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Live imaging of subcellular structures is indispensible to advance our understanding of cellular processes.
The blurred digital images acquired in light microscopy are, however, complex to analyze, and identifi-
cation and reconstruction of subcellular structures from such images remains a major challenge. We
present a novel, model-based image analysis algorithm to reconstruct outlines of subcellular structures
using a sub-pixel representation. The algorithm explicitly accounts for the optical properties of the
microscope. We validate the reconstruction performance on synthetic data and apply the new method
to fluorescence microscopy images of endosomes identified by the GTPase EGFP-Rab5. The benefits of
the new algorithm are outlined by comparison to standard techniques. We demonstrate that the new
algorithm leads to better discrimination between different endosomal virus entry pathways and to more
robust, accurate, and self-consistent quantification of endosome shape features. This allows establishing
a set of features that quantify endosome morphology and robustly capture the dynamics of endosome
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1. Introduction

A central paradigm in structural cell biology is that the micro-
scopic shape of subcellular objects is closely linked to their func-
tion. Shapes that result from dynamic processes can be used as
indirect process readouts (Neumann et al., 2006), while shapes
can also determine or constrain a biological function (Sbalzarini
et al., 2005). Correlating the positions and shapes of populations
of different objects allows mapping cellular organization (Nickell
et al., 2006) and investigating specific interactions amongst them.
Extracting shape information from live cells is, therefore, of great
interest. Advances in light microscopy (Stephens and Allan, 2003)
and the development of fluorescent tags for specific labeling of
proteins (Giepmans et al., 2006) have rendered fluorescence light
microscopy the most widely used experimental tool for imaging
subcellular structures in vivo. The acquired images contain a
wealth of information, which is, however, complex and under-ex-
plored, and requires reduction to a comprehensible form. The
development of computational image processing tools that extract
the biologically relevant information has, therefore, attracted great
attention. Diverse tasks have been addressed, ranging from histo-
gram analysis and computation of spatial intensity moments to
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complex image analysis such as segmentation, pattern recognition,
or the integration of temporal information in object tracking. Sim-
ple shape models for point-like structures such as viruses or vesi-
cles (Cheezum et al., 2001; Sbalzarini and Koumoutsakos, 2005),
linear structures such as cytoskeletal elements (Danuser and
Stricker, 1998), or structures with a Gaussian intensity distribution
(Li et al., 2004; Rink et al., 2005) are widely used. More complex
models have been developed to analyze, e.g., cell boundary move-
ments (Machacek and Danuser, 2006) or chromosome segregation
patterns (Neumann et al., 2006).

Two approaches to extracting shape information from images
can be distinguished: (1) Pixel-based methods extract information
directly from the images. Image transformations are applied to
highlight features of interest such as edges or peaks of intensity.
In a post-processing step, object descriptions can be constructed
from the image features. These methods rely on the implicit
assumption of a one-to-one correspondence between the features
of the image and the true object. (2) Model-based methods explain
the image in a bottom-up approach using (physical) object and
imaging models. These methods rely on strong prior knowledge
about the shape of the imaged objects. Such prior knowledge in-
creases the detection power, but decreases the explorative power
of image analysis methods.

The size and shape of the objects of interest determine when a
more elaborate model-based approach is favorable: In standard
far-field fluorescence microscopy, only objects larger than the
wavelength of light can be resolved (Stephens and Allan, 2003;
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Hell, 2007). Images of individual point sources have the shape of
a Mexican hat. In the visible spectrum, the diameter of this so-
called point spread function (PSF) is between 200 and 500 nano-
meters (nm). As a consequence, many small subcellular structures
appear heavily blurred in light microscopy images and the appar-
ent width of their boundary is comparable to their size. Pixel-
based boundary localization methods, such as methods based
on edge strength, can therefore be significantly biased because
the implicit assumption that the local maxima of an edge
strength function coincide with the true object boundary is not
necessarily true.

Here, we provide a robust methodology to quantitatively ana-
lyze the morphology of complex-shaped subcellular objects in live
cells imaged by fluorescence microscopy. Our model-based algo-
rithm overcomes limitations of classical pixel-based approaches
by explicitly accounting for the physics of the imaging equipment
and combining a flexible shape model with concepts from decon-
volution. We demonstrate the development of a specific object
shape model for endosomes. We then benchmark the performance
of the algorithm on synthetic test images, and use it to reconstruct
outlines of Rab5-positive endosomes in live cells in the context of
sorting processes and virus infection.

Endosomes are dynamic lipid-bounded organelles that are
formed by invaginations of the plasma membrane (Mellman and
Warren, 2000). The size of endosomes is in the order of 20 to sev-
eral hundred nanometers, they are unevenly distributed in the
cytoplasm, and the number of objects per unit volume is high.
The complexity of endosomal shapes has been demonstrated using
cryo-electron microscopy and tomographic reconstruction in fixed
samples at high spatial resolution (Hayashi et al., 2008). In live
cells, however, the static and dynamic morphology of endosomes
has not been characterized so far, partly due to difficulties pertain-
ing to acquiring and analyzing images of such small objects.

