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Abstract

Intra-cellular transport systems are a key component of eukaryotic cells.
They are involved in the uptake of extra-cellular material (and pathogens)
and the targeted, directed transport of such cargo inside the cell. Due to
the complexity of this system and the wealth of experimental data involved
in its study, computational methods for data analysis and modeling of the
hypothetical system dynamics are crucial to create new knowledge.

This thesis presents a coherent set of novel computational methods and
models for studying the intra-cellular transport system in mammalian
cells. Three cases are considered: the intra-cellular motion of point-like
organelles and cargo, the motion, shape, and dynamic shape changes of
extended organelles, and spatial interactions of internalized cargo and or-
ganelles of the endocytic system.

Due to the limited resolution of live cell microscopy, the analysis of the
dynamics of many small intra-cellular objects, such as vesicles and in-
ternalized viruses, is restricted to studying how their centroid position
changes over time. A multitude of biophysical and biochemical processes
is involved in these objects’ motion, which causes the resulting trajectories
to be highly patterned. A novel trajectory segmentation algorithm is pre-
sented that enables decomposing arbitrary trajectories into disjoint parts
of distinct, pre-defined motion types.
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ABSTRACT

For larger intra-cellular objects, such as endosomes or lysosomes, some
properties of their shapes can be reconstructed from fluorescence micros-
copy images. The blurring inherent to fluorescence microscopy, however,
obscures many details of the shape. A strong correspondence between
image and object features, as required by classical image segmentation
techniques, can thus not be assumed. In order to circumvent this limi-
tation, a novel image analysis technique is introduced that combines im-
age deconvolution and active contour segmentation. As demonstrated on
benchmark data, this method is capable of accurately reconstructing the
outlines of intra-cellular organelles. The new method is used in several
studies of endocytic transport and sorting processes. The results indicate
that endosome shape features are related to virus entry processes.

Statistical co-dependencies in the spatial distributions of two sets of ob-
jects are indicative of an interaction between them. A novel statistical
framework is presented that enables testing for the presence of signifi-
cant interactions and estimating their strengths and distance dependences
directly from image data. The presented method thus generalizes clas-
sical object-based co-localization analysis to spatial interaction analysis.
As demonstrated on locations of virus particles and computationally re-
constructed outlines of endosomes, the present interaction analysis allows
characterizing endocytic pathways of different virus strains.

The three aspects of analyzing endocytosis and intra-cellular trafficking
presented in this thesis are connected through their relation to active,
motor-dependent transport. A mechano-chemical model of active cargo
transport is thus introduced. The model resolves individual motor proteins
and their dynamics down to the level of single reactions, such as unbind-
ing from and stepping along filaments of the cytoskeleton. Using exact
hybrid stochastic–deterministic numerical simulations, the model is ana-
lyzed in a large-scale parameter screen. This reveals previously unknown
relations between properties of the motor–cargo complex and intra-cellular
transport characteristics.
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Zusammenfassung

Intrazelluläre Transportsysteme sind eine essentielle Komponente eukaryo-
tischer Zellen. Zum Beispiel spielen sie eine wichtige Rolle bei der Aufnah-
me von extrazellulärem Material (und Pathogenen) in die Zelle und des-
sen zielgerichteten Transport darin. Die intrazellulären Transportsysteme
selbst, aber auch die Daten, die in deren experimenteller Untersuchung
generiert werden, sind sehr komplex. Um aus solchen Daten neues Wis-
sen zu schaffen, sind rechnergestützte Verfahren zur Datenanalyse sowie
physikalische Modelle der hypothetischen Systemdynamik unerlässlich.

Die vorliegende Doktorarbeit befasst sich mit der Entwicklung von rech-
nergestützten Verfahren sowie von statistischen und physikalischen Mo-
dellen zur Untersuchung von Endozytose und intrazellulärem Transport
in Säugetierzellen. Drei Teilaspekte werden dabei betrachtet: Erstens, die
intrazelluläre Bewegung punktartiger Objekte. Zweitens, die Bewegung,
die Form, und die dynamische Veränderung der Form von räumlich aus-
gedehnten Organellen. Drittens, statistische Abhängigkeiten zwischen den
räumlichen Anordnungen von internalisierten Objekten und Organellen
des endozytischen Systems.

Das Auflösungsvermögen von lichtmikroskopischen Techniken, die zur Ana-
lyse von lebenden Zellen verwendet werden können, ist begrenzt. Für zahl-
reiche kleine intrazelluläre Objekte, zum Beispiel Vesikel oder interna-
lisierte Viren, können deshalb lediglich die Position und deren zeitliche
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ZUSAMMENFASSUNG

Veränderung bestimmt werden. Eine Vielzahl biophysikalischer und bio-
chemischer Prozesse ist an der Bewegung derartiger Objekte beteiligt.
Dies hat zur Folge, dass die qualitativen Eigenschaften der resultieren-
den Bewegung starken zeitlichen Schwankungen unterliegen. In dieser Ar-
beit wird ein neuartiges Verfahren vorgestellt, mit dessen Hilfe Trajektori-
en in disjunkte Teilstücke, die hinsichtlich der qualitativen Eigenschaften
der beobachteten Bewegung einheitlich sind, zerlegt werden können. Dies
ermöglicht es, die den verschiedenen Bewegungen zugrunde liegenden Pro-
zesse separat zu untersuchen.

Einige Eigenschaften der Form weniger kleiner intrazellulärer Objekte, wie
zum Beispiel Endosomen und Lysosomen, können hingegen aus lichtmi-
kroskopischen Aufnahmen lebender Zellen rekonstruiert werden. Klassi-
sche Verfahren der Bildsegmentierung versuchen Strukturen, zum Beispiel
Kanten, in den Bilder zu erkennen. Anschliessend werden diese Bildstruk-
turen mit Objektstrukturen in Verbindung gebracht. In Bildern aus fluo-
reszenzmikroskopischen Verfahren werden die Objektformen jedoch stark
unscharf abgebildet. Deshalb kann ein direkter Zusammenhang zwischen
Bild- und Objekteigenschaften nicht unmittelbar angenommen werden.
Um diese Einschränkung zu umgehen, wird ein neues Bildanalyseverfah-
ren vorgestellt, das Dekonvolution und Segmentierung des Bildes mit Hilfe
von

”
active contours“ kombiniert. Durch dieses Verfahren ermittelte Um-

risse ausgedehnter Organellen sind weniger verfälscht als solche, die auf
klassischen Ansätzen basieren. Das entwickelte Verfahren wird in mehre-
ren Studien endozytischer Transport- und Sortierprozesse angewandt. Die
Resultate suggerieren, dass die Formeigenschaften der untersuchten Orga-
nellen mit biophysikalischen und biochemischen Prozessen korrelieren.

Statistische Abhängigkeiten in der räumlichen Anordnung von zwei Grup-
pen diskreter Objekte können ein Hinweis darauf sein, dass die Objekte
miteinander interagieren. Es wird ein neues statistisches Verfahren vorge-
stellt, dass es ermöglicht derartige Interaktionen direkt aus Bildern der Ob-
jekte zu schätzen bzw. zu testen, ob eine signifikante Interaktion vorhanden
ist. Das neue Verfahren kann als eine Verallgemeinerung der klassischen
objektbasierten Kolokalisationsanalyse interpretiert werden. Es ermöglicht
es, die endozytischen Wege verschiedener Mutanten humaner Adenoviren
anhand der aus Bildern rekonstruierten Positionen von Endosomen und
Viruspartikeln zu charakterisieren.
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In dieser Arbeit werden drei Teilaspekte einer ganzheitlichen Analyse von
Endozytose und intrazellulärem Transport vorgestellt. Jeder dieser drei
Aspekte hat einen engen funktionalen Zusammenhang mit aktivem in-
trazellulären Transport durch Motorproteine. Deswegen wird ferner ein
mechanisch-chemisches Modell des aktiven intrazellulären Transports vor-
gestellt. Das Modell beschreibt die Dynamik von Motorproteinen auf der
Ebene einzelner chemischer Reaktionen. Anhand exakter stochastisch-de-
terministischer numerischer Simulationen wird das Modell für eine Vielzahl
verschiedener Parameter analysiert. Zuvor unbekannte Zusammenhänge
zwischen Eigenschaften des Motor–Fracht Komplexes und der Transport-
charakteristiken werden aufgedeckt.
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Danuser, and Dr. Mario Schelhaas for reviewing my thesis. I feel honored
by their interest in my work.

VIII



Contents

Abstract I

Zusammenfassung III

Acknowledgments VII

Introduction XIII

1 Quantifying the Dynamics of Point-Like Intra-
Cellular Objects 1

1.1 Recording and Reconstructing Trajectories . . . . 3

1.2 Global Trajectory Statistics . . . . . . . . . . . . . . 4

1.2.1 Local Trajectory Statistics . . . . . . . . . . . . . . . 6

1.3 Trajectory Segmentation . . . . . . . . . . . . . . . . . 6

1.3.1 Definitions and Problem Statement . . . . . . . . . . 8

1.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 9

IX



CONTENTS

1.3.3 Adaptation for Segmenting Virus Trajectory Data . 20

1.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.5 Application . . . . . . . . . . . . . . . . . . . . . . . 32

2 Quantifying the Shape and Dynamics of Ex-
tended Intra-cellular Objects 41

2.1 Microscopy, Deconvolution, Point Spread Func-
tions, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Fluorescence in Cell Biology . . . . . . . . . . . . . . 43

2.1.2 Basics of Image Formation . . . . . . . . . . . . . . 44

2.1.3 Resolution and Blurr . . . . . . . . . . . . . . . . . . 49

2.1.4 Digital Images and Noise . . . . . . . . . . . . . . . 50

2.1.5 Deconvolution . . . . . . . . . . . . . . . . . . . . . 52

2.1.6 Empirical Characterization of Microscopes . . . . . . 55

2.2 Segmentation of Intra-Cellular Structures . . . . 57

2.2.1 Definitions and Problem Statement . . . . . . . . . . 60

2.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 74

2.2.4 Applications . . . . . . . . . . . . . . . . . . . . . . 81

3 Quantifying Interactions between Intra-Cellular
Objects 99

3.1 Intensity Correlations . . . . . . . . . . . . . . . . . . 101

3.2 Object-Based Interaction Analysis . . . . . . . . . . 103

X



3.2.1 Classical Co-localization Measures . . . . . . . . . . 104

3.2.2 Theoretical Distance Distribution . . . . . . . . . . . 109

3.2.3 Statistical Toolbox I: Hypothesis Testing . . . . . . 114

3.2.4 Statistical Toolbox II: Estimation of Potentials . . . 123

3.2.5 Application of the Method . . . . . . . . . . . . . . 131

4 Modeling the Multi-Scale Transport Dynam-
ics of Intra-Cellular Objects 147

4.1 A Tug–of–War Transport Model . . . . . . . . . . . . 150

4.1.1 Specification of the Model . . . . . . . . . . . . . . . 152

4.1.2 Simulating the Model . . . . . . . . . . . . . . . . . 157

4.2 Studying the Model . . . . . . . . . . . . . . . . . . . . 163

4.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . 165

4.2.2 Auto-Correlation of the Cargo Velocity . . . . . . . 166

4.2.3 Multi-Scale Dynamics . . . . . . . . . . . . . . . . . 168

4.2.4 Persistence of Uni-Directional Motion . . . . . . . . 171

4.2.5 Velocity Distributions . . . . . . . . . . . . . . . . . 175

4.3 Relationships to other Models . . . . . . . . . . . . . 182

5 Conclusions and Outlook 185

5.1 Trajectory Segmentation . . . . . . . . . . . . . . . . . 186

5.2 Deconvolving Active Contour Segmentation of Intra-
cellular Organelles . . . . . . . . . . . . . . . . . . . . 188

5.3 Interaction Analysis for Intra-Cellular Objects . 190

XI



CONTENTS

5.4 Active transport model . . . . . . . . . . . . . . . . . . 192

5.5 Significance of the Present Work . . . . . . . . . . . 194

Bibliography 199

List of own Publications 215

XII



Introduction

Cells rely on highly structured and complex mechanisms for processing sig-
nals, interacting with the environment, performing metabolism, growing,
dividing, etc. These mechanisms often depend on a tight coupling between
multiple biochemical and biophysical processes. For endocytosis and intra-
cellular trafficking, for example, it becomes increasingly clear that a tight
coupling between signaling, physical processes such as diffusion or active
transport, and the cell output exists.

As cell biology is undergoing a transition from a descriptive to a quanti-
tative and predictive science, a system-wide view is adopted in order to
allow gaining new insight beyond a purely qualitative description of the
individual parts that constitute a cell. In this approach, identification and
quantification of the biophysical and biochemical interactions between the
parts plays a major role. Precise quantification of the properties of the
individual parts, however, remains a fundamentally important prerequi-
site. Coping with the overwhelming complexity of cellular systems and
their dependence on physical processes necessitates approaches to data
analysis and modeling that integrate biology, physics, chemistry, and com-
putational science.

Endocytosis is the process by which the cell membrane forms invagina-
tions to engulf and subsequently internalize material. For the endocytic
system, many molecular insights have been gained [117, 137]. Its physical
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INTRODUCTION

principles of operation and integration in the overall cellular machinery
are, however, largely unexplored [26]. In recent years, it has become clear
that endocytic processes and signaling are interdependent and mutually
regulating [114, 105, 128]. Since endocytosis removes signaling molecules
from the cell surface, it can attenuate signaling pathway responses. Con-
versely, signaling endosomes that expose active signaling molecules to the
cytosol can be used to increase signaling output. By actively moving such
endosomes closer to the signal target, the diffusion limitation of signaling
pathway response can be overcome.

In millions of years of co-evolution with their hosts, viruses have become
experts in taking advantage of the host’s endocytic system. Viruses can
hijack the endocytic transport machinery, which allows them to efficiently
deliver their genome and accessory proteins into the cell’s interior for sub-
sequent replication [97, 114]. Different endocytic pathways lead to dif-
ferent organelles, such as caveosomes, early and late endosomes, lyso-
somes, the trans-Golgi network, or the endoplasmatic reticulum [114].
Co-localization or other statistical co-dependencies between viruses and
endocytic organelles may therefore provide hints for identifying virus en-
try routes. Observing a virus infection program from internalization to
replication, however, also allows probing the functioning of the endocytic
system itself [114, 113].

Key components of a certain cellular function are typically identified in
perturbation studies. Small interfering RNA (siRNA) studies and related
approaches, for example, allow systematically perturbing groups of genes.
In a recent study of the endocytic system, the siRNA technique has been
applied to correlating the targeted gene with multiple phenomenological
parameters of the endocytic system, such as number, size, and position of
endosomes [26]. A key factor in such perturbation studies is that the mea-
sured parameters are informative, that is, they have to yield high statistical
power for detecting potential effects of gene interference. Mechanistic in-
sight, however, further requires that the parameters can be interpreted
within models of biophysical or biochemical processes.

This thesis is concerned with developing statistical and computational
methods that help design (in the sense of experimental design), measure
(in the sense of data analysis), and reproduce (in the sense of modeling
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and simulation) parameters that correlate with biochemical and biophys-
ical processes involved in endocytosis and intra-cellular trafficking. It is
structured as follows:

Chapter 1: Quantifying the Dynamics of
Point-Like Intra-Cellular Objects

The first chapter is concerned with the identification and characterization
of different types of motion of small, point-like objects such as viruses.
Viruses interact with their host cells in numerous ways, yielding highly
heterogeneous motion trajectories. Some of the motion patterns present in
virus trajectories can be attributed to specific virus–cell interactions [16].

A novel algorithm for segmenting pre-defined motion patterns from het-
erogenous trajectories for subsequent analysis is presented in Section 1.3.
The algorithm is based on support vector classification of trajectory fea-
tures. This approach allows training the algorithm to detect pre-defined
motion types without having to explicitly define the classification rules.

The algorithm’s performance is demonstrated on synthetic data and by ap-
plying it to segmenting four distinct motion types in trajectories of human
Adenovirus particles in several different live cells.

Chapter 2: Quantifying the Shape and Dynamics of
Extended Intra-cellular Objects

Chapter 2 is concerned with determining the dynamic shapes of extended
objects such as endosomes. A system level perturbation study of the endo-
cytosis based on siRNA gene interference has been recently performed [26].
Such studies crucially depend on robust, accurate, and unbiased estima-
tion of parameters that characterize perturbed cells on the level of single
organelles.

In Section 2.2, an image analysis algorithm is introduced that reconstructs
the precise shapes of endosomes (or any other compact sub-cellular struc-
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INTRODUCTION

ture) from fluorescence microscopy images. On the length scale of the
typical size of endosomes, such images severely suffer from the limited res-
olution of standard fluorescence microscopy. The presented algorithm is
based on modeling the image formation process in fluorescence microscopy.
This allows determining unbiased endosome outlines with sub-pixel accu-
racy.

Based on these outlines, endosome shape features are computed that allow,
for example, detecting fusion events. The same endosome shape features
are also shown to be correlated with the presence of Adenovirus particles
that entered the cell via a clathrin-dependent endocytosis prior to imag-
ing.

Chapter 3: Quantifying Interactions between
Intra-Cellular Objects

A frequent task in cell biology is to identify spatial correlations, or in-
teractions, between intra-cellular objects such as molecules, organelles, or
internalized pathogens. Endocytosis of viruses, for example, is a com-
plex process that depends on membrane receptors, regulatory molecules,
signaling, specific organelles and the chemical cues inside them. The en-
try pathways of different viruses are typically classified according to the
cellular machinery involved. The membrane receptor the virus binds to,
its initial sorting compartment, or where the viral genome penetrates the
membrane of intra-cellular organelles are fingerprints of the pathway taken.
Evidence that a virus and an organelle co-localize in space and time may
thus help identify its endocytic pathway.

A novel data analysis method that provides a generalization of co-localiza-
tion analysis is introduced in Chapter 3. The method allows constructing
interaction measures from localization patterns of intra-cellular objects.
The core of the method is a statistical model for the distribution of inter-
object distances. This model is an adaptation of models frequently used
in the theory of spatial point patterns of interacting objects.

As demonstrated on synthetic data, the novel interaction measures have
significantly higher statistical detection power than commonly used co-
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localization scores. The statistical nature of the underlying model more-
over enables using a wealth of standard statistical tools, such as non-
parametric hypothesis tests, maximum-likelihood inference of parametric
or non-parametric interaction models, model selection, etc. Using the
virus–endosome data presented in Chapter 2, the novel measures are used
to characterize endocytic pathways of different virus strains.

Chapter 4: Modeling the Multi-Scale Transport
Dynamics of Intra-Cellular Objects

The heterogeneity of intra-cellular motion trajectories, virus trafficking
through different pathways, and the spatial distribution and dynamic shape
changes of involved objects are closely related to active transport mech-
anisms. Motor proteins move cargo along filaments of the cytoskeleton,
over distances comparable to the cell size [146]. During active transport,
motor forces can cause deformations of non-rigid cargo. This has been ob-
served for endosomes [133], which consist of deformable lipid membranes
enclosing internalized cargo. Motor forces may also play an important role
in initiating fusion [42] or fission of organelles. Such topological changes
of endocytic organelles are essential mechanisms for cargo sorting.

The forth chapter of this thesis is concerned with modeling and simulating
active intra-cellular transport of various cargos. Using single motors as
elementary building blocks, a novel tug–of–war model for intra-cellular
transport along microtubules is developed. In this model, the forces acting
on motors and cargo are explicitly resolved, since they are important in
the stochastic mechano-chemical dynamics of collective motor motion. The
model is efficiently simulated using a variant of the stochastic simulation
algorithm for hybrid stochastic-deterministic chemical kinetics [49, 50].

As shown in a large-scale parameter study, experimentally observable trans-
port properties are highly sensitive to the elasticity of the motor–cargo
links and the drag force exerted on the cargo by the surrounding fluid.
The present model can also be extended to account for deformations of
the cargo or cargo–cargo interactions, such as traffic jams on filaments or
force-induced fusion and fission.
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CHAPTER

ONE

Quantifying the Dynamics of Point-Like
Intra-Cellular Objects

This chapter describes the analysis of trajectories of intra-cellular objects.

Complex trajectories are universal hallmarks of cellular and organismal
life. Trajectories of intra-cellular organelles – or in general intra-cellular
objects – comprise transient patterns of diffusive motion, stalling, confine-
ment, or directed motion. The trajectories themselves are of little value
for the biological sciences. Trajectories and the patterns therein, however,
result from chemical, physical, or complex regulated biological interactions
between moving objects and their environment. Therefore, the acquisition
and analysis of trajectories of intra-cellular objects may provide insight
into the mechanisms underlying their motion. This approach has the ben-
eficial property that it is largely non-invasive and that it can be used in in
vivo experiments.

In cell biology, acquisition of trajectories is almost exclusively based on
time-lapse microscopy, and trajectories have to be reconstructed from the
resulting image data [124, 67, 125]. This problem is called feature point
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CHAPTER 1. QUANTIFYING THE DYNAMICS OF POINT-LIKE
INTRA-CELLULAR OBJECTS

tracking. First, the object under investigation has to be detected in the
individual frames and its precise location needs to be determined. If mul-
tiple objects are present at the same time, an association across frames
between the detected objects needs to be found. Originally, this process
was carried out by hand in a tedious, non-reproducible, subjective, and
error-prone way. The development of efficient feature point tracking algo-
rithms that run on powerful computers automatized and objectified this
process, which allowed to produce large numbers of trajectories. Further-
more, the tracking algorithm can be characterized a priori, which provides
estimates for the localization and linking accuracy.

Inside cells, forces are typically of short range and interactions are limited
to the immediate neighborhood of objects. Objects frequently exchange
momentum with molecules in the cytoplasm through collisions. Due to the
high viscosity of the cytoplasm and the low mass and velocity of the objects
inertial effects can be safely neglected. For these and other reasons, the
motion of intra-cellular objects is highly stochastic in nature. Formally,
the motion of intra-cellular objects can be described by a stochastic process
generating random object positions x(t). The characterization of such
trajectories is therefore limited to determining statistical properties, such
as the probability density p(x, t + δt|x0, t) for moving from x0 at time t
to x at a later time t + δt. Models of such stochastic process are often
phenomenological, but they may as well be based on mechanistic models
for the object’s motion. The stochastic processes can be stationary, which
motivates the use of global trajectory statistics (reviewed in Section 1.2),
such as the diffusion constant. The process can also be parameterized by
time, in which case local trajectory statistics (reviewed in Section 1.2.1)
may reveal more detail. Finally, the trajectory may be composed of distinct
segments of qualitatively different motion patterns that are separated by
sharp transitions. Global and local trajectory statistics may be misleading
in this case, since they are blind for such transitions. In order to avoid
mixing of motion types in local or global statistics, trajectories have to be
decomposed into segments containing only one single pre-defined motion
pattern. In Section 1.3 I devise, test, and demonstrate a novel algorithm
that solves this trajectory segmentation problem.

2



1.1. RECORDING AND RECONSTRUCTING TRAJECTORIES

1.1 Recording and Reconstructing Trajectories

Specific fluorescence labeling of intra-cellular objects allows observing their
motion by means of time-lapse fluorescence microscopy. Feature point
tracking is concerned with reconstructing the trajectories of moving objects
from a sequence of digital images. Two main tasks are typically solved
independently: First, objects have to be detected in the images. In case
multiple objects are present in the images, the individual object locations
have to be linked in time, which amounts to solving a linear assignment
problem [125, 67]. In particle filtering [4] approaches, the borders between
detection and linking are blurred, since a motion model (i.e. something
related to linking) is used to facilitate the detection. Challenges in tracking
include high object densities, temporary disappearance of objects, high
velocities, erratic motion, etc. Tracking is easy, for example, when objects
are well-separated, move according to a highly deterministic model, or can
be distinguished based on their appearance (see Figure 1.1).

Computational approaches to feature point tracking can be loosely clas-
sified into methods that include prior knowledge about the motion of the
objects, and those that don’t. While including prior knowledge may help
resolve some of the problems mentioned above, it limits the applicability
of the tracking algorithm to specific classes of problems.

Figure 1.1: Situations that facilitate feature point tracking.

In this chapter, the algorithm in reference [125] was used to reconstruct
trajectories of moving virus particles from fluorescence microscopy images.
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CHAPTER 1. QUANTIFYING THE DYNAMICS OF POINT-LIKE
INTRA-CELLULAR OBJECTS

It separately solves the tasks of detecting object locations and linking them
into trajectories.

The algorithm assumes that images of single objects are isolated peaks of
finite extension. First, tentative objects locations are identified as local
intensity maxima by means of a gray-scale morphological operation. The
object locations are then refined to sub-pixel accuracy by intensity centroid
estimation. Objects can optionally be classified into correct and spurious
detections based on their central intensity moments.

Each image is thus reduced to a set of point locations. Trajectories of
individual objects are then found by linking these detections over time.
Each link is associated a cost that is based on the differences in location and
intensity moments. Appearing and disappearing particles can be linked to
dummy particles with a fixed cost. The linking algorithm finds an overall
optimal association between the object locations, that is, the trajectories
are constructed such that the total cost for all trajectories is minimal.

1.2 Global Trajectory Statistics

Many important properties of trajectories, such as the end–to–end dis-
tance, are global quantities. Furthermore, trajectories may result from a
stationary stochastic process, which is characterized by a transition den-
sity for the location of the object. Such a density is often fully defined
by a set of parameters. For normal isotropic diffusion, for example, this
would be the diffusion constant D. Such parameters can be estimated
from parts of the trajectory. Using all available information (i.e. the
whole trajectory), however, typically reduces the variance of the estima-
tor. End–to–end distances, diffusion constants, and alike are therefore
considered global trajectory statistics.

Quite generally, global trajectory statistics can be defined as averages of
some function of the object’s location x. For example, the diffusion con-
stant D in d dimensions can be related to the mean squared displacement
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(MSD) µ2(δt) within time δt through

D =

�
�x(t+ δt)− x(t)�2

�
t

2dδt
=

µ2(δt)

2dδt
, (1.1)

which, assuming that the process is ergodic, follows from the Gaussian
transition density for isotropic diffusion (see Section 1.3.4.1) by integration.
In the above equation �·�t denotes an average over all possible times t.

