and we observe that

(ω(e3) + ω(d1)) − (ω(d3) + ω(e1)) = 8 − 7 = 1 .

Thus, the difference of the solutions coincides with the difference of the subproblems
in (6) with respect to the new weight σ .

We need to introduce several concepts to show that this observation remains true
in general.

Definition 8 (arc sensitivity) Let (G, ω) be a graph and e, f ∈ E, e �= f and
Gel(e) = (Ve, Ee) be given. Then we say that f is arc sensitive to e with respect to
the FASP, denoted by f � e, if and only if

f ∈ Ee and Oel(f ) �= ∅ w.r.t. G \ e .

We denote with N�(e) = {f ∈ E | f � e} the set of all arcs, which are sensitive
to e.

Note that the arcs f of an isolated cycle c ∈ OI (e) can not be sensitive to e. Thus,
arc sensitivity detects arcs, which might prevent us from solving the FASP on Gel(e)

independently from the rest of the graph. An understanding of these dependencies
can be reached by understanding the meta graph of G defined in the following.

Definition 9 (meta graph) Let (G, ω) be a graph and c ∈ Oel(G). We set V0 = E(c),
E0 = W0 = ∅ and for k ≥ 1 we define recursively Wk = ∪k

i=0Vi with

Vk :=
⋃

h∈Vk−1

{N�(h) w.r.t. (G \ (Wk−1 \ {h}), ω)} , Uk = Vk ∪ Vk−1

Ek := {[h, f ] ∈ Uk × Uk | f � h w.r.t. (G \ (Wk−1 \ {h}), ω)} ,

Stopping the recursion if K ∈ N is such that VK = ∅ we introduce the simple,
undirected graph Mc := (VMc, EMc) = ⋃K

k=0(Vk, Ek) as the meta graph of G with
respect to c. Furthermore, we introduce C(c) = G(Oel(VMc)) ⊆ G as the subgraph
of all arc sensitive cycles containing c.
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Algorithm 3 The relative weight for meta trees

Input: (G, ω), M, e, f ∈ VM

Output: σG,M,e,f

M := (VM, EM) ← Mc,f ;
G′ ← G \ f ;
L ← Le(M) := {h ∈ VM \ {e} | deg(h) = 1} ;
σ ← ω;
while L �= ∅ do

for h ∈ L do
Gh ← G′ \ ({f } ∪ (VM \ L)) ;
σ(h) ← σ(h) − Ω(Gel(h), σ ) w.r.t. Gh;

end
M ← M \ L;
L ← Le(M);

end
return σ ;

Lemma 2 Let G = (V , E) be a graph, c ∈ Oel(G). Then we can construct the meta
graph Mc = (VM, EM) in O(|E|3).
Proof Storing G in an adjacency list enables us to test whether Oel(e) �= ∅ in O(|E|)
by depht first search, which we have to do at most |E|2 times. Due to Theorem 2
the graph Gel(e) can be determined in O(|E|2). Due to the fact that Vk ∩ Vk−1 = ∅,
1 ≤ k ≤ K we have to construct Gel(e) at most |E| times, which yields the claimed
complexity.

Next we define the relative weight σG,c,e,f with respect to some c ∈ Oel(G) and
e, f ∈ E(c). As it will turn out σG,c,e,f decodes which arcs of c can be cutted to
obtain a minimal feedback set. For a better clarity we firstly restrict ourselves to the
case where the meta graph Mc \ f is a tree. In this case, e is chosen as the root and
σG,c,e,f is given by solving the FASP for every leaf h on

(Gel(h), ω) \ {{f } ∪ inner nodes of Mc \ f }
and subtracting this value from the weight ω(h) of the predecessor of h. Afterwards,
we delete all leafs of Mc \ f and iterate this procedure till e becomes a leaf. More
precisely:

Definition 10 (relative weight for meta trees) Let (G, ω) be a weighted graph c ∈
Oel(G), e, f ∈ E(c). Let Mc be the meta graph of G with respect to c and assume
that the connected subgraph Mc,f of Mc \ f , which contains e is a tree. Then we
define the relative weight of G with respect to c, e, f

σG,M,e,f : E −→ R

as the output of Algorithm 3 with input ((G, ω), M = Mc, e, f ).
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Algorithm 4 The relative weight for arbitrary meta graphs

Input: (G, ω), M = (VM, EM), e ∈ VM

Output: σG,M,e

M := (VM, EM) ← Mc,f ;
W ← FILO {e}, Q ← FILO {e}, K ← K(M, e), UMW

← U(M, e);
while W �= ∅ do

if MW is a tree then
W �→ h, Q �→ q;
k ← d(q, ph(M, q));
N ← MW \ Dk−1(MW , q);
σ(h) ← σN,ph(MW ,e),f (h);
U(MW , q) ← U(MW , q) \ {h};
W ← W \ h;
if U(MW , q) �= ∅ then

Choose h ∈ U(MW , q) ;
Push h to W ;

else
Q �→ q, Q �→�→ o;
W �→ h, W ← W \ h;

MW ← M
≤U(MW ,q))
W ;

W �→ h;
σ(h) ← σG,MW ,ph(MW ,o),f (h);
Q ← Q \ q;

end
else

Q �→ q;
U ← U(MW , q);
Choose h ∈ U ;
Push h to W ;
Push ph(MW , q) to Q;

end
end
return σ

To define the relative weight in general, we have to consider all spanning trees of
Mc,f generated by deleting edges, which cut cycles for the first time, seen from e. In
Example 5 we assert the definition for a special meta graph. The precise definition
can be found below, using the following notions:

For any tree M = (VM, EM) and any vertices h, e ∈ VM we denote with
ph(M, e) the predecessor of h with respect to root e. If M = (VM, EM) is an arbi-
trary simple, undirected graph and q ∈ VM then we consider the set Dk(M, q) :=
{w ∈ VM | d(q, w) = k} of all vertices possessing shortest path distance k with
respect to q in M . Furthermore, we consider

Uk(M, q) :=
{
w ∈ Dk(M, q) | ∃ x ∈ Dk(M, q) \ {w} such that P(w, x) �= ∅

with respect to M \
(
∪k−1

l=0 Dl

)}
,
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K(M, q) := min{k ∈ N | Uk(M, q) �= ∅} and U(M, q) := UK(M,q)(M, q). In
other words: U(M, q) denotes the set of vertices w which cut cycles for the fist time,
seen from starting point q.

