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Abstract. We extend active contours to constrained iterative decon-
volution by replacing the external energy function with a model-based
likelihood. This enables sub-pixel estimation of the outlines of diffraction-
limited objects, such as intracellular structures, from fluorescence mi-
crographs. We present an efficient algorithm for solving the resulting
optimization problem and robustly estimate object outlines. We bench-
mark the algorithm on artificial images and assess its practical utility on
fluorescence micrographs of the Golgi and endosomes in live cells.

1 Introduction

Active contours are among the most important frameworks for image segmen-
tation. In the original formulation by Kass et al. [1], a contour is defined as
a (closed or open) parametric curve in the image domain that minimizes an
energy functional. Closed active contours can also be represented implicitly as
level sets [2]. This is particularly beneficial when the number of objects to be
segmented is not known a priori since it allows for topology changes during en-
ergy minimization. In both representations, the energy functional consists of two
terms: (1) an external energy that depends on image data, and (2) an internal
energy that solely depends on the geometry of the contour. While the former
defines an unconstrained image segmentation problem, the latter provides regu-
larization, helps overcoming local minima, and allows bridging regions with little
information in the image. Many extensions of active contours have been proposed
over the last two decades, including active masks [3,4], active surfaces [5], and
stochastic active contours (STACS) [6,7]. For implicit active contours, very ef-
ficient algorithms have been developed based on narrow-band level sets [8] or
graph cuts to minimize the energy functional [9].

Active contours are widely used in biological light-microscopy imaging. Their
application has, however, so far been restricted to images of objects well above
the resolution limit of the imaging equipment. If the size of the object becomes
comparable to the width of the point spread function (PSF) of the microscope,
the objects are under-resolved and active contour segmentations can no longer
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be considered unbiased estimates of the object’s geometry [10]. The only ex-
ception are objects of dimension 0 or 1, imaged with a symmetric PSF. This
includes particles modeled as points [11] and filaments modeled as lines [12]. For
extended objects of co-dimension zero, deconvolution can be used to estimate
their geometry from an image blurred by the PSF. Deconvolution is, however, an
inverse problem that is known to be ill posed [13,14]. Moreover, direct linear de-
convolution is not feasible for sub-cellular structures [15]. Therefore, constrained
iterative methods have to be used.

In this paper, we extend the active contour framework to constrained iterative
deconvolution by including models of the objects and the imaging process. This
involves replacing the external energy functional with a negative log-likelihood
function and optimizing it under the constraint of the internal energy. This
optimization involves simulating the forward imaging process. We propose an
efficient minimization algorithm that uses a domain decomposition approach
and exploits the linearity of the convolution operator. The resulting method is
an iterative deconvolving active contour that is constrained by the object model
and the imaging model. We demonstrate the accuracy and precision of decon-
volving active contours on synthetic benchmark images of sub-resolution objects.
We show that the present framework allows unbiasing the estimation of object
geometries from fluorescence micrographs. We further demonstrate the applica-
bility of the proposed algorithm to images of the Golgi complex and endosomes
in live cells. The resulting estimated outlines allow biological observations that
were not possible before.

2 Energy Functional

We seek a parametric description of a set S of outlines of objects, supported
by an error-corrupted digital image Im = I + ε. Given an imaging model I(S),
parameters Θ of the set of N objects S = {Θk}N

k=1 have to be found that best
explain the measured image Im. The imaging model I(S) predicts the image
I of the set S of objects in the absence of noise. This parameter estimation
problem can be rephrased in the explicit active contour framework. Hereby,
the outline of an object k is represented by a piece-wise linear spline Θk =
[xk

1 , yk
1 , . . . , xk

nk
, yk

nk
]T . As described at the end of Sec. 3, the computational cost

of the algorithm is not significantly influenced by the number of control points
nk used. We minimize the sum of internal and external energy