For a normal diffusion process, µ2(δt) grows linearly with δt, i.e. µ2 ∝ δtγ

with γ = 1. Anomalous diffusion is characterized by a different growth
law for µ2(δt), where γ �= 1. As a generalization of Equation 1.1, one can
define finite sample estimators for the p-th displacement moment:

µp(δt) = ��x(t+ δt)− x(t)�p�
t
. (1.2)

As shown for the second moment, each moment obeys a scaling law [40]:

µp(δt) ∝ δtγ(p) . (1.3)

This allows defining the moment scaling spectrum (MSS) of a trajectory
as the function

p → γ(p) . (1.4)

The shape of the MSS allows inferring important properties of the diffu-
sion process. Strongly self-similar diffusions have a linear MSS, and the
slope β of that linear function allows further classification of the diffusion
process [40]. For normal diffusion, β = 1/2. Departure from this value
allows detecting sub-diffusion (β < 1/2), super-diffusion (1/2 < β < 1),
and ballistic motion (β = 1). Non-linear functions γ(p) are indicative of
weakly self similar diffusion processes.

A complementary approach to whole-trajectory characterization was re-
cently suggested by Wieser and co-workers [153]. They use a statistical
test to compare the distribution of experimentally observed MSDs for a
given time lag to the distribution obtained from a Monte-Carlo simulation
of a hypothetical diffusion process.
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1.2.1 Local Trajectory Statistics

Local trajectory statistics are a straightforward extension of global trajec-
tory statistics. The idea is to capture non-stationarity of the stochastic
process by computing statistics within parts of the trajectory. For com-
putation of the statistics, the normal formulae for global statistics can be
used. In a typical scenario, statistics are computed within a moving win-
dow that is systematically shifted over the trajectory. However, care must
be taken to not over-estimate the significance of fluctuation of any statis-
tic, since the statistics within moving windows will exhibit higher variance
than global counterparts due to the reduces sample size. Correlations be-
tween the values of overlapping windows have to be considered as well, if
one aims at detecting non-stationarity.

Non-stationarity of a trajectory-generating stochastic process may be de-
tected based on local trajectory statistics computed in moving windows.
Sudden changes of the statistic between neighboring windows can be in-
dicative of a motion driven by quantitatively or qualitatively different pro-
cesses. However, the statistical detection power of this approach is limited
by the tradeoff between temporal resolution and statistical uncertainty.
Furthermore, specific statistics are often only sensitive to certain devia-
tions from “normal” behavior in the trajectories, but are completely blind
to others. This has motivated to use a collection of statistics (a bag of
features) that are specifically designed to be sensitive to different charac-
teristics of the trajectory. Changes in the motion dynamics may become
apparent in the high-dimensional feature space spanned by the different
local trajectory statistics [65].

1.3 Trajectory Segmentation

Many intra-cellular objects exhibit highly non-stationary behavior with
drastic qualitative changes of the dynamics: Free as well as confined diffu-
sion, anomalous diffusion, diffusion with overlaid drift, fast directed trans-
port, and stalling are some of the components that frequently alternate.
In such cases it is desirable to not only visualize changes, but to decom-
pose the observed trajectories into segments, where each segment contains
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only one single pre-defined motion pattern. This allows to characterize
resulting segments independently (How fast is directed motion? ), to count
their frequencies (How often does directed motion occur? ), or to find spa-
tial and temporal correlations of their occurrence (Where in the cell does
directed motion occur? Is directed motion frequently followed by stalling? ).
For rare patterns, the segmentation can be seen as a way to remove the
“background noise” from the “signal” of interest (Is there any directed
motion in the otherwise diffusive motion? ). Ideally, one is able to define
and detect motion patterns that have a one–to–one correspondence with a
(bio)-physical mechanism of specific interest. Fast uni-directional (or salta-
tory ) motion, for example, is often attributed to molecular motors that
processively move cargo along filaments of the cytoskeleton. Segmenting
patterns of fast directed motion thus allows estimating physical proper-
ties of the motor–cargo complexes [44], such as average velocity, traveling
distance, etc.

Trajectory segmentation amounts to solving a pattern detection or classi-
fication problem: Given a collection of features in multiple time windows,
can one conclude that they result from a specific stochastic process? To
which of the known patterns do the observations most likely correspond?
It might be possible to phrase these problems in terms of model selection
or statistical classification theory. However, this requires statistical models
for the data, which, in case of non-trivial trajectory features, might not
be readily available. Given a set of trajectories with known segmentation,
one can, however, design and train a heuristic classifier. In this context,
the class of motion is a stochastic process, that yields a specific motion
pattern. In the first step of the construction of a classifier, collections of
trajectory features need to be computed in parts of the trajectory within
windows around different points in time. These feature vectors are then
labeled with the type of pattern – i.e., the class of motion – that is ex-
clusively present in the segment in which they were computed. Trained
with such labeled data, the classifier might then also correctly decide on
the class membership of a previously unseen feature vector. The quality
of this classifier crucially depends on the choice of features, the size of
the window in which they are computed, and the amount and diversity of
training data. In Section 1.3.2, a general description of the present tra-
jectory segmentation algorithm is given. Following the above-mentioned
design guidelines, the algorithm is then adapted to segmenting Adenovirus
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trajectories (Section 1.3.3). Sections 1.3.4 and 1.3.5 report results of an
evaluation on synthetic data and an application to trajectories of Aden-
ovirus particles moving on the plasma membrane or inside human cells.

1.3.1 Definitions and Problem Statement

A trajectory is defined as a time series of n positions xi of the tracked
object, sampled at discrete time intervals dt:

T = {x1,x2, . . . ,xn} with x ∈ Rd. (1.5)

From these positions one can compute the trajectory steps si = xi+1−xi,
with i ∈ [1, n−1], leading to an equivalent representation of the trajectory
as an ordered sequence of steps:

T � = {s1, s2, . . . , sn−1} with s ∈ Rd. (1.6)

Features p are defined as the scalar result of applying a dimensionality
reduction operator to a sequence of lP steps, thus:

Ψ : Rd×lP → R, p = Ψ({si, si+1, . . . , si+lP−1}). (1.7)

A vector ofm such features pi, resulting from application of multiple opera-
tors Ψi, is referred to as a feature vector f = (p1, . . . , pm)T . The different
classes c of motion within a trajectory are assumed to be identified by
characteristic feature vectors, or, more generally, by a characteristic prob-
ability density distribution in feature vector space. If the feature vectors
are sensitive to position noise in the trajectories, the point positions can
be filtered before computing the features: �T = Φ(T ). The trajectory filter
function Φ hereby describes a unique and explicit mapping from the n
point positions in T to ñ positions in �T . Finally, a trajectory part P is
defined as a subset of T containing lP + 1 subsequent positions x (and
hence lP steps s) between two discrete time points. Different trajectory
parts may have different lengths. The process of trajectory segmentation
recognizes pre-defined motion patterns in the trajectory T , and subdivides
T into disjoint trajectory parts P , each containing only one class of motion
c. Such trajectory parts are termed trajectory segments S.
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1.3.2 Algorithm

As stated in Section 1.3, the fundamental idea behind the present tra-
jectory segmentation algorithm is to perform a classification of trajectory
parts P into pre-defined classes c of motion. In the present context, the
classifier is considered a “black box”. This means that the inner workings
of it are not important, as long as the relation between input (a feature
vector) and output (a motion class label) meets certain requirements.

A large variety of classifiers can be distinguished that are based on different
principles, for instance neural networks [12], support vector machines [127],
Fisher’s linear discriminant [37], nearest neighbor classification – to just
name a few. All of these pursue similar objectives and face similar prob-
lems. Therefore, I want to briefly review some basic concept of classifica-
tion, introduce the basics of support vector machines, and then move on
to the specification of the actual trajectory segmentation algorithm.

1.3.2.1 Binary Classification

A classifier assigns a class label to some input. Binary classification is a
special case, in which only two classes exist that the classifier can choose
from. The decision is based on some characteristics of the inputs, provided
in the form of a feature vector. Consider the classification of dinosaurs into
the classes “herbivore” and “carnivore” as an illustrative example. A vec-
tor of features could for instance consist of measures of height and weight.
Considering the great variety of sizes of both carnivores and herbivores,
this is not adequate to achieve reasonable classification of any dinosaur.
This exemplifies the importance of using more informative features, such
as “scariness of teeth” or “sharpness of claws”. Facing a Spinosaurus (hav-
ing scary teeth and sharp claws!), one would correctly conclude that it is
a good idea to to back up. However, there are also plenty of herbivores
that have reasonably sharp claws or even a few scary teeth. It is therefore
necessary to learn a decision boundary using a training set of features of
dinosaurs with known preferred nutrition. This decision boundary sepa-
rates the feature space into two or more regions, each corresponding to
either carnivores or herbivores (Figure 1.2). Depending on the type of
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classifier used, the decision boundary could simply be a line, with poten-
tially some of the dinosaurs ending up on the wrong side. This situation
is called under-fitting. It is a risky business, because one knows for certain
that some dinosaurs will be mis-classified in the future. Allowing for more
complex, non-linear decision boundaries, one could possibly separate the
training data perfectly. This is, however, another risky situation called
over-fitting. The problem is that the classifier has learned too many local
details, at the expense of identifying less of the significant global trends.
Fundamentally, the objective is to generalize well, that is, to classify fu-
ture, unknown data as well as possible (solid line in Figure 1.2).

Figure 1.2: Classification of dinosaurs into carnivores (crosses) and her-
bivores (circles) using physiological features. The lines depict decision
boundaries; dotted: under-fitting, dashed: over-fitting, solid: reasonable
generalization.

1.3.2.2 Multi-Class Classification

Multi-class classification is concerned with grouping objects into one of
more than two classes. Consider again the classification of dinosaurs. This
time, however, the order of “Saurischia” shall be further divided into the
classes “Heererasauria”, “Theropoda”, and “Sauropodomorpha”.

As opposed to binary classification, the methodology and formalism of
multi-class classification is much less developed. A common approach is
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to reduce the problem to a set of binary classification problems, for ex-
ample to a specific one–versus–all problem per class. The prerequisite for
this is that for each class a criterion exists that allows unambiguous pos-
itive identification. Among the classes mentioned, the Sauropodomorpha
can, for example, be identified by their long neck. Positive identification
of Heererasauria and Theropoda, however, is less trivial since they share
many characteristics. If, nevertheless, criteria for the identification Heer-
erasauria and Theropoda can be found, the binary classifications can be
performed in any order, since, by definition, no object can be assigned to
more than one class.

A classification criterion may not easily be found when one class occupies
a small portion of the part of feature space that is normally attributed
to another class. In this particular case, the binary classifications can
be performed in a hierarchical way: After the first positive identification,
the object it is no longer considered in any of the following binary clas-
sifications. It might happen, though, that none of the classes are clearly
identified, leaving objects unlabeled. A trivial fix is to assign the label of
the most general class to all unidentified objects, or to group them in an
auxiliary class.

1.3.2.3 Support-Vector Machines for Trajectory Segmentation

Support-vector machines [127] (SVMs) are powerful classifiers that have
been successfully applied in countless applications. SVMs separate classes
by a hyperplane in a high-dimensional space. This hyperplane is con-
structed such that it maximizes the distance to the closest points on each
side of it (see Figure 1.3). Such a maximum functional margin should be
beneficial for generalization.

Non-linear decision boundaries are realized by transforming the features
into a high-dimensional space using a non-linear kernel function and solv-
ing a linear classification problem in this space. This is equivalent to
having a non-linear decision boundary in the original feature space (see
Figure 1.4).
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Figure 1.3: Functional margin of linear classifiers: The dashed decision
boundary separates the two classes perfectly, the solid boundary, however,
has a larger functional margin (shaded areas).

Figure 1.4: Support vector machines: After a non-linear mapping into
a high-dimensional feature space, linear classifiers can realize non-linear
decision boundaries in the original feature space.
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In many situations the classes are not separable, or only with highly con-
voluted decision boundaries, which are of little practical use due to their
reduced generalization. The maximum margin concept can then be relaxed
to soft margins by introducing a penalty for misclassification. The penalty
is typically proportional to the distance from the boundary. For a given
(non-linear) kernel function, the boundary that minimizes the penalty for
all misclassified data, while maximizing the margin for correctly classified
data, is considered optimal. In order to combine these two objectives into
a single objective function a scalar weighting parameter C for the penalty
is introduced. The resulting constrained optimization problem is usually
solved quadratic programming, a non-trivial, but very mature technique.
In the context of support vector machines, “training” hence refers to the
process of solving the quadratic programming problem for a given set of
feature vectors with known classes [127].

Here, I use a C-SVM with a radial basis function kernel for the classi-
fication of trajectory features. The kernel has a parameter σ that, to-
gether with the penalty weight C, controls the complexity of the decision
boundary and therefore the potential to generalize well. In practice the
parameters {C,σ} need to be set a priori or selected during the training
process.

1.3.2.4 Cross-Validation: Assessing Generalization

The purpose of cross-validation is to quantify the ability of a classifier
to generalize after training. This is achieved by using only a subset of
the available training data and keeping the rest for validation. On this
validation set, the classification performance is assessed immediately after
training. Motivated by detection problems in, e.g., medical diagnosis,
the two classes are called “positive” and “negative”. The classification
performance is then expressed in terms of the ratio of true positives to all
positives (the sensitivity), and the ratio of true negatives to all negatives
(the specificity). Resolving the performance for both classes separately has
the advantage that biases toward one class (for instance if the training set
comprises different numbers of samples of the two classes) can be detected.
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In k-fold cross-validation the original training data is split into k equally
large sets. Each of the k sets is used once as validation set, when the
classifier has been trained on the remaining k−1 sets. In case of the SVMs
used for the trajectory segmentation algorithm, this procedure is repeated
with different parameters {C,σ} (see Section 1.3.2.3) and the combination
with the best average performance (e.g., highest average sensitivity and
specificity) is selected.

1.3.2.5 Specification of the Algorithm

The trajectory segmentation algorithm consists of four steps:

1. Trajectory preprocessing

2. Feature extraction

3. Feature classification

4. Classifier output filtering and label assignment

Step 1: Trajectory preprocessing. The purpose of trajectory prepro-
cessing is to remove position noise from the data by means of a trajectory
filter function Φ. Furthermore it allows setting a time scale for the feature
extraction a priori, which may be beneficial for patterns corresponding to
slow processes.

In the absence of detailed knowledge about the position noise, the simplest
choice for Φ is a box filter with width w:

Φ : T → �T , x̃i =
1

w

iw�

j=(i−1)w+1

xj . (1.8)

Trajectory preprocessing is an optional step. There is no restriction re-
garding the use of different filters for different patterns. In fact, in case of
trajectories containing multiple patterns with different typical time scales,
feature extraction may be performed on separate filtered trajectories for
each pattern.

14



1.3. TRAJECTORY SEGMENTATION

Step 2: Feature extraction. Trajectory parts are transformed to low-
dimensional feature vectors by application of reduction operators Ψ (Equa-
tion 1.7). The operators are applied to all possible consecutive trajectory
parts of length lP, that is, features are computed from the content of a
window of length lP moved over the (filtered) trajectory step by step (see
Figure 1.5).

Figure 1.5: Extraction of features from a trajectory part.

The elements of the feature vector should be informative with respect to
different properties of the sequence of steps. The operator Ψ1 for comput-
ing the net displacement in a trajectory part Pi of lP steps, for example,
computes the overall directionality of motion as:

Ψ1 : Pi → p1
i
, p1

i
= �xi+lP

− xi�. (1.9)

It is important that all features are invariant with respect to rigid-body
rotations and translations of entire trajectory parts.

On the one hand, designing the features is often guided by prior knowl-
edge about the physical process that generated the motion patterns. For
example, motor-driven transport along intra-cellular filaments should be
somewhat fast and rather straight. On the other hand, features can be
purely descriptive or reflect a subjective impression of what is characteris-
tic for a given motion pattern. For example, objects undergoing diffusive
motion may seem to visit areas that are roughly elliptic in shape1. Fi-

1By, for example, inspecting the density of a brownian bridge [14] pinned at the
end-points of the diffusion one can come up with more precise statements than this.
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nally, one can use any scalar function of the positions x as additional
feature. This has the advantage that any information in the training set
can be exploited that may help classify the data. One risks, however,
adding uninformative functions to the feature set, which may complicate
classification and increase the computational cost.

The collection of features is highly specific to each motion pattern. As an
alternative to an expert’s choice (or educated guess), one can also perform
systematic feature selection on a large set of features to determine an
“optimal” feature set. Similar to the cross-validation strategy followed for
tuning the SVM parameters (Section 1.3.2.3), one starts from a potentially
very large set of features and selects the subset that yield best classification
performance. Depending on the size of the original feature set and the cost
of cross-validation, the search through all combinations of features may be
performed exhaustively, or rely on some search heuristic.

Step 3: Feature classification. Feature classification evaluates whether
a feature vector fi computed from a trajectory part Pi corresponds to a
certain class c of motion or not, thus constituting a binary classification
problem. I use C-SVMs [127] as classifiers. The SVM assigns each feature
vector an output oc ∈ {0, 1}. An output value of 1 indicates that the steps
in the trajectory part are believed by the classifier to belong to class c,
while the opposite is true for an output of 0.

Step 4: Classifier output filtering and class label assignment. The
present feature extraction and classification approach raises the following
problems: First, due to the overlap of the trajectory parts when comput-
ing features, each step is classified multiple times and may be assigned
contradictory classification outputs with respect to a certain pattern. The
final goal, however, is to give each step a unique label. Second, the out-
puts of the classifiers for the different patterns may suggest the affiliation
of a step to more than one of the different classes, necessitating a decision
between classes. Third, additional conditions such as a minimum length
of a trajectory segment may have to be satisfied. Although the features
are computed in trajectory parts of a given length, this does not imply
that all steps in that part are assigned the same class label. Without any
regularization, trajectories could thus be over-segmented into insignificant
fragments that are of little value for subsequent statistical analysis.
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These ambiguities are resolved by post-processing the outputs of the differ-
ent pattern-specific classifiers. For each pattern c, features are computed
in overlapping trajectory parts and subsequently classified. This results
in a series Oc = {oc,i}n−lP

i=1 of classifier outputs for each pre-defined pat-
tern c (if trajectories have been preprocessed, n has to be replaced with ñ
to account for the potentially reduced number of steps). Each output is
interpreted as a vote for the class-membership of all steps within the cor-
responding trajectory part. Since the trajectory parts overlap, each step
gets multiple votes from the different pattern-specific classifiers. Based on
these votes, each step k in the trajectory is assigned a score sc,k that repre-
sents the likelihood that this step belongs to pattern c. Ignoring the order
of votes, a weighted sum of all outputs that are relevant for a particular
step (Fig. 1.6B) is computed:

sc,k =
lP�

j=1

ac,joc,k−j+1 k ∈ [1, n−1] oc,i = 0 ∀i < 1 , (1.10)

which amounts to a discrete convolution of the output sequence Oc with
a filter kernel Ac = {ac,1, . . . , ac,lP}:

{sc,k} = Oc ∗Ac . (1.11)

This representation is purely conceptual and is intended to highlight the
connection of this step to related tasks in, for example, time-series analy-
sis. The convolution kernel allows encoding additional prior knowledge or
constraints. An ideal kernel would produce jumps in s whenever the true
motion pattern changes, while keeping s constant otherwise. In that sense,
the convolution operation is an attempt to do inverse filtering in order to
reconstruct the true state (which motion pattern is present) from a noisy
(due to misclassifications) and blurred (due to the trajectory parts extend-
ing over pattern transitions) signal. In general this is a hard problem. In
the present work I use a uniform box kernel, corresponding to setting all
weights ai = 1/lP, thus equally distributing the outputs among all steps
within a trajectory part. Designing more sophisticated kernels might im-
prove the overall performance of the trajectory segmentation algorithm.
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Figure 1.6: Algorithm for class label assignment using multiple sequences
of binary classifier outputs oc,j . The mapping of labels from steps of a
filtered trajectory to the original unfiltered trajectory is not shown.
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As stated before, the convolution in Equation 1.11 does not yield an ideal
sequence of scores. Spurious classifications of trajectory parts might add
a random component to the sequence of outputs Oc, which is reflected in
a reduced difference between signal (presence of the pattern) and back-
ground (absence of the pattern) in the scores s. The problem of assigning
the correct label is thus equivalent to finding regions in the score sequence
s that are higher than the average score level caused by spurious clas-
sifications. A straightforward solution is to use a threshold filter, thus
generating a binary signal (either 0 or 1) (Figure 1.6C).

The choice of the threshold tc is constrained by the requirements of the
application. A low value may be beneficial for precise localization of tran-
sitions between patterns. A lower bound is given by the expected rate
of false positive classifications. High thresholds improve the separation
of short segments of the same pattern and reduce false detections, while
increasing the risk of missing some segments. An upper bound for the
threshold is given by the expected rate of true positive classifications.

So far, it has not been discussed how to deal with the situation when a step
has high scores for multiple patterns. As discussed in Section 1.3.2.2, the
solution to this multi-class classification problem is to use priorities among
the patterns. Starting from the pattern with highest priority, the classifi-
cation output is transformed into a sequence of scores and the threshold
filter is applied. In order to reject short and statistically insignificant seg-
ments it is required that the binary signal equals 1 for at least lmin steps.
For the steps in the trajectory that meet these constraints the binary sig-
nal is then converted to a sequence of step class labels by multiplication
with c (Figure 1.6D). This process is repeated with all patterns in the or-
der of descending priority. The scores of all steps that have already been
associated with a pattern are set to zero in further iterations (Figure 1.6E
and F), which effectively prohibits multiple class associations.

All steps that retain a final label of zero are considered not classified. If
the trajectory was filtered prior to feature extraction, the label sequence
has to be mapped back onto the steps of the original trajectory (not shown
in Figure 1.6).
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1.3.3 Adaptation for Segmenting Virus Trajectory Data

So far, no specific motion patterns, trajectory features, and options for the
various filters have been specified. The trajectory segmentation algorithm
will now be tailored to segmenting trajectories of single human Adenovirus
serotype 2 (Ad2) particles moving inside or on the plasma membrane of a
range of human cell types.

Ad2 enters cells via receptor-mediated endocytosis and is rapidly released
into the cytoplasm (for a review see [102]). It requires an intact micro-
tubule cytoskeleton to transport its DNA genome into the nucleus. Initial
quantitative analyses of viral motion in the cytoplasm revealed long-range
directional transport in normal cells, and short-range transport events in
cells treated with the microtubule-depolymerizing drug nocodazole (re-
viewed in [51]).

Motion of Ad2 particles is observed by time-lapse microscopy at an image
acquisition frequency of 50Hz. A semi-total internal reflection fluores-
cence microscopy (semi-TIRFM) was used for acquisition of trajectories
of intra-cellular virus motion. Standard TIRFM allowed limiting obser-
vations the virus particles on the plasma membrane. TIRFM achieves a
specificity to the sample surface by restricting the illumination to a narrow
region above the glass–sample interface [144]. Videos were processed with a
single-particle tracking program [125], yielding the 2D trajectories of single
Ad2. The signal-to-noise ratio of the image sequences was 2.5, yielding a
standard deviation of the measured virus positions of 20 nm [125], referred
to as position noise.

Visual inspection of Ad2 trajectories indicates that they contain different
patterns of motion with a range of time scales (see segmented example
trajectories in Figure 1.9). Motion frequently alternates between different
patterns. Ad2 trajectories are, therefore, an ideal case to demonstrate the
performance of the present trajectory segmentation algorithm. The focus
is on the analysis of patterns that exhibit a strong non-random nature and
that may thus be related to specific biophysical mechanisms. On very short
time scales, position noise masks much of the structure of the motion, thus
making it hard to distinguish random and non-random motion patterns
there.
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1.3.3.1 Motion Patterns in Ad2 Trajectories

Four patterns of Ad2 motion can be visually distinguished:

• Confined motion,

• slow drift,

• fast drift, and

• fast directed motion.

Confined motion is characteristic of receptor-ligand complexes experienc-
ing steric hindrance [82]. Slow drifting motion of filopodial actin filaments
is powered by myosin motors and actin dynamics as observed in cultured
neuronal cells [101, 85]. Fast drifting and directed motion typically de-
pends on microtubules and motor proteins [146, 51]. Between phases of
either of the four patterns, Ad2 motion often appears random, which could
correspond to (free) diffusion. Nevertheless, no attempt is made to iden-
tify diffusion as a separate motion pattern. Instead, trajectory parts that
do not fall into any of the four classes are considered not classified. This
allows performing four sequential binary classifications against this fifth
auxiliary class, as discussed in Section 1.3.2.2.

1.3.3.2 Characteristic Features of Ad2 Trajectories

In the following, the trajectory features used for the classification of the
motion patterns described in Section 1.3.3.1 are defined. These features
constitute the set union of the pattern-specific feature sets as found by
systematic feature selection on a larger set (see Step 2 in Section 1.3.2 and
Section 1.3.3.5).
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Some of the features are motivated by specific physical motion models.
Others, however, are ad-hoc definitions. The names of the seven features
that were selected in at least on pattern-specific feature set are:

1. Net displacement,

2. straightness,

3. bending,

4. efficiency,

5. asymmetry,

6. point position skewness, and

7. point position kurtosis.

The operator Ψ1 for computing the net displacement for a trajectory part
Pi of lP steps is given by:

Ψ1 : Pi → p1, p1 = �xi+lP
− xi� . (1.12)

Straightness and bending are measures of the average direction change
between subsequent steps.