We set

M̃h := M \ {[ph(M, q), k] ∈ EM | k ∈ U(M, q) \ {h}} (7)

and denote with Mh the connected component of M̃h containing h. Recursively for
n ≥ 1 and an ordered set F = {h0, . . . , hn} with hn ∈ U(Mh0,...,hn−1 , q) we define
Mh0,...,hn := (Mh0,...,hn−1)hn . For h ∈ U(M, q) we consider

M̃≤U(M,q) := M \ {[h, k] ∈ EM | k ∈ U(M, q) , d(q, k) ≥ d(q, h)}
and set M≤U(M,q) to be the connected component of M̃≤U(M,q) containing q, which
is therefore a tree.

Definition 11 (relative weight in general) Let (G, ω) be a graph, c ∈ Oel(G), e, f ∈
E(c) and Mc be the meta graph of G with respect to c. Let σG,M,e be the output of
Algorithm 4 with input ((G, ω), Mc, e, f ), M = Mc,e. Then, we define

σG,c,e,f : E −→ R , σG,c,e,f (h) :=
{

σG,M,e,f (h) , if h ∈ N�(e) w.r.t. G \ f

ω(h) , else

as the relative weight of G with respect to c, e, f .

Example 5 Let (G, ω) be a graph, c ∈ Oel(G), e0, e1 ∈ E(c) and assume that Mc,e1

coincides with M from Example 7. We follow Algorithm 4 to compute σG,M,e0,e1 :
E −→ R. Observe that U(M, e0) = {f0, f1} and U(Mf1 , e0) = {h0, h1}. The graph
Mf1,h0 is sketched in the next picture and turns out to be a tree. Now we delete
all vertices which are closer to e0 as ph1(M, e0) and obtain the graph N . Next we
compute the relative weight σ(h1) := σN,ph1 (M,ph1 ),e1(h1) of h1 with respect to
N, ph1 . Analogously, we compute σ(h0) := σN,ph0 (M,ph0 ),e1(h0) and consider the

graph M≤ = M
≤U(Mf1 ,e0)

f1
, which is sketched in the last picture. Now M≤ is a tree

and the predecessor of f1 is e0. Thus, we can compute

σ
M

≤U(Mf1
,e0)

f1
,e0,e1

(f1) and analogously σ
M

≤U(Mf0
,e0)

f0
,e0,e1

(f0) ,

which finishes the computation of σG,M,e0,e1 : E −→ R by replacing ω(f0), ω(f1)

with these weights, respectively (Fig. 7).

Proposition 5 Let G = (V , E) be a graph c ∈ Oel(G), e, f ∈ E(c) and let the meta
graph Mc of G with respect to c be given. Denote with

m(c, f ) := dimZ2

(
Λ0(Mc,f )

)
= |EMc,f

| − |VMc,f
| + 1

the Z2-dimension of the cycle space Λ0(Mc,f ) of Mc,f . Then

i) The computation of σG,c,e,f can be realized in O
(
2m(c,f )|V ||E|2 log(|V |)).

ii) m(c, f ) ≤ dimZ2 Λ0(G) = |E| − |V | + #G
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Fig. 7 Computation of σG,M,e0 (f1)

Proof Assume that Mc,f is a tree. As already mentioned, due to
[10] and [11] the feedback length Ω(Gf , σ ) can be determined in
O (|V ||E| log(|V |)), and has to be computed at most |VMc,f

| ≤ |E| times. If Mc,f is
not a tree then we observe that the most expansive computation step in Algorithm 4
is again the computation of the relative weight with respect to a certain subtree of
Mc,f (lines 8 and 19 in Algorithm 4). This computation step has to be computed
for every pair f, h ∈ U(M, q) twice, for some M, q. In worst case the combination
of the pairs is independent, i.e., every other pair still appears once Mf and Mh are
considered. In this case the set of remaining cycles running through the remaining
pairs (h′, f ′) do not contain the edges h and f and can therefore not be generated
by the cycles running through (h, f ) with respect to Z2-coefficients. Consequently,
there are at most 2m(c,f ) iterations. Together with the argumentation above this
yields i).

To show ii) we write d = {h0, . . . , hk} ⊆ VMc,f
as a list of connected meta

vertices. Now we choose connected paths pi ⊆ G, 0 = 1 . . . , k + 1 connecting h−
i

with h+
i+1 mod k+1. Then c = {{h0}∪p0∪. . . , {hk}∪pk ∈ Λ0(G) is a connected cycle

in G. If d1, . . . , dm ∈ Λ0(Mc,f ) is a set of Z2-linear independent meta cycles then
regardless of choices for the paths pi representing an meta edge the corresponding
cycles c1, . . . , cm ∈ Λ0(G) are Z2-linear independent in Λ0(G). Thus, m(c, f ) is
bounded by the Z2-dimension of Λ0(G), proving ii).

Remark 12 Note that a graph G = (V , E) with c ∈ Oel(G) such that Mc coincides
with M in Fig. 11 can be easily constructed by choosing a starting cycle c and addi-
tional cycles c1, c2 intersecting with c in f0, f1, respectively. Then we continue this
process by follwing M for the ramining cycles. Hence, the set of graphs G with cycle
c and meta graphs Mc such that dim

Z2Λ
0(M) is small, is actually a huge set.

Indeed the relative weights satisfy a Bellman condition, which can be formulated
as follows. We recall that Go(G) ⊆ G denotes the subgraph induced by all cycles of
G and state:
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Theorem 4 Let (G, ω) be a weighted graph c ∈ Oel(G), e, f ∈ E(c) and He,f =
Go (Gel(e) \ f ) , Hf,e = Go (Gel(f ) \ e) then

(
ω(e) − Ω(He,f , σe)

) − (
ω(f ) − Ω(Hf,e, σf )

)

= (ω(e) + Ω(G \ e, ω)) − (ω(f ) + Ω(G \ f, ω)) , (8)

where we shorten σe = σG,c,e,f , σf = σG,c,f,e and slightly abuse notation by
still denoting σe, σf , ω for the restriction of the arc weights to the corresponding
subgraphs, respectively.