Our results show that the highly accurate sub-pixel-resolution
outlines reconstructed by the present method enable morphomet-
ric analyses of endosomes or similarly small intracellular struc-
tures. The results of such analyses are superior to those found by
classical pixel-based image segmentation, enabling better discrim-
ination between different experimental conditions. We exemplify
these benefits in three case studies, quantifying and analyzing
endosome shapes and distributions during endosome fusion and
sorting of two endosomal viruses.

2. Outline reconstruction algorithm

We reconstruct the outlines of subcellular objects from noisy
digital fluorescence microscopy images using a sub-pixel represen-
tation. This reconstruction is based on models of the imaging pro-
cess and the imaged object and estimation of object shape model
parameters. Nevertheless, careful preprocessing and segmentation
of the images is performed in order to render the estimation proce-
dure robust and efficient.

The model of the imaging process (Fig. 2D-F) starts from a func-
tion O(x,y), representing the actual concentration of fluorophores
on the object at each point in the focal plane. In a digital image, this
amounts to attributing each pixel (x;, y;) a fluorescence level O(i, )
through the so-called object intensity function (Fig. 2D). Image for-
mation in the microscope is modeled as a convolution of the object
intensity function O with the (measured) PSF P of the light micro-
scope. This yields the noise-free image (Fig. 2E)

[=0xP, (1)
where x denotes the mathematical operation of convolution. In any

real imaging system, the measurements are corrupted by noise
E(i,j), yielding an observed image (Fig. 2F) I,(i,j) = I(i,j) + E(i,j)-

Reconstructing O(i,j) directly from an observed image I, (i,j)
constitutes a classical deconvolution problem (Sibarita, 2005) as
one tries to undo the blurring from the imaging system. Since,
within the fluctuations of the noise, several different O(i, ) can lead
to the same image I, direct reconstruction is not uniquely possi-
ble. This is a well-known problem that can only be circumvented
by constraining the set of allowed O(i, j). Here, we do not formulate
these constraints for the O(i,j) directly, but rather introduce a geo-
metric model of the object shape, which indirectly determines the
0(i,j). In the following, we describe a shape model for endosomes.
While this improves the clarity of presentation, it does not distract
from the more general nature of the method. Applications to other
objects or extensions to more complex shape models are readily
possible.

The outline of an endosome k is represented by a piece-wise lin-
ear closed spline & = [x¥,yk ... xk yk|". This amounts to connect-
ing n, points along the endosome outline by straight lines. We
limit the complexity of the outlines by introducing penalties
E»(®) and E(®) for local bending and stretching. These penalties
quantify the mechanical deformation energy contained in an out-
line &% and counteract the tendency of over-fitting the outlines
on insignificant image features.

The objects present in the imaging plane determine the object
intensity function O(i,j): Let S be the collection of all endosome
outlines &% in an image. A constrained object intensity function
0(i,j) is constructed by setting only the pixels (i,j) close to or en-
closed by one of the outlines &* to non-zero values:

ck if (x;,y;) enclosed by 6*
0(i.j)={ (1—d)c* if d=D((x.y).5) <1 (2)
0 else,

where D is the distance to the closest outline &%, and c* the fluores-
cence intensity inside endosome k. We compute the hypothetical
image I, that would be expected if the outlines in S were indeed
the true outlines of the endosomes, by using this object intensity
function in Eq. (1).

Reconstructing the locations of the points &* on the endosome
outlines is done by minimizing the objective function

Qlm,S) = +Z (E(6") +E(8")), (3)

where the image energy Eimage is computed by comparing the hypo-
thetical image I to the actually observed image I,:

1mage—zz l] 711])) (4)

This constitutes an adaptation of the active contour formulation by
Kass et al. (1988).

Our outline reconstruction method proceeds in 5 algorithmic
steps: (1) preprocessing the microscopy images, (2) detecting the
objects in the image, (3) estimating the object intensities, (4)
decomposing the image into smaller parts, and (5) reconstructing
the precise outlines of all objects.

Image preprocessing reduces high-frequency noise and low-fre-
quency background variations in the images. Noise reduction is
important to allow robust segmentation based on image gradients.
It is achieved by convolving the original image with a 3 x 3 Gauss-
ian kernel with standard deviation ¢ = 0.5 pixel. Background vari-
ations have to be removed from the image since they comprise all
non-object-specific signals that can not be accounted for by the
present imaging and object models. We use a method related to
the rolling ball algorithm (Sternberg, 1986). For each pixel in the
raw image, the local background value is determined as the most
frequently occurring intensity value in square region (typically
15 x 15 pixels) centered at that pixel. The so-found background

1mage I I
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image is then smoothed with a Gaussian kernel (9 x 9, o = 2 pixel)
to reduce local variations. Subtracting the smoothed background
image from the de-noised image yields a virtually background-free
image.