E(Im, S) =
∑

Θ∈S

(Eb(Θ) + Es(Θ)) + Eext(Im, I(S)) , (1)

where the external energy is given by the similarity between the model image
I(S) and the real image Im, quantifying the likelihood that the objects S have
indeed created the observed image Im. The internal energy comprises regular-
izations for bending and stretching of the contour as:

Eb(Θ) = β
∑n

i=1 ‖xi+1 − 2xi + xi−1‖2 and

Es(Θ) = α
∑n

i=1 ‖xi − xi−1‖2
(2)
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with xi = (xi, yi) of the spline Θ. While the “bending stiffness” β limits undu-
lations of the outlines, the “stretching stiffness” α constrains the shrinking of
outlines to significant image energy gradients. We define I(S) based on a func-
tion O(i, j) over the image pixels {xi} ×{ yj}. This object intensity function O
represents the pre-imaging objects up to a multiplicative constant. In fluores-
cence microscopy, O is proportional to the concentration of fluorophores at each
point in the focal plane. Formation of the model image (Fig. 2B) is done by
convolving the object intensity function O with the (measured) PSF P of the
microscope:

I = O ∗ P , (3)

where ∗ denotes the discrete convolution operator. In practice, we sample O(i, j)
at higher spatial resolution (two, three, or four-fold) than the measured image in
order to include sub-pixel information. This requires down-sampling of I before
comparison to Im. The object intensity function O(i, j) is defined from the set S
of outlines by setting to non-zero values only the pixels (i, j) close to or enclosed
by one of the outlines Θk:

O (i, j) =






ck if (xi, yj) enclosed by Θk

(1 − d) ck if d = D ((xi, yj) , S) < 1
0 else ,

(4)

where D is the distance to the closest spline Θk and ck the constant intensity
of object k. Similar to the simplified Mumford-Shah functional [2], this object
intensity function is piecewise constant, but with linearly decaying intensities
at the boundaries. We favor this piecewise linear functional over more complex
models as it increases the robustness of the estimator on noisy data. The external
energy Eext is given by:

Eext =
∑

i

∑

j

R(i, j) (Im(i, j) − I(i, j))2 . (5)

The weight matrix R allows including a model for the distribution of the imaging
noise ε. In the absence of knowledge about ε, or for Gaussian white noise, R is
the identity matrix.

Minimizing E over the Θk yields an estimate of O(i, j). Direct estimation of
O based on Im amounts to direct linear deconvolution, a problem known to be ill
posed. The present framework can thus be interpreted as a constrained, iterative
deconvolution [13,14] with the constraints defined in Eqs. 2 and 4.

3 Minimization of the Energy Functional

We assume that initial estimates of the outlines are provided by a suitable pixel-
based segmentation procedure and that they represent the correct topology of
the objects. Further, the 2D PSF of the imaging device is assumed to be known.
Minimizing Eq. 1 could then be done using any general purpose optimizer. A
specialized procedure exploiting the structure of this high-dimensional problem
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Fig. 1. (A) Radial intensity profile of a small (top image, dotted line) and a large
(bottom image, dashed line) object. The intensity profile of the small object and the
PSF (solid line) have a similar shape. (B) The width w of the PSF defines the influence
regions (dashed lines) of the objects Θk (solid lines). (C) Objects with overlapping
influence regions (dark gray areas) are grouped together.

is, however, favorable. Our algorithm consists of three steps: (1) estimating the
object intensities ck, (2) decomposing the image into smaller parts, and (3)
estimating the precise outlines Θk of all objects.