Remark 13 Note that (8) is a quite comfortable way of formulating the Bellman
principle, i.e., though we do not know the values of Ω(G \ e, ω) and Ω(G \f, ω) we
know that if e maximizes

ω(e) − Ω(He,h, σG,c,e,h) − (
ω(h) − Ω(Hh,e, σG,c,h,e)

)
,

for all on E(c). Then ω(e) + Ω(G \ e, ω) = Ω(G,ω). Thus, {e} can be extended
to a global optimal solution. Maybe this relative formulation can be applied also to
other problems for which one wants to use a dynamic programming technique. The
described observation is also used in the proof of Theorem 4.

In addition to the observation above the following statement is needed to prove
Theorem 4.

Lemma 3 Let G = (V , E) be a graph, c ∈ Oel(G) and e, f ∈ E(c) such that there
is c′ ∈ Oel(e) \ Oel(f ) and p ∈ E(c′). Then

i) σG,c,e,f (h) = σG\f,c′,e,p(h) for all h ∈ E
(
H ′

e,p

)
.

ii) σG,c,e,f (p) = ω(p) − Ω
(
H ′

p,e, σG\f,c′,p,e

)
, where H ′

p,e is understood with

respect to G′.

Proof To verify i) and ii) one has to follow directly Definitions 9, 10 and 11, which
is left to the reader.

Proof of Theorem 4 If Oel(e) = Oel(f ) with respect to G then σG,c,e,f = σG,c,f,e

and Ω(G \ e, ω)) = Ω(G \ f, ω)) and therefore the claim follows. Now we argue
by induction on |Oel(G)|. If |Oel(G)| = 1 then there is only one totally isolated cycle
and therefore Oel(e) = Oel(f ) = {c}. Thus, we are in a special case of the situation
above and obtain the claim. Now assume that |Oel(G)| > 1 and Oel(f ) � Oel(e). We
consider G′ := G\f and observe that |Oel(G

′)| < |Oel(G)|. We choose c′ ∈ Oel(G
′)

with e ∈ E(c′) and choose p ∈ E(c′) such that
(
ω(e) − Ω(H ′

e,p, σG′,c′,e,p)
)

−
(
ω(p) − Ω(H ′

p,e, σG′,c′,p,e)
)

(9)

Theory Comput Syst (2018) 62:1048–10841070



is maximized on c′, where H ′
e,p ,H ′

p,e are understood with respect to G′. Thus,
following Remark 8 there holds

ω(p) + Ω(G′ \ p,ω) = Ω(G′, ω) . (10)

We set σ ′
e := σG′,c′,e,p, σ ′

p := σG′,c′,p,e then by induction and (10) we compute
(
ω(e)−Ω(H ′

e,p, σ ′
e)

)
−

(
ω(p)−Ω(H ′

p,e, σ
′
p)

)
= (

ω(e) + Ω(G′ \ e, ω)
)

−(
ω(p) + Ω(G′ \ p,ω)

)

= ω(e) + Ω(G \ {e, f }, ω)

−Ω(G \ f, ω) . (11)

On the other side we consider G′′ = (V ′′, E′′) := He,f with the arc weight

γ : E′′ −→ R
+ , γ (h) := σG,c,e,f (h) .

Now observe that H ′′
p,e = ∅ with respect to G′′ and by Lemma 3 i) we have σ ′′

e :=
σG′′,c′,e,p(h) = σG′,c,e,p(h) = γ (h) for all h ∈ E(H ′′

e,p), where H ′′
e,p is understood

with respect to G′′. Moreover, γ (e) = ω(e) and therefore
(
γ (e)−Ω(H ′′

e,p, σ ′′
e )

)
−

(
γ (p)−Ω(H ′′

p,e, σ
′′
p)

)
= γ (e) − Ω(H ′′

e,p, γ ) − γ (p)

= γ (e) − Ω(G′′ \ p, γ ) − γ (p)

= ω(e) − Ω(H ′
e,p, σG′,c,e)

−σG,c,e(p) (12)

Due to Lemma 3 ii) we have that σG,c,e,f (p) = ω(p) − Ω(H ′
p,e, σ

′
p), σ ′

p =
σG′,c′,p,e. Inserting this fact in (12) gives

(
γ (e)−Ω(H ′′

e,p, σ ′′
e )

)
−

(
γ (p) − Ω(H ′′

p,e, σ
′′
p)

)
=

(
ω(e) − Ω(H ′

e,p, σ ′
e)

)

−
(
ω(p) − Ω(H ′

e,p, σ ′
p)

)
(13)

On the other, by (10) we have that (13) is maximized on c′. Thus, again by induction
(
γ (e)−Ω(H ′′

e,p, σ ′′
e )

)
−

(
γ (p)−Ω(H ′′

p,e, σ
′′
p)

)
= (

γ (e) + Ω(G′′ \ e, γ )
)

− (
γ (p) + Ω(G′′ \ p, γ )

)

= ω(e) − Ω(G′′, γ ) (14)

= ω(e) − Ω(He,f , σG,c,e,f )

Thus, by combining (13) with (11) and again (13) with (14) we obtain

ω(e) − Ω(He,f , σG′,c,e) = ω(e) + Ω(G \ {e, f }, ω) − Ω(G \ f, ω) (15)

If Oel(f ) ⊆ Oel(e) then Ω(Hf,e, σG,c,f,e) = 0 and Ω(G\ {e, f }, ω) = Ω(G\ e, ω).
Thus, by (15) this yields the claim. If Oel(f ) � Oel(e) then the analogous of (15)
with respect to f yields

(
ω(e) − Ω(He,f , σe)

) − (
ω(f ) − Ω(Hf,e, σf )

) = ω(e) + Ω(G \ e, ω)

+Ω(G \ {e, f }, ω) − Ω(G \ {f, e}, ω) − ω(f ) − Ω(G \ f, ω) .
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Algorithm 5 CUT

Input: G = (V , E, ω)

Output: ε ∈ S(G, ω)

ε = ∅;
while ∃f ∈ E with P(f −, f +) �= ∅ do

F ← E(Gel(f ));
while ∃e ∈ F with P(e−, e+) �= ∅ do

Choose p ∈ Pel(e
−, e+);

c ← {e} ∪ p ;
k ← argmax∗

h∈E(c)

((
ω(e) − Ω(He,h, σG,c,e,h)

) − (
ω(h) − Ω(Hh,e, σG,c,h,e)

))
;

ε ← ε ∪ {k};
(G, ω) ← (G \ k, ω);
F ← F \ {k};

end
end
return ε

Since Ω(G \ {e, f }, ω) − Ω(G \ {f, e}, ω) = 0 this finishes the proof.