Straightness is defined as

Ψ2 : Pi → p2
i
, p2

i
=

1

lP − 1

j+lP−2�

j=i

cosβj (1.13)

and the operator for bending is

Ψ3 : Pi → p3
i
, p3

i
=

1

lP − 1

i+lP−2�

j=i

sinβj . (1.14)

In both cases, βj denotes the signed angle change between step sj and
sj+1 with changes to the left being attributed a positive sign.
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Efficiency relates the squared net displacement to the sum of squared step
lengths:

Ψ4 : Pi → p4
i
, p4

i
=

�xi+lP
− xi�2

lP
�

i+lP−1
j=i

s2
j

. (1.15)

Asymmetry was previously proposed as a feature for the detection of di-
rected motion [65]. The 2D equivalent, accounting for non-cylindrically
symmetric point distributions is used, thus:

Ψ5 : Pi → p5
i
, p5

i
= − log

�
1− (λ1 − λ2)

2

2 (λ1 + λ2)
2

�
. (1.16)

λ1 and λ2 are the eigenvalues of R, the 2D gyration tensor of the set of all
points x = (xi, yi)T ∈ Pi:

R =
�

i

�
x2
i

−xiyi
−xiyi y2

i

�
. (1.17)

Position skewness and kurtosis measure the asymmetry and peakiness of
the distribution of points in Pi, respectively. For their calculation, the
positions xj ∈ Pi are projected onto the dominant eigenvector v of R,
yielding scalars xj = xj ·v. Skewness and kurtosis are defined as the third
and fourth moment of the set of xj derived from the trajectory part Pi,
respectively, thus:

Ψ6 : Pi → p6
i
, p6

i
=

√
lP + 1

�
i+lP

j=i
(xj − �xj�)3

��
i+lP

j=i
(xj − �xj�)2

�3/2
(1.18)

and

Ψ7 : Pi → p7
i
, p7

i
=

(lP + 1)
�

i+lP

j=i
(xj − �xj�)4

��
i+lP

j=i
(xj − �xj�)2

�2 . (1.19)

Apart from the features defined above, additional features were considered,
but none of them was ever selected by the systematic feature selection.
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1.3.3.3 Filters

Position noise complicates robust detection of drifting motion since the net
displacement is very small on small time scales. The noise can be partly
removed by means of a trajectory filter function Φ.

Fast drifting motion only becomes apparent on time scales on the order
of seconds, while slow drifting motion is roughly one order of magnitude
slower. I therefore use the box filter (Equation 1.8) with widths w = 10
and w = 50 to generate smoothed and down-sampled trajectories �T for
the detection of fast drifting motion and slow drifting motion, respec-
tively. This amounts to averaging 0.2 and 1.0 s of the original trajectory
per new position measurements. Detection of fast directed motion does
not require filtering of the trajectories, since the typical displacement per
step is comparable to or larger than the position noise.

On very short time scales, the confined motion might look like free diffu-
sion, or any other motion type. The confinement character only becomes
apparent when the expected net displacement of the unconfined motion
exceeds the size of the region to which the virus particle is confined. Con-
fined motion is therefore better characterized by a typical length-scale of
confinement, rather than a time-scale as done with directed and drifting
motion types. The apparent size of the regions of confinement is compa-
rable to the magnitude of the position noise. No trajectory filter function
is therefore used for the detection of confined motion.

Features are extracted from trajectory parts of lengths lP, chosen sepa-
rately for each motion pattern. The values reflect assumptions about the
velocities and typical lengths of the different motion patterns. In a similar
way, the minimum lengths lmin of the segments of the different motion
patterns are chosen. The thresholds tc for transforming the classification
scores s into class labels are manually selected to yield a good balance
between sensitivity and specificity of pattern detection on a per segment
basis (values tc, lmin, and lP are given in Table 1.1). Therefore, the abil-
ity to correctly identify the correct sequence of segments was optimized,
instead of optimizing for correct labeling of individual steps.

Finally, the priorities among the patterns need to be defined. Since three
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of the four patterns correspond to more or less directed movements, the
patterns can be ranked according to their typical velocities (see Table 1.1).
That is, directed motion is detected first, followed by fast and slow drifting
motion, and, finally, confined motion. This effectively avoids misclassifi-
cation of, for example, long stretches of directed motion as fast drifting
motion.

priority w lP tc lmin

Directed 1 – 25 0.15 20

Fast drift 2 10 10 0.5 8

Slow drift 3 50 10 0.3 8

Confined 4 – 50 0.3 30

Table 1.1: Parameters used in the trajectory filters and classification out-
put filters. Note that for fast and slow drifting motion the units of the
lengths lP and lmin are given number of steps of the respective filtered
trajectories �T .

1.3.3.4 Training Data

The most important ingredient for a successful adaptation of the trajectory
segmentation algorithm is the training set. Using supervised classifiers al-
lows one to implicitly define the input–output behavior of the segmentation
algorithm through example data. The definition of informative features is
then a prerequisite to exploit the structure in the example data. This is in
contrast to the different pre- and post-processing filters, which are ad-hoc
solutions to technical problems of the classification approach.

Training data could come from different sources. In the virus motion
example an expert manually segmented example trajectories. Alternatives
include synthetic trajectories based on either statistical models for the
structure of the data or biophysical models of virus particle motion.

Here, training feature vectors are computed in windows randomly placed
over a manually segmented trajectory. These feature vectors are given
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class labels according to the most abundant motion pattern in the tra-
jectory part covered by the window. The initial training set can later be
augmented by samples from manually segmented trajectories where the
automatic segmentation has previously failed. By cycling through tests
and manual segmentation, the training set is iteratively improved such
that it includes a large number of samples that are informative with re-
spect to the decision boundary between classes. The sizes of the resulting
training sets are given in Table 1.2.

Failure to achieve reasonable segmentation of trajectories after including
them in the training set indicates a deficient feature set or ambiguous def-
initions of the motion patterns by the expert. For certain motion patterns
it may thus be favorable to use synthetic training data. One example are
motion patterns that do not last long and that are hence hardly visible in
real trajectories. In such cases, synthetic data can be used to train the clas-
sifier. This does, however, require that a trustworthy model of the sought
motion type is available. Another option is to combine synthetic and real
trajectory data in the training set. In this case the synthetic data provide
ideal (in the sense of the hypothetical motion model) positive samples,
while the real data account for the true noise level and deviations from
the model, as well as the potentially non-trivial distribution of negative
samples in feature space.

1.3.3.5 Feature Selection and SVM Parameter Optimization

The minimal set of features that is suited to discriminate between the two
classes of a given set of training samples is sought. A small number of
features is desirable for two reasons: it decreases the computational cost
of training and classification, and it yields a more robust classifier by re-
ducing the complexity of the decision boundary. Given the training sets,
SVMs are trained and tested using all possible combinations of a set of fea-
tures (including, among others, all features introduced in Section 1.3.3.2).
Sensitivity and specificity (see Section 1.3.2.4) are used to measure the
generalization capability. They are estimated by five-fold cross-validation
(see Section 1.3.2.4) on the training set. For each feature set size, the set
with the best performance is selected, where performance is measured as
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the average of sensitivity and specificity. As small sets are favored, which is
not significantly outperformed by any larger one is chosen. This procedure
is carried out independently for each pattern.

The selected feature sets for the four pre-defined motion patterns are:

• Fast directed motion: {p1, p2, p3, p4, p5, p7};

• fast drifting motion: {p1, p2, p3, p5, p6};

• slow drifting motion: {p1, p2, p4};

• confined motion: {p1, p2, p3, p5, p6, p7}.

None of the tested additional features besides the seven described in Sec-
tion 1.3.3.2 was ever chosen.

Given these sets of features, the SVM parameters {C,σ} are adjusted by
exhaustive search on a grid. As before, classification performance is mea-
sured in terms of sensitivity and specificity, estimated by five-fold cross
validation on the training set. In principle, feature selection and opti-
mization of the SVM parameters should be done simultaneously. Due
to significantly higher computational cost, however, this approach is not
practical and is thus not followed. Instead, the simpler sequential proce-
dure described above is performed. The training set sizes for all motion
patterns, the performance of the respective classifiers, and their optimal
parameter values are summarized in Table 1.2.

1.3.4 Evaluation

The trajectory segmentation algorithm is tested on trajectories where
ground truth is known. Three tests are performed: The first determines to
what extend the pre-defined patterns of Ad2 motion are found in trajec-
tories of purely diffusive motion. Except for confined motion, which can
be reproduced by extremely sub-diffusive behavior, none of the proposed
motion patterns is compatible with a diffusion model (see Section 1.3.3.1).
Therefore, the number of detected segments should not exceed the ex-
pected small random base level. The second test assesses the detection
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C σ Npos Nneg Sens. Spec. Avg.

Directed 35.94 0.774 274 1370 0.996 0.994 0.995

Fast drift 12.92 3.594 338 1690 0.897 0.985 0.941

Slow drift 100 0.464 375 1082 0.859 0.939 0.899

Confined 4.46 0.464 2031 2039 0.975 0.956 0.966

Table 1.2: Summary of the SVM parameters used, the achieved classifi-
cation performance on Ad2 data, and the parameters used in the classi-
fication output filters. Npos and Nneg denote the number of positive and
negative training samples, respectively; Sens.: sensitivity, Spec.: speci-
ficity, Avg.: (Sens.+ Spec.)/2.

power on synthetic heterogenous trajectories that are designed to resem-
ble real Ad2 trajectories. The third test illustrates how segment length
relates to the detectability of a motion pattern, exemplified on stretches
of fast directed motion that is preceded and followed by diffusive motion.

1.3.4.1 Generation of Synthetic Trajectories

Motion of virus particles can be described by a stochastic process that
generates random positions x(t) according to a transition density p(x, t+
δt|x0, t). For free (unrestricted) isotropic diffusion of a particle in d di-
mensions the transition density is given by [14, 1]

p(x, t+ δt|x0, t) =
1

(4πDδt)d/2
exp

�
−�x− x0�2

4Dδt

�
, (1.20)

which is a d-dimensional isotropic Gaussian with mean (0, . . . , 0)T and
identical variance 2Dδt in all dimensions. This means that the components
of the displacement δx = x−x0 are uncorrelated. Consequently, the right-
hand-side of Eq. 1.20 can be factored into d 1-dimensional Gaussians:

p(x, t+ δt|x0, t) =
d�

i=1

1

(4πDδt)1/2
exp

�
− δx2

i

4Dδt

�
, (1.21)
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where δxi is the i-th component of δx. Eq. 1.21 forms the basis of a
simple algorithm for simulating diffusion of virus particles: For a given time
increment δt the particle is displaced from x0 by δx, where the elements
of the displacement vector are independent random numbers drawn from
a normal distribution with mean 0 and variance 2Dδt.

In order to generate trajectories with sub-diffusive motion, the Weierstrass-
Mandelbrot function [11, 123, 151]

Wi(t) = A
nmax�

n=nmin

1

γnH
(cosUi(n)− cos [γnt∗ + Ui(n)]) (1.22)

is sampled independently for all dimensions i at discrete times t. t∗ =
2πt/tmax, with tmax the total time of the synthetic trajectory. Following
Saxton [123], I set γ =

√
π, nmin = −8, and nmax = 48. The Ui(n) are

uniformly distributed random numbers between 0 and 2π. Computing the
cumulative sum of Wi(t) for each dimension yields the point sequence x(t)
of the trajectory. Trajectories of any diffusion type (as characterized by the
diffusion constant D and the MSS slope (see Section 1.2) can be generated
by adjusting the parameters H and A to match the desired behavior.
Confined motion is simulated by adjusting H such that the MSS slope
is 0.1, resulting in strong visual similarity to the noisy trajectory of an
immobile particle. Directed motion, fast drift, and slow drift are created by
superimposing bent directed motions of different speeds (300-600, 20-200,
and 8-16 nm/s) and durations (0.5-4, 2-15, and 10-50 s) onto trajectories
of confined motion.

Heterogeneous synthetic trajectories are created by concatenating seg-
ments of homogeneous trajectories of different motion types.

1.3.4.2 Segmentation of Synthetic Trajectories

In the first test, homogeneous synthetic trajectories are used to estimate
the probability of the four motion types to occur in uniform random walks.
This provides confidence intervals for assessing the statistical significance
of the Ad2 results. Two types of homogenous trajectories are used: un-
restricted isotropic diffusion and isotropic sub-diffusive motion. Global
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trajectory statistics of the synthetic trajectories, such as length, diffusion
constantD, and MSS slope (only for synthetic sub-diffusion) were matched
with the values of a collection of Ad2 trajectories on the plasma membrane
of M21 cells.

The segmentation results are summarized in Table 1.4. In synthetic trajec-
tories containing only normal isotropic diffusion, 98.9% of the steps have
correctly been labeled as not classified, and only minor amounts of the
four pre-defined motion patterns were found. For sub-diffusive synthetic
trajectories, the segmentation algorithm yielded a comparable fraction of
confined motion (67.2%) as in the Ad2 trajectories (55.9 to 65.5%, Ta-
ble 1.4), while all other motion types were extremely rare (less than 0.1%).
This confirms that detection of any of the directional motions (fast and
slow drift, directed) is highly significant with respect to a null model of
purely isotropic diffusive motion. Furthermore, confined motion is not a
random artifact in unrestricted isotropic diffusion, but compatible with a
sub-diffusion model with very small MSS slope.

The second test focuses on heterogenous synthetic trajectories. Two repre-
sentative results from the segmentation of heterogeneous synthetic trajec-
tories are shown in Figures 1.7A and 1.7B. The automated segmentation
is visually convincing, and practically all sufficiently long segments were,
at least partially, detected.

In order to quantify the quality of the segmentation, the detection sensi-
tivity and the specificity is measured on a per-step basis for each motion
pattern. This is done on a large set (N = 200) of long (∼4000 steps) syn-
thetic heterogeneous trajectories. The results are given in Table 1.3. In all
cases, the rates of correct classification (sensitivity) were >90% with rates
of correct rejection (specificity) >95%. The largest fraction of spurious
positives (13%) is observed for fast drifting motion, which has, however, a
low frequency (1.5%). The largest contribution to the errors comes from
transition points between different motion patterns. While such transitions
were always correctly detected, they were not always precisely localized.
Within longer stretches of one motion pattern, almost no classification
errors were observed. This confirms that segments as a whole are trust-
worthy, that is, they are hardly corrupted by over- or under-segmentation
artifacts. This property is crucial for the quantification of extensive prop-
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Figure 1.7: Segmented synthetic trajectories mimicking Ad2 motion in
M21 cells. Segments are color coded. Green: confined motion; cyan: slow
drifting motion; magenta: fast drifting motion; red: directed motion; blue:
not classified.

Number of steps Sensitivity Specificity

Directed 2921 91.3% 99.9%

Fast drift 8805 97.4% 99.8%

Slow drift 133929 94.5% 99.4%

Confined 311218 95.4% 97.2%

Not classified 142944 95.1% 96.4%

Table 1.3: Detection rates for the different motion patterns in synthetic
heterogeneous trajectories computed on a per–step basis.

erties of segments, such as their length.

Detection is harder for shorter segments. In order to assess the capability
of the method to detect short segments, synthetic heterogeneous trajec-
tories of random walks with intermediate segments of directed motion of
varying length are analyzed. A segment of directed motion is considered
detected if at least 80% of its steps are assigned the correct class label.
The result is shown in Figure 1.8. Above a length of about 25 steps,
the detection rate quickly approaches 100%. Note that 25 in the present
case steps correspond to 0.5 s of virus motion, which is comparable to
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typical run-lengths [152, 44] of motor-driven transport along filaments of
the cytoskeleton. Therefore, the trajectory segmentation algorithm should
be capable of providing statistics of motor-driven transport, such as run-
length and velocity distributions [74, 108, 133], from in vivo experiments
using a great variety of cargos.

Figure 1.8: Detection rate of directed motion as a function of the true
segment length. Only segments with >80% correct class labels are counted
as detected. N = 200 trajectories.

1.3.5 Application

The trajectory segmentation algorithm is applied to real trajectories of
Ad2 on live cells. The example results shown in Figure 1.9 illustrate that
the algorithm properly discriminates nearby segments of confined motion
(Figure 1.9B) and correctly identifies slow drifting motion (Figure 1.9C),
fast drifting motion (Figure 1.9B), and directed motion (Figure 1.9A and
D).

A large number of intra-cellular trajectories of Ad2 from semi-TIRF record-
ing conditions was analyzed, either in the absence (N = 4388) or presence
(N = 2399) of the microtubule inhibitor nocodazole. The frequencies of
both fast drift and directed motion are strongly reduced in the presence
of nocodazole, namely from 2.07% to 0.17%, and from 0.58% to 0.06%,
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Figure 1.9: Segmented intra-cellular trajectories of Ad2 in M21 cells. Seg-
ments are color coded. Green: confined motion; cyan: slow drifting mo-
tion; magenta: fast drifting motion; red: directed motion; blue: not clas-
sified. (A and B) Examples of strongly heterogeneous Ad2 trajectories
composed of directed motion (not present in B), fast drifting motion, con-
fined motion, and non-classified motion. (C) A segment of slow drifting
motion extends over almost the entire trajectory. (D) Example of a tra-
jectory with several separate phases of directed motion. Distances are in
units of nanometers.
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respectively (Table 1.4). Besides drastically reducing the frequency of fast
drift and directed motion, nocodazole increased the fraction of confined
motion from 54.1% to 62.7%, while the amount of slow drift was reduced
by 50%. Fast drift and directed motion of intra-cellular Ad2 thus depend
on intact microtubules, possibly involving motor proteins such as dynein-
dynactin or kinesins [142, 146], or microtubule dynamics [31, 36].

In the standard model of Adenovirus infection, most virus particles cluster
around the nucleus one hour after infection. This accumulation crucially
depends on intact active transport. Surprisingly, however, intra-cellular
trajectories in our data show only small fractions of microtubule-dependent
transport types (directed motion and fast drift). Does this contradict the
standard model? While active transport is indeed surprisingly rare, it
is responsible for most of the net transport distance toward the nucleus.
Some 30 s of directed motion suffice to travel cell-scale distances (25µm).
Diffusive motion and confinement are much more frequent than active
transport. Nevertheless, they are less relevant for net virus transport to
the nucleus: Empirical diffusion constants for virus particles are on the
order of 10−3 µm2/s, which yields net displacements on the order of only
a few µm per hour.

Although the small observed fraction of directed motion may be sufficient
for effective virus infection, it could still be underrepresented in the seg-
mented trajectories for at least three reasons: First, the cells are not ide-
ally flat. Since semi-TIRF microscopy does not visualize viruses far away
from the glass–water interface, vertical motion may be missed altogether.
Second, trajectories may be incomplete or corrupted by spurious linking,
which is more likely to happen for fast moving particles and high densities
of moving particles. Third, directed motion can be of very short duration
and hence hard to detect. Stochastic unbinding of motor proteins from
filaments typically yields an exponential distribution for the duration of
active transport. The unbinding rate is on the order of seconds, which
means that a non-negligible amount of directed motion is not detected
due to its insufficient duration (see Figure 1.8). Furthermore, the motion
statistics are computed relative to the set of all detected virus particles.
This set includes a significant fraction of viruses that have failed to enter
the cell or are immobilized on the glass. Relative changes in the fractions
reported in Table 1.4 may thus be more informative than absolute values.
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A further application of the trajectory segmentation algorithm consid-
ers virus motion on the surface of different cell types within the first
15 minutes after viral inoculation, including M21 human melanoma cells
(N = 414), human embryonic kidney 293 cells (N = 952), human embry-
onic retinoblast 911 cells (N = 403), and primary human umbilical vein
endothelial cells (HUVEC) (N = 361). Ad2 particles readily gained access
to the basal side of the cells and were amenable to examination by TIRF
microscopy.

As expected, there is a low fraction of at most 0.12% of directed motion in
each cell type (Table 1.4). The fraction of slow drift varies between 6.6%
and 14.9%, while the fraction of confined motion is between 57.1% and
65.5%. Not classified motion accounts for 21.4% to 32.3% of the trajectory
steps. Remarkably, the fraction of slow drift is 3- to 7-fold larger than
in trajectories of intra-cellular virus particles. The fractions of motion
types and their standard deviations were estimated by bootstrapping [58].
Based on these estimates, the significance of the observed differences in the
experimental conditions can be assessed. In the intra-cellular M21 data the
standard deviations of the fractions of fast drift and directed motion are
0.21% and 0.06%, respectively, indicating that the nocodazole-mediated
reduction of the observed patterns is statistically highly significant.

Significant differences are also observed for cell surface trajectories, most
prominently in the fraction of slow drift and confined motion. The differ-
ences in directed motion are negligible due to the small total amount of this
motion type. Together, these analyses suggest that the pattern frequencies
of the different cell types constitute specific fingerprints. The differences
in these fingerprints are significant, since the pattern fractions of the ho-
mogeneous synthetic data differ from the experimental data by more than
10 standard deviations. In conclusion the described motion types in both
cell surface and intra-cellular Ad2 trajectories can not be explained by
assuming that a simple random process underlies all trajectories. Instead,
the data suggest a connection between trajectory segments and specific
Ad2 interactions with cellular structures. The underlying cellular machin-
ery possibly depends on the organization of the plasma membrane and the
cytoskeleton.
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1.3. TRAJECTORY SEGMENTATION

Segmentation of trajectories allows analyzing motion types independently,
which is of particular importance for motion types that do not occur fre-
quently and identification of transport models. Since they are tightly
linked to the biophysical transport mechanism, the run-length and veloc-
ity of directed motion are of particular interest. For confined motion, the
spatial extent of the area visited by the virus particle may characterize the
mechanism that limits the mobility. Run-length and velocity distributions
for the three directed motion types are summarized in Figures 1.10, 1.11,
and 1.12. The duration and spatial extent of phases of confined motion
are shown in Figure 1.13.

Figure 1.10: Histograms of parameters characterizing directed motion of
Ad2 particles inside in M21 cells.

Fast drift typically lasts for 2 to 10 seconds with single-displacement speeds
of 20 to 400 nm/s (Figure 1.11). Directed motion was faster (400 nm/s to
>1000 nm/s), but lasted for only short periods of 0.3 s to 2.7 s (Figure 1.10).
The end–to–end displacement of directed motion was nonetheless higher
than the one of fast drifting motion. 49% of the fast drifting motion and
30% of the directed motion were present in tracks with overall MSS slopes
below 0.5, suggesting a globally sub-diffusive process (see Section 1.2).
This highlights the importance of trajectory segmentation for functional
analysis. In addition, fast drift and directed motion were often saltatory
and bidirectional (see Figure 1.9A and D), indicative of microtubule-based
transport. In fact, the velocity distribution for directed motion peaks
at 500 nm/s, which is of the same order as (but still less than) the na-
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tive velocity of molecular motors such kinesin [143, 21, 9] or cytoplasmic
dynein [146, 94, 112]. Surprisingly, some virus particles appear to move
with higher average velocities than the native motor velocity. This may
be a statistical effect, since the underlying trajectory segments can reflect
less than 100 motor steps. An alternative explanation is that multiple
motors work in parallel on the same cargo. In Chapter 4, a hypothetical
mechanism is discussed that could explain how coupled motors mutually
increase their velocities.

The shapes of the velocity and run-length distributions are very similar
to those reported in references [74, 108, 133] . Such distribution have
been explained with transport models of intra-cellular cargo, which allowed
estimating important quantities such as the number of motors bound or
forces exerted on the cargo, but also shed light on fundamental principles
of cargo transport organization [108, 133, 44].

Figure 1.11: Histograms of parameters characterizing fast drifting motion
of Ad2 particles inside in M21 cells.

Confined motion was typically short-lived with durations on the order of
a few seconds within areas of on average 80 nm diameter (max. 150 nm)
(Figure 1.13). This high degree of confinement is consistent with earlier
observations [142]. It is possibly attributed to the viscous cytoplasmic
environment and the dense cytoskeleton meshwork restricting cytoplas-
mic diffusion. Alternatively, it could be due to tethering of particles to
immobile cellular scaffolds.
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Figure 1.12: Histograms of parameters characterizing slow drifting motion
of Ad2 particles inside in M21 cells.

Unlike confined motion, slow drifting motion proceeded without interrup-
tions with speeds of 2 to 10 nm/s (Figure 1.12). These speeds were deter-
mined in time intervals of several seconds, comprising hundreds of displace-
ment steps (Figure 1.12). A single step displacement was far smaller than
the position noise of 20 nm. Slow drifting motion often lasted through-
out the entire observation period, indicating a high persistence (see Fig-
ure 1.9C).

Figure 1.13: Histograms of parameters characterizing confined motion of
Ad2 particles inside in M21 cells.
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CHAPTER

TWO

Quantifying the Shape and Dynamics of
Extended Intra-cellular Objects

In this chapter I present a novel computational image analysis technique
for precise and accurate segmentation of small intra-cellular objects from
fluorescence microscopy images.

A central paradigm in structural cell biology is that the microscopic shape
of sub-cellular objects is closely linked to their function. The shapes of
involved objects can determine or constrain a biological function. Diffu-
sion on membranes of organelles, for example, may be influenced by their
complex morphology [126]. In eukaryotic cells membrane-bound organelles
often serve as reaction compartments in which the cell maintains unique
protein and lipid compositions [99]. On the length scale of organelles, the
volume of the reaction compartment can be very important, as seen by
its influence on steady state concentrations of even simple reactions . Or-
ganelles shapes are highly dynamics, due to, for example, fluctuations of
internal constraints in membranes (e.g., recruitment of curvature-inducing
lipids or proteins or external forces (e.g., interactions with molecules of
the cytoskeleton [98], forces from molecular motors [84, 133], fusion of
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organelles [121, 120]). Organelle shapes can therefore be used as indi-
rect readouts of many biological processes that are not yet well under-
stood [109, 133]. Furthermore, correlating the positions and shapes of
populations of different objects allows mapping cellular organization [110]
and investigating specific interactions. Extracting shape information from
live cells is therefore of great interest.

Advances in light microscopy [138] and the development of fluorescent
tags for specific labeling of proteins [48] have rendered fluorescence light
microscopy the most widely used experimental tool for imaging sub-cellular
structures in vivo. The acquired images contain a wealth of information,
which is, however, complex and under-explored, and requires reduction to
a comprehensible form.

Visual interpretation of microscopy images by an expert is, and will re-
main, the gold standard for many applications. The reason is that the
human brain is at extracting semantic information. Image analysis can be
automated to some extend, but it is mostly limited to applications where
one has a priori knowledge about the image content. The analysis is fo-
cussed on specific features of the images, which are assumed to correspond
to physical properties of the studied objects in some way. The semantic
information is given by the prior, for instance in form of a structural model,
while the computer provides the quantitative information, that is, param-
eter estimates of the model. As opposed to humans, computers are ob-
jective. The possibility to process very large datasets increases confidence
levels [92]. Furthermore, non-intuitive measurements can be performed
with very high accuracy and precision. Microscopy data in cell biological
studies have a number of properties that favor computers: The images are
typically noisy, blurred, large, and the datasets can be large. Different bi-
ological conditions can yield small signals that would be missed in human
inspection of a fraction of the available data.