In the next step, objects are detected in the image. This image seg-
mentation procedure provides the initial locations for the outline
reconstruction. For endosomes, an initial outline is given by a closed
path of pixels that defines a segmentation of the image into fore- and
background. In order to determine such a segmentation, we use the
fact that the image of each endosome contains a local intensity max-
imum and is, therefore, enclosed by a ridge in the spatial intensity
gradient. Intensity edges are highlighted by thresholding each pre-
processed image followed by a convolution with a Laplacian of
Gaussian kernel (5 x 5,0 = 0.2 pixel). We then use the watershed
transform (Vincent and Soille, 1991) to detect pixels that lie on
ridges of the edge image and are, hence, close to the outline of an
endosome. Connecting neighboring ridge pixels to closed paths
yields the desired initial outlines to single-pixel resolution, without
correcting for the blurring due to the microscope PSF.

The object intensities c* of the endosomes are estimated in order
to use them in Eq. (2) and as a biologically significant readout. For
an endosome that is far larger than the width of the PSF, the object
intensity is approximately equal to the central intensity ¢ in the
image of the endosome (top-right image in Fig. 1A). Smaller endo-
somes have a central intensity that is reduced by a factor «. In or-
der to estimate the reduction factor x* for a given endosome k, we
analyze the radial intensity profile J(r) of the endosome (Fig. 1A).
This profile is determined by averaging the intensities along con-
centric circles with different radii r around the endosome’s inten-
sity centroid. The half width at half maximum rgs of this profile
serves as a dimension parameter (Fig. 1A). Since the dependence
K = f(ros) is not explicitly known, we empirically calibrate x on
synthetic images that are generated by convolving circular objects
of different sizes and known object intensities ¢! with the micro-
scope PSF. For each synthetic image I' we measure ri s and the cen-
tral intensity ¢', and then compute the calibration function as
Ki(rls) = c'/¢'. Based on this function, the object intensity c* of
an experimentally observed endosome can later be determined
by interpolating & at the measured value r§ . and multiplying with
the central intensity ¢*. For small, diffraction-limited objects, o5
converges to the half width at half maximum of the microscope
PSF and does no longer vary with object size. Therefore, the analy-
sis of sizes and shapes is restricted to larger objects. An endosome’s
with an rys below an empirically determined threshold is treated
as circular. Its center is fixed to the observed intensity centroid
and the object intensity c is found by standard least squares regres-
sion based on Egs. (4) and (1).

A

In order to speed up the computations and to allow outline
reconstruction for different endosomes in parallel on different
computer processors, we decompose the image into smaller, inde-
pendent parts. This is based on the fact that the PSF P is of limited
spatial extent such that the influence of endosomes on distant pix-
els in the image can be neglected. The width w where the PSF has
decayed below 1% of its peak defines the radius of the region of
influenced pixels around each endosome outline & (Fig. 1B).
Endosomes with overlapping influence regions are grouped to-
gether and their influence regions are merged into a single region.
This allows decomposing the image into independent rectangular
sub-images I' that comprise the merged influence regions
(Fig. 1C). The image error term in Eq. (3) is now computed indepen-
dently for each sub-image and we no longer consider points that
are in no sub-image.

Reconstructing the precise outlines of the endosomes to sub-pixel
resolution and correcting for the imaging characteristics of the
microscope (PSF) is achieved by minimizing the objective function
given in Eq. (3) with respect to the @*. Since there is no mutual
influence between endosomes in different sub-images I, their con-
tributions to the objective function are minimized independently.
Following the solution proposed by Kass et al. (1988), we use a gra-
dient descent method with adaptive step size. This involves
approximating the partial derivatives of the image energy Eimage
with respect to the x and y positions of all spline points (x¥,y¥),
i=1,...,n.In order to compute a finite difference approximation
to the derivative in x-direction with respect to a point (x*,y¥) on
the outline &* of endosome k, we displace the point by Ax. This
yields a deformed hypothetical outline @* and hence a new set
of outlines S.. The derivative of the image error Eimage in sub-image
I' is then found as

8E€mage E{mage (Ifnvll(s*)> - Eimage <I£n’ I[(S)>
N . (5)
OX; Ax

The derivatives with respect to other points and in the y-direction
are found accordingly. The hypothetical sub-image I'(S) needs to
be computed once in each iteration of the minimization procedure.
Minimization starts from the initial outlines as determined by the
watershed transform (cf. step 2) and stops when the outlines do
not significantly change any more between two subsequent
iterations.

3. Results

The presented algorithm for reconstruction of intracellular
structures enables quantification of processes in live cells that in-
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Fig. 1. (A) Radial intensity profile of a small (left image) and a large (right image) object found by averaging intensities along concentric circles. The intensity profile of the
small object and the PSF (dashed line) have a similar shape. The wider shape of the intensity profile of the large object is reflected in an increased value of ro 5. (B) The width of
the PSF defines the extent of image regions (dashed lines) that are influenced by different objects &* (solid lines). (C) Objects with overlapping influence regions (dark gray
areas) are grouped together. Independent sub-images I' (light gray rectangles) can be treated separately.
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volve dynamic shape changes. After benchmarking the accuracy
and precision of the algorithm as a function of the signal-to-noise
ratio of the images, we exemplify the benefits of the present meth-
od in comparison to a classical pixel-based approach in three case
studies that consider the shape and fusion dynamics of lipid-
bounded endosomes. In all studies, we compare the results ob-
tained from refined sub-pixel accurate outlines to the results ob-
tained on the unrefined initial pixel-based segmentation.