We consider the Algorithms 5 and 6, denote with output(A) the set of all possible
outputs an algorithm A can produce and conclude:

Corollary 1 Let (G, ω) be a graph then the algorithm CUT is exact and complete
with respect to the FASP, i.e,

output(CUT) = S(G, ω) ,

while the algorithm CUT & RESOLVE is exact, i.e.,

output(CUT & RESOLVE) ⊆ S(G, ω) .

Moreover, there is m ∈ N such that CUT and CUT & RESOLVE possess run times
O

(
2m|E|4 log(|V |)), where the parameter m ≤ |E| − |V | + 1 can be determined in

O
(|E|3)).

Indeed the corollary proves Theorem B and by Remark 12 the set of graphs with
small m ∈ N , m << |V | is a huge set.

Proof If ε ∈ S(G, ω) and e ∈ ε then ε \ {e} solves the minimal FASP on G(E \ {e}).
Thus, the exactness and completeness statements follow directly from Theorems 4,3.
For c ∈ Oel(G) we set m(c) := dimZ2 Λ0(Mc). Then m(c) ≥ m(c, f ) for all f ∈
E(c) with m(c, e) and Proposition 5 implies that m(c) ≤ |E| − |V | + 1 holds. Let
c′ ∈ C(c) with c′ ∩ c �= 0, be any cycle in the component of all arc connected cycles
containing c, introduced in Definition 9. Then m(c′) ≤ m(c) on G \ e for every
e ∈ E(c). Thus, as long as at least one arc e ∈ E(c) was deleted the maximal number
of appearing Z2-linear independent meta cycles appearing for the computation of
σG\e,c′,h,k , h, k ∈ E(c′) are bounded by m(c). Thus, by setting G0 = G, choosing a
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Algorithm 6 CUT & RESOLVE

Input: G = (V , E, ω)

Output: ε ∈ S(G, ω)

ε = ∅;
while ∃f ∈ E with P(f −, f +) �= ∅ do

F ← E(Gel(f ));
while ∃e ∈ F with P(e−, e+) �= ∅ do

Choose p ∈ Pel(e
−, e+);

c ← {e} ∪ p ;
k ← argmax∗

h∈E(c)
(ω(e) − Ω(He,h, σG,c,e,h) − ω(h) − Ω(Hh,e, σG,c,h,e));

ε ← ε ∪ {k};
(G, ω) ← (S(G \ k), τ (ω));
F ← E ((Gel(e)) w.r.t. G;

end
end
return ε

cycle c0 ∈ Oel(G0), determing Mc0 = (VMc0
, EMc0

) and considering ck ∈ Oel(Gk),
Gk = Gk−1 \ VMck−1

, k ≥ 1 we obtain cycles c0, . . . , cn, n ≤ |E| with C(ci) ∩
C(cj ) = ∅ and ∪n

i=0C(ci) = Oel(G). Since E (C(ci)) ∩ E
(
C(cj )

) = ∅ the parameter
m := maxi=0,...,n m(ci) can be determined in O

(|E|3) due to Lemma 2.
Since the algorithm CUT computes σG,c,e,h, σG,c,h,e for fixed e ∈ E(c) and all

h ∈ E(c) and |E(c)| ≤ |V |, cuts the right arc and repeats the computation at most
|E| times by observing that O(|V |2) = O(|E|) the run time of the algorithm CUT
can be estimated as claimed. Recall, that due to Theorem 3 the resolved graph can be
computed in O

(|V ||E|3). Therefore, the analogous argumentation yields the claimed
run time for the algorithm CUT & RESOLVE.

Due to the fact that the FASP is NP complete, as expected our approach depends
exponentially on some parameter, which in our approach is the number m of liner
independent meta cycles. In cases where m is large we have to use another method to
solve the FASP or use a heuristic.

8 Valid Greedy Solutions

As for instance shown in [19] a greedy solution for the FASP needs not to be optimal.
We give a criterium on solutions which guarantees optimility. Moreover, we can esti-
mate the failure of every sub optimal solution. Finally, we suggest a heuristic given
by a hybrid technique of the already presented approaches.

For given graph (G, ω) we consider the functions

θG, ϕG : E −→ N , θ(e) := |Oel(e)| , ϕG(e) := |E (Gel(e))| .

Recall, that due to [2] determing θG(e) is a NP-hard problem and the results of [34]
and [20] solving the problem in O (|θG(e)|(|V | + |E|)), where θG(e) can depend
exponentially on G. However, [31] could establish efficent and close estimations of
the number of s − t paths. Since |Oel(e)| = |Pel(e

−, e+)| the result enables us to
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determine θG(e) efficently, with small failure. In contrast, ϕG can be determined in
O(|E|2) due to Theorem 2.

Definition 12 Let (G, ω) be a given weighted graph with G = Go. We introduce the
efficent weights

ξG,ω, ηG,ω : E −→ Q
+ , ξG,ω(e) := θG(e)

ω(e)
, ηG,ω(e) := ϕG(e)

ω(e)

and set ωmax(G, ω) := maxe∈E ω(e), θmax(G) = maxe∈E θG(e), ϕmax(G) :=
maxe∈E ϕG(e), ξmax(G, ω) := maxe∈E ξ(e), ηmax(G, ω) := maxe∈E η(e), and

μ(G, ω) =
⌈ |Oel(G)|

ξmax(G,ω)

⌉
, υ(G, ω) =

⌈ |E|
ηmax(G,ω)

⌉
, where �·� denotes the Gauss-

bracket.

Theorem 5 Let (G, ω) be a given graph. Then

Ω(G,ω) ≥ max {μ(G, ω), υ(G, ω)} . (16)

Moreover, there are infinitely many weighted graphs (G, ω) with μ(G, ω) =
Ω(G,ω) or υ(G, ω) = Ω(G,ω).