In the past, the development of computational image processing tools to
extract biologically relevant information from microscopy images has at-
tracted great attention. A fundamental problem with microscopy images
in cell biology is that the mapping from the observed objects to their image
is not bijective, that is, information is lost in the imaging process. Depend-
ing on the size, shape, and spatial arrangement of the studied objects, this
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loss of information can be severe, in which case the reverse mapping from
images to objects is no longer intuitive. In the following sections I de-
vise an image analysis algorithm that extracts information on the shape
of small intra-cellular objects from fluorescence microscopy images. As
demonstrated on synthetic and real image data, results are less biased
then solutions based on classical image segmentation techniques. Before
presenting the actual algorithm and example applications in Section 2.2, I
review the fundamentals of fluorescence microscopy in Section 2.1.

2.1 Microscopy, Deconvolution, Point Spread
Functions, etc.

The outline reconstruction algorithm presented in this chapter is specif-
ically tailored to images obtained by (confocal) fluorescence microscopy.
Wide-field and confocal fluorescence microscopy are well-described by the
laws of linear optics. In the following sections I review fundamentals of
image formation in fluorescence microscopy and essential properties of flu-
orescent dyes, microscope optics, and detectors.

2.1.1 Fluorescence in Cell Biology

Cells produce very little contrast in standard bright-field microscopy be-
cause light in the visible spectrum interacts only weakly with cells or tis-
sues. Absorption, which is usually the main source of contrast, is negligible
for biological matter. That is, most of the light just passes unchanged from
the light source through imaged cells onto the detector. The phase of light,
however, is changed by the presence of biological matter. This effect is ex-
ploited in phase contrast microscopy, which allows observing living cells
without having to introduce potentially harmful dyes.

In fluorescence microcopy contrast is generated by a change in frequency,
or wavelength, of the light. The change in wavelength is generated by
fluorescent molecules that absorb and emit light and different wavelengths
(see Figure 2.1). The energy of a single photon is given by hc/λ, where h
is Planck’s constant, c the speed of light in vacuum, and λ the wavelength
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of the photon. Absorption of a photon of the excitation wavelength brings
the fluorophore to a higher energy level – the excited state. Some of the
energy is dissipated without radiation. Then, the fluorophore jumps back
to the ground state. In this process a photon is emitted that has a smaller
energy, and hence larger wavelength, than the photon previously absorbed
(Figure 2.1). The difference in the maxima of the absorption and emission
spectra is called Stokes shift.

Figure 2.1: Jumps between energy levels in a fluorophore.

In fluorescence microscopy this effect is exploited in two ways: First, it
is possible to shield the detector from excitation light that just passed
through the sample. For this, one uses filters that selectively pass only a
small range of wavelengths. Second, if one is able to selectively bind fluo-
rophores to biological structures of interest, very specific observations can
be made. The latter is typically achieved by fluorescent immunolabeling or
by fluorescent fusion proteins. The trick is to introduce the gene sequence
of a fluorescent protein in the sequence of the target protein, without ham-
pering their respective functions. Translation of the combined sequence
then creates chimeras of a target protein and a fluorescent protein that
serves as a highly specific tag. The green fluorescent protein (GFP) and
variants thereof are extremely popular fluorescent proteins [48].

2.1.2 Basics of Image Formation

Image formation in fluorescence microscopy can be understood within the
theory of Fourier optics. The central statement of the Huygens–Fresnel
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principle is that each point of an unobstructed wave front is a source of
a spherical wave. Light is an electromagnetic wave. The phase and fre-
quency of the spherical electromagnetic waves are given by that of the
original wave front under consideration. Consequently, the amplitude of
the electromagnetic wave at any point beyond the source is a superposition
of the spherical waves. This considers the waves’ amplitudes and phases,
that is, the waves produce an interference pattern, not just a superposi-
tion of intensities. From geometrical considerations (see Figure 2.2 for

Figure 2.2: The spatial frequency decomposition of the aperture function
(left plane) can be observed in the transform plane (right). Lenses between
the planes are not shown for clarity.

coordinates) it follows that the electric field at the location (X,Y ) in the
transform plane is given by

Etr(X,Y ) =
E0 exp (i(ωt− kR))

R

��

Aperture

exp

�
ik(Xx+ Y y)

R

�
dx dy, (2.1)

where E0 is the amplitude, k = 2π/λ the wave number, and ω = 2πc/λ
the angular frequency of the spherical waves originating from the aperture.
The aperture function

A(x, y) = A0(x, y) exp(iφ(x, y)) (2.2)
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describes the spatial variation of the amplitude A0(x, y) and the phase
exp(iφ(x, y)) of the point sources in the focal plane of the microscope
objective (that is, the intensity and phase of the light emitted by the
fluorophores of the sample that are in focus). Using the aperture function
and ignoring the R-dependence of the amplitude, Equation 2.1 can be
reformulated as:

Etr(X,Y ) ∝
�� +∞

−∞
A(x, y) exp

�
ik(Xx+ Y y)

R

�
dx dy, (2.3)

and finally as:

Etr(κx,κy) ∝
�� +∞

−∞
A(x, y) exp (i(κxx+ κyy)) dx dy, (2.4)

where the spatial frequencies

κx = kX/R = k sinβ (2.5)

κy = kY/R = k sinα (2.6)

have been introduced. An important observation can now be made: Equa-
tion 2.4 describes the Fourier transform of the aperture function. In short
notation:

Etr(κx,κy) ∝ F{A(x, y)}. (2.7)

One can thus observe the power spectral density of the aperture function
in the transform plane (see Figure 2.2). This means that each point in
the transform plane corresponds to a spatial frequency of the aperture
function. The point’s distance to the optical axis is proportional to the
mapped spatial frequency. The intensity of light in each point is propor-
tional to the weight of the corresponding spatial frequency in the frequency
decomposition of the aperture function.

Up to this point no information is lost. If one was able to measure the
interference pattern in the transform plane and perform an inverse Fourier
transform, one would perfectly reconstruct the aperture function, that is,
the imaged sample would be perfectly resolved.

In a microscope the light emitted from the sample is collected by the
objective and focussed onto some detector through a series of optical ele-
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ments. Magnification is of secondary interest, since its sole purpose is to
ensure sufficiently fine sampling of the image on the detector. This detec-
tor can be a technical device such as a camera, consisting of an array of
photo-sensitive elements, or the human eye. In the image plane, the waves
corresponding to the different spatial frequencies of the aperture function
again interfere. The pattern in the transform plane can again be imagined
as sources of spherical waves. Therefore, the amplitude and phase of the
electromagnetic wave in the image plane is the inverse Fourier transform of
the electromagnetic field in the transform plane. Nevertheless, information
is lost.

The reason for the information loss is that the optical device is not in-
finitely large. Only a small fraction of the light forming the pattern in
the transform plane can actually be captured by the objective lens. With
the diameter of the objective and the focal distance being fixed, a large
amount of light will miss the objective at the side. This light corresponds
to the high spatial frequencies of the aperture function. The pattern in
the transform plane is hence cropped – it lacks the high frequency infor-
mation (dashed circles in Figure 2.2). Therefore, the electromagnetic wave
on the detector lacks the high spatial frequencies of the aperture function
that were not captured. Mathematically, this lack of frequencies can be
described by a weighting function Mk(·) ∈ [0, 1] in frequency space, where
the subscript indicates the dependence on the wave number k. The electric
field on the detector is

Ed(x, y) ∝ F−1{F{A(x, y)} ·Mk(κx,κy)}. (2.8)

The convolution theorem states that the convolution of the two functions
f and g is (under suitable conditions) the point-wise multiplication of the
Fourier transforms of the two functions:

f ∗ g = F−1{F{f} · F{g}}. (2.9)

Therefore, Equation 2.8 can be rewritten as

Ed(x, y) ∝ A(x, y) ∗ F−1{Mk(κx,κy)}. (2.10)

The situation where A(·) is non-zero only in an infinitely small circular
region is of particlar interest. It corresponds to imaging a single point
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source, which is described by the Dirac delta function A(x, y) = δ(x) δ(y)
(see Figure 2.3). The convolution of any function f(x, y) with a Dirac
delta centered at the origin is f(x, y). The corresponding irradiance I =
�(ReE)2�t at the detector, that is, the image of a point source, is called
point spread function P :

P ∝
��

Re
�
F−1{Mk(κx,κy)}

��2�

t

, (2.11)

where �·�t denotes a time average. Using similar arguments as above, an
analytic expression for the point spread function of an idealized microscope
is derived in Reference [61].

Figure 2.3: Due to the lack of high-frequency information (dashed circles
in the middle plane), the image of the small point-like source (left plane) is
blurred (right plane). Lenses between the planes are not shown for clarity.

Any A(x, y) can be decomposed into a sum of Dirac point sources. For in-
coherent point sources, i.e., sources with uncorrelated phases, the image –
and not just the electromagnetic wave – is a superposition of the images of
the point sources, each of which being a point spread function. The aper-
ture function can then be identified with the square root of the density of
independent fluorophore molecules O(x, y). Mathematically, the superpo-
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sition of the single fluorophore images is described by the convolution:

Id ∝ O ∗ P. (2.12)

Strictly speaking, the above equation is only valid for a linear and space-
invariant system, which is approximately true for a conventional fluores-
cence microscope. Fluorophores are perfect self-luminous point sources
with uncorrelated photon emission. Therefore, they have uncorrelated
phases and Equation 2.12 may be safely used to model image formation.

2.1.3 Resolution and Blurr

A key property of microscopes is their optical resolution. As outlined in
Section 2.1.2, image formation in fluorescence microscopy is modeled as a
convolution of the fluorophore density O(·) with the point spread function
P (·). This smoothes out variations in O(·), i.e. the image appears blurred.
The Rayleigh resolution limit refers to the minimum distance ∆l between
two point sources that still yields a bimodal image. Based on a model
point spread function for an ideal fluorescence microscope, this limit can
be expressed as

∆l =
1.22λ

2NA
, (2.13)

where NA denotes the numerical aperture, which specifies the maximum
angle to the optical axis for which the objective lens can accept in-focus
light.

The Rayleigh limit is based on the visual criterion that two objects do
not appear resolved if the image is not bi-modal. Therefore, it must not
be confused with a strict limit of what can be concluded from an image.
It may in fact be possible to precisely locate the two point sources, or to
decide whether one or two sources are present in an image even if they are
closer together than ∆l. Such a decision can be greatly facilitated by prior
knowledge, such as the relative brightnesses of the sources or the shape of
the point spread function.

A more general quantification of the optical resolution is based on the point
spread function itself. As stated in Section 2.1.2, the image lacks the high
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Figure 2.4: Blurring due to the point spread function reduces the modu-
lation of high spatial frequencies.

spatial frequency information about the imaged fluorophore density (see
Figure 2.4). Using the convolution theorem (Equation. 2.9), Equation 2.12
is reformulated as

Id ∝ F−1{F{O} · F{P}} = F−1{F{O} ·OTF}. (2.14)

The optical transfer function OTF describes the spatial frequency response
of the microscope. It is non-zero only over a finite range of spatial fre-
quencies, which means that only the low-frequency part of F{O} can be
observed. Beyond a certain cutoff frequency, all information is lost (see
Figure 2.5). This view facilitates the understanding of what can be con-
cluded from an ideal image in the best case.

In practice, image noise further obstructs the useful information in an im-
age. Uncorrelated noise has a high-frequency spectrum and may therefore
dominate regions in frequency space where the optical transfer function
has small values.

2.1.4 Digital Images and Noise

In order to observe an image, the flux of photons needs to be integrated on
some detector over a finite time. The intensity is then given by the pho-
ton count divided the integration time and area of the detector element.
In order to achieve spatial sampling, the detector needs to be divided into
small subunits. In the human eye, these subunits are the cone and rod cells
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Figure 2.5: Relation between the modulation transfer function MTF =
|OTF| (left) and the point spread function (right).

that are arranged on the retina. In a digital microscope, these subunits
are photo-sensitive electronic elements, for example charge–coupled de-
vices (CCDs). Charge–coupled devices are essentially capacitors in which
charges are separated by the photo-electric effect. They are typically ar-
ranged on a regular cartesian grid with constant spacing h. The individual
detector elements are called pixels. A digital image is defined as a matrix
I with elements Ii,j , (i, j) ∈ [1, N ] × [1,M ] that correspond to the center
locations (xi, yj) = ((i− 0.5)h, (j − 0.5)h) of the pixels on the detector.

In practice, images are always corrupted by noise. Some of the noise
arises from imperfect processing of the available information, while other
components are due to fundamental physical limitations that can not be
eliminated by clever engineering.

Photon emission is a Poisson process. That is, a constant intensity light
source emits photons at a fixed rate, and the number of photons emitted
per unit of time follows a Poisson distribution. The standard deviation of
the number of emitted photons is equal to the square root of the mean.
This type of noise is called shot noise and it can not be eliminated. Nev-
ertheless, its detrimental effect decreases with increasing mean number of
photons, which can be achieved by longer integration times or brighter
light sources.

Further sources of noise include, but are not limited to, thermal fluctua-
tions, imperfect readout of the CCD, and inaccurate conversion from an
analog to a digital signal. Thermal fluctuations in the detector can cause
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spurious photon detections. The charges in the CCD capacitors need to
be read out and converted to a digital signal, which further increases the
noise level. Readout and conversion noise are typically additive.

In electron-multiplying CCDs the number of charges is increased by an am-
plifier before they are further processed. This reduces the relative impor-
tance of readout and conversion noise. The amplification itself, however,
is not perfect and introduces additional noise with a different distribution.
This may lead to an overall improvement of the image quality for dim
sources.

Due to the many different sources of noise, its distribution in a digital
image is not obvious. Simple models iclude Gaussian additive noise, which
does not depend on the signal (i.e. the expected number of photons), and
Poisson noise, which does.

2.1.5 Deconvolution

As shown in Section 2.1.2, fluorescence microscopy images are formed by
a convolution of the fluorophore density with the point spread function
resulting in a blurred image. Deconvolution [147, 63, 20] is a computa-
tional process that aims at reconstructing the true fluorophore density
from the blurred image. Convolution is a linear operation and the dis-
crete convolution can be seen as a linear transformation of the fluorophore
density. Provided the point spread function is known, it should thus be
possible to solve the system of linear equations of the transformation for
the fluorophore density. It turns out, however, that this inverse problem is
ill-posed, because the solution is not unique and highly sensitive to small
perturbations in the image.

Figure 2.5 illustrates the relation between the frequency response of the
microscope and its point spread function. The point spread function is
band-limited. High spatial frequencies of the fluorophore density are par-
tially suppressed and eventually lost. The solution of the inverse problem
is, therefore, undetermined with respect to the spatial frequencies beyond
the cutoff. Since frequencies beyond the cutoff do not pass the micro-
scope, they can always be superimposed on any fluorophore density with-

52



2.1. MICROSCOPY, DECONVOLUTION, POINT SPREAD
FUNCTIONS, ETC.

out changing the image.

Reconstructing the true fluorophore density requires amplification of the
high spatial frequencies in the image in order to counteract the damping
caused by the optical transfer function. This, however, is highly sensitive
to image noise, since image noise dominates the high frequency spectrum
close to the cutoff. Without any means of regularizing the solution of the
inverse problem, deconvolution thus fails.

In the following sections I will briefly review some common approaches to
regularized deconvolution.

2.1.5.1 Wiener Deconvolution

The idea of Wiener filtering is to only amplify spatial frequencies for which
the signal is not dominated by noise. The fluorophore density is recon-
structed in frequency space as [122]:

F{O} ≈ F{Id} ·
1

OTF
· |OTF|2

|OTF|2 + N

S

, (2.15)

where N and S are the mean power spectral densities of the noise and the
signal (i.e., of O(·)), respectively. Because N/S is non-zero everywhere,
the denominator of Equation 2.15 remains finite. Since S is related to
the unknown quantity O(·), it has to be estimated based on prior knowl-
edge. Therefore, N/S allows to conveniently quantify which part of the
frequency spectrum is significant – or trustworthy. Note that the Wiener
filter implicitly assumes additive Gaussian image noise.

2.1.5.2 Tikhonov Deconvolution

By discretizing both sides of Equation 2.12, one obtains the fluorescence
microscopy imaging model in matrix–vector form

id = Po, (2.16)
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where id and o are the sampled values of the image and fluorophore density
arranged in vectors, and P is the blurring matrix constructed from the
point spread function. Tikhonov filtering (or more specifically Tikhonov
deconvolution) minimizes the functional

Φ(ô) = �P ô− id�2 + λ�Cô�2, (2.17)

where the second term, weighted by the regularization parameter λ (not
to be confused with the wavelength), penalizes high frequency oscillations
dominated by noise. Minimization of Equation 2.17 yields [122]:

ô =
�
P

T
P + λCT

C
�−1

P
T
id . (2.18)

Tikhonov and Wiener deconvolution (Section 2.1.5.1) are closely related
and can be made identical by appropriate choice of C. While in Tikhonov
deconvolution the regularization happens in real space, Wiener deconvo-
lution constrains the solutions in frequency space. Both methods are very
sensitive to the correct specification of the point spread function and do
not ensure positivity of the solution O(·) [122].

2.1.5.3 Iterative Deconvolution

Wiener and Tikhonov filtering, and similar approaches to deconvolution,
find solutions in a single computational step (see Equations 2.15 and 2.18).
In case of non-trivial constraints on the solution (such as positivity) or
non-Gaussian noise models, it may only be possible to construct iterative
algorithms (see [122] for a list of various methods).

Notable conceptual extensions of the two methods discussed so far are
statistical approaches to deconvolution, such as maximum likelihood or
maximum a posteriori deconvolution. The idea is to find the O(·) that is in
best agreement with the data under the given noise model, while fulfilling
the constraints given by the imaging model (e.g. Equation 2.12, positivity
of the solution, etc.) In case of the maximum a posteriori estimator, “best
agreement” also refers to an additional prior on O(·).

54



2.1. MICROSCOPY, DECONVOLUTION, POINT SPREAD
FUNCTIONS, ETC.

A great advantage of these methods is that they yield results that can be
interpreted in a statistical sense. Furthermore, they allow integrating prior
knowledge in more intuitive ways than, for example, the specification of
the term N/S or the matrix C in Wiener and Tikhonov deconvolution,
respectively.

2.1.5.4 2–Dimensional versus 3–Dimensional Deconvolution

In wide-field microscopy, a considerable amount of the blurring can be
attributed to out–of–focus light. Theoretically, this is not different from
lateral blurring within one focal plane, and it is fully defined by a 3D point
spread function. Nevertheless, many deconvolution methods treat the axial
and radial dimensions of 3D images differently. 3D deconvolution methods
require stacks of images that are acquired by sequentially focussing in
different planes along the optical axis.

A simple approach to removing out–of–focus light is to subtract blurred
versions of the images in adjacent planes from each image in the axial stack
of images. Nearest neighbor methods only consider the planes immediately
above and below the current plane of interest. Multi-neighbor methods con-
sider more than one neighbor above and below. No neighbor methods only
consider blurring within, but not between planes. They are hence purely
2–dimensional. Their application is limited to objects with high spatial
frequencies or effectively flat samples [100]. In confocal microscopy, axial
resolution (and to a lesser extent lateral resolution) is greatly enhanced,
and 3–dimensional deconvolution may not be necessary.

2.1.6 Empirical Characterization of Microscopes

Real imaging systems are hardly ideal, as reflected by more or less severe
imperfections. These imperfection include point spread functions with
non-zero widths, chromatic aberration, and lateral variations in the illumi-
nation. Simple protocols for determining the point spread function (Sec-
tion 2.1.6.1), chromatic aberration (Section 2.1.6.2), and lateral variations
in the illumination (Section 2.1.6.3) are hence presented here.
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2.1.6.1 Determining the Point Spread Function

In Section 2.1.5 it was discussed how to improve image quality by decon-
volution. Except for blind deconvolution (which was not discussed), all
deconvolution methods require knowledge about the point spread func-
tion. Some methods are even highly sensitive to its precise shape. The
discrepancy between a theoretical and a measured point spread function
can be quite significant in practice. Whenever possible, empirical point
spread functions should thus be used. A theoretical point spread function
defined in terms of Bessel functions is given in References [89, 47, 122, 61].

Empirical point spread functions can be estimated from images of point-
like fluorescent objects. “Point-like” means that the diameter should be
significantly smaller (say, by a factor of 4) than the typical width of the
model point spread function. For a confocal microscope with NA = 1.4
and emission wavelength λ = 532 nm, the full width at half maximum
of the model point spread function is approximately 461 nm. Therefore,
100 nm fluorescent beads could be used.

Images of such beads (or any other small object) should be acquired with
a high signal–to–noise ratio and fine spatial sampling. If a 3–dimensional
point spread function is needed, image stacks need to be recorded. First,
the (3–dimensional) location of the bead needs to be determined, e.g. by
estimating the intensity centroid [125]. Assuming radial symmetry, the
value of the point spread function is then determined by averaging inter-
polated intensities along concentric circles centered at the intensity cen-
troid [131]. Moving the circles in axial direction allows determining a
3–dimensional point spread function.

2.1.6.2 Quantifying Chromatic Aberration

Chromatic aberration is wavelength-dependent spatial distortion of the
image. The microscope fails to focus different colors originating from the
same source onto the same location in the image. This may corrupt mea-
surements of spatial correlations between objects imagedin different colors.
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The magnitude of chromatic aberrations typically depends on the location
in the image. The lateral shift between the focal points in the image plane
often increases with increasing distance from the optical axis (i.e., the cen-
ter of the image). A simple approach to visualizing the aberration as a
function of location is to image small point sources, such as multi-color
fluorescent beads, in different color channels. The distribution of beads
needs to cover the whole field of view, but individual beads should not
touch. The bead locations can be determined by intensity centroid estima-
tion [125], and subsequently compared across the different color channels.
This yields a map of relative distortions for each pair of colors. If the true
bead location can be determined by other means, absolute distortion maps
can be computed.

In most cases, the (lateral) shifts ∆x and ∆y between colors depend lin-
early on the x- and y-positions of the beads [78]. This allows conveniently
estimating a calibration function by two linear least squares fits to observed
pairs {(xi,∆xi)} and {(yi,∆yi)}. This calibration function can later be
used to correct location estimates of other imaged structures.

2.1.6.3 Lateral Variation in Illumination

For homogeneous illumination of the sample, the observed fluorescence
intensity is roughly proportional to the fluorophore density. This allows
creating maps of protein localization in cells in a straightforward way. In
real imaging systems, however, the illumination is not, or only approxi-
mately, homogeneous. The effect of inhomogeneous illumination can be
corrected as follows: Prior to imaging the sample of interest, the illumi-
nation pattern can be estimated from a calibration sample with spatially
homogeneous fluorophore density. Images of the real sample can then be
normalized with the image of the calibration sample.

2.2 Segmentation of Intra-Cellular Structures

Two approaches to extracting shape information from images can be dis-
tinguished: Image-model-based and object-model-based methods.
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Image-model-based methods extract information directly from the im-
ages. In the simplest case, image transformations are applied to highlight
features of interest such as edges or peaks of intensity. Edges can also be
used to segment the image into fore- and background. A complementary
approach to image segmentation (see e.g. [115] and references therein) is
to fit a model for the statistics of pixel intensities of the fore- and back-
ground, such as the mean intensity within segments, their texture, and
so on. Applications of these methods range from the anatomical to the
molecular scale [39]. A classical problem is the segmentation of images of
cells [141, 38, 93, 29, 135].

The term “image model based” can be understood in the sense that these
methods describe the structure of the data on the level of the images, while
neglecting the image formation process. Therefore, image-model-based
methods rely on the implicit assumption of a one–to–one correspondence
between the features of the image and the true object.

Some authors have pointed out that if the size of the imaged structures is
comparable to the width of the point spread function of the imaging device,
standard image segmentation can not be considered an unbiased estimate
of the object’s shape [141, 38]. That is, the assumption of a one–to–one
correspondence between image features and features of the true object
breaks down. In fact, many intra-cellular structures have sizes on the
order of 10 to 1000 nm, whereas the full width at half maximum (FWHM)
of standard microscopy techniques is in the range of 200 to 500 nm.

While object shapes are obscured by the blurring due to the point spread
function, object symmetries are preserved. For point-symmetric objects
smaller than the FWHM, the observed intensity centroid hence coincides
with the true one. Besides this centroid, however, not much information
can be reconstructed. A similar argument holds for line-like objects, whose
true width needs to be neglected. In these two cases, fitting simple geo-
metric shape models to image features provides good approximations to
the true objects’ locations [23, 125, 87].

For objects that are approximately the size of the point spread function or
larger, outline shape information can be reconstructed if an image model
that accounts for the blurring due to the imaging process is fit to the
observed image. The resulting object-model-based approach tries to
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explain the image in a bottom-up way using (physical) object and imaging
models. The structure of the data is thus explored on the level of the
imaged objects, rather than the image itself.

Reconstructing physical object boundaries from blurred microscopy images
is equivalent to solving a combination of a segmentation and a deconvolu-
tion problem. Deconvolution is known to be ill-posed [131, 122], and direct
linear deconvolution is generally not recommended for sub-cellular struc-
tures [103]. Constrained (or regularized) iterative deconvolution methods
allow enforcing specific behavior of the solution. However, they simply
produce a de-blurred image, leaving the segmentation problem unsolved.

The approach I follow here is to implicitly regularize the deconvolution
problem by the object and imaging models that are used for the solution
of the segmentation problem. The deconvolution is, therefore, just a side-
product [103]. The present approach requires prior knowledge about the
shape of the imaged objects. Such prior knowledge increases the detec-
tion power and regularizes the solution, but it decreases the exploration
power. Here, the prior is encoded in restrictions on the geometrical model
for the imaged objects. Objects are described by their outlines and the
fluorophore density inside the outlines. The outlines are assumed to be
smooth on at least the length scale corresponding to the cutoff frequency
of the microscope, but may also be smooth on larger scales.

Explicit active contours are a widely used image segmentation method
that allows enforcing regularity (smoothness) [72] and topology [30] of
segment outlines. Outlines are parameterized by (piece-wise linear) splines
in a compact way. I use an adaptation of the classical active contour
formulation to solve an iterative constrained deconvolution problem. The
method is well-suited to segment small, compact, intra-cellular structures,
such as endosomes or the Golgi. The method is tested on a variety of
synthetic data (Section 2.2.3). An extensive study of the morphology of
endosomes (Section 2.2.4.3 and 2.2.4.4) and their co-localization with virus
particles (Section 2.2.4.5), as well as a small demonstration on images of
the Golgi (Section 2.2.4.1), are further presented.
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2.2.1 Definitions and Problem Statement

The outline of an object is a curve that approximately describes the inter-
section of the physical boundary of the real object and the imaged plane.
The outline of the k-th object in an image is represented by a piece-wise
linear closed spline through the nk support points v = (x, y)T ∈ R2

Θk = {vk

1 , . . . ,v
k

nk
} , (2.19)

where v
k

nk
= v

k

1 . The set S = {Θk}N
k=1 holds a collection of N objects,

described by their outlines Θ.