The object intensities ck are separately estimated in order to use them in
Eq. 4 and as a biologically relevant readout. For objects that are far larger than
the width of the PSF, the object intensity is approximately equal to the intensity
φ in the center of the image of the object (bottom image in Fig. 1A). Smaller
objects have a central intensity that is reduced by a factor κ. In order to estimate
κk for a given outline Θk, we analyze the radial intensity profile J(r) of the object
(Fig. 1A), found by averaging interpolated intensities along concentric circles
around the intensity centroid. The same procedure is also used to measure the
radially symmetric 2D PSF of the microscope from images of point-like sources
such as fluorescent beads. The half width at half maximum (HWHM) r0.5 of
J(r) serves as a size parameter (Fig. 1A). Since the dependence κ = f(r0.5) is
not explicitly known, we empirically calibrate it on synthetic images, generated
by convolving circular objects of different sizes and known intensities ci with
the PSF. For each synthetic image Ii we measure ri

0.5 and the central intensity
φi, and then compute the calibration function as κ̄i(ri

0.5) = ci/φi. Based on
this function, the object intensity ck of an experimentally observed object k can
later be estimated as ck = φkκ(rk

0.5) using (linear) interpolation. For point-like
objects, r0.5 converges to the HWHM of the PSF and does no longer vary with
object size. The analysis of sizes and shapes is, therefore, restricted to objects
with r0.5 above an empirically determined threshold of 1.1–1.5 HWHM. Smaller
objects are treated as circles with centers at the observed intensity centroid and
object intensities c found by least squares regression on Eqs. 3 and 5.

In order to accelerate the computations and estimate the outlines of different
objects on different computer processor cores in parallel, we decompose the
image into smaller, independent parts. This is possible since the PSF P is
of limited spatial extent and the influence of objects on distant pixels in the
image can be neglected. We define the radius of the region of influence around
each outline Θk as the width w where the PSF has decayed below 1% of its
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peak (Fig. 1B). Objects with overlapping influence regions are grouped together
and their influence regions are merged. This decomposes the image into (not
necessarily disjoint) rectangular sub-images I l containing the merged influence
regions (Fig. 1C). Eq. 1 is then evaluated independently for each sub-image and
we no longer consider pixels that are in no sub-image.

Estimating the outlines of the objects to sub-pixel resolution is done by
minimizing the energy functional in Eq. 1 with respect to the Θk. This amounts
to implicit deconvolution. The energies of different sub-images are minimized
independently in parallel. We use the optimizer proposed by Kass et al. [1] with
an explicit Euler method of adaptive step size. This requires approximating the
partial derivatives of E with respect to the x and y positions of all spline points
(xk

i , yk
i ), i = 1, . . . , nk. We use a finite-difference approximation to the derivatives

with respect to a point (xk
i , yk

i ) on the outline Θk by displacing the point by a
dynamically adapted ∆x. This yields a deformed hypothetical outline Θk

∗ in a
new set of outlines S∗. The derivative of the external energy El

ext in sub-image
l is then approximated as:

∂El
ext

∂xk
i

≈
El

ext

(
I l
m, I l(S∗)

)
− El

ext

(
I l
m, I l(S)

)

∆x
. (6)

The derivatives with respect to other points and in the y-direction are found
similarly. The hypothetical sub-image I l(S∗) needs to be computed once per
iteration of the minimization procedure. Since convolution is a linear operation,
the image I l(S∗) can be expressed as the sum of I l(S) and a change ∆I l caused by
the deformation of Θk. ∆I l is found by computing O(i, j)k

∗ from Θk
∗ , subtracting

it from O(i, j)k, and convolving this difference ∆O(i, j)k with P . This drastically
reduces the number of compute operations and the run-time. The computational
cost of the algorithm is dominated by the cost of the convolutions; the cost of
the active contour updates is insignificant. The total cost of all convolutions is
proportional to the total number of non-zero entries in all ∆O(i, j)k, which scales
linearly with the length of the outline. Reducing the number of control points nk

would thus not lead to significant computational savings since the total length of
the outline (and hence the computational cost of the convolutions) remains the
same. After computing all partial derivatives of the image error, one Euler step is
performed. Minimization starts from the initial outline estimates and ends when
the L∞-norm of the change of outlines between two iterations, ‖Θi+1−Θi‖∞, is
below a user-defined threshold. This implies that the gradient-descent minimizer
has converged to a (local) minimum. Local minima can possibly be escaped by
increasing α.