Proof Let ε = {e1, . . . , en} ∈ S(G, ω) be an arbitrarily ordered solution of the
weighted FASP. We set G0 = G and Gi = (Vi, Ei) := G (E \ {e1, . . . , ei−1}), for
i ≥ 1 and denote with ωGi

the corresponding restriction of ω to Ei . Now due to the
fact that ξGi,ωi

(e) ≤ ξG,ω(e) for all e ∈ Ei, 1 ≤ i ≤ n we obtain

Ω(G,ω) =
n∑

i=1

ωGi
(ei) =

n∑

i=1

θGi
(ei)

ξGi
(ei)

≥ 1

ξmax(G, ω)

n∑

i=1

θGi
(ei) = |Oel(G)|

ξmax(G, ω)
.

Since Ω(G,ω) ∈ N this proves (16). Now let (G, ω) be a graph with ω = 1 and
Oel(G) = {c0, . . . , cn}, which are arranged path like, i.e., |E(ci ∩ ci+1)| = 1 and
|E(ci ∩ cj )| = 0 if j �= i. Then one verifies easily that μ(G, ω) = Ω(G,ω). By
replacing θG with ϕG and μ(G, ω) with υ(G, ω) the exact same argumentaion yields
the remaining claim.

Remark 14 Note, that of course there are many more graphs with μ(G, ω) =
Ω(G,ω) or υ(G, ω) = Ω(G,ω) then those used in the proof above. Nevertheless,
it is hard to give a good condition on a graph such that μ(G, ω) = Ω(G,ω) or
υ(G, ω) = Ω(G,ω) holds. For instance in [19] an example of a planar graph is
given, where this is not the case. Certainly, the lower bounds can be used to improve
the performance of a variety of algorithms solving the FASP or to control the quality
of a heuristic as the Algorithms 7 and 8.

We consider the heuristics GREEDY-CUT and GREEDY-CUT & RESOLVE and
discuss their properties.
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Algorithm 7 GREEDY-CUT

Input: G = (V , E, ω)

Output: Feedback set ε ⊆ E

ε = ∅;
while ξmax(G) �= 0 do

ε ← ε ∪ argmax∗
f ∈E ξ(f );

(G, ω) ← (G \ ε, ω);
end
return ε

Algorithm 8 GREEDY-CUT & RESOLVE

Input: G = (V , E, ω)

Output: Feedback set ε ⊆ E

ε = ∅;
while ξmax(G) �= 0 do

ε ← ε ∪ argmax∗
f ∈E ξ(f );

(G, ω) ← (S(G \ ε), τ (ω));
end
return ε

Proposition 6 Let (G, ω) and ε be a solution of GREEDY-CUT or GREEDY-CUT &
RESOLVE with respect to the effective weigth ξ . Then

Ω(G,ω)

ΩG,ω(ε)
≥ ωmin(G)

ωmax(G) · θmax(G)
≥ ωmin(G)

ωmax(G) · |Oel(G)| . (17)

If in particular ω ≡ 1 then |ε| ≤ |E|/2.

Proof Certainly it suffices to prove the first estimate in (17). We show the claim for a
solution ε = {e1, . . . , en} of GREEDY-CUT. Assume that ε is ordered with respect to
appearing arcs, set G1 = G and Gi = (Vi, Ei) := G (E \ {e1, . . . , ei−1}), for i ≥ 2
and denote with ωGi

, θGi
and ξGi

the corresponding restrictions of ω, θG, ξG to Ei .
Then we compute

ΩG,ω(ε) =
n∑

i=1

ωi(ei) =
n∑

i=1

θGi
(ei)

ξGi
(ei)

≤ 1

ξGn(en)
|Oel(G)| .

Since ξn(en) = ξmin(ε) we use Theorem 5 to compute

Ω(G,ω)

ΩG,ω(ε)
≥ ξGn(en)|Oel(G)|

ξmax(G)|Oel(G)| ≥ ωmin(G) · θGn(en)

ωmax(G) · θmax(G)
≥ ωmin(G)

ωmax(G) · θmax(G)

and the claim follows. A proof of the statement for GREEDY-CUT & RESOLVE can
be given by an easy adaption of the argument above and is left to the reader. Now let
ω ≡ 1 then we argue by induction on |ε| to show that |ε| ≤ |E|/2 for both algorithms.
If |ε| = 1 then due to the fact that G possesses no loops the claim follows. Now let
|ε| > 1 we order ε = {e1, . . . , en} with respect to appearance and consider ε1 :=
{e1}, ε2 = ε\{e1} and G1 := (V1, E1) = G(Oel(e1)), G2 := (V2, E2) = G(Oel(ε2)).
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By induction we have |ε2| ≤ |E2|/2. Consider G/(E1 ∩ E2), delete all appearing
loops and denote the resulting graph with G∗

1. If Oel(G
∗
1) = {c} then all cycles of

Oel(G) are totally isolated and the claim follows by triviality. If |Oel(G
∗
1)| > 1 then

|ε1| ≤ |E∗
1 |/2. Since E∗

1 ∩ E2 = ∅ this implies that

|ε| = |ε1| + |ε2| ≤ |E∗
1 |/2 + |E2|/2 ≤ |E|/2

as claimed.

Be replacing θG, with ϕG and ξG,ω with ηG,ω in GREEDY-CUT or GREEDY-CUT
& RESOLVE the analouge argumentaion yields.

Proposition 7 Let (G, ω)with G = Go and ε be a solution of GREEDY-CUT or
GREEDY-CUT & RESOLVE with respect to the effective weigth η. Then

Ω(G,ω)

ΩG,ω(ε)
≥ ωmin(G)

ωmax(G) · ϕmax(G)
≥ ωmin(G)

ωmax(G) · |E| .

If in particular ω ≡ 1 then |ε| ≤ |E|/2.

Example 6 Consider the directed clique D3 from Fig. 5 with constant weight w ≡ 1.
Then D3 coincides with its resolved graph and regardless of possible choices every
candidate ε the algorithm GREEDY-CUT or GREEDY-CUT & RESOLVE proposes,
satisfies |ε| = 3. Since μ(D3) = 3 every candidate is optimal.

Summarizing our results so far the heuristics GREEDY-CUT or GREEDY-CUT &
RESOLVE solve the FASP with controlled variance in O(|E|4), due to Theorem 2, in
case of effective weight η and in O(fθ |E|2) in case of effective weight ξ , where fθ

shall control the computation steps of θG(e), ∀e ∈ E. Even if we approximate θ(e)

by the method of [31] the resulting algorithm remains an efficient heuristic. However,
possibly there is a more accurate method available, given by a hybrid algorithm of the
methods introduced in this article. We expect that an implementation of this strategy
yields a fast and precise general FASP-SOLVER, which due to Section 2 is therfore
also a FVSP-SOLVER.