The goal of intra-cellular object outline reconstruction is to find a para-
metric description of a set S of outlines of objects, supported by an error-
corrupted digital image Im = I + ε. Given an imaging model I(S), the
parameters Θ of the set S of object outlines have to be found that best
explain the measured image Im, while keeping the complexity of the out-
lines minimal. The imaging model I(S) predicts the image I of the set S
of objects in the absence of noise.

2.2.2 Algorithm

The above parameter estimation problem can be rephrased in the con-
text of classical explicit active contours. The idea of active contours is
to evolve a parametric curve toward “interesting” features in the image,
while ensuring regularity of the curve through internal soft constraints. In
the following sections I describe how to extend the original explicit active
contours framework to deconvolving active contours, and how to use them
to accurately segment small intra-cellular objects from noisy fluorescence
microscopy images.

2.2.2.1 Active Contours

The original idea of active contours is to match a deformable model to in-
teresting image features by energy minimization. The choice of the energy
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functional thus implicitly defines the image analysis task to be solved. The
energy is typically divided into two terms:

E(I,Θ) = Eint(Θ) + Eim(I,Θ), (2.20)

namely an internal energy Eint of the contour Θ, which ensures regular-
ity (smoothness), and an image energy Eim, which is locally minimal on
prominent features of the image I, such as edges. The internal energy
consists of terms Eb and Es for bending and stretching of the contour,
respectively:

Eb(Θ) = β �vn−1 − 2v1 + v2�2

+β
�

n−1
i=2 �vi−1 − 2vi + vi+1�2 and

Es(Θ) = α
�

n

i=2 �vi−1 − vi�2 ,

(2.21)

where the fact that the first and last point of the outline are identical
was used. The parameters α and β allow adjusting the relative weight of
bending, stretching, and image energy. Minimizing the energy functional
in Equation 2.20 gives rise to two independent (for x and y) Euler equa-
tions [72, 25]. In discretized vector form, the Euler equations for inner
points of the outline are:

α (−vi−1 + 2vi − vi+1)

+β (vi−2 − 4vi−1 + 6vi − 4vi+1 + vi+2)

+ (fx(i), fy(i))T = 0,

(2.22)

where fx(i) = ∂Eext/∂xi and fy(i) = ∂Eext/∂yi denote the partial deriva-
tives of the external energy with respect to the location of the i-th support
point vi = (xi, yi)T . For the points vi with i ∈ {1, 2, 3, n − 1, n} the pe-
riodicity of the outline is used to adapt the equations accordingly. The
Equations 2.22 can be written in compact matrix form as:

Ax+ fx(x,y) = 0

Ay + fy(x,y) = 0.
(2.23)

61



CHAPTER 2. QUANTIFYING THE SHAPE AND DYNAMICS OF
EXTENDED INTRA-CELLULAR OBJECTS

A is a pentadiagonal banded matrix that defines the forces acting on the
support points of the outline as a response to local bending and stretching.
Equation 2.23 thus describes a state in which internal and external forces
(as given by the gradient of the image energy) are balanced. An outline
satisfying Equation 2.23 can be found [72] by iterating

xt = (A+ γ1)−1 (xt−1 − fx(xt−1,yt−1))

yt = (A+ γ1)−1 (yt−1 − fy(xt−1,yt−1))
(2.24)

until convergence, where γ is the step size, 1 the identity matrix, and t a
pseudo time.

In the original explicit active contour formulation (not the present adap-
tion), fx(i) and fy(i) only depend on local image features and can hence
be precomputed. (A + γ1)−1 can also be precomputed, since it does not
depend on the current outline. Equation 2.24 is implicit with respect the
internal forces and explicit with respect to the external forces. As long
as the external forces are not too large, large step sizes can be used. For
these reasons, the algorithm in Equation 2.24 rapidly converges to a local
minimum of Equation 2.20.

In Equation 2.24 the external forces appear in only one term, which is
independent from the internal forces. This allows to easily integrate dif-
ferent models. In fact, Equation 2.24 can be seen as a way to regularize
any task of fitting outlines to data. In Section 2.2.2.2 an image energy is
constructed that is small when the outline coincides with the true outline
of an object imaged with a fluorescence microscope. In Section 2.2.2.4 it
is shown how to efficiently compute the gradient of this image energy.

2.2.2.2 Image Energy

The image energy is based on the similarity between the observed image Im
and a model image for a set S of outlines. For now, however, I will restrict
the specification of the model to the case where only one object is present
in the image, that is S = {Θ1}. As long as objects are further apart than
the width of the point spread function, the outline refinement problem for
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multiple objects in one image can be reduced to independent instances of
the single object case. The case of multiple close objects requires a few
extensions that will be discussed in Section 2.2.2.6.

Object outlines enclose regions of high fluorophore density. The fluo-
rophore density O(·) is discretized on a grid with spacing h, that is,
Oh

i,j
= O(ih, jh). Given an outline Θ, the elements Oh

i,j
of the matrix

O
h are defined as:

Oh

i,j
=






c if (ih, jh) enclosed by Θ
(1− d) c if d = D ((ih, jh) ,Θ) < 1
0 else ,

(2.25)

where D is the distance to the outline Θ and c the constant fluorophore
density inside the object. Similar to the simplified Mumford-Shah func-
tional [22], this object intensity function is piecewise constant, but with
linearly decaying intensities at the boundaries, as illustrated in Figure 2.6.
The linear decay makesOh continuous with respect to the outline Θ, which
will be important for stability and convergence of the energy minimization
algorithm (Equation 2.24).

Figure 2.6: Construction of the fluorophore density O
h from an outline.

Bright squares represent large values of Oh

i,j
.

The piecewise linear fluorophore density is favored over more complex mod-
els as it requires estimating only a minimum number of parameters. On
noisy data this increases the robustness of parameter estimation. Ro-
bustness is the central objective if no prior knowledge about the true fluo-
rophore density is available. Robustness of parameter estimation is directly
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related to the regularization of the deconvolution. Similar to Tikhonov de-
convolution (see Section 2.1.5.2), the solution is strongly constrained in real
space, since variations of O are limited by its implicit definition through
the outline Θ.

Image formation in fluorescence microscopy is modeled by a convolution of
the fluorophore density with the point spread function (see Section 2.1.2,
in particular Equation 2.12). In discretized form, the image model is:

I
h(Θ) = O

h ∗ P h, (2.26)

where ∗ now denotes the discrete convolution operator. The convolution
kernel P h is the point spread function of the microscope, discretized with
spacing h. Oh is implicitly defined by the outline Θ through Equation 2.25.
The sample points (ih, jh) can coincide with the pixel centroids of the
measured image Im. In practice, however, finer resolutions h can be used,
which may be beneficial for fitting finer structures in the data. In order
to match the resolution of Im, finely sampled images Ih have to be down-
sampled.

The image energy associated with outline Θ is given by the weighted
squared error between the pixel intensities (Im)i,j and Ii,j of the observed
and model images (assuming the resolutions h match):

Eim =
�

i

�

j

Ri,j

�
(Im)i,j − Ii,j

�2
. (2.27)

The elements Ri,j of the weighting matrix R reflect the trustworthiness
of the measurements Im. If all Ri,j = 1 the image energy is the squared
error between model and observation. Using this error measure amounts to
(implicitly) assuming normally distributed noise with identical variance for
all pixels. As discussed in Section 2.1.4, noise in images is a superposition
of different sources. The fundamental limit is given by the shot noise,
which imposes a Poisson distribution for the number of detected photons.
Due to the conversion of units from number of photons to intensities,
however, the Poisson property is lost. That is, one can not simply assume
that intensities are Poisson-distributed. Additional sources of noise further
complicate the situation, since they may introduce additional normally
distributed noise, or even noise with an unknown distribution. Unless
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detailed knowledge about the distribution of pixel intensities is available, a
conservative choice is to use the squared error. According to the maximum
entropy principle [69], the distribution that best represents the available
knowledge is the one with the highest entropy. If only the mean and the
variance of the noise are known, the normal distribution is the one with
highest entropy, thus justifying the use of the squared error as a measure
of similarity between model and data.

Equations 2.20, 2.25, 2.26, and 2.27 form the deconvolution functional for
“deconvolving explicit active contours”.

2.2.2.3 Determination of the Fluorophore Density

In the previous section the deconvolution functional was introduced. It
involves mapping Θ to O, then I, and finally to Eim. Up to the multi-
plicative constant c, this mapping is fully defined.

In principle, c could be estimated along with Θ, for instance, by alternating
minimization steps of the deconvolution functional with respect to Θ and
c. In practice, however, the constant c is better estimated a priori.

Estimation of c is based on the observation that the central intensity of
imaged objects is related to their true fluorophore density and to their
size. For objects that are far larger than the width of the point spread
function, the fluorophore density can be identified with the intensity φ in
the center of the image of the object (right image in Figure 2.7. Smaller
objects have a central intensity that is reduced by a factor κ.

In order to estimate κ for a given outline Θ, the radial intensity profile
J(r) of the object (Figure 2.7), found by averaging interpolated intensities
along concentric circles around the intensity centroid, is analyzed. This is
the same procedure as the point spread function estimation described in
Section 2.1.6.1, with the difference that now the imaged objects are not
necessarily point sources.

The half width at half maximum (HWHM) r0.5 of J(r) serves as a size
parameter (Figure 2.7). Since the dependence κ = f(r0.5) is not explicitly
known, it is empirically calibrate on synthetic images. These images I

i
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Figure 2.7: Radial intensity distribution of different objects as found by
averaging intensities along concentric circles around the intensity centroid.
As objects get smaller, the radial intensity distribution develops a peak and
the central intensity is reduced.

are generated by convolving (Equation 2.26) fluorophore densities (Equa-
tion 2.25) with the point spread function. The sizes of the objects are
varied and the constant fluorophore density ci remains fixed. For each
synthetic image Ii the size parameter ri0.5 and the central intensity φi is
measured. The calibration function is then computed as κ̄i(ri0.5) = ci/φi.
Based on this function, the object intensity ck of an experimentally ob-
served object k can later be estimated as c = φκ(r0.5) using (linear) inter-
polation. The calibration function κ(r0.5) is valid for all objects, regardless
of their true intensity.

For very small, point-like objects, r0.5 converges to the HWHM of the point
spread function and does no longer vary with object size. Hence, κ(r0.5)
is asymptotically approaching infinity at the HWHM of the point spread
function and estimates of c degenerate. Without a robust estimate of c,
analysis of shapes and sizes of objects is impossible. As discussed above,
estimating c fails when the imaged object is too small. This effect can
be understood in the theory of Fourier optics (Section 2.1.2): The imaged
object can be represented by a power spectrum of spatial frequencies. The
higher spatial frequencies of this spectrum are needed to define the location
of the object boundary. Since the microscope behaves like a low-pass filter
in spatial frequency space, size information is lost. For a very small object,
variations of the size or fluorophore density become indistinguishable in
the image. Hence, these parameters can not be individually determined.
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The analysis of sizes and shapes is, therefore, restricted to objects with
r0.5 above an empirically determined threshold. Depending on the image
quality, this threshold is found to be roughly 1.1–1.5HWHM. Smaller ob-
jects are treated as circles with centers at the observed intensity centroid.
Their radius is chosen as the minimum radius of the calibration objects for
which r0.5 was above the threshold. Fluorophore densities c can be found
by least squares regression on Equations 2.27 and 2.26.

The procedure for determining c relies on the validity of the empirical
calibration function κ(r0.5). Since circular objects are used for calibration,
one must expect a bias in c for objects that are non-circular in reality. As
will be shown in Section 2.2.3, the bias is acceptable for objects that have
a globular, rather than elongated or highly concave, shape.

2.2.2.4 Gradient of the Image Energy

In the classical explicit active contour formulation the image energy – and
hence its gradient – only depends on the location of individual support
points in the image. This allows using a lookup table with precomputed
values of the image energy gradient.

Here, the image energy of the deconvolution functional has a different
structure with respect to the support point locations. As illustrated in
Figure 2.6, outlines determine the fluorophore density O

h, which is the
basis of the image energy. The value of the fluorophore density of the
lower-right pixel in Figure 2.6, for example, depends on the location of
the support points vi and vi+1. Furthermore, the image energy is not
linear in the elements of I, which, according to the image formation model
(Equation 2.26), depend on several elements of Oh. Taken together, the
energetic effect of changing one support point location depends on the local
shape of the outline in a non-trivial way. This requires approximating the
partial derivatives of Eim with respect to the positions vi = (xi, yi)T of all
support points i in each iteration. I use a finite-difference approximation
to the derivatives with respect to the positions of the support points vi of
an outline Θ.

For a given outline Θ the image energy Eim is computed as described
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(Equation 2.27). In order to compute the finite difference approximations
to the gradient, support points vi are moved a small distance s in direction
of the local outline normal ni = ((nx)i, (ny)i)

T , |ni| = 1 (see Figure 2.8).
Moving the support point parallel to the outline does not change the image
energy to a first approximation. The move in normal direction yields a
deformed outline Θ∗. The corresponding fluorophore density O

h

∗ , model
image I

h

∗ , and new image energy Eim,∗ are then computed, and finally:

∂Eim

∂ni

≈ Eim,∗ − Eim

s
. (2.28)

The derivatives with respect to xi and yi follow by projection:

∂Eim

∂xi

≈ (nx)i
∂Eim

∂ni

(2.29)

and
∂Eim

∂yi
≈ (ny)i

∂Eim

∂ni

. (2.30)

The computation of Eim is costly. The cost is high for mainly three rea-
sons: First, constructing O

h requires deciding whether a point (ih, jh)T

is inside the outline or not, which depends on all support points of the
outline. Second, the distance d to the closest point on the outline needs to
be determined for all locations (ih, jh)T close to the outline. Third, the
discrete convolution of Oh with the point spread function (Equation 2.26)
needs to be computed, which scales as N2 ×M2 for a fluorophore density
O

h and point spread function P
h with sizes N2 and M2, respectively.

However, Eim needs to be computed only once in each iteration of the en-
ergy functional minimization. In contrast, Eim,∗ needs to be computed for
each support point in each iteration. An efficient algorithm to determine
Eim,∗ is therefore highly desirable.

Since convolution is a linear operation, the model image of the deformed
outline can be expressed as

I
h

∗ = I
h +∆I

h

∗ , (2.31)

where ∆I
h

∗ denotes the change in I
h caused by the deformation of Θ into

Θ∗. This change is found by computing O
h

∗ from Θ∗, subtracting it from
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O
h, and convolving this difference ∆O

h

∗ with the discretized point spread
function P

h:
∆I

h

∗ = ∆O
h

∗ ∗ P h. (2.32)

As illustrated in Figure 2.8 the deformation of a single support point only
influences a few elements of Oh. The computational cost can therefore be
drastically reduced by only considering locations (ih, jh)T in a small region
around the support points vi−1, vi, and vi+1. This region is given by all
locations contained in a curve that is constructed by offsetting the convex
hull of the original and displaced support points vi−1, vi, and vi+1 outward
by 1h. The cost of computing I

h

∗ thus scales as K ×M2, where K is the
number of elements in O

h that are influenced by moving a single support
point of Θ. This number is proportional to the length of the two outline
segments adjacent to the moved point vi (dotted lines in Figure 2.8). The
total cost of computing a ∆I

h

∗ for all support points is therefore roughly
proportional to the length of the outline, regardless of the number of sup-
port points used. Computation of each Eim,∗ scales as N2. This cost can
be further reduced by only recomputing summands Ri,j((Im)i,j − (I∗)i,j)2

in Equation 2.27 that are changed by the deformation of the outline.

Figure 2.8: Changes of Oh upon changing support point locations are local
and continuous. Bright squares represent large changes in Oh

i,j
.

2.2.2.5 Minimizing the Energy Functional

Given the gradient of the image energy with respect to the support point
locations, Equation 2.24 is used to update the current outline. The step
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size parameter γ is typically a compromise between stability and speed of
convergence. Since the update rule is implicit with respect to the internal
forces, but explicit with respect to the external forces, an upper limit for
γ depends on the magnitude of the largest image energy gradient.

Here, the steps of the algorithm are not directly controlled by γ, but rather
by the sampling distance s used for computing the finite difference approx-
imation of the gradient (Equation 2.28). As long as the displacements of
the support points lower the image energy, the algorithm is stable with
respect to the external forces.

The idea is to bound the support point displacements caused by the image
energy gradient. Ignoring for a moment the internal forces, no support
point should move further than s. This is achieved by adjusting γ such
that the support point i with the largest image energy gradient makes a
step that brings it approximately to vi+sni. Since the effective step made
is proportional to the image energy gradient, all other support points will
make steps smaller than s. No support point will hence move across a
local image energy minimum.

This strategy, however, does not take into account correlations between the
image energy gradients of neighboring support points. As a consequence,
oscillations of the outline may appear. Furthermore, it is desirable to
control the effective step size, rather than only limiting it. A tradeoff be-
tween speed of convergence and oscillations is found by a simple heuristic
for adapting s: Between application-specific upper and lower bounds, s
is increased by a constant factor whenever the image energy was reduced
in two consecutive iterations, and decreased by the same factor otherwise.
This update rule yields a minimization algorithm that quickly moves the
outline over regions of small image energy gradients, but allows for suffi-
ciently fine resolution close to a local minimum.

The stopping criterion of the energy minimization is based on the change
in the outline. This follows the logic that the outline should minimize the
image energy subject to a smoothness constraint, rather than the image
energy alone. The change of the outline is quantified by the mean change
of the support point locations �∆vi� in an iteration. The minimization
algorithm is stopped when this value drops below an application-specific
threshold.
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2.2.2.6 Multiple Objects

So far it was assumed that only a single object is present in the image,
or that objects are well-separated such that their respective images do
not interfere. Due to the blurring caused by the point spread function,
images appear wider than the region with non-zero fluorophore density of
the underlying objects. If two objects are closer than the width w (say,
three times the half width at half maximum) of the point spread function,
some pixels in the image are influenced by both objects (see Figure 2.9A).
Due to the superposition principle (afforded by the linearity of the image
formation model in Equation 2.26), the images add up. The image energy
of one outline is thus no longer independent of the other.

The outlines of groups S of objects with coupled image energies need
to be estimated simultaneously. The algorithm is essentially the same,
except that the reference image energy Eim in Equation 2.28 needs to be
computed on the basis of the joint fluorophore density of the group of
objects. This means that Oh is created for a group of outlines, convolved
with the point spread function, down-sampled (if needed), and then used
in Equation 2.27 to get the image energy. The image energy gradient
is computed with respect to all support points of all outlines before the
outlines are simultaneously updated.

The objects are grouped according to the location of initial outlines (ini-
tialization will be discussed in Section 2.2.2.7). Any two (or more) objects
that influence each other must be assigned to the same group. A solution
to this problem can be found by testing all close objects for mutual influ-
ence and grouping them together if required. If a tested object is already
assigned to another group, groups are merged. For each group a region
of interest is found that includes all pixels in the image influenced by any
object in the group. This yields a decomposition of the image Im into (not
necessarily disjoint) sub-images Ii (Figure 2.9B), which, together with the
corresponding group Si of objects, can be processed independently of the
others.
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Figure 2.9: Grouping of coupled objects (A) and decomposition of the
image into sub-images (B) that encompass all pixels influenced by the
associated group. I1 is associated with S1 = {Θ1,Θ2,Θ3}, and I2 with
S2 = {Θ4}

2.2.2.7 Initialization

Minimization of the energy functional (Equation 2.20) with the algorithm
of Equation 2.24 requires an initial estimate of the outlines. The initial
outlines are important for two reasons: First, they fix the number of ob-
jects in the image a priori, which further regularizes the deconvolution by
drastically reducing the space of possible joint fluorophore densities (that
is, the fluorophore density of a collection of objects). Second, they con-
strain the convergence of the energy functional minimization algorithm to a
nearby set of local minima. Initial outlines can be found by standard image
processing algorithms. In the following, I outline an initialization recipe
that is equally applicable to the benchmark examples in Section 2.2.3 and
the case study considering images of endosomes in Section 2.2.4. It con-
sists of background subtraction, Gaussian filtering and edge highlighting,
and watershed segmentation. Other data may require different recipes or
parameter values.

In a first step, low-frequency background variations have to be removed
from the image since they comprise all non-object-specific signals that
can not be accounted for by the object model (Equation 2.25). I use a
method related to the rolling ball algorithm [139]: For each pixel in the
unprocessed image Im, the local background value is determined as the
most frequently occurring intensity value in square region (typically 15×15
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pixels) centered at that pixel. The so-found background image is then
smoothed with a Gaussian kernel (9× 9,σ = 2) to reduce local variations
(see Figure 2.10, middle). Subtracting the smoothed background image
from the input image (Figure 2.10, left) yields a virtually background-free
image (Figure 2.10, right).

Figure 2.10: Example of background removal from an image of Rab5-
EGFP endosomes in a part of an human embryonic retinoblast (HER) 911
cell. Images are contrast enhanced (but not thresholded).

In the next step, objects are detected in the image by means of image
segmentation. An initial outline is given by the closed path of pixels around
a foreground segment. Images of small globular objects typically contain
one dominant local intensity maximum per object. Each object is therefore
enclosed by a ridge in the spatial gradient or Laplacian of the intensity.
These intensity edges are highlighted by thresholding each pre-processed
image followed by a convolution with a Laplacian–of–Gaussian kernel (5×
5,σ = 0.2). The result is shown in Figure 2.11, left panel. The watershed
transform [149] is then applied to detect pixels that lie on ridges of the edge
image and are, hence, close to the outline of a globular object (Figure 2.11,
right). Connecting neighboring ridge pixels to closed paths yields the
desired initial outlines to single-pixel resolution.
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Figure 2.11: Edge highlighting and watershed segmentation. The edges are
computed from the right image shown in Figure 2.10. Images are contrast
enhanced.

2.2.3 Evaluation

In the following sections the accuracy and precision of the presented algo-
rithm are assessed. The tests are based on synthetic benchmark images
of diffraction-limited objects for which the ground truth is known. Syn-
thetic images were created using the imaging and object model specified
in Equations 2.26 and 2.25, that is, the inferred model was valid. The
benchmarks therefore quantify the sensitivity of the algorithm to experi-
mentally controllable quantities, such as the level of noise in the images,
but not the effect of departure from the model assumptions1. Objects of
different shape are used in order to test which shape features can be ro-
bustly recovered from blurred, noisy images. Furthermore, the sensitivity
to the regularization parameters will be shown in an illustrative exam-
ple. Before the actual benchmark results are discussed in Sections 2.2.3.2
and 2.2.3.3, the protocol for generating synthetic data will be explained in
Section 2.2.3.1.

1For the type of experimental data analyzed in Section 2.2.4, the validity of the
model is questionable. Inspection of the residual of the fitted images, however, allows
assessing to what extent different models could potentially improve the fit.
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2.2.3.1 Generation of Synthetic Images

Synthetic fluorophore densities are generated from ground truth outlines
according to Equation 2.25. The constant fluorophore density c is set to
200 and a background level of b = 20 is added (see Figure 2.12A). Imag-
ing is simulated by a convolution of the objects with a measured point
spread function of a typical experimental setup (full width at half max-
imum was 322 nm), downsampling to original pixel size, and addition of
Poisson-distributed noise (Figure 2.12B and C). In order to add the proper
physical noise level, the (gray-scale) image intensities Ii,j are transformed

to expected photon counts Î using the linear function Îi,j = ηIi,j . Noisy
images are then obtained by sampling a new value for each pixel (i, j) from
a Poisson distribution with parameter Îi,j and transforming back to gray-
scale intensities. By varying η, the signal–to–noise ratio SNR = (c− b)/σc

can be varied, where σc is the noise level in the center of the objects.

Figure 2.12: Generation of a synthetic benchmark image: A fluorophore
density is generated from the ground truth outline (A). The image is gen-
erated by convolution and downsampling (B), and addition of noise (C).
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2.2.3.2 Quantitative Analysis

The performance of the outline reconstruction algorithm is assessed on
two sets of synthetic data. The first set contains images of a circular
object with a diameter of 500 nm, the second set contains images of a
200 to 400 nm wide and 900 nm long pear-shaped object (see Figure 2.12).
Images are generated as described in the previous section, with signal–to–
noise ratios ranging from 7 to 56. N = 250 independent realizations of the
noise process were generated for each true object and SNR.

The accuracy and precision of the fitted position (Figure 2.13), total in-
tensity (Figure 2.14), and shape (Figure 2.15) are quantified. The position
error is defined as the difference between the true and detected x-position
of the intensity centroid. This definition is used in favor of the classical
Euclidean distance in (x, y) because it enables correlating shape asymme-
tries with the position errors in the different directions. The total intensity
error is given by the difference in total intensity (sum of all Oi,j enclosed
by the outline) between the reconstructed object and the true synthetic
object, divided by the total intensity of the true synthetic object. The
shape error is defined as the sum of non-overlapping areas of the true and
fitted outlines, normalized by the area enclosed by the true outline. In Fig-
ures 2.13 to 2.15 the ± standard error interval is shown in the bias plots
(lines without markers) in order to enable visual assessment of the signif-
icance of the estimated bias. Standard errors are given by the estimated
standard deviation divided by

√
N .

For both shapes, precision and accuracy of the measured position are in
the range of a few nanometers (Figure 2.13). The errors in the y-direction
are comparable for the pear-shaped object and identical for circular shapes
(data not shown). The position bias for the circular shape (dashed lines)
is always within the ±1 standard error interval and hence not significant.
A small systematic position bias can be observed for the pear-like shape
(solid lines). This bias is caused by the internal energy of the outline and
the imaging process, which limit the curvature of reconstructed outlines.
For shapes with asymmetric curvature, this systematic under-estimation
of curvature is translated to a small bias in the estimated position. In case
of the pear-like object, this bias is towards the less curved side, because
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Figure 2.13: Position error. Accuracy (bias) and precision (standard de-
viation) of the reconstructed position of a pear-shaped (solid lines with
diamonds) and a circular (dashed lines with crosses). Lines without mark-
ers delimit the ±1 standard error interval.

the extent of the object on the more curved side is under-estimated.