3.1. Benchmarks

We assessed the performance and limitations of the outline
refinement algorithm on two sets of synthetic data. The first set
contained images of a circular object with a diameter of 500 nm,
the second set contained images of a 200-400 nm wide and
900 nm long pear-shaped object. In both cases, synthetic objects
were generated from the true outlines according to Eq. (2). The ob-
ject intensity ¢ was set to 200 and a background level of b = 20 was
added (Fig. 2D). Imaging was simulated by a convolution of the ob-
jects with the measured PSF of the experimental setup (full width
at half maximum was 322 nm, see Section 5) and addition of Pois-
son-distributed noise (Fig. 2E and F). In order to add the proper
physical noise level, we transformed the (gray-scale) image inten-
sities I to expected photon counts A using the linear function
A(i,j) = nl(i,j). Noisy images were then obtained by sampling a
new value for each pixel (i,j) from a Poisson distribution with
parameter A(i,j) and transforming back to gray-scale intensities.
By wvarying #, we adjusted the signal-to-noise ratio
SNR = (c — b)/o. in the range of 7-56, where o, is the noise level
in the center of the objects. For each object and SNR, N=250 sample
images were generated and object outlines were fitted and com-
pared to the true outline.

We quantified accuracy and precision of the fitted position
(Fig. 2A), total intensity (Fig. 2B), and shape (Fig. 2C). The position
error is defined as the difference between the true and detected x-
position of the intensity centroid.! The total intensity error is given
by the difference in total intensity (sum of all O(i,j) enclosed by the
outline) between the reconstructed object and the true synthetic ob-
ject, divided by the total intensity of the true synthetic object. The
shape error is defined as the sum of non-overlapping areas of the
true and fitted outlines, normalized by the area enclosed by the true
outline. Lines depicting the + standard error interval are shown in
the bias plots in order to enable visual assessment of the signifi-
cance. The standard error is given by the estimated standard devia-
tion divided by v/N.

For both shapes, precision and accuracy of the measured posi-
tion are in the range of a few nanometers (Fig. 2A). The errors in
the y-direction are comparable for the pear-shaped object and
identical for circular shapes (data not shown). The position bias
for the circular shape (dashed lines) is always within the +1 stan-
dard error interval, and hence not significant. As expected, a small
systematic position bias can be observed for the pear-like shape
(solid lines). Since the shape is not symmetric, the systematic
underestimation of high curvature causes a small shift in the posi-
tion estimate towards the less complex side. For both shapes the
standard deviation of the relative total intensity error drops below
5% for SNRs larger than 10 (Fig. 2B). The bias, however, is larger
than the standard error, almost always negative, and converges
to about —1%. This is due to the stretching penalty E; in Eq. (3),
which favors shrinking of outlines and thereby decreases the inte-
grated object intensity function. The means and standard devia-

! We prefer this definition over the classical Euclidean distance in (x,y) because it
enables correlating shape asymmetries with the position errors in the different
directions.

tions of the shape errors of both shapes converge to values of
less than 10% and 3%, respectively (Fig. 2C). The bending and
stretching penalties E, and E; prevent the mean shape error from
converging to zero, and the systematic underestimation of high
curvature causes an additional bias for the more complex pear-
shaped object. Nevertheless, we observe that the reconstructed
outlines visually reproduce well the essential characteristics of
the true outline, even at SNRs below 15 and therefore error levels
of more than 10% (Fig. 2G).

3.2. Endosome dynamics in live cells and characterization of fusion
events

We analyzed live human embryonic retinoblast (HER) 911 cells
stably expressing the small GTPase Rab5 tagged with enhanced
green fluorescent protein (911-EGFP-Rab5) (Roberts et al., 1999).
In order to capture the dynamics of endosome fusion events,
2.2 pm thick z-stacks, comprising four images each, were recorded
in the cell periphery at high frequency (25 stacks/s) on a spinning
disc confocal microscope. After acquisition, the stacks were re-
duced to single images by maximum projection (Rink et al.,
2005). Selected frames of a movie are shown in Fig. 3A. The out-
lines of the endosomes were reconstructed in each frame of the
movie and individual detections were linked over time, yielding
endosome trajectories (Sbalzarini and Koumoutsakos, 2005).

We quantify the dynamics of endosome shapes and fusion
events by the time evolution of endosome area, total fluorescence
intensity of each endosome, its eccentricity, and its concavity.
These shape features were directly computed from the outlines
as reconstructed by the present algorithm (see Section 5). Because
the algorithm implicitly corrects for the microscope optics, compu-
tation of shape features is more robust and accurate than in stan-
dard pixel-based methods. In the latter, shape features can of
course also be defined, but they are at best correlated with the fea-
tures of the real objects.

The dynamics of the endosome shape features computed from
refined outlines are shown in Fig. 3. Pronounced changes in endo-
some shape features were associated with topological and mor-
phological changes of the endosomes. At 0.92 s, a large endosome
(Fig. 3A, red outline) rapidly approached an immobile one (blue
outline) until the two structures could no longer be resolved. At
1.08 s, the algorithm detected only a single outline. In the follow-
ing, the endosome remained stationary before it coherently dis-
placed along a linear track as a single entity (4.08s). We
conclude that the merged object represented a fused endosome
with different dynamic behavior. A transient peak in concavity
and eccentricity during about 0.12's marked the fusion event
(Fig. 3B, blue lines). As expected, the area increased upon fusion,
and the total fluorescence intensity of the fused endosome
matched the sum of the two pre-fusion intensities (Fig. 3B, red line
and blue line). In contrast, the features of a stationary endosome
remained constant (green lines).