Strategy 1 For given weighted graph (G, ω)

1. Compute the resolved graph (S, τ ).
2. Choose a cycle c ∈ Oel(S) and compute the meta graph Mc.

3a. If the number of meta cycles m(c) is large determine a “good” feedback vertex
set νMc of Mc, with respect to the vertex weight

ωMc : VMc −→ R
+ , ωVc(v) = 1

ω(v)
,

using one of the known or presented methods.
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3b. Alternatively, compute a maximal spanning tree TMc = (Vmc , ETc) with respect
to the arc weight weight

ωMc : EMc −→ R
+ , ωMc(h) = 1

ω(e) + ω(f )
,

where h = [e, f ], e, f,∈ E and set εMc = EMc \ ETc .
4. Set G∗ = G/νMc and use CUT or CUT & RESOLVE to solve the FASP on on

the component C(c∗) of arc connected cycles containing c∗ = c/νMc .
5. Choose a new cycle c′ of the resulting graph and repeat 1.-4. until no such cycle

exists.
6. Use the backtracking procedure of Proposition 3 to compute a feedback arc set

ε ⊆ E of G.

The union νM of the meta feedback vertex sets of the meta graphs can be interpreted
as arcs, which are forbidden to cut in G. The resulting feedback arc set ε will be
optimal up to this obstruction, i.e., we have

M∗
c∗ = Mc \ νM ,

where M∗
c∗ denotes the meta graph of G∗ with respect to c∗ = c/νM . Hence, the

quality of this heuristic can be evaluated by measuring how good G∗ approximates
G. Thus, if |νM | << |E| and the weight of the forbidden arcs is very high, i.e.,

∑
f ∈νM

ω(f )

|νM | >>

∑
e∈E ω(e)

|E|
the arcs of νM will probably not be contained in any optimal solution, yielding the
correctness of Strategy 1. Additionally, the lower bounds μ(G, ω), υ(G, ω) from
Section 8 can be used to validate correctness. Analogous controls can be thought of,
if we choose the alternative 3b.

9 Discussion

An implementation of the described algorithms is planned to be realized. Certainly,
a comparison of real run times with other approaches would be of great interest. So
far we compare our results with other theoretical approaches. Due to the immense
amount of results during the last decades we restrict our discussion to publications,
which do not restrict themselves to very tight graph classes as tournaments [23] or
reducible flow graphs [29]. Finally, we suggest how the approaches of this article
might be adapted to related problems.

9.1 The algorithms from I. Razgon and J. Chen et al.

Note that for given graph (G, ω, γ ) with arc weight ω and vertex weight γ a brute
force method of solving the FASP/FVSP is given by considering every subset ε ⊆ E

or ν ⊆ V and check whether the graphs G \ ε, G \ ν are acyclic, respectively.
Since due to Remark 5, checking for acyclicity requires O(|E|2) operations, we can
generate a list of all FAS’s or FVS’s possessing length lA ≤ |P(E)| = 2|E|, lV ≤
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|P(V )| = 2|V |. Choosing the cheapest FAS or FVS yields therefore a brute force
algorithm solving the FASP/FVSP in O(|2|E||E|2|), O(2|V ||E|2), respectively.

The algorithm of [30] solves the unweighted FVSP on simple graphs in
O(1.9977|V ||V |O(1)). Compared to the brute force algorithm this yields almost no
improvement. Therefore, the question occured whether the parametrised version of
the FVSP could be solved by an fixed parameter tractable algorithm. Every NP-
complete problem can be solved by a fixed parameter tractable algorithm, i.e., by
choosing p as the problem size there is an algorithm with complexity O(f (p)),
where f is an on the parameter p exponentially depending function. Thus, the term
fixed parameter tractable could be misleading. The precise question is whether there
exists an algorithm with run time O(f (k)|V |O(1)) computing a FVS of length less
than k or determing that no such set exists. Since the FVSP is NP-complete the
function f will be exponentially dependent on k unless P = NP . Indeed, the algo-
rithm of [9] solves the parametrised version of the FVSP in O

(|E|44kk3k!). Thus,
f (k) = k34kk!, increases even worse than exponentially in k. Since a small feedback
length almost always correlates to small graphs or very special graphs, e.g. tree-like
graphs, even improvements of the algorithm won’t be usefull in many applications.
Therefore, the article might be seen as an purely theoretical approach answering this
question. Indeed, to the best of our knowledge none of the algorithms were used for
an implementation of a general FVSP/FASP-SOLVER.

In contrast, the algorithms CUT and CUT & RESOLVE solve the FASP or FVSP
on weighted multi-digraphs in O

(
2m|E|4 log(|V |)) and O

(
2nΔ(G)4|V |4 log(|E|)).

The parameters m and n fulfill m ≤ |E|− |V |+1, n ≤ (Δ(G)−1)|V |− |E|+1 and
can be computed in O(|E|3), O(Δ(G)3|V |3), respectively. Thus, in both cases we
can efficently control the run time of the exact solutions, which enables us to a priori
decide whether the given instance shall be solved exactly or by an heuristic, e.g.,
Strategy 1. This crucial difference to the other approaches and the fact that Strategy
1 is an heuristic on the meta level and not on the instance itsself, makes us confident
that an implementation generates a fast and accurate FASP/FVSP-SOLVER yielding
a deep impact on computational an applied sciences.

9.2 The polytop approach from C. Lucchesi et al.

In [26] and [16] a polytope of arc sets is assigned to a given graph. The FASP trans-
lates to solve a certain linear optimization over this polytope. In the case of planar or
more general weakly acyclic graphs the polytope is integral, i.e., it possesses integral
corners. Since the optimum will be obtained in at least one of the corners, one can
apply the so called ellipsoid method for submodular functions [17] to find the right
corner in polynomial time, see also [27] for further details. The approach is certainly
remarkable though it contains some weaknesses.