4 Benchmarks

We quantify the accuracy and precision of the presented algorithm on synthetic
benchmark images of diffraction-limited objects. Images are generated as illus-
trated in Fig. 2A to C using a real, measured PSF with full width at half maxi-
mum FWHM = 322nm. We consider images of a circular object with diameter
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Fig. 2. (A–C) Generation of the synthetic benchmark images. (D) True (solid line)
and estimated (dashed line) outline for SNR = 12.5 (geometry error = 14%). (E–G)
Benchmark results for a pear-shaped (solid lines with diamonds) and circular (dashed
lines with crosses) object. Lines without markers delimit the ±1 standard error interval.

1.5FWHM and of a 0.6 to 1.2FWHM wide and 2.8FWHM long pear-shaped
object. The ground-truth O(i, j) is generated from the true outlines accord-
ing to Eq. 4. The object intensity c is set to 200 and a background level of
b = 20 is added (Fig. 2A). Different amounts of noise yield signal-to-noise ratios
SNR = (c−b)/σc in the range of 7 to 56, where σc is the noise level in the center
of the objects. For each object and SNR, 250 test images are generated, object
outlines are estimated, and compared to ground truth.

We quantify accuracy and precision of the estimated position, total intensity,
and geometry (Fig. 2E to G). The position error is defined as the difference
between the true and estimated x-position of the intensity centroid1. The total
intensity error is given by the difference in total intensity (sum over all O(i, j)
enclosed by the outline) between the estimated object and ground truth, divided
by ground truth. The geometry error is defined as the sum of non-overlapping
1 We prefer this over the Euclidean distance in (x, y) since it enables correlating shape

asymmetries with the position errors in the different directions.
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areas of the true and estimated outlines, normalized by the area enclosed by the
true outline. For both shapes, precision and accuracy of the estimated position
are in the range of a few nanometers (Fig. 2E). The errors in the y-direction are
comparable for the pear-shaped object and identical for circular shape (data not
shown). The position bias for the circular shape is always within an interval of
± the standard error, and hence not significant. As expected, a small systematic
position bias can be observed for the pear-shaped object. Since this shape is not
symmetric, the underestimation of high curvatures due to Eb causes a small shift
in the position estimate toward the less curved side. For both shapes the standard
deviation of the relative total intensity error drops below 5% for SNRs larger than
10 (Fig. 2F). The bias is larger than the standard error, almost always negative,
and converges to about -1%. This is due to Es favoring shorter outlines and thus
decreasing the enclosed object intensity. The means and standard deviations of
the geometry errors of both shapes converge to values of less than 10% and 3%,
respectively (Fig. 2G). The bending and stretching energies Eb and Es prevent
the mean geometry error from converging to zero, and the underestimation of
high curvatures causes an additional bias for the more complex pear-shaped
object. Nevertheless, we observe that the estimated outlines visually reproduce
well the essential characteristics of the true outlines, even at SNRs below 15 and,
therefore, error levels >10% (Fig. 2D).

Adjusting the bending stiffness β (Eq. 2) allows trading the accuracy of the
outline estimation against its robustness by limiting undulations of the contour.
Low values lead to a higher noise sensitivity (less regularization), but allow
better estimation of high curvatures. In order to qualitatively assess this trade-
off, we apply the algorithm to synthetic images of a triangle (Fig. 3), generated
as described above. As expected, we observe that low SNRs favor high values
of β, and vice versa. The algorithm is robust over two orders of magnitude
of β. Only the most extreme case (β = 0.02, SNR = 5) exhibits significant
shape instabilities. The stretching stiffness α has much less influence on the final
contour. Higher values lead to faster convergence of the algorithm and better
escape from local minima. At the same time, however, they bias the outlines to
shorter, more contracted contours. We find a value of α = 0.005 to be sufficient
to overcome local minima and speed up convergence.