We conclude that the changes in area and intensity, together
with the sharp peaks in concavity and eccentricity, can be used
as hallmarks of fusion events. We note that fusions are very fast
events and that, therefore, high temporal resolution is required
to detect the accompanying transient changes in morphological
features. The present shape reconstruction algorithm enables auto-
matic, unbiased, and reproducible estimation of shape features at
high resolution. It therefore provides a prerequisite for detecting
and analyzing fusion events (see also Fig. 5C).

3.3. Time course of endosomal virus sorting

We demonstrate the benefits of refined endosome outlines in
analyzing virus trafficking through the endosomal network. The
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Fig. 2. (A-C) Benchmark results on synthetic images. Accuracy (bias) and precision (std) of the reconstructed position (A), total intensity (B), and shape (C) of a pear-shaped
(solid lines with diamonds) and a circular (dashed lines with crosses) object are shown. Lines without markers delimit the +1 standard error interval (std/v/N,N = 250). (D-F)
Generation of synthetic test images. The object intensity function O(i,j) (Eq. (2))(D) is blurred by convolution with the PSF (E) and noise is added (F). (G) True outline (solid
line) and the outline estimated at an SNR of 12.5 (dashed line). The shape error in this example was 14%.

trafficking of virus particles can be monitored by quantifying the
colocalization of endosomal and viral markers (Bolte and
Cordelieres, 2006). Here we used human Adenovirus type 2 (Ad2)
and human Ad2-ts1 (temperature-sensitive 1, TS1), a mutant of
Ad2 that visits early endosomes like wild-type Ad2, but fails to es-
cape to the cytosol and is instead delivered to late endosomes and
lysosomes (Gastaldelli et al., 2008). Fluorescently labeled virus par-
ticles were bound to HER 911-EGFP-Rab5 cells and internalized at
37 °C. Image stacks of Rab5-positive endosomes and virus particles
were recorded from single cells during the first 45 minutes of the
infection (see Section 5). Supplementary Fig. 1 shows the two color
channels (green: EGFP-Rab5, red: TS1-atto647) separately and over-
laid for a cell imaged 10 min post-infection. The overlay shows that
some viruses seem to colocalize with Rab5. The degree of colocaliza-
tion and its significance, however, can not be estimated by eye.

We therefore reconstructed the endosome outlines from maxi-
mume-projected image stacks and determined the virus positions
by intensity centroid estimation (see Section 5). We defined colo-
calization as the fraction of viruses that were enclosed by an endo-
some outline (see Fig. 4A and B and insets therein). In order to

compare the present method to previous approaches, we consider
both refined and unrefined outlines. While the unrefined outlines
are certainly correlated with the true outlines, they are likely to
be biased and more sensitive to variations in individual pixel inten-
sities. Fig. 4A and B support this argument: Considering the blur-
ring introduced by the microscope PSF, the unrefined outlines are
clearly too wide. In Fig. 4C and D we show the histogram of dis-
tances of viruses to the nearest endosome outline. Compared to
the refined outlines (D), the distribution for the unrefined outlines
(C) has a broader peak and is shifted toward smaller distances.

In order to test how these differences affect the final results, we
determined the colocalization scores of Ad2 (Greber et al., 1993)
and its temperature-sensitive mutant TS1 (Greber et al., 1996)
with EGFP-Rab5 using either refined or unrefined outlines. It is
known that Ad2 escapes from an endosome soon after internaliza-
tion (Greber et al., 1993). We thus expect little colocalization of
Ad2 with Rab5. In contrast, the signaling-incompetent mutant
TS1 is known to reside in early endosomes and lysosomes during
the first hour of entry into cells (Greber et al., 1996; Gastaldelli
et al., 2008), probably yielding a transient, but long-lasting, in-
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endosomes).

crease in colocalization with Rab5. The colocalization scores were
determined for 201 (Ad2) and 184 (TS1) cells, each one imaged
at a single time point between 0 and 45 min post-infection.

In order to estimate the degree of unspecific colocalization, we
performed controls with randomized virus positions (see Section
5). Individual colocalization scores were weighted proportionally
to the number of viruses detected and their means and standard
deviations over time were estimated using a Nadaraya-Watson
kernel estimator with bandwidth h =3 min (Simonoff, 1998).
The time courses of Ad2 and TS1 colocalization with Rab5-positive
endosomes are shown in Fig. 4E and F. The level of unspecific colo-
calization that would be expected under random placement of
viruses was approximately 1-5% for refined outlines and 2-10%
for unrefined outlines.