The first problem is that though the algorithm runs in polynomial time the degree
of the polynomial depends on a variety of parameters and cannot be estimated
by hand a priori. Therefore, there are planar or weakly acyclic graphs, which can
be solved efficently from a theoretical view point but actually a computer based
implementation of the approach cannot ensure to meet a performance behavior
applications require.
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Fig. 8 A directed version of K3,3

Secondly, the class of weakly acyclic graphs is not well classified yet. Thus, if
we leave the class of planar graphs it is hard to say whether a given graph is weakly
acyclic or not. For instance, consider the directed version of K3,3 in Fig. 8, which is
known to be a weakly acyclic graph. Then it is not hard to see that the meta graph Mc

contains only one cycle. Thus, though G is not resolvable we can efficently solve the
FASP on G by applying the algorithm CUT. In fact all examples of weakly acyclic
graphs given in [17] turn out to be efficently solvable by CUT. Since the techniques
of this article are not sensitive to topological obstructions as planarity we expect that
there are instances of the FASP, which are neither planar nor weakly acyclic and even
though can be solved efficently by CUT or CUT & RESOLVE. On the other hand, by
arranging cycles along several meta cycles it is quite easy to construct a planar graph
G with a number m ∈ O(|E|) of linear independent meta cycles. Thus, so far none
of the approaches can state to solve the “larger” instance class efficently.

However, a deeper understanding of the meta graphs and their topology seem to be
the most relevant tasks for further research, which might enable us to classify weakly
acyclic graphs and yield a completely new perspective to other questions in graph
theory.

9.3 Heuristics

In [32] a summarization of heuristic approaches is given and several new ones are
introduced. The weak point in all these approaches is that they do not provide an
non-empirical control of the variance of the heuristical solution from the optimum.
Therefore, it is impossible to guarantee whether a solution is tight to the optimum.
In [18] a good lower bound of the feedback length for Eulerian graphs is given and
therefore it would be interesting how our bound behaves on this graph class. In gen-
eral, if ε denotes a feedback set the heuristic GREEDY-CUT or GREEDY-CUT &
RESOLVE proposes, then by Proposition 6 we have shown that if ω ≡ 1 then

max {μ(G), υ(G)} ≤ Ω(G,ω) ≤ ΩG(ε) ≤ |E|/2 , (18)

yielding a controlled variance, as long as μ(G) can be determined or estimated
from below, see [31]. We conjecture that (18) improves the known estimates given
by [7]. Furthermore, other heuristics can be improved by the results of this arti-
cle. For instance, the counter example for the Greedy approach introduced in
[19] is resolvable and therefore RESOLVE & CUT closes this gap. A comparison
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of Strategy 1, with the approximation of [13], where an approximation ratio in
O (log(Ω) log(log(Ω))) was established, might be usefull as well.

9.4 New Approach to the Subgraph Homeomorphism Problem

The NP-complete directed subgraph homeomorphism problem studied by [14] is
to consider two given graphs G = (VG, EG) and P = (VP , EP ) together with an
injective mapping m : VP −→ VG of vertices of P into the vertices of G. Now the
problem is given by deciding whether there exists a injective mapping from arcs of
P into pairwise node disjoint elementary paths of G such that an arc f with head
h and tail t is mapped on an elementary path from m(t) to m(h). For a given graph
G∗ = (V ∗, E∗), u, v ∈ V ∗, f = (p, q) ∈ E∗ with deg(p), deg(q) ≥ 2 we con-
sider a special instance of the directed subgraph homeomorphism problem by setting
G = G∗ \ f , P = (VP , EP ) with VP = {a, b, c, d}, EP = {(a, b), (c, d)} and
m(a) = u, m(b) = p,m(c) = q, m(d) = v. Thus, solving the subgraph home-
omorphism problem with respect to these special instances is equivalent to decide
whether f is an arc of G∗

el(u, v). Hence, in addition to the polynomial time solvable
instance classes known from [14], e.g. stars, also problem instances as defined above
are polynomial time solvable due to Theorem 2. Potentially, our observations can be
generalized in regard of this problem.
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Appendix A: The Essential Minor

This section is used to prove Propositions 2 and 3. To do so we recall that Oel(e) =
{c ∈ Oel(G) | e ∈ E(c)} and state the following Lemmas.

Lemma A1 Let G be a graph, ω : E −→ N
+ be an arc weight, ε ∈ S(G, ω), and

e ∈ E. Then either
ε ∩ [e]∼Γ = ∅ or |ε ∩ [e]∼Γ | = 1 . (19)

If in particular, ε ∩ [e]∼Γ �= ∅ then ε ∩ [e]∼Γ minimizes ω on [e]∼Γ .

Proof Let ε ∈ S(G, ω) and e ∈ ε. Since every arc f ∈ E with with e ∼Γ f is
connected by a branch point free path with e we have that Oel(e) = Oel(f ). Thus, at
most one arc in [e]∼Γ will be cutted and this arc has to minimize ω on [e]∼Γ .

Lemma A2 Let G be a positively weighted graph, ε ∈ S(G, ω), and e ∈ E. Then
either

ε ∩ [e]∼Φ = ∅ or ε ∩ [e]∼Φ = [e]∼Φ . (20)
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Proof Let ε ∈ S(G, ω) and e ∈ ε. Assume there is f ∈ F+(e) \ ε then cer-
tainly ε ∩ F−(e) = F−(e) otherwise there would be a two-cycle that is not cutted.
Now, let e1, . . . , ek ∈ ε \ F(e), k ∈ N, be such that Oel(f ) ∩ Oel(ei) �= ∅ and
Oel ({e1, . . . , ek}) ⊇ Oel(f ). Since the cycles in Oel(e) and Oel(f ) differ only in a
single arc, i.e., e and f , it suffices to cut the arcs F−(e)∪{e1, . . . , ek} to cut all cycles
in Oel(e), i.e.,

Oel
(
F−(e)

) ∪ Oel ({e1, . . . , ek}) ⊇ Oel(e) .

Since F−(e) ∪ {e1, . . . , ek} is therefore a cheaper possibility than ε cutting
Oel(F

+(e)), this contradicts that ε ∈ S(G, ω) and yields the claim.

Now we state again Proposition 2 and deliver its proof.

Proposition A1 Let G = (V , E, ω) be a positively weighted graph with essential
minor (C, ωC) and let ε ∈ P(E) and εC be the image of ε in (C, δ). Then

ε ∈ S(G, ω) ⇐⇒ εC ∈ S(C, δ) .