5 Application to Real Data

We demonstrate the utility of the present algorithm on fluorescence microscopy
images of different intracellular structures. First, we apply it to an image of the
Golgi complex in HeLa cells labelled by fluorescent giantin antibodies (Fig. 4A
and B). The Golgi is a complex-shaped intracellular organelle composed of mem-
brane stacks of about 5 µm size. The same image was also used to demonstrate
active mask segmentation [3]. We show how such a coarse, pixel-level segmen-
tation can be refined by the present implicit deconvolution method. We start
from a rough manual segmentation obtained from Fig. 11d of Ref. [3]. Since
no information about the PSF was available, we model it by a Gaussian with
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Fig. 3. Estimation of a highly curved outline at different SNRs and values of β (α =
0.005 in all cases). White lines: true outlines; black lines: estimated outlines.

Fig. 4. Outline estimation of the Golgi complex in HeLa cells [16]. (A) Original image
containing multiple cells. Magnification of a single cell (B) and a single Golgi segment
(C) with estimated outlines (white line); model image (D) and residual error (E).

σ = 150nm. This is a conservative choice for the imaging set-up used (spinning
disk confocal, NA = 1.4, oil immersion). The final deconvolving active contours
(Fig. 4B and C) capture well the morphological characteristics of the Golgi and
the model image I (Fig. 4D) is remarkably close to the real image (Fig. 4C).
The estimated outline shows no obvious signs of over-fitting. The residual error
Im − I (Fig. 4E) shows that the model image trends to be too bright in the
center of the object and under-represents the blur around it. As shown below,
this is likely due to a too narrow model PSF.
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Fig. 5. Outline estimation (white lines) of endosomes in a live HER 911 cell (A). (B)
Magnification, (C) model image, and (D) residual error in the magnified region.

The second application considers live HER 911 cells expressing EGFP-tagged
Rab5, a protein marker for endosomes. With diameters of about 500nm, endo-
somes are much smaller than the Golgi and they appear more compact. Initial-
ized with watershed segmentation, the present algorithm estimates the outlines
as shown in Fig. 5A and B. The PSF (FWHM = 322nm) of the microscope
(spinning disk confocal, NA = 1.35, oil immersion) was measured from images
of sub-diffraction objects as described in Sec. 3. Fig. 5B shows complex-shaped
endosome outlines in close vicinity. The outlines follow well the subjective con-
tours in the images, even for very dim objects. The correspondence between the
real and the model image (Fig. 5C) is remarkable. Also, unlike in the Golgi case,
there is no clear trend in the residual error (Fig. 5D), highlighting the advan-
tage of using the true, measured PSF. Except for slight over-estimation of the
central intensity of the large object on the left, the residual error is dominated
by detector noise.

6 Conclusions and Discussion

We have introduced deconvolving active contours, extending explicit active con-
tours to iterative constrained deconvolution by replacing the image-based exter-
nal energy with a model-based likelihood function that includes prior knowledge
about the imaging process. The algorithm iteratively refines an initial image
segmentation using regularized optimization. Optimizing the likelihood function
is computationally more involved than optimizing a classical pixel-based energy.
We have thus introduced a special-purpose algorithm that uses domain decom-
position parallelism and exploits the linearity of the convolution operator. Run-
times on a desktop computer are on the order of seconds for individual objects
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(e.g. 1.2 s for the object in Fig. 2D). The presented algorithm enables estimating
the outlines of diffraction-limited, asymmetric objects to sub-pixel accuracy. The
benchmarks demonstrated localization precision in the nanometer range (better
than 0.01FWHM) and fluorescence intensity estimation to within a few %. We
have further demonstrated the practical utility of deconvolving active contours
on images of the Golgi complex and endosomes in live cells.
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