The mean colocalization score for Ad2 remained constant on a
comparably low (but above background) level of less than 10%
when using refined outlines (Fig. 4F, lower line). The score for
TS1 (upper line) showed an increase from 12 to 20% between 10
and 20 min post-infection and then remained high throughout
the observation period. For both viruses, the +1 standard deviation
intervals (light gray areas) are narrow and do mostly not overlap
(dark gray areas). In summary, Ad2 and TS1 show colocalization
signatures that are significantly distinct in magnitude and dynam-
ics and that are in good agreement with prior observations (Greber
et al., 1993, 1996; Gastaldelli et al., 2008).

This picture is much less clear when using unrefined outlines.
While the increase around 15 min post-infection is still apparent
for TS1 (upper line), the score for Ad2 (lower line) increases faster
from O to 45 min post-infection than when using refined outlines
(Fig. 4E). Compared to the results based on refined outlines, we ob-
serve larger means and standard deviations (gray shaded areas) for
both viruses. The +1 standard deviation intervals significantly

overlap during the entire observation period (dark gray areas). This
makes it difficult to robustly distinguish between the two viruses.
In summary, the qualitative and quantitative trends seen in Fig. 4E
are not in agreement with prior observations (Greber et al., 1993,
1996; Gastaldelli et al., 2008).

3.4. Endosome shape features in virus-infected cells

We demonstrate the benefits of the present algorithm in large-
scale studies of shape and dynamics. In Section 3.2, we have shown
that our algorithm enables robust and accurate quantification of
dynamic changes such as fusion events. This was based on the esti-
mation of a set of descriptive shape features. Since the present
method is completely automatic, it enables processing of large
amounts of data in an unbiased and reproducible way. This leads
to increased statistical significance of the final results. We demon-
strate this by applying the present algorithm to estimate the shape
features of all endosome outlines in all 201 and 184 cells infected
with Ad2 and TS1, respectively. As a control we recorded and ana-
lyzed images of 31 non-infected cells. The measured distributions
for area and total intensity are shown in Fig. 5A and B for the con-
trol (solid black lines, “control”) and TS1-infected cells (dashed
blue lines, “all TS1”). The results for the other shape features and
for Ad2 were of equal quality (figures not shown).

Using these distributions, we addressed the question whether
viruses preferentially occupy endosomes with specific shape fea-
tures. We focused on the subset of Rab5 endosomes that enclosed
at least one TS1 particle. Comparison of the shape feature distribu-
tions of this set (“TS1 (+)”) with the distributions of all Rab5 endo-
somes (“all TS1”) showed that viruses were more frequently found
in large endosomes with high fluorescence intensity (Fig. 5A and B,
dash-dotted green lines). This preference was significantly stronger
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Fig. 4. Dynamics of endosomal virus sorting studied using unrefined (A, C, E) outlines and outlines refined by the presented algorithm (B, D, F). (A,B) HER-911 cell expressing
EGFP-Rab5 imaged 10 min post-infection with overlaid endosome outlines (red lines) and positions of TS1 virus particles (blue crosses). (C,D) Histograms of distances of
viruses to the nearest point on an endosome outline for the example cell shown in (A) and (B). Negative distances (dark gray bars) correspond to viruses inside endosomes.
(E,F) Comparison of the time-course of mean (black lines) and +1¢ interval (light gray shaded areas) of the colocalization scores for Ad2 (lower line) and TS1 (upper line)
based on unrefined (E) and refined (F) outlines. The scores for individual cells are shown as crosses (Ad2, N = 201) and circles (TS1, N = 184). The dark gray areas mark the
overlap between the two +1¢ intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

than what would be expected when randomly placing the viruses
in the cell (“randomized TS1 (+)”, dotted red lines, see Section 5),
ruling out a linear dependence of the frequency of occupation on
endosome area. Virus-containing endosomes only showed slightly
increased concavity (Fig. 5C) compared to the population of all
endosomes in the cell. Using the randomized virus positions (“ran-
domized TS1 (+)”), a clear trend toward higher concavities was ob-
served, which is consistent with the fact that the outline shapes
can be better resolved on larger scales.

We compare the shape feature distributions obtained using the
refined outlines to those from unrefined outlines. For area and total
intensity (data for unrefined outlines not shown), the distributions

showed the same trend when comparing TS1-containing endo-
somes to the population of all endosomes, although the trend
was less significant. For concavity, the results look very different
(Fig. 5C). In unrefined outlines (right peak), high concavity (>0.3)
was virtually non-existent and there was a pronounced peak
around 0.1, which can be attributed to the step-like non-smooth
shape of the outlines. This significantly reduces the information
content of the observations. Consider for example the fusion case
shown in Figs. 3 and 5C (insets). When using refined outlines (left
peak), the concavity increased from 0 to 0.2 during the fusion of
the endosomes. On unrefined outlines, an uninformative change
from 0.09 to 0.12 was measured (Fig. 5C, horizontal distance ar-
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rows). Detection of shape change events, such as fusion, may thus
depend on the use of properly refined outlines.