In particular Ω(G,ω) = Ω(C,ωC).

Proof Let ε ∈ P(E) and ε1 = (ε/Γ )/Φ ⊆ E1 be the image of ε in G1 = (G/Γ )/Φ .
We recall that ω1 = (ω/Γ )/Φ was defined in Definition 4 and show that

ε ∈ S(G, ω) ⇐⇒ ε1 ∈ S(G1, ω1) and Ω(G,ω) = Ω(G1, ω1) .

Assume that ε ∈ S(G, ω) then by Lemmas A1, A2 and the construction of (G1, ω1)

we obtain ΩG,ω(ε) = ΩG1,ω1(ε1). Thus, if ε1 �∈ S(G1, ω1) then we choose α ∈
S(G1, ω1) and a FAS ε′ ⊆ E of G such that the (19), (20) hold and (ε′/Γ )/Φ =
α. Consequently ΩG,ω(ε′) = ΩG1,ω1(α) and therefore due to the construction of
(G1, ω1) we get

ΩG,ω(ε′) = ΩG1,ω1(α) < ΩG1,ω1(ε1) = ΩG,ω(ε) ,

which contradicts that ε ∈ S(G, ω). Thus, ε1 ∈ S(G1, ω1).
Vice versa assume that ε ⊆ E is such that ε1 ∈ S(G1, ω1). We claim that (19),

(20) are satisfied by ε. Assume the opposite then due to Lemmas A2 and A1 we can
delete an arc e ∈ ε or replace an arc e ∈ ε by an arc f ∈ [e]∼Γ with ω(e) > ω(f ). If
this is not the case then we can delete all arcs f ∈ F+(e) ∩ ε whenever e is such that
∅ �= F+(e) ∩ ε �= F+(e). If ε′ denotes this modified set, then ε′ is FAS of G and in
all cases

ΩG1,ω1(ε1) > ΩG1,ω1(ε
′
1).

A contradiction! Hence, the (19), (20) hold for ε and therefore the construction of
(G1, ω1) yields

ΩG,ω(ε) = ΩG1,ω1(ε1) = Ω(G1, ω1) .

Thus, if ε �∈ S(G, ω) then we choose β ∈ S(G, ω) and obtain that β1 is a FAS of G1
with ΩG,ω(β) = ΩG1,ω1(β) < Ω(G1, ω1), which is impossible. Hence ε ∈ S(G, ω)

and the claim follows by iteration of these arguments.
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Algorithm 9 G/Γ

Input: G = (V , E, ω)

Output: G/Γ , κ

κ(e) ← {e} , ∀e ∈ E;
for v ∈ V do

if deg−(v) = deg+(v) = 1 then
Let u, w ∈ V : (u, v), (v, w) ∈ E;
E ← E ∪ {(u, w)} \ {(u, v), (v, w)};
V ← V \ {v};
ω((u, w)) ← min{ω((u, v)), ω((v, w))};
κ((u, w)) ← argmin∗

{(u,v),(v,w)} ω(·);
end

end
return (G, ω), κ

Algorithm 10 G/Φ , κ

Input: G = (V , E, ω), κ

Output: G/Φ , κ

for e = (u, v) ∈ E do
for f ∈ F+(e) \ {e} do

ω(e) ← ω(e) + ω(f );
E ← E \ {f };
κ(e) ← κ(e) ∪ {f };

end
end
return G, κ

Proposition A2 Let G = (V , E, ω) be a finite, connected, directed, weighted multi-
graph then we can construct (C, δ) in time O(|V ||E|2). Furthermore, there is an
algorithm with run time O(|E|2) which constructs a solution ε ∈ S(G, ω) given a
solution εC ∈ S(C, δ).

Proof The graph G/Γ can be computed in a single iteration over V , see Algorithm
9, where κ is explained later. Each non branching node v is removed and its two
incident arcs e = (u, v) and f = (v, w) are replaced by an arc (u, w) with weight
min{ω(e), ω(f )}. This is possible in time O(|V |) if the graph is represented as adja-
cency list where the targets of the outgoing arcs and the origins of the ingoing arcs
are stored separately. Thus, the iteration over V yields a runtime of O(|V |2).

To construct G/∼Φ we iterate over EΓ yielding G1 = (G/Γ )/Φ , see Algorithm
10. For each arc e the weight is updated to

∑
e′∈F+(e) ω(e′) and the parallel arcs

F+(e) \ {e} are purged from the graph. This can be realized in time O(|E| + |V |) =
O(|E|) with a counting sort prepossessing step if the target nodes in the adjacency list
are stored such that equal targets are stored consecutively. Because the construction
of (C, δ) requires at most |V | iteration steps, i.e., if (GK, ωK) = (C, δ) then K ∈

Theory Comput Syst (2018) 62:1048–10841082



O(|V |), the essential minor (C, δ) can be computed in time O(|V |3 + |V ||E|2) ⊆
O(|V ||E|2).

A simple extension of the algorithms allows to compute the information that is
necessary to compute a solution ε ∈ S(G, ω) once εC ∈ S(C, δ) is given. During
the application of Γ and Φ we store the set of arcs of G that are part of a solution if
the corresponding arc from G/Γ and G/Φ , respectively, are in a FAS. That is, an arc
that gave the minimum weight of the two arcs in a non branching path or all parallel
arcs, respectively, see Lemma A1 and Lemma A2 . In Algorithms 9,10 this is realized
by κ which can be considered as κ : EC −→ P(E). The mapping is initialized as
κ(e) ← {e}. Storing the arcs as linked list allows to update κ in linear time, i.e.,
the asymptotic run time of Algorithms 10,9 remains unchanged. Note that, argmin∗
returns only one arc in the case of equality. Now, replacing each arc e ∈ εC by κ(e)

yields ε, which due to Proposition 2 is a solution for the FASP on (G, ω). Thus, the
replacement can be realized in time O(|E|2).

Remark 15 Algorithm 9 may be extended to generate all solutions of the FASP for
G given all solutions for the FASP on C. Therefore the equal weight alternatives
in a non branching path need to be stored. The generation of the combinations of
the alternatives of different paths yields all solutions. Certainly, then the run time
depends exponentially on the number of possible combinations of alternatives.
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