For both shapes the standard deviation of the relative total intensity error
drops below 5% for SNRs larger than 10 (Figure 2.14). The bias, however,
is larger than the standard error, almost always negative, and converges to
about −1%. A part of this bias can be attributed to the stretching term Es

in Equation 2.21, which favors shrinking of outlines and thereby decreases
the integrated object intensity function. The estimation of the constant
fluorophore density c is a further source of bias. This bias, however, in-
creases the estimated total intensity, which partly counteracts the bias due
to shrinking. While the bias caused by shrinking does not drop to zero (see
Figure 2.15), the bias caused by the fluorophore density estimation does.
This explains why the observed overall bias does not decay monotonically:
At an SNR of ≈ 40 both effects are balanced, yielding an overall bias of
zero. At larger SNRs the bias due to the fluorophore density drops to prac-
tically zero and the non-vanishing shrinking bias becomes again apparent.
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Figure 2.14: Intensity error. Accuracy (bias) and precision (standard de-
viation) of the reconstructed intensity of a pear-shaped (solid lines with
diamonds) and a circular (dashed lines with crosses). Lines without mark-
ers delimit the ±1 standard error interval.

Figure 2.15: Shape error. Accuracy (bias) and precision (standard devi-
ation) of the reconstructed shape of a pear-shaped (solid lines with dia-
monds) and a circular (dashed lines with crosses). Lines without markers
delimit the ±1 standard error interval.
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The means and standard deviations of the shape errors of both shapes
converge to values of less than 10% and 3%, respectively (Figure 2.15).
The bending and stretching terms Eb and Es of the internal energy pre-
vent the mean shape error from converging to zero, and the systematic
under-estimation of high curvature causes an additional bias for the more
complex pear-shaped object. Nevertheless, we observe that the recon-
structed outlines visually reproduce well the essential characteristics of
the true outlines, even at SNRs below 15 and therefore shape errors of
more than 10% (Figure 2.16).

Figure 2.16: Reconstruction of an outline from a noisy image. Solid line:
ground truth; dashed line: reconstruction; scale bar: full width at half
maximum of the point spread function, in this case FWHM = 322 nm.
The SNR in this example is approximately 14.

2.2.3.3 Effect of Regularization Parameters

As discussed in the previous section, the regularization of the outline by
the internal energy (Es and Eb) introduces a bias toward less complex out-
lines in the reconstruction. This is because regularization acts to suppress
insignificant undulations in the outlines. Such undulations may reduce the
errors of the reconstruction, but are not robustly estimated and hence not
trustworthy. This is similar to the problem of over-fitting as discussed in
the context of classification in Chapter 1.

Adjusting the weight of the bending energy β (Equation 2.21) allows trad-
ing the accuracy of the outline estimation against its robustness by limiting
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the aforementioned insignificant undulations of the contour. Low values
lead to a higher noise sensitivity (less regularization), but allow better es-
timation of high curvatures, for example at sharp corners of an object. In
order to qualitatively assess this trade-off, outlines are reconstructed from
synthetic images of a triangle generated as described above (Figure 2.17).
As expected, one can observe that low SNRs favor high values of β, and
vice versa. The outline reconstruction is robust over two orders of mag-
nitude of β. Only the most extreme case (β = 0.02, SNR = 5) exhibits
significant shape instabilities. The stretching stiffness α has much less
influence on the final contour (not shown). Higher values lead to faster
convergence of the algorithm and better escape from local minima. At
the same time, however, they bias the outlines to shorter, more contracted
contours. For the data used in the present benchmarks α = 0.005 is em-
pirically found to be a good compromise between the ability to overcome
local energy minima, speed of convergence, and accuracy.

Figure 2.17: Regularized reconstruction of a highly curved outline as a
function of the bending energy weight β and signal–to–noise ratio (α =
0.005 in all cases). White triangles depict ground truth, black lines the
reconstructed outlines. scale bar: full width at half maximum of the point
spread function, in this case FWHM = 322 nm.
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2.2.4 Applications

In this section, the utility of the present algorithm is demonstrated on flu-
orescence microscopy images of different intra-cellular structures, namely
the Golgi complex and endosomes. The demonstrations can be divided
into two groups: In the first group the intention is to illustrate the algo-
rithm’s deconvolution performance on concrete examples. Therefore, the
segmentations, model images, and residuals are shown. This allows visu-
ally assessing the validity of the model assumptions. This case includes
both Golgi (Section 2.2.4.1) and endosome (Section 2.2.4.2) images. The
second group of demonstrations shows the value of the reconstruction al-
gorithm for morphometric measurements of endosomes. Three separate
cases are considered: estimation of shape feature distributions under dif-
ferent experimental conditions (Section 2.2.4.3), quantification of dynamic
shape changes during endosome fusion (Section 2.2.4.4), and quantifica-
tion of correlations between endosome outlines and virus particle locations
during infection of cells with different virus strains (Section 2.2.4.5).

2.2.4.1 Implicit Deconvolution of Golgi Images

Figure 2.18 shows an image of the Golgi complex in a HeLa cell labeled
by fluorescent giantin antibodies. The Golgi is a complex-shaped intra-
cellular organelle composed of membrane stacks of about 5µm size. The
cells considered contained a single Golgi, localized around the nucleus.
Due to optical sectioning, however, it may appear as a few disconnected
entities on the order of 5µm in size. The same image was also used to
demonstrate active mask segmentation [136]. Very similar images were
used to show a new mechanism for the regulation of Golgi size [55]. Such
applications clearly benefit from bias reduction of size estimates by in-
corporating deconvolution into the segmentation procedure. I therefore
show how a coarse, pixel-level segmentation can be refined by the present
implicit deconvolution method.

The outline refinement algorithm is initialized by a rough manual segmen-
tation obtained from Figure 11D in Reference [136]. Since no information
about the point spread function was available, it is modeled as a Gaussian
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Figure 2.18: Reconstructed outlines of the Golgi of a single HeLa cell. The
four disconnected outlines belong to the same Golgi. A magnification of
the area in the white rectangle is shown in Figure 2.19.

with σ = 150 nm. This is a conservative choice for the imaging set-up used
(spinning disk confocal, NA = 1.4, oil immersion).

The outline reconstruction algorithm is run until convergence as described.
The final outlines (Figure 2.18 and magnification in Figure 2.19A) capture
well the morphological characteristics of the Golgi. The estimated outline
in Figure 2.19A shows no obvious signs of over-fitting. The corresponding
model image I is visually remarkably close to the measured image (Fig-
ure 2.19B). Nevertheless, the residual error Im − I (Figure 2.19C) shows
that the model image tends to be too bright in the center of the object and
under-represents the blur around it. This is probably caused by a violation
of assumptions of the imaging model. For example, if the object is out of
focus, the in-focus point spread function is not valid. In this case, a wider
point spread function could potentially decrease the observed difference.
Such adaptation of the point spread function would amount to performing
blind deconvolution.

In some cases, the outlines fail to follow all features of the data. For ex-
ample, the lower left outline in Figure 2.18 appears to be too short. This
can be explained with a very low signal that is not sufficient to generate a
strong image energy gradient. The internal forces are therefore dominat-
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ing, which causes the outline to shrink to brighter regions.

Figure 2.19: Magnification of the reconstructed outline of a part of the
Golgi complex in a HeLa cell (A), model image (B), and residual (C).
Note that a different gray value scale is used in C.

2.2.4.2 Implicit Deconvolution of Endosome Images

The second illustration of the algorithm’s performance considers live HER
911 cells expressing EGFP-tagged Rab5, a protein marker for endosomes.
Endosomes are dynamic lipid-bounded organelles that are formed by in-
vaginations of the plasma membrane [104]. With diameters of about
500 nm, endosomes are much smaller than the Golgi and they appear more
compact. Endosomes are unevenly distributed in the cell and cover a wide
range of sizes and intensities. In some cases, individual endosomes are very
close to one another, which makes the grouping of close objects prior to
simultaneous refinement very important.

Initialized by watershed segmentation (see Section 2.2.2.7), the present al-
gorithm reconstructs the endosome outlines as shown in Figures 2.20 and
2.21A. The point spread function of the microscope (spinning disk confocal,
NA = 1.35, oil immersion, full width at half maximum: 322 nm) was mea-
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Figure 2.20: Reconstructed outlines of endosomes in a live HER 911 cell.
A magnification of the area in the white rectangle is shown in Figure 2.21.

sured from images of sub-diffraction objects as described in Section 2.1.6.1.
Figure 2.21A shows a magnification of complex-shaped endosome outlines
in close vicinity. The outlines follow well the subjective contours in the
images, even for very dim objects. The visual correspondence between
the real and the model image (Figure 2.21B) is remarkable. Unlike in
the Golgi case, there is no clear trend in the residual error and the error
is smaller overall (Figure 2.21C), highlighting the advantage of using the
true, measured point spread function. Except for slight over-estimation of
the central intensity of the large object on the top, the residual error is
dominated by detector noise. While this does not prove the validity of the
model assumptions for endosome images, it shows the limited potential
of more complex models to increase the quality of the fit and to be thus
favored in statistical model selection.
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Figure 2.21: Magnification of reconstructed outlines of close-by endosomes
in a live HER 911 cell (A), model image (B), and residual (C). Note that
a different gray value scale is used in C.

2.2.4.3 Shape Feature Distributions of Endosomes

So far the applicability of the outline reconstruction algorithm has been
demonstrated on a few sample images. In this and the following two sec-
tions I will show the benefits of refining endosome outlines in a larger
explorative experimental study.

Endosomes are highly dynamic structures involved in processes such as
endocytosis and intra-cellular trafficking. The complexity of endosomal
shapes has previously been demonstrated using cryo-electron microscopy
and tomographic reconstruction in fixed samples at high spatial resolu-
tion [60]. In live cells, however, the static and dynamic morphology of
endosomes has not been characterized so far, partly due to difficulties per-
taining to acquiring and analyzing light microscopy images of such small
objects. Endosome morphology could actively or passively be related to
endocytic functions. Therefore, accurate quantification of endosome shape
features is of potential interest.

A large set of live HER 911 cells stably expressing the small GTPase Rab5
tagged with enhanced green fluorescent protein (911-EGFP-Rab5) [121]
are analyzed. Virus particles are used as model cargo to show a potential
interaction between endocytic cargo and endosome morphology. In total
416 cells are analyzed: 201 cells are infected with Adenovirus serotype 2
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(Ad2), and 184 cells are infected with its temperature-sensitive mutant
TS1. In addition, control images of 31 non-infected cells are recorded and
analyzed.

Based on the reconstructed endosome outlines, a set of descriptive shape
features is computed and correlated with the presence of virus particles
in whole cells and individual endosomes. From an originally larger set
of features, four have proven most informative: the area, total intensity,
eccentricity, and concavity of individual endosomes.

• Area is computed as the area enclosed by the outline Θ.

• Total intensity is area multiplied by the estimated fluorophore den-
sity c.

• Eccentricity is computed from the radius of gyration tensor G of
the surface enclosed by Θ. It is defined as the ratio between the
largest and the smallest Eigenvalue of G.

• Concavity is computed from the area Ach of the convex hull of an
outline. It is defined as the ratio (Ach −A)/Ach, where A is the area
enclosed by the outline.

Since the present method is completely automatic, it enables processing
large amounts of data in an unbiased and reproducible way. This leads
to increased statistical significance of the final results. Furthermore, the
algorithm implicitly corrects for the microscope optics, that is, it implicitly
deconvolves images. Therefore, computation of shape the features is robust
and the bias is reduced. The measured distributions of the four shape
features are shown in Figure 2.22 for the control and TS1-infected cells.
Shape feature distributions for Ad2-infected cells are similar to those of
TS1-infected cells and are not included in the plots for clarity.

Using these distributions, the question whether viruses preferentially oc-
cupy endosomes with specific shape features is addressed. Each endosome
is assigned to one of two groups, depending on whether it enclosed at
least one virus particle or not. Comparison of the shape feature distri-
butions of the virus-containing set (“pos.”, green dash-dotted lines) with
the distributions of all Rab5 endosomes (“all”, blue dashed lines) shows
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that viruses are more frequently found in large endosomes with high fluo-
rescence intensity. This preference is significantly stronger than what one
would expect under random placement of the viruses in the cell (“rand.
pos.”, dotted red lines), ruling out a linear dependence of the frequency of
occupation on endosome area. Interestingly, virus-containing endosomes
have a below-average eccentricity, but slightly increased concavity2 (Fig-
ure 2.22C and D) compared to the population of all endosomes in the cell.
Using the randomized virus positions, a clear trend toward higher concav-
ities is observed, which is consistent with the fact that the complex shapes
of outlines can be better resolved on larger scales.

In order to show the benefit of the present outline reconstruction algorithm,
the obtained shape feature distributions are compared to those from the
outlines of the unrefined watershed segmentation (see Section 2.2.2.7). For
the latter, good correspondence between the segmented outlines and reality
is not guaranteed, since no imaging model is used for their construction.

For area and total intensity (data for unrefined outlines not shown), the
shape feature distributions show the same trend when comparing TS1-
containing endosomes to the population of all endosomes, although the
trend is less significant. For concavity, the results look very different (Fig-
ure 2.23). In unrefined outlines (right peak), high concavity (>0.3) is vir-
tually non-existent. Instead, there is a pronounced peak around 0.1, which
can be attributed to the step-like, non-smooth shapes of the outlines. This
significantly reduces the information content of the observations. The in-
set images in Figure 2.23 show a fusion of two endosomes (as I will discuss
in Section 2.2.4.4), with overlaid refined (outer images) and unrefined (in-
ner images) outlines. During the fusion, concavity temporarily increases
from 0 to 0.2. On unrefined outlines, an uninformative change from 0.09
to 0.12 is measured (horizontal distance arrows in Figure 2.23). Detection
of shape change events, such as fusion, may thus depend on the use of
properly refined outlines.

The benefits of using the present outline reconstruction algorithm can be
formally shown by applying statistical tests to the shape feature distri-
butions. A two-sided Kolmogorov-Smirnov test is performed on the null

2Although visually very small, the difference between the distributions is statistically
significant owing to the large number of samples.

87



CHAPTER 2. QUANTIFYING THE SHAPE AND DYNAMICS OF
EXTENDED INTRA-CELLULAR OBJECTS

Figure 2.22: Shape features of Rab5-positive endosomes in HER-911 cells.
Empirical distributions of endosome area (A), total intensity (B), eccentric-
ity (C), and concavity (D) are shown for reconstructed endosome outlines.
Each panel shows the distributions for: all endosomes in non-infected con-
trol cells (solid black lines, N = 4581), all endosomes in cells infected with
TS1 (dashed blue lines, N = 31351), endosomes containing at least one
TS1 particle (dash-dotted green lines, N = 4119), and endosomes contain-
ing at least one TS1 particle with randomized position (dotted red lines,
average N = 3458). Distributions were estimated using a Gaussian kernel
density estimator.
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Figure 2.23: Comparison of concavity distributions from unrefined (right
peak) and refined (left peak) outlines. Inset images compare the shapes
immediately before and after a fusion event of two endosomes (will be
discussed in Section 2.2.4.4). Using refined outlines, a more pronounced
change in concavity is observed (horizontal distance arrows).
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hypothesis that two shape feature distributions are identical. All possible
combinations of the three cases of TS1-infected cells, Ad2-infected cells,
and control virus are tested. All endosomes in each cell are considered,
not only those that actually contain virus(es). This amounts to investigat-
ing whether the presence of virus particles in cells has an overall effect on
endosome shape. These tests are not specific to a certain mechanism that
could cause shape differences. Therefore, they at best allow concluding
that a signal is present that is not accounted for by the null hypothesis.

The results of the pair-wise comparisons are summarized in Figure 2.24.
The p-values are color-coded according to the significance level and the
signs indicate the directions of the shifts of the means. Since large amounts
of data were used, the null hypothesis could be rejected in some cases,
despite the small visual differences between the distributions (Figure 2.22,
“all” versus “control”). By comparing test results between features and
combinations of cells, the self consistency of the tests can be assessed. Test
results for refined outlines (Figure 2.24A) show a consistent picture: TS1
infection significantly changes area, total intensity, and eccentricity (red
and orange colors in first row), but Ad2 infection does not (green and
yellow colors in second row). The third row, comparing TS1 against Ad2,
confirms this result. When using unrefined outlines, the test outcomes are
not self consistent (Figure 2.24B) and do not convincingly support any
conclusion. For example, area and total intensity are correlated quantities
and the color patterns of these two columns should be similar. While this
is the case when using refined outlines, the patterns for unrefined outlines
look opposite.

2.2.4.4 Fusion of Endosomes

Using time-lapse microscopy of live cells, dynamic morphological changes
of endosomes can be observed. The required high temporal resolution
can only be achieved at the expense of a low signal–to–noise ratio, which
challenges outline reconstruction. In order to capture the dynamics of
endosome fusion events, 2.2µm thick z-stacks, comprising 4 images each,
were recorded in the cell periphery at high frequency (25 stacks/s) on a
spinning disc confocal microscope. After acquisition, the image stacks
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Figure 2.24: Self consistency of statistical tests on the shape feature distri-
butions. The p-values of two-sided Kolmogorov-Smirnov tests of the null
hypothesis of identical distributions are shown (color codes significance
level). First row: all endosomes in TS1-infected cells (“all” in Figure 2.22,
N = 31351) versus control cells (“control” in Figure 2.22, N = 4581 endo-
somes); second row: all endosomes in Ad2-infected cells (N = 34323) ver-
sus control; third row: TS1-infected cells versus Ad2-infected cells. Signs
mark the direction of the trend with a (+) denoting that the first condi-
tion ha a larger mean feature value than the second one, and a (−) the
opposite. A: refined outlines; B: unrefined outlines.
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were reduced to single images by maximum projection [120]. Selected
frames of a movie are shown in Figure 2.25A. Outlines of the endosomes
were reconstructed in each frame of the movie and individual detections
were linked over time [125], yielding endosome trajectories.

Dynamics of endosome shapes and fusion events are quantified by the time
evolution of the area, total fluorescence intensity, eccentricity, and concav-
ity of the involved endosomes (see Section 2.2.4.3 for definitions of the
shape features). Because the algorithm implicitly corrects for the micro-
scope optics, computation of shape the features is robust and unbiased
(see Section 2.2.4.3).

The dynamics of the endosome shape features computed from refined out-
lines are shown in Figure 2.25B. Pronounced changes in endosome shape
features are associated with topological and morphological changes of the
endosomes. At 0.92 s, a large endosome (Figure 2.25A, red outline) rapidly
approached an immobile one (blue outline) until the two structures could
no longer be resolved. At 1.08 s, the algorithm detected only a single
outline. In the following, the endosome remained stationary before it
coherently displaced along a linear track as a single entity (4.08 s). We
conclude that the merged object represents a fused endosome with dif-
ferent dynamic behavior. A transient peak in concavity and eccentricity
during about 120ms marked the fusion event (Figure 2.25B, blue lines).
As expected, the area increased upon fusion, and the total fluorescence
intensity of the fused endosome matched the sum of the two pre-fusion
intensities (Figure 2.25B, red line and blue line). In contrast, the features
of a stationary endosome remained constant (green lines).

Changes in area and intensity, together with the sharp peaks in concavity
and eccentricity, can be used as hallmarks of fusion events. Note that fu-
sions are very fast events and that, therefore, high temporal resolution is
required to detect the accompanying transient changes in morphological
features. The outline reconstruction algorithm enables automatic, unbi-
ased, and reproducible estimation of shape features at high resolution. It
therefore provides a prerequisite for detecting and analyzing fusion events.
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CHAPTER 2. QUANTIFYING THE SHAPE AND DYNAMICS OF
EXTENDED INTRA-CELLULAR OBJECTS

2.2.4.5 Co-localization of Viruses and Endosomes

The last application considers trafficking of virus particles through the
endosomal network. Virus trafficking can be monitored by quantifying
the co-localization of endosomal and viral markers [13]. The same data
as in Section 2.2.4.3 is considered: HER 911 cells infected with either
Adenovirus serotype 2 or its temperature-sensitive mutant TS1. TS1 visits
early endosomes like wild-type Ad2, but fails to escape to the cytosol and is
instead delivered to late endosomes and lysosomes [43]. Figure 2.26 shows
the two color channels overlaid for a cell imaged 10min post infection. The
overlay shows that some viruses seem to co-localize with Rab5. The degree
of co-localization and its significance, however, can not be estimated by
eye.

Figure 2.26: Two-color fluorescence microcopy image of endosomes (green:
EGFP-Rab5) and virus particles (red: TS1-atto647).

By reconstructing endosome outlines an estimatiing of virus positions, the
image data are transformed to sets of discrete objects. In this representa-
tion, “co-localization” is defined as the fraction of viruses that are enclosed
by an endosome outline. As in Section 2.2.4.3, the results are compared
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to those obtained using unrefined outlines as found by watershed segmen-
tation. While the unrefined outlines are certainly correlated with the true
outlines, they are likely to be biased and more sensitive to variations in
individual pixel intensities. Figure 2.27 supports this argument: Consid-
ering the blurring introduced by the microscope point spread function, the
unrefined outlines are clearly too wide.

Figures 2.28A and B show histograms of distances of viruses to the nearest
endosome outline in the cell shown in Figure 2.27. The distribution from
unrefined outlines (A) has a broader peak and is shifted toward smaller
distances when compared to refined outlines (B). In order to test how
these differences affect the final results, the co-localization scores of virus
particles and Rab5-positive endosomes are determined using either refined
or unrefined outlines. It is known that Ad2 escapes from an endosome
soon after internalization [53]. We thus expect little co-localization of Ad2
with Rab5. In contrast, the signaling-incompetent mutant TS1 is known to
reside in early endosomes and lysosomes during the first hour of entry into
cells [28, 52, 43], probably yielding a transient, but long-lasting, increase
in co-localization with Rab5.

Colocalization scores were determined for 201 (Ad2) and 184 (TS1) cells,
each imaged at a single time point between 0 and 45min post infection.
In order to estimate the degree of unspecific co-localization, controls with
randomized virus positions were performed. The means and standard devi-
ations of the co-localization scores are estimated using a Nadaraya-Watson
kernel estimator with bandwidth h = 3min [132] and plotted versus time.
For the kernel estimation, individual co-localization scores were weighted
proportionally to the number of viruses detected in the respective cell. The
time courses of Ad2 and TS1 co-localization with Rab5-positive endosomes
are shown in Figures 2.28C and D. The level of unspecific co-localization
that would be expected under random placement of viruses was approxi-
mately 1 to 5% for refined outlines and 2 to 10% for unrefined outlines.

The mean co-localization score for Ad2 remains fairly constant on a compa-
rably low (but above background) level of less than 10% when using refined
outlines (Figure 2.28D, lower line). The score for TS1 (Figure 2.28D, upper
line) shows an increase from 12 to 20% between 10 and 20min post infec-
tion and then remains high throughout the observation period. For both
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viruses, the ±1 standard deviation intervals (light gray areas) are narrow
and do mostly not overlap (dark gray areas). In summary, Ad2 and TS1
show co-localization signatures with refined outlines that are significantly
distinct in magnitude and dynamics and that are in good agreement with
prior observations [53, 52, 43].

This picture is much less clear when using unrefined outlines. While the in-
crease around 15min post infection is still apparent for TS1 (Figure 2.28C,
upper line), the score for Ad2 (Figure 2.28C, lower line) increases faster
from 0 to 45min post infection than when using refined outlines (Fig-
ure 2.28D). Compared to the results based on refined outlines, larger means
and standard deviations are observed (gray shaded areas) for both viruses.
The ±1 standard deviation intervals significantly overlap during the en-
tire observation period (dark gray areas), which makes it more difficult to
distinguish between the two viruses with fewer data points. In summary,
the qualitative and quantitative trends seen in Figure 2.28C are less clear
than the results in Figure 2.28D, which, owing to their agreement with
prior observations, must be considered more trustworthy. This demon-
strate the benefits of using the present outline refinement algorithm in
biological studies.
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CHAPTER

THREE

Quantifying Interactions between
Intra-Cellular Objects

This chapter describes a collection of methods for statistical inference of
interactions between intra-cellular objects from correlations in their spatial
locations.

Quite generally one could state that cellular function results from the com-
bined interactions of sub-cellular structures in space and time. The study
of the spatial localization of sub-cellular structures has therefore attracted
great attention [8]. Interactions typically manifest themselves through sta-
tistical dependencies in the spatial distributions of the involved structures.
In this view one can define interaction as the collection of all effects that
cause significant (above the level predicted by a null hypothesis) corre-
lations in the positions of the participating objects. “Interaction” does
then no longer refer to some specific process (for example protein–protein
interaction), but is rather an abstraction that can be used to describe so
far unknown processes.
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Over the last decades, advances in fluorescent markers have enabled prob-
ing interactions of sub-cellular structures in the microscope, either directly
or indirectly. The direct approach relies on experiments that generate a
signal upon the proximity required for molecular interaction, for example
Förster resonance energy transfer (FRET) or bioluminescence resonance
energy transfer (BRET) [48, 68, 116]. The idea of these methods is that
the energy of the excited state (see Section 2.1.1) of a donor chromophore,
Md, is non-radiatively transferred to an acceptor, Ma. Md and Ma must
have significantly different emission and excitation spectra, but the emis-
sion spectrum of Md and the excitation spectrum of Ma need to overlap in
order to allow resonance transfer. All wavelengths other than the emission
spectrum of Ma are shielded from the detector. Detection of a photon then
means that resonance energy transfer has occurred. Since resonance en-
ergy transfer requires a proximity on the order of nanometers, a molecular
interaction is often concluded from a positive signal.

The indirect approach is based on independently imaging two populations
of interest, and searching for clues of interaction in their spatial distri-
butions. The paradigm that spatial proximity (or co-localization) is a
hallmark of many types of physical and chemical interactions between
sub-cellular structures is central to the indirect approach. If two or more
structures interact, their spatial distributions should appear correlated.
The reverse, however, is not necessarily true. Presence or absence of sig-
nificant co-localization does not imply presence or absence of interaction.
The reason is that co-localization depends on the specific interaction mech-
anism: An unobserved third structure may act as a confounding factor (in
the statistical sense), making the observed structures appear co-localized
even though they do not interact directly. Furthermore, one can imagine
interaction mechanisms that lead to spatial distributions with correlations
that are not captured by simple co-localization measures. Hence, the in-
teraction has to be statistically inferred from the data.