We further formalize the benefits of using the present shape
refinement algorithm by applying statistical tests to the shape fea-
ture distributions. We used a two-sided Kolmogorov-Smirnov test
on the null hypothesis that the shape feature distributions are
identical. We tested all possible combinations of the three cases
of TS1-infected cells, Ad2-infected cells, and control cells without
virus, considering all endosomes in each cell, and not only those
that actually contained virus(es). The results are summarized in
Fig. 6A and B. The p-values are color-coded according to the signif-
icance level and the signs indicate the directions of the shifts of the
means. The present algorithm enables unbiased processing of large
amounts of data. This led to rejection of the null hypothesis in
some cases, despite the small visual differences between the distri-
butions (Fig. 5A and B, “all TS1” vs. “control”). We assess the self-
consistence of the results obtained using unrefined and refined
outlines. The test results for refined outlines (Fig. 6A) show a con-
sistent picture: TS1-infection significantly changes area, total
intensity, and eccentricity (red and orange colors in first row),
but Ad2-infection does not (green and yellow colors in second
row). The third row, comparing TS1 against Ad2, confirms this re-
sult. When using unrefined outlines, the test outcomes are self-
inconsistent (Fig. 6B) and do not support any conclusion. Further-
more, area and total intensity are correlated quantities and the col-
or patterns of these two columns should be similar. While this is
the case when using refined outlines, the patterns for unrefined
outlines look opposite.

In summary, the results of this test case show the benefits of
automatic reconstruction of large amounts of refined endosome
outlines. This allowed accurate and self-consistent quantification
of shape features. The resulting distributions were free of obvious
quantification artifacts and revealed differences between popula-
tions of endosomes. The large amounts of unbiased data further
enabled statistical detection of subtle changes in feature distribu-
tions in a self-consistent way.

4. Conclusions and discussion

We devised a novel model-based method to reconstruct out-
lines of subcellular structures from fluorescence microscopy
images to a sub-pixel representation. The method is based on im-
age segmentation and iterative regularized optimization of a geo-
metric model of the outlines. During optimization, a physical
model of image formation is used to generate hypothetical images
from estimated outlines. At each iteration, the quality of the esti-
mate is evaluated by comparison with the experimentally ob-
served image.

Without distracting from the more general applicability of the
method, we presented a specific object model for endosomes and
validated the method on synthetic data resembling images of
endosomes at different SNRs. Our imaging protocol was a compro-
mise between imaging speed and signal intensity, which resulted
in SNRs in the range of 10-30. In this range, errors in position
and fluorescence intensity estimates were below 1 nm and 5%,
respectively. Although the method systematically underestimated
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the curvature of outlines, the essential characteristics of the
shapes were captured, even at low SNRs. When applied to exper-
imental data, the main limitation of the method is that outline
topology cannot change during optimization. The topology of
the outlines is defined by the initial segmentation, which can be
ambiguous if objects are close to each other. An implicit represen-
tation of the outlines as level sets could potentially circumvent
this limitation (Machacek and Danuser, 2006; Sethian, 2001). In
addition, our object model uses spatially constant fluorescence
intensities inside objects. While more complex object intensity
models could easily be constructed and used, they would be more
prone to over-fitting and regression instability. In addition, we
identified only few situations where they would be beneficial. If
sufficient experimental data about the actual fluorescence inten-
sity distribution inside a single object were available, this knowl-
edge could, however, be accounted for in more complex object
intensity models.

We then applied the presented algorithm to study the dynamics
of Rab5-positive endosome fusion events at 25 Hz temporal resolu-
tion. The object representation as smooth closed splines allowed
measuring the eccentricity and concavity of endosome outlines.
These features showed a characteristic pattern during endosome
fusion and could be used to automatically detect fusion events.
Moreover, the total intensity and area of endosomes were esti-
mated with high accuracy and precision. We found that Rab5 fluo-
rescence intensity exhibited little fluctuations, suggesting that the
total amount of Rab5 in the endosomal membranes remained con-
stant over the fusion event. Rab5 could thus have a function both
before and after fusion of the endosomes.

When applied to virus trafficking, the proposed method yielded
precise and realistic maps of the positions of virus particles with
respect to endosome membranes. We defined a colocalization
score as the fraction of viruses that were enclosed by endosome
outlines. Based on the refined outlines, the time-courses of colocal-
ization of Adenovirus serotype 2 (Ad2) and its temperature-sensi-
tive mutant TS1 with Rab5-positive endosomes were in good
agreement with earlier observations (Greber et al., 1996; Gastald-
elli et al., 2008). Unrefined outlines found by pixel-based image
segmentation, on the other hand, led to an ambiguous and incon-
sistent picture. Analysis of the shape feature distributions of
Rab5-positive endosomes occupied by TS1 revealed that, among
all endosomes in a TS1-infected cell, this virus is preferentially
found in a sub-population of larger endosomes with elevated fluo-
rescence intensity. Since TS1, but not Ad2, depends on active Rab5
(Gastaldelli et al., 2008), it is possible that TS1 activates Rab5 and
that this contributes to the enlargement of TS1-containing early
endosomes (Bucci et al., 1992). Comparing the refined outlines of
all endosomes in TS1-, Ad2-, and non-infected cells, we could de-
tect a global, but subtle effect of TS1 infection. This effect was sta-

tistically significant thanks to the large amount of unbiased data
delivered by the presented fully automated method.