Such inference, however, entails a trade-off between the objectives of pat-
tern discovery and statistical detection power. According to these objec-
tives, two complementary approaches to co-localization analysis can be
distinguished: Intensity correlation methods capitalize on pattern discov-
ery [27], whereas object-based methods [13] emphasize detection power.
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3.1. INTENSITY CORRELATIONS

Intensity correlation methods (Section 3.1) quantify correlations in the
intensities of different color channels in individual pixels. Intensity cor-
relation methods are straightforward to implement and use. The results,
however, may be difficult to interpret since interactions need to be inferred
from correlations in intensity space, which is sensitive to the blurring and
noise inherent to microscopic imaging systems [2]. The intensity-based
approach is limited to interactions on a spatial scale on the order of the
resolution of the microscope.

Object-based methods (Section 3.2) quantify the spatial relationships be-
tween sets of discrete objects. This requires reducing the image to a set
of geometric objects using, e.g., image segmentation or fitting of struc-
ture models. Object-based approaches infer interactions from correla-
tions in physical space, which allows constructing intuitive and simple
co-localization measures, such as counting the number of overlapping ob-
jects [13]. Nevertheless, they crucially depend on reliable methods to ex-
tract object descriptors from images. To what extent positive co-localiza-
tion implies the presence of interactions, however, remains unclear.

In Section 3.2.2 a statistical model for the distances between potentially
interacting objects is presented. Based on this model, the link between
co-localization measures and interaction is established. The model al-
lows addressing many frequently encountered data analysis tasks using
standard statistical procedures, as demonstrated here on a large variety
of examples that consider the virus–endosome dataset used in Chapter 2
(Section 3.2.5).

3.1 Intensity Correlations

The fundamental premise of intensity correlation methods is that spatial
proximity of the imaged objects is manifested in correlations between the
intensities of the different color channels in individual pixels of an image.
In typical microscopy setups, the images are sampled with inter–pixel spac-
ings of roughly 1/3 the width of the point spread function. Objects that
are closer than the width of the point spread function will thus create
correlated pixel intensities. In a scatter plot of pixel intensities in the two
color channels, pixels close to co-localized objects will therefore appear
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along a line close to the principle diagonal. The closer the objects and
the larger their number, the higher the number of pixels with correlated
intensities. Other pixels will, however, create a background signal of un-
correlated intensity values. These pixels may, depending on their relative
frequency, obscure true correlations. Figure 3.1 shows an example of a
scatter plot of pixel intensities from the virus–endosome image shown in
Figure 2.26.

Figure 3.1: Scatter plot of single-pixel intensities of the image shown in
Figure 2.26. x-axis: intensities in the image of Ad2 virus particles; y-axis:
intensities in the image of Rab5-positive endosomes.

Since microscopy images result from an imperfect process, individual light
sources appear blurred, noisy, and will have possibly different intensities
depending on their location in the field of view (see Section 2.1.6). These
effects directly impact the scatter plot of pixel intensities, which may ham-
per analysis [155, 13, 27]. Assume a red-green dual color image is given,
where each color corresponds to a different type of object. The simplest
measure of co-localization is the sample Pearson correlation coefficient :

r =
1

N − 1

N�

i=1

�
Ri − �R�

sR

��
Gi − �G�

sG

�
, (3.1)

where Ri and Gi are the red and green intensities of the i-th pixel, �R�
and �G� the mean red and green intensity, and sR and sG the standard
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deviation of the red and green intensities. Many improvements over this
basic measure have been proposed that allow detecting a larger variety
of correlations, and that are less sensitive to imperfections in the input
images [13, 27].

According to the definitions in Reference [13], Figure 3.1 does not support
the conclusion of any significant co-localization of endosomes with Ad2
virus particles. The Pearson correlation coefficient, for example, is nega-
tive. This may change if the images are carefully preprocessed in order to
reduce the number of background pixels in the scatter plot. Nevertheless,
the results remain difficult to interpret since the co-localization, and hence
the potential interaction, of the imaged objects needs to be inferred from
correlations in intensity space.

A peculiar property of intensity-based co-localization analysis is related
to the optical resolution of the imaging device. The blurring and noise
inherent to microscopic imaging systems influence the intensity correla-
tion in a non-trivial way [96, 2]: Depending on the distance between the
objects and on the noise level, an increase in optical resolution may both
increase or decrease the observed intensity correlation. In that sense, the
imaging device, rather than a design decision in the analysis, implicitly
defines the length-scale on which interactions can be detected. A further
complication is related to chromatic aberration [41] (see Section 2.1.6.2):
Shifts between the images in the different color channels directly influence
intensity correlations. Image registration has to be performed to correct
for this artifact. Owing to their simplicity, intensity correlation methods
are nevertheless popular tools for pattern discovery.

3.2 Object-Based Interaction Analysis

Object-based approaches to inferring interactions work on the level of the
locations of objects. The statistics used to describe interactions are there-
fore constructed from correlations in the same space (the physical space)
in which the interactions take place. While this makes the statistics more
intuitive, it requires a transformation from pixel images to discrete object
representations.
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The object-based approach is not necessarily limited to any particular
length scale; a spatial scale is nevertheless assumed in practice. This is
because many object-based co-localization methods rely on a hard thresh-
old for the distances between objects in order to distinguish “co-localized”
from “not co-localized” for each individual pair of objects [13]. The choice
of distance threshold greatly influences the types of interactions that can
be reliably detected. The actual physical or chemical interaction between
sub-cellular objects may be of short temporal duration and the objects
may quickly separate thereafter. In such situations, high thresholds can
increase the detection power, but only at the expense of increased false-
positive rates. When interactions take place over long distances, the choice
of threshold implicitly determines a range limit of the analysis.

Apart from fixing the interaction scale a priori, using a hard distance
threshold also implies a binary distinction of pair-wise distances: either
they are below the threshold and hence the objects are assumed to inter-
act – or they are not. A co-localization percentage thus corresponds to an
indirect measure for the preference of “interaction” over “non-interaction”.
This preference reflects the strength of the interaction. However, it also de-
pends on the frequency of possible distances that the population of objects
can assume. More specifically, the cellular context in which the interac-
tions take place is a confounding factor. A high co-localization percentage
can, for example, be observed in a cell with densely packed sub-cellular
structures of interest, irrespective of their actual interaction strength. This
artifact needs to be considered in statistical tests [154] or corrected for in
order to construct an interaction score [83].

3.2.1 Classical Co-localization Measures

Object-based co-localization measures are typically constructed for two
sets of objects X = {xi}Ni=1 and Y = {yj}Mj=1. These objects are located
in a bounded region Ω ⊂ Rn with boundary ∂Ω and dimensionality n
(usually 2 or 3; see Figure 3.2). Each object i (j) is represented by a feature
vector xi (yj) that comprises information about the object’s position and,
if available, its size and shape. These feature vectors are extracted from
image data by using image segmentation or fitting of structure models.
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Figure 3.2: Illustration of co-localization analysis based on nearest neigh-
bor distances (arrows) between point-like objects X = {xi}Ni=1 (dots) and
circular objects Y = {yj}Mj=1 (solid circles). The expected co-localization
in the absence of interactions, Ct

0, is proportional to the area enclosed by
the t-isoline (gray region).

Suppose one wishes to investigate the interaction between the objects in
X and Y , one can define for each xi the distance to the nearest neighbor
(NN) in Y ,

di = min
j

{d (xi,yj)} . (3.2)

The function d(·) is a suitable distance function in feature space, for ex-
ample the Euclidean distance between point-like objects or the minimum
distance between outlines of more complex objects. A nearest–neighbor
distance distribution p(d) can then be estimated from the set of distances
D = {di}Ni=1. p(d) is the probability density function for observing a cer-
tain nearest–neighbor distance in ∆d about d in the given cellular context
as caused by the interaction process. The classical overlap or nearest-
neighbor-distance co-localization measure Ct follows by counting [83]:

Ct =
1

N

N�

i=1

1(di < t)
N→∞−−−−→

�
t

−∞
p(d)dd , (3.3)

where 1(·) is the indicator function and t an application-specific distance
threshold. The form of Equation 3.3 implies assumptions about how the
objects in X and Y interact. The interaction process is considered to be
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translation and rotation invariant since only the distance between interact-
ing objects is taken into account, whereas the location and the orientation
of the objects play no role. Based on this distance, only two categories of
positions of the objects in X are distinguished: either they are sufficiently
close to any object in Y to be considered interacting, or they are not.
Furthermore, objects in X interact with at most one object in Y and they
do not experience the presence of any yj unless they cross the distance
threshold t. The choice of t reflects an (implicit) assumption about the
length scale of the interaction to be detected.

When the distance threshold can not be justified by prior knowledge, the
usual approach is to chose it in a systematic way. In the current for-
mulation, the overlap measure is a descriptive statistic. This statistic,
however, is not based on a statistical model, but rather on an ad-hoc defi-
nition. Therefore, it is not possible to directly apply standard procedures
of model selection. Such procedures allow selecting the optimal model (in
a statistical sense) out of a collection of models.

3.2.1.1 The Cellular Context

Inferring interactions from an observed co-localization measure Ct is not
trivial since Ct > 0 does not necessarily imply any interaction between the
objects. This is because spatial correlations can also be caused by con-
founding factors, such as the cellular context {Ω, Y }. Even if the objects in
X and Y do not interact, there is a non-zero probability that any possible
distance in an interval ∆d about di is observed. Y is arbitrarily chosen as a
reference in order to compute the relative frequencies of possible distances
(the state density) as:

q(d) = lim
∆d→0

Prob(di ∈ [d, d+∆d]|“no interaction”, Y )

∆d
. (3.4)

This density q(d) is determined by the positions, sizes, and number density
of the objects in Y (see Figures 3.2 and 3.3). Independent, uniformly ran-
dom positions result in a relatively wide density q(d) (Figure 3.3B). With
regularly placed objects Y , large distances do not occur (Figure 3.3A).
Clustering increases the frequency of long distances at the expense of short
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distances (Figure 3.3C). Objects with large surfaces or a large number den-
sity give rise to shorter distances. In case there are interactions between
the objects in X and Y , some of the possible distances are additionally
favored over others, deforming the density q(d) to p(d). This deforma-
tion is typically more pronounced for stronger interactions. However, the
interaction may also fail to yield a significant effect for certain functions
q(d): If, for example, the interaction takes place only at extremely short
distances, the state space corresponding to these distances might be so
small that hardly any effect is observed.

Figure 3.3: The cellular context determines the state density q(d). For
all distances d, q(d) is proportional to the total length of the d-isoline
(dashed lines) in Ω. (A)-(C) Effect of the positioning of the objects Y on
q(d), illustrating the influence of the cellular context..

The co-localization measure Ct is, therefore, not sufficient to separate the
contributions from the cellular context and the interactions. Information
about the interactions is only contained in the deviation from an expected
base-level in the absence of interactions. This base level, say Ct

0, is the
co-localization measure that would be observed under the hypothesis H0:
“no interaction”. I can be obtained by letting p(d) = q(d) and numerically
evaluating the integral in Equation 3.3. In Figure 3.2 the gray regions
represent the part of the domain Ω that contributes to Ct

0.
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3.2.1.2 Estimating the State Density

The state density q(d) reflects the abundance of distance d in a given cel-
lular context defined by the cell boundary ∂Ω and the objects Y contained
therein. Each object xi ∈ X, interacting with the objects in Y , will end
up somewhere in Ω. The distance di associated with the location of x in
Ω depends on the interaction and the frequency with which this distance
is present in Ω. Knowing Ω and Y , q(d) is fully determined. In some
cases, however, the locations of Y might not be known explicitly, but only
in a statistical sense. For a few stochastic processes generating the loca-
tions of the objects in Y analytical expressions for the expected q(d) can
be found. For example, if M circular objects with constant radius R are
uniformly randomly placed in Ω (that is, they are generated by a Poisson
process that is conditioned by the number M of events), the state density
is approximately given by [32]:

q (d) ≈ 2π(d−R)
M

|Ω|M
�
|Ω|− π(d−R)2

�M−1
, (3.5)

where |Ω| denotes the area of the domain Ω. Figure 3.3B illustrates such a
situation. The sketched state density roughly corresponds to the shape of
the above expression. Note that the above approximation is only valid in
two dimensions. Boundary effects are not taken into account, and objects
y may be overlapping. Therefore, the approximation is inaccurate for
small domains or high object densities.

Departure of p(d) from the expected state density q(d) may result from
two (independent) effects: one is a potential interaction between objects in
X and Y ; the other is that the objects in Y are not distributed according
to the model used. Usually, the former is of greater interest than the
latter, and it may thus be favorable to use all information about Y that is
available.

Given knowledge about both Ω and Y , the state density can be determined
by a straightforward sampling procedure: Positions x in Ω are sampled
exhaustively on a uniform Cartesian grid with spacing h. h can be smaller
than the resolution of the images from which the objects Y were extracted.
In following, h = 0.25 pixels is used. For each xi, the distance di to

108



3.2. OBJECT-BASED INTERACTION ANALYSIS

the nearest neighbor in Y is then computed. Using this finite sample of
distances D = {di}i, an approximation of q(d) can be found by any density
estimation technique, for example Gaussian kernel density estimation.

3.2.2 Theoretical Distance Distribution

As stated in Section 3.2.1.1, information about interactions is only con-
tained in deviation of the observed co-localization – or distribution of dis-
tances – from a base-level that has to be expected in the absence of inter-
actions. For the overlap measure, this base-level, Ct

0, is the co-localization
measure that would be observed under the hypothesis H0: “no interac-
tion”. Under no interaction, all objects in X would be distributed in Ω
according to a stochastic process that is independent of the objects in Y .
In this view, any statistical dependence between the objects in X and Y is
a result of an interaction. This allows defining interaction as the collection
of all effects that cause significant correlations between the positions of the
objects in X and Y .

How does a certain deviation from the base level Ct

0 relate to interactions
between the objects, and what deviations can be considered significant?
Ideally, an interaction score is independent of the cellular context and
reflects variations of the true interaction strength in a monotonous fashion.
The first step toward constructing such a score is a precise definition of
the term interaction strength in the context of an interaction model.

The development of models for the spatial distribution of interacting ob-
jects has attracted considerable attention in the study of ecological sys-
tems. Such models are closely related to the mathematical theory of spatial
point process analysis [140, 32, 107]. Spatial point process (SPP) analysis
is a standard statistical framework for studying the spatial distribution of
interacting objects. SPP analysis is well-known in ecology, for example in
forestry, where the two main branches of SPP, namely descriptive statistics
and models for pattern-generating processes, are extensively used. In a re-
cent work on endocytosis [26] a variant of Ripley’s K-function [32], which is
a descriptive SPP statistic, was used to quantify spatial correlations in the
intra-cellular localization of endosomes. A related approach has been used
to quantify clustering of GLUT4 storage vesicles in rat adipose cells [91].
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The present interaction analysis is derived from the general binary Gibbs
process with a fixed number of objects, which is a standard model for spa-
tial point pattern generation. The central component of the Gibbs process
is an effective pair-wise interaction potential Φ(·). In many applications,
including the present, “interaction” is an abstraction of the different ef-
fects that collectively cause an observed spatial pattern. Nevertheless, the
mathematical form of the Gibbs process relates to physical models of in-
teracting objects. The interaction potential associates an energy level with
each pair {i, j} of interacting objects. The probability density of the Gibbs
process for two sets of interacting objects, X and Y , has the shape of a
Boltzmann distribution:

p (X,Y ) ∝ exp



−
N�

i=1

M�

j=1

Φ (xi,yj)



 , (3.6)

i.e., configurations with lower energy occur with higher probability. Equa-
tion 3.6 implies mutual independence of the objects within the same set X
or Y , in agreement with the assumptions formulated in Section 3.2.1. For
nearest–neighbor interactions, the interaction potential can be defined as:

Φ (xi,yj) =

�
φ (di) if yj is NN of xi

0 else ,
(3.7)

where the function φ(d) specifies the strength and distance dependence of
the interaction.

Let’s assume a cellular context {Ω, Y } is given. The probability density
p(X|Ω, Y ) for the potential in Equation 3.7 then only depends on the
nearest–neighbor distances di. An inner sum over all j, as in Equation 3.6,
is then not required. The mutual independence withinX allows factorizing
p(X|Ω, Y ) into terms that only depend on a single di each:

p (X|Ω, Y ) =
N�

i=1

p (xi|Ω, Y ) ∝
N�

i=1

exp (−φ (di)) , (3.8)

where, unlike in Equation 3.6, an explicit dependence of the potential on
xi is no longer present.
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The probability of observing a certain xi is proportional to exp (−φ (di)).
That is, as a consequence of the definition of the potential (Equation 3.7),
the Gibbs density only depends on the distance di associated with the
location xi. The probability of observing a certain di, however, also de-
pends on how frequently an arbitrary object is found at any location x

that is a distance di away from the nearest object in Y . This frequency is
given by the state density q(d) as given in Equation 3.4. Straightforward
calculations yield:

p (d|Ω, Y ) = p (d|q) = Z−1q(d) exp (−φ (d)) . (3.9)

The normalization constant Z (the partition function) renders p(d|q) a true
probability density function. Z is defined by an integral over all possible
distances in [dmin, dmax]:

Z =

�
dmax

dmin

q(d) exp (−φ (d)) dd . (3.10)

In the present model, Z can be obtained by one-dimensional numerical
integration. This allows easily evaluating p(d) for different model param-
eters. This property follows directly from the restrictions made to the
general Gibbs process, in particular fixing M , considering only nearest–
neighbor interactions, and dropping the position dependence of the po-
tential. In the general Gibbs process, parameter estimation is much in-
volved [10, 6] since computation of Z requires solving a high-dimensional
integral. In the present framework standard estimation techniques can be
used.

So far, no particular shape of the interaction potential φ(·) has been spec-
ified. The interaction potential can be modeled parametrically or non-
parametrically. A specific choice constitutes a hypothesis or assumption
about the range, strength, and distance dependence of the interaction. In
the following parameterization, these three aspects are represented inde-
pendently:

φ(d) = � f

�
d− t

σ

�
. (3.11)

The parameter � is the interaction strength, f encodes the functional
shape, σ defines the length-scale, and t is a shift along the distance axis of

111



CHAPTER 3. QUANTIFYING INTERACTIONS BETWEEN
INTRA-CELLULAR OBJECTS

the interaction potential. Using Equations 3.9 and 3.11, the joint proba-
bility density of observations D = {di}i can be specified as:

p (D|q) = Z−N

N�

i=1

q(di) exp

�
−�f

�
di − t

σ

��
. (3.12)

This is the central class of models used here to extend co-localization
analysis to interaction analysis. All parametric interaction models are
formulated as specific instances of this class of models.

In order to understand how, for example, the classical overlap measure re-
lates to an interaction process, a corresponding interaction potential needs
to be found. Indeed, the assumptions underlying the simple overlap co-
localization measure can be formalized in a specific interaction potential.
As discussed, the overlap measure only distinguishes two categories of dis-
tances (d < t and d ≥ t; Equation 3.3). This implies a step-function for
the shape f(z) of the interaction potential φ(d):

φst(d) = � f st(d− t) with

f st(z) =

�
−1 if z < 0
0 else .

(3.13)

For the step-potential, the parameters t and σ are redundant. Rescaling
of distances is therefore prohibited by setting σ = 1, which renders t the
distance threshold. Irrespective of whether the step-potential is physically
(or biologically) relevant, it reflects the implicit assumptions underlying
the co-localization measure Ct. Having phrased these assumptions in a
statistical model makes it possible to investigate how the co-localization
measure Ct represents interactions.

Using the integral definition in Equation 3.3, the co-localization measure
Ct can be expressed as a function of the interaction strength:

Ct = Z−1

�
exp(�)

�
t

dmin

q(d) dd+

�
dmax

t

q(d) dd

�
, (3.14)
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with

Z = exp(�)

�
t

dmin

q(d) dd+

�
dmax

t

q(d) dd . (3.15)

By definition,

�
t

dmin

q(d) dd = Ct

0 and

�
dmax

t

q(d) dd = 1− Ct

0 .

Inserting into Equation 3.14 and solving for � yields an estimator �̂ for the
model interaction strength:

�̂ = �̂(N, q) = log

�
Ct

1− Ct

�
− log

�
Ct

0

1− Ct

0

�
. (3.16)

This estimator is identical to the maximum likelihood estimator for �.

The quantity �̂ corrects for the cellular context and, therefore, fulfills the
requirement for a valid interaction score. Equation 3.16 relates the purely
descriptive co-localization measure Ct to an interaction model between the
objects in X and Y . It thus builds a bridge between patterns in the data
(the cellular context as summarized in q(d), and the measure Ct) and
functional relationships (interactions) between sub-cellular components.
Equation 3.16 further shows that the naive solution Ct − Ct

0 is a biased
and altogether invalid interaction measure.

Whether an observed estimate �̂ is indicative of the actual presence of an in-
teraction, however, has to be addressed using statistical tests as illustrated
in the following section. In principle, tests for significant co-localization
as caused by an unknown interaction can already be constructed on the
basis of Ct. Reference [154] describes a test procedure that determines
the distribution of Ct in the absence of any interaction by randomly sam-
pling locations in the cell. The above measure �̂, however, is also useful
for quantification. Finally, �̂ is only one instance of a measure for the
strength of interaction, which is derived from a specific model potential
(Equation 3.13). Similar corrected measures can also be derived from any
other model potential.
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3.2.3 Statistical Toolbox I: Hypothesis Testing

Based on the model derived so far, the significance of deviations of the
observations from the distribution of expected distances in case of no in-
teraction can be assessed.

3.2.3.1 Power Analysis for the Step Potential

In the parameterization of the interaction model (Equations 3.11 and 3.12),
the presence of an interaction is equivalent to � �= 0. Since the estimator �̂ is
a function of the random variables inD, it is a random variable itself. Even
if the hypothesis H0: “no interaction” is true, a non-zero �̂ may therefore
occur with finite probability (�̂ �= 0 does not imply � �= 0). Within certain
bounds around 0, a non-zero �̂ is thus not significant. Inference about
interactions requires finding a critical estimated interaction strength above
which one can reject H0 on a prescribed significance level α.

This critical interaction strength is determined by the distribution of �̂ un-
der H0 (null distribution), which depends on the sample size N , q, and the
prescribed α. Under H0, the product CtN is binomially distributed with
parameters (Ct

0, N). The binomial distribution follows from the fact that
the step potential distinguishes only two groups of distances. The actual
value of a distance within one of the groups carries no further information
with respect to the interaction strength �. The critical Ct is computed by
evaluating the (numerically) inverted cumulative distribution function of
the binomial distribution at 1 − α. The corresponding critical �̂ follows
from Equation 3.16.

The dependence of the critical Ct and �̂ on Ct

0 andN is shown in Figure 3.4.
Since the step potential distinguishes only two groups of distances, Ct

0 car-
ries all relevant information about q(d). It can be seen that the minimum
significant excess over Ct

0 varies only weakly with Ct

0 (Figure 3.4A). Obvi-
ously, large values of Ct

0 in conjunction with small N do not allow rejecting
H0, even if Ct = 1. The critical value of �̂ is highest at the two extremes
of Ct

0 and lowest for Ct

0 ≈ 0.4 (Figure 3.4B). As for Ct, it can be seen that
for large Ct

0 and small N , no finite �̂ is sufficiently large to reject H0.
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Figure 3.4: Minimum Ct (A) and �̂ (B) that allows rejecting H0: “no
interaction” (α = 0.05) as a function of the base-level Ct

0 and different
sample sizes N . In A, the expected value of Ct under H0 is indicated by
a dashed line.

The curves in Figure 3.4B show the decision of the statistical test with
respect to an estimated interaction strength �̂. A true interaction with
strength � greater than this critical value does, however, not guarantee
that it will always be detected by the test (type II error: β). Furthermore,
a weak interaction may lead to unwanted rejection of H0. The behavior of
the test critically depends on the effect size, which quantifies the departure
from H0. Here, effect size refers to the true interaction strength � = a > 0.
The statistical power (1−β) quantifies the probability of rejectingH0 when
H1: “φ = φst, � = a” is true. Figure 3.5 shows the detection power for
an effect size of a = 1 as a function of Ct

0. As expected from Figure 3.4B,
the power is low at the extremes of Ct

0, eventually dropping significantly
below the generally recommended value of 0.8 (dashed line in Figure 3.5),
even for N = 100. Weak interactions are harder to detect, requiring larger
sample sizes to yield a certain power.
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Figure 3.5: Statistical power (1 − β) for detecting interactions of a true
strength � = 1 as a function of the base-level Ct

0 and different sample sizes
N .

Achieving high statistical power is a central objective of experimental de-
sign, since it directly relates to the success rate of detecting a hypothesized
effect. In the design of experimental interaction studies, the robustness and
reliability of detecting effects of unknown size should be maximized. Power
can be increased by optimizing the experimental design or the subsequent
statistical analysis. While increasing sample size might be possible, con-
trolling the cellular context (and hence Ct

0) is not feasible in most practical
situations.

Statistical detection power is maximal when all information available in
the data is taken into account. The step potential only distinguishes two
groups of distances. The precise values of the distances within these groups
do not matter for the statistical test. The empirical distance distribution
p(d) could deviate strongly from q(d), and yet these deviations might not
affect the test statistics �̂ or Ct. In such situations, the statistical detection
power may be increased by better modeling the interaction potential, and
constructing a more resolving test statistic from this model. This influence
of alternative model potentials on statistical power is quantified in the next
section.
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3.2.3.2 Increasing Power with Non-Step Potentials

Constructing statistical tests as described above requires assuming a spe-
cific shape and scale of the interaction potential. In the absence of prior
knowledge, however, this model potential can be arbitrarily different from
the true potential of the actual biological interactions under observation.
Test statistics that are based on a model potential close to the real one
can achieve greater power, as will be shown below.

In order to quantify the influence of discrepancies between the model and
the true potential, synthetic data consisting of distances drawn from a
known distribution p(d) are used. This distribution consists of the state
density q(d) and a bias toward certain distances as caused by a known
interaction potential φ(·). A scenario where N objects {xi} are distributed
in a square region Ω containing M randomly placed circular objects {yi}
is considered. The circular objects have identical radii R and are not
overlapping. In this case, the state density q(d) is given by Equation 3.5
as shown in Figure 3.6A.