Taken together, our method for highly accurate object outline
reconstruction enabled conclusive observations that were previ-
ously impossible. This is because pixel-based segmentation proce-
dures detect local structures in the image data, whereas the present
outline refinement algorithm explains the image data based on the
outline estimates. When the sub-cellular structures are small com-
pared to the resolving power of the microscope, this can greatly re-
duce relative errors in the outline estimates. We demonstrated that
this is of great importance for the detection of fusion events and for
colocalization analysis of virus trafficking through the endosomal
network. The proposed outline refinement increased the discrimi-
native power and self-consistence of comparative studies using
statistical tests. With minor adaptations of the shape model and
initialization procedure, the presented algorithm can be applied
to analyze the shapes of other small and compact organelles such
as late endosomes, lysosomes, peroxisomes, caveosomes, mito-
chondria, or nuclei. We thus anticipate that the combination of
flexible shape models and implicit deconvolution will be generally
beneficial to many subcellular imaging studies.

5. Materials and methods
5.1. Plasmids

The construct expressing GFP-Rab5 was obtained from Philipp
Stahl (Washington University School of Medicine, St. Louis, MO).

5.2. Cells, viruses, and reagents

Human embryonic retinoblast 911 cells obtained from Dr. A.
van der Eb (University of Leiden, The Netherlands) were grown
in Dulbeccos Modified Eagle Medium (Sigma) plus 7% fetal bovine
serum (Gibbco). To obtain cells stably expressing EGFP-tagged Rab
proteins, they were electroporated (T820, BTX), grown under G418
selection (Calbiochem), and sorted with an FACSAria cell-sorting
system (Becton-Dickinson). For live cell microscopy, cells were
grown on glass cover slips (Assistant Glaeser) of 0.17 £ 0.01 mm
thickness to match the correction of the objective. Ad2 and the
temperature sensitive mutant TS1 were grown, isolated, and la-
beled with the fluorescent dye atto647 (Atto-tec) as described
(Nakano and Greber, 2000).

5.3. Spinning disc live cell microscopy
Images were recorded with an NA 1.35 UplanApo100X objective

on an Olympus IX81 inverted microscope (Olympus) equipped
with a Yokogawa scanning head QLC100 (VisiTech International),
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containing a triple bandpass excitation filter (488 nm/565 nm/
647 nm, Chroma), and a NV 40/1CL piezo stepper for objective
positioning (Piezosystem Jena). Images were recorded onto a Cas-
cade 512 electron multiplying charge coupled device camera
(Photometrics) with 16 x 16 um? pixel size. Image acquisition
was controlled using MetaMorph software (Molecular Devices).
Original unprocessed intensities were stored as uncompressed 16
bit bitmaps. Time lapse experiments of a total of 500 time points
were recorded with 4 layers per z-stack. For virus infection exper-
iments, an additional 1.6x lens of the microscope was used and 8
images per z-stack were acquired. Due to the short illumination
times, bleaching was not observable in any of the experiments
and no bleaching correction schemes were applied.

5.4. Point spread function measurement

Image stacks of TetraSpeck multicolor fluorescent beads
(Molecular Probes) were recorded and a maximum projection per-
formed. Assuming radial symmetry, the PSF of the microscope was
measured by averaging intensities along concentric circles cen-
tered at the intensity centroid in the maximum-projected image
(Sibarita, 2005) (see Fig. 1A for illustration).

5.5. Endosome shape features

Area was computed as the area enclosed by an outline &. Total
intensity was area multiplied by the object intensity ck. Eccentricity
was computed from the radius of gyration tensor G of the surface
enclosed by &. It was defined as the ratio between the largest
and the smallest Eigenvalue of G. Concavity was computed from
the area A, of the convex hull of an outline. It was defined as
the ratio (As — A)/Aa, where A was the area enclosed by the out-
line. Features of unrefined outlines were computed in the same
way.

5.6. Virus position estimation

Virus positions were detected from maximum-projected image
stacks by intensity centroid estimation as described (Sbalzarini and
Koumoutsakos, 2005). To correct for potential effects of chromatic
aberration on colocalization results, we estimated the lateral shift
of the red (647 nm, viruses) relative to the green (488 nm, endo-
somes) channel in the full field of view. 200 nm multi-color Tetra-
speck fluorescent beads (Molecular Probes) were bound to a cover
slide and imaged in the red and green channels sequentially. The
positions of the beads were determined by intensity centroid esti-
mation in both channels. We observed a maximum lateral shift be-
tween the red and green channels in the order of 50 nm. This shift
linearly depended on the x and y position of the bead in the field of
view. We estimated this dependence by linear least squares regres-
sion from the bead data and used this to correct all virus position
measurements as described (Kozubek and Matula, 2000).

5.7. Software

All software was implemented in MATLAB (The MathWorks,
Inc.) or C. The source code is available from the authors upon re-
quest. An implementation of the presented algorithm in the
open-source image processing software Image] is currently under
development and will be made freely available.

5.8. Randomization control
Randomized virus positions were obtained by uniformly dis-

tributing all detected virus particles inside each cell. Cell outlines
were found from the image of the endosomes by background re-

moval, strong low-pass filtering, and thresholding. All statistics of
the randomization control were averaged over 10 independent
realizations of the randomization process.
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