The objects in X interact with the objects in Y according to a Plummer
potential (with t = 0):

φpl(d) = � fpl
�
d

σ

�
with

fpl (z) =

�
−
�
z2 + 1

�−0.5
if z > 0

−1 else .

(3.17)

This potential has an overall 1/d-shape, but finite value and slope every-
where. The parameter � again controls the interaction strength (potential
depth). The parameter σ sets the length scale of the interaction (potential
range) and allows gradually changing φ(d) from a step-like shape to a po-
tential that causes significant attraction toward the objects in Y over large
distances (see Figure 3.6B). Consequently, the precise values of measured
distances carry information about the interaction potential.

For non-step general potentials, algebraic expressions for �̂ (such as in
Equation 3.16 for the step potential) can in general not be derived. In
Section 3.2.3.1, the test statistic was based on the fact that the observed
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Figure 3.6: Distance distribution for objects interacting according to the
Plummer potential. (A) Solid line: state density q(d) for M = 100 non-
overlapping, circular objects Y with radius R = 3.57 randomly placed in
a square domain of size 200 × 200; R is chosen to yield a circle-covered
area fraction of 0.1. Other lines: resulting distance distribution p(d) for
the three potentials shown in B. (B) Plummer potential (Eq. 3.17) with
� = 1 and varying scale parameter. Dashed line: σ = 0.2; dash-dotted
line: σ = 1.0; dotted line: σ = 5.0.

number of co-localized objects follows a binomial distribution. Now, such
reasoning is no longer valid. Statistical tests for the presence of inter-
actions can nevertheless be constructed using different statistics. Since
Equation 3.12 describes a member of the exponential family,

T = −
N�

i=1

f

�
di − t

σ

�
(3.18)

is a sufficient test statistic for � [5]. The concept of sufficient statistics is
very powerful. Out of all possible statistics T = r(D) (for any function

118



3.2. OBJECT-BASED INTERACTION ANALYSIS

r(·)) only sufficient statistics carry all information available in D about
the unknown strength � of the given potential. For concluding something
about �, knowing one sufficient statistic T is thus as good as knowing any
other sufficient statistic, or even knowing the entire sample of distances D.
A statistic T = r(D) is a sufficient statistic if and only if the joint density of
the observationsD, p(D|�), can be factored into two non-negative functions
u and v as:

p(D|�) = u(D) · v(T, �) . (3.19)

u may depend on the full sample D, but not on �, while v may depend on
�, but the dependence on the data must only be through the value of T .
Equation 3.12 can be re-written as:

p(D|�) =
�

N�

i=1

q (di)

�
·
�
Z(�)−N exp

�
−�

N�

i=1

f

�
di − t

σ

���
, (3.20)

which proves that Equation 3.18 is a sufficient statistic for �. This is true
for any potential parameterized as in Equation 3.11.

For a set of distances D, distributed according to Equation 3.12 with
φ(d) = φpl(d), a test for the presence of interactions can thus be con-

structed based on T pl = −
�

N

i=1 f
pl(di/σ) under H0: “no interaction”,

where the scale parameter σ is assumed to be known. The null distribu-
tion of the test statistic can be approximated by i.i.d. Monte-Carlo (MC)
samples {T pl

k
}K
k=1. They are obtained by sampling N = |D| distances di

from q(d) using the inversion method, computing T pl
k
, and repeating this

procedure K times.

Given these MC samples, the significance of an observed value of T pl is
assessed in a rank-based test. For this, the observed value of T pl is ranked
among the {T pl

k
}K
k=1. If it ranks higher than the �(1 − α)K�-th, H0 is

rejected on the significance level α [5]. This test can be made arbitrarily
accurate by increasing the number of MC samples K.

What is the statistical power of this test? Assume H1: “φ = φpl, � = a” is
true. The statistical power of the rank-based test to reject H0 when H1 is
true can be estimated with additional MC simulations: For a fixed effect
size a > 0, one draws N distances di from p(d) (again using the inversion
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method), computes T pl, and conducts the test as described above [5]. This
procedure is repeated many times and the fraction of tests rejected serves
as an estimator of the statistical power. Clearly, the power will depend on
the effect size a, the number of samples N , and the test statistic used.

In order to quantify the influence of the model potential on statistical
power, we test H0 against H1 and H2: “φ = φst, � = a” on data generated
under H1 for varying σ (see Figure 3.6B for the true interaction potentials
under H1). The idea behind this benchmark is that one might not know
the shape f(·) or the scale σ of the true potential in a practical application.
In order to compute the value of a specific sufficient statistic, however, one
needs to assume a certain f(·) and σ. The choice might be wrong, and
some choices may yield better test performance than others.

Testing H0 against H2 uses the sufficient statistic T st = −
�

N

i=1 f
st(di),

which is proportional to Ct for t = 0. As opposed to T pl, this statistic only
contains information about the signs of the di. The information contained
in the precise value of the di is ignored. Therefore, this statistic should
yield a less powerful test. For the test based on T pl, the true scale σ is
assumed to be known (a strategy to estimate the shape and scale of an
unknown potential is presented Section 3.2.4.4).

Figure 3.7 shows the number of samples N required to reach on average
80% power as a function of the strength a of the true interaction potential.
It can be seen that the power of a test based on the true interaction poten-
tial (solid lines) is higher than the power of a test based on a step potential
(dashed lines). Moreover, this difference strongly increases with increas-
ing potential range σ: for σ = 5 the statistic based on the step potential
requires 4 times more samples than the sufficient statistic. If the true
potential is close to a step potential (σ = 0.2), both tests perform com-
parably well. Figure 3.7 also shows that interactions over longer distances
are harder to detect. In conclusion, one has to be careful when assuming
a step potential (as implicitly done in traditional co-localization analysis),
since it may yield low statistical detection power where other model poten-
tials would perform well. Optimal power requires prior knowledge about
the true interaction potential. If available, such prior knowledge can easily
be included in the present framework by choosing t, σ, and f(·).
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Figure 3.7: Monte-Carlo estimates of 80%-power isolines in the N–a-plane;
dashed lines: tests based on T st, solid lines: tests based on T pl. The
larger kinks in the dashed lines are due to the discreteness of T st and are
statistically significant. Results for the three potentials shown in Figure 3.6
are shown as indicated.

3.2.3.3 Non-Parametric Test for Interaction

In the previous section, test statistics were derived from parametric model
interaction potentials. It was shown that using test statistics that are
based on a correct assumption about the shape and range of the true
interaction are advantageous in terms of statistical detection power. In
many applications, however, no prior knowledge about the interaction po-
tential is available. Then, non-parametric tests can be designed that do
not require assuming a specific potential.

Following [5], a non-parametric test for interaction can be constructed
using the distance counts

T = (T1, . . . , TL)
t with Tl =

N�

i=1

1(tl < di ≤ tl+1) (3.21)

in L equi-sized bins defined by L+ 1 strictly increasing thresholds tl that
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span the entire non-zero range of q(d) for a given cellular context. 1(·)
denotes the indicator function. Using these distance counts amounts to
implicitly assuming that the potential is a piece-wise constant function.
The lower the value of the potential in a given bin, the higher the expected
number of counts. H0 : “no interaction” is equivalent to the potential being
zero in all bins, and the expected number of counts is proportional to the
integral of q(d) over the bin considered. A deviation from the expected
values of counts suggests that the true, but unknown, potential is non-zero
in the region spanned by the corresponding bins. Since distance counts in
the bins will be anti-correlated (if there are many counts in one bin, there
have to be less in others), care must be taken not to over-estimate the
significance of the collective deviation of a given set of distance counts
from the expected values in the individual bins. As before, a Monte-Carlo
sample is used to estimate the joint distribution of the distance counts T .

First, a Monte-Carlo sample {Tk}Kk=1 from the null distribution of T is
obtained by sampling N = |D| distances di from q(d) using the inversion
method. N refers to the number of observations in D that are subject to
the test. Based on the Monte-Carlo distances, Tk is computed and the
procedure is repeated K times. The sample {Tk}Kk=1 allows approximat-
ing the expectation E0(T ) and co-variance matrix Cov0(T ) of the null
distribution. The final test statistic U is defined as

U = (E0(T )− T )t Cov0(T )−1 (E0(T )− T ) . (3.22)

In a second step, T and U are computed for the setD of observed distances.
As in Section 3.2.3.2, a rank-based test is used. A set {Uk}Kk=1 obtained
from an additional MC sample {Tk}Kk=1 is generated as described above.
The observed U is then ranked among the {Uk}Kk=1. If it ranks higher than
the �(1− α)K�-th, H0 is rejected on the significance level α.

The number of bins L influences the performance of the test. For L = 2,
the test based on the step potential is recovered. For true potentials that
strongly differ from a step-like shape, the test will have low power, as
shown in Section 3.2.3.2. Increasing L allows resolving finer details in the
structure of the observed distance distribution, and therefore provides the
possibility to detect several types of deviations from H0. Too large values
of L, however, again reduce the statistical power of the test, since the
expected number of distances in a given bin will then be very low an only
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large deviations from the expectation will be significant (this reasoning is
illustrated by the results shown in Figure 3.4).

3.2.4 Statistical Toolbox II: Estimation of Potentials

This section introduces parameter estimation methods for model interac-
tion potentials will be discussed.

3.2.4.1 Maximum-Likelihood Parameter Estimation

For a given potential φ, the log-likelihood of its parameters Θ, given the
observations D and the cellular context q(d), is the logarithm of the joint
probability density (Equation 3.12):

l(Θ|D, q) = log

�
N�

i=1

pφ(di|q)
�

= −N log (Z(Θ)) +
N�

i=1

log (q (di))− φ (di;Θ) .

(3.23)

In maximum likelihood estimation one aims at maximizing the likelihood of
the unknown parameters, given the data, with respect to the parameters.
In practical applications it is often more convenient to maximize the log-
likelihood, that is:

Θ̂MLE = argmax
Θ

l(Θ|D, q). (3.24)

Since the logarithm is a monotonic function, the optima of the likelihood
and the log-likelihood coincide. For the present interaction model, no
general analytical maximum-likelihood estimator can be found. For the
step potential, however, it is possible to show that the maximum-likelihood
estimator is identical to the expression in Equation 3.16. In all other
cases, numerical optimization techniques need to be used. These can be
stochastic (e.g., sampling-based) [106, 134] or deterministic (e.g., gradient-
based) [15, 111] strategies. The latter require that the interaction potential
φ can be differentiated with respect to its parameters. In any case, the
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normalizing constant Z needs to be computed by numerical integration,
because the state density q(d) can have any functional form, and is usually
not known in a compact analytical form. As long as the interaction is not
too strong, q(d) exp(−φ(d)) is a well-behaved function and basic numerical
integration schemes are sufficiently robust and accurate.

For parameter estimation it is not necessary to evaluate the sum of the log-
state density values at the locations of the data (

�
i
log(q(di))) in Equa-

tion 3.23, since it is not a function of the unknown parameters.

3.2.4.2 Hyper Models for Parameters of the Interaction Potential

The concept of estimating parameters from a single data set can be eas-
ily extended to fitting hyper models for the parameters Θk on multiple
data sets k. Hyper models could, for example, specify the variation of
the parameters of the interaction potential with respect to an additional
covariate ηk:

Θk = g(ηk,Ψ) . (3.25)

This means that the parameters Θk are not independent unknowns, but
depend on the covariate ηk through the function g(·). g(·) is known up to
the hyper parameters Ψ, which have to be estimated from data. Exam-
ples of covariates include time, spatial variables, parameters quantifying
the strength of experimental perturbations (e.g., the concentration of a
chemical), etc.

A simple example considers the estimation of a common scale parameter σ∗

of the interactions in a collection of cells, each of which having a different,
unknown interaction strength. Here, σ∗ is the hyper parameter and σk =
g(σ∗) = σ∗. The hyper model therefore assumes that the interaction
processes in all cells acts over the same range with the same shape of
the potential. To simplify matters, no covariate is taken into account.
Given a collection of N cells cells, with respective cellular contexts qk(d)
and Nk observed distances Dk, the common scale σ∗ and the independent
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strengths �k are found by maximizing the pooled log-likelihood:

l∗({Θk}|{Dk}) =
N

cells�

k=1

l(Θk|Dk, qk) (3.26)

with respect to the parameters {Θk} = {(�k,σ∗)}. The resulting (N cells +
1)-dimensional estimation problem can efficiently be solved with a nested
maximum-likelihood algorithm: In an outer optimization, only the scale
parameter σ∗ is varied. Given a tentative value for σ∗, the parameters
�k are estimated in an inner optimization of the corresponding summand
of the likelihood in Equation 3.26. The objective function of the outer
optimization is the sum of maxima, max

�k

l((�k,σ∗)|Dk, qk).

3.2.4.3 Parameter Identifiability

Maximum-likelihood estimates are asymptotically unbiased and normal.
The estimation of model parameters should thus be robust, provided the
model parameters are identifiable. Whether this is the case or not crucially
depends on the definition of the interaction potential. The Plummer po-
tential, for example, includes several other shapes of interaction potentials
as limit cases, such as the step potential for σ → 0 or the flat potential
(i.e., no interaction at all) for σ → ∞ (Figure 3.8).

For certain combinations of values σ and �, the parameters may loose their
meaning, or become difficult to determine. When σ is large the potential
is practically flat, and � can no longer be identified: Varying � shifts the
potential vertically, that is, the potential remains unchanged except for
an additive constant. Since such a constant is completely absorbed in
the normalizing constant Z, the density p(d), and hence the likelihood l,
remains unchanged.

Maximum-likelihood estimators are asymptotically normal with a covari-
ance matrix given by the inverse of the observed Fisher information. When
parameters are not robustly estimated, this will be reflected in the covari-
ance matrix. For intra-cellular interaction analysis, in particular in the
application considering virus–endosome interactions, the number of data
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Figure 3.8: Different (limit) shapes of the Plummer potential φpl(d).

points is typical low (on the order of 100). Normality of the estimator can
therefore not be assumed. In the non-asymptotic regime, inspection of
the likelihood function around the estimates {�̂, σ̂} provides a good visual
assessment of the estimation robustness.

Figure 3.9 shows histograms of observed distances along with the fitted
distributions p(d) (Equation 3.9) and Plummer potentials for two different
cells. The negative log-likelihood function around the estimates {�̂, σ̂} is
shown below. As a complementary way of assessing estimation robustness,
parameter estimates are computed from bootstrap [59] samples of the ob-
served distances: 1000 bootstrap samples consisting of N distances drawn
from D with replacement and uniform probability are generated for each
of the two data sets. Dots in the likelihood plots depict parameters esti-
mated from the bootstrap samples. In the left example in Figure 3.9, one
can see that parameter estimates are scattered in an extended valley of
the negative log-likelihood function. This situation corresponds very well
to the limit cases of � → 0 or σ → ∞ shown in Figure 3.8. In contrast,
the estimates in the right example in Figure 3.9 are much more robust. In
both cases, however, the model distance distributions fit the observations
convincingly. This supports the conclusion that the characteristic shape
of the potential, up to a constant, is fitted robustly in both cases. Its
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parameters, however, are not always determinable, as illustrated by the
left example.

Figure 3.9: Likelihood landscapes (bottom) for the parameters of the
Plummer potential, fitted to the distance distributions shown above. Lines
in the σ− �-planes depict isolines of the log-likelihood. Blue dots are pairs
of parameters estimated from bootstrap samples of the observed distances.

Whether or not parameters are determinable depends on the data: If the
distribution of observed distances results from an interaction potential
close to one of the limit cases shown in Figure 3.8, the parameters may
become meaningless. If the true interaction potential is not close to any
of the limit cases, parameters can be robustly estimated.

The present interaction analysis framework allows testing for different po-
tentials. In this model selection process, potentials with different shapes
and numbers of parameters are fitted independently. The best potential

127



CHAPTER 3. QUANTIFYING INTERACTIONS BETWEEN
INTRA-CELLULAR OBJECTS

can then be selected according to, for example, the Akaike or Bayesian
information criterion, or a the result of a likelihood ratio test [17]. Fur-
thermore, it may be beneficial to first perform a hypothesis test for the
presence of an interaction (see Section 3.2.3), before attempting to fit in-
teraction potentials. Another option is to stabilize parameters, estimation
using a prior on the parameters, as discussed in Section 3.2.4.4.

3.2.4.4 Maximum-A-Posteriori Estimators

Maximum-a-posteriori estimators allow stabilizing parameter estimation
in case of few data points or poor parameter determinability. The idea is
to specify a prior pr(Θ) on the unknown parameters Θ and maximizing
the posterior distribution:

Θ̂MAP = argmax
Θ

p(D|Θ) pr(Θ)�
Θ p(D|Θ�) pr(Θ�)dΘ� = argmax

Θ
p(D|Θ) pr(Θ) . (3.27)

Or, equivalently, using the log-likelihood:

Θ̂MAP = argmax
Θ

l(Θ) + log (pr(Θ)) . (3.28)

For certain models of interaction potentials, the parameter values are nat-
urally bounded. For the Plummer potential, for example, σ → 0 yields
a step function. In such a situation, however, the simpler step potential
should be used instead. In order to avoid this limit case, a prior on σ can
be used to ensure a positive value.

Maximum-a-posteriori estimation can also be used to control the smooth-
ness of non-parametric estimates of the interaction potential. The ad-
vantage of non-parametric estimation is that no assumption on the shape
of the potential needs to be made. This allows detecting structures in
the data that would otherwise be missed (similar to the non-parametric
test described in Section 3.2.3.3). The flexibility of non-parametric models,
however, needs to be controlled in order to avoid over-fitting. Consider the
piece-wise linear (non-parametric) potential φn.p.(d) defined as a weighted
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sum of kernel functions κ(·) centered on P support points dp:

φn.p.(d) =
�

P

p=1 wp κ(d− dp) with

κ(z) =

�
|z|/h if |z| < h
0 else ,

(3.29)

where h > 0 denotes the constant spacing between the support points.
Setting wP = 0 enforces that the potential is zero at infinity. Using φ =
φn.p., the remaining weights can be estimated by numerically maximizing
the penalized log-likelihood [62]:

pl(Θ|D, q) = l(Θ|D, q) +
P−1�

p=1

�
wp − wp+1

s

�2

(3.30)

with respect to Θ = (w1, . . . , wP−1). The quadratic penalty in Equa-
tion 3.30 corresponds to a Gaussian prior on the differences ∆wp = wp −
wp+1,

pr(∆wp) =
1√
2πs2

exp

�
(∆wp)2

2s2

�
, (3.31)

which has zero mean and standard deviation s. The smoothness of φn.p.

is controlled by the parameter s. Among all potentials of similar global
shape, the prior favors the one that has the least oscillations of the weights
around the global trend. The larger s, the smoother the estimated poten-
tial.

3.2.4.5 Uncertain Distances Measurements

The maximum-likelihood parameter estimates discussed in Section 3.2.4.1
are based on the assumption that the distances D = {di}i are known ex-
actly. In any real application, however, these distances are measurements
that are corrupted by systematic and random errors. As long as the errors
are small compared to the scale on which p(d) changes significantly, they
have little effect on the parameter estimates.

Larger measurement errors, however, will lead to a blurring of the ob-
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served distribution of distances. Let d� denote the true distance and d the
measured distance. Assume the measurement uncertainty ∆d = d − d� is
additive and normally distributed around the true distance d�:

∆d ∼ N (0, s2) : pn(∆d) =
1√
2πs2

exp

�
−∆d2

2s2

�
, (3.32)

where s2 denotes the variance of the uncertainty.

Since the true value of any observed distance and its additive uncertainty
are independent random variables, the blurring of distances is mathemat-
ically described by a convolution of the true density with the density of
the measurement uncertainty:

pm(d) = (p ∗ pn) (d) =
� +∞

−∞
p(τ) pn(d− τ) dτ , (3.33)

where p(·) is the model density for the nearest–neighbor distances. For the
model in Equation 3.9), the density pm(d) of measurements becomes:

pm(d) =
1

Z
√
2πs2

� +∞

−∞
q(τ) exp(−φ(τ ;Θ)) exp

�
− (d− τ)2

2s2

�
dτ , (3.34)

and after rearranging:

pm(d) =
1

Z
√
2πs2

� +∞

−∞
exp

�
log(q(τ))− φ(τ ;Θ)− (d− τ)2

2s2

�
dτ . (3.35)

Using this density, a log-likelihood function can be constructed as shown
in Section 3.2.4.1:

l(Θ|D, q) =−N log
�
Z(Θ)

√
2πs2

�

×
N�

i=1

log

�� +∞

−∞
exp

�
log(q(τ))− φ(τ ;Θ)− (di − τ)2

2s2

�
dτ

�
.

(3.36)

This means that for each distance di an integral needs to computed. Since
q(·) is not known in compact analytical form, these integrals need to be
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computed numerically. They are approximated with a finite sum over
points τj on a grid with spacing ∆τ . For computational efficiency, trun-
cated Gaussians can be used to represent the density of measurement un-
certainties. The truncated Gaussians are non-zero only in a local support
Ω = [−ks,+ks], with k sufficiently large. Then:

l(Θ|D, q) ≈−N log
�
Z(Θ)

√
2πs2

�

×
N�

i=1

log




�

j∈Ji

exp

�
log(q(τj))− φ(τj)−

(di − τj)2

2s2

�
∆τ



 ,

(3.37)

where the sets Ji contain only those indices j for which |di − τj | < ks.
For maximum-likelihood estimation of model parameters Θ, Equation 3.37
needs to be evaluated many times. Despite the double sum, the likelihood
function can be efficiently computed, since the first sum is over few (order
100) data points, and the second sum is only over the few grid points
within the finite support of the truncated Gaussians.

3.2.5 Application of the Method

The uptake and intra-cellular transport of virus particles is a complex
process that involves temporary association with membrane receptors and
multiple organelles of the endocytic machinery, such as early and late
endosomes, which are the first sorting compartment of clathrin-derived
cargo [104]. In many cases, fluorescence microscopy allows resolving the
involved entities as discrete objects. This has previously motivated the use
of object-based co-localization measures to quantify association kinetics of
viruses and endosomes [150] in order to unravel infection pathways. Co-
localizaton analysis focusses on a specific step of endocytic entry program,
namely the phase between delivery to the lumen of the endosome and
penetration of its membrane. These events, however, are neither instan-
taneous nor independent of biophysical and biochemical processes, such
as vesicle diffusion, active transport, membrane fusion, etc. [102, 51] The
observed localization pattern of virus particles and endosomes may thus be
influenced by a multitude of effects. A non-step interaction potential may
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suggest that the biophysical and biochemical interactions between cellular
structures, viruses, and endosomes play an important role in the execution
of the entry program.

In the following, the presented framework of interaction analysis is ap-
plied to the virus–endosome localization data presented in Section 2.2.4.5,
where the classical co-localization measure was used. This application
demonstrates the use and workflow of the statistical tools discussed in
Sections 3.2.3 and 3.2.4. The benefit of using the present interaction anal-
ysis toolbox is three-fold: it allows statistical interpretation of the results,
it resolves finer details in the structure of the data, and it is more robust
with respect to uncertainties in the input data.

3.2.5.1 Virus–Endosome Distance Data

The data set of Rab5-positive endosomes in Ad2- and TS1-infected HER
911 cells that was already used in Chapter 2 to demonstrate applications of
de-convolving active contours is considered. For simplicity, the interaction
analysis is demonstrated on distances determined from 2D projections of
3D images. The presented approach, however, is equally applicable in
three dimensions without any changes, provided three-dimensional object
detection and segmentation is available. Projecting the data into two
dimensions alters the estimated potentials (as it also does for any other
co-localization measure), since it distorts both the distance data D and
the state density q(d).

High-resolution endosome outlines and virus locations were extracted from
dual-color fluorescence microscopy images as described in Chapter 2. Near-
est-neighbor distances between viruses and endosomes were measured be-
tween the virus locations and the closest point on any endosome outline.
The state density q(d) was constructed from the endosome outlines by the
sampling method described in Section 3.2.1.2 (using a uniform Cartesian
grid with spacing h = 0.25 pixel). This means that endosomes are iden-
tified with the objects in Y , whereas viruses correspond to the objects
in X. Computation of q(d) further required determining the cell bound-
ary ∂Ω. An approximate cell mask Ω was found by low-pass filtering and
thresholding the 2D projections of the raw endosome images. Viruses and
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endosomes outside the cell masks were excluded from the analysis.

3.2.5.2 Non-Parametric Test for Interaction

Like Ad2, TS1 is known to enter the cell by clathrin-mediated endocyto-
sis, but the mutation inhibits escape from endosomes [66, 43]. This should
be reflected in a stronger deviation of the empirical distribution of ob-
served distances D from the null distribution p(d) = q(d) than for Ad2. In
the present framework, this translates to a non-flat interaction potential
between virus centroids and outlines of Rab5-positive endosomes.

Before modeling an interaction potential, H0: “φ(d) = 0” is tested against
H1: “φ(d) �= 0” for each imaged cell using a the non-parametric statistical
test described in Section 3.2.3.3. The number of bins was fixed to L = 20,
but the bin boundaries were adapted for each cell to span the whole non-
zero range of q(d). The results of the tests are summarized in Table 3.1.
The fraction of cells for which H0 has to be rejected is significantly higher
for TS1 than for Ad2, irrespective of the significance level and despite the
smaller average number of observed virus–endosome distances N . How-
ever, Ad2 exhibits significant interaction with endosomes in half of the
cells (α = 0.05).

N cells p < 0.05 p < 0.01 N

Ad2 135 70 (52%) 25 (19%) 180±50

TS1 139 128 (92%) 100 (72%) 157±59

Table 3.1: Results of non-parametric statistical tests for interaction be-
tween viruses and endosomes. First column: number of cells analyzed; sec-
ond and third columns: number and percentage of cells for which H0 was
rejected on the indicated significance levels; forth column: mean ± stan-
dard deviation of the observed number of virus particles per cell.
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3.2.5.3 Non-Parametric Fit of the Potential

The results of the statistical tests reported in the previous section indi-
cate that the interaction potential is non-flat for many of the cells. They
do, however, not permit any conclusions about the shape or strength of
the interaction potential, for which, in addition, no prior information is
available. It could, for example, be that nothing beyond a temporary as-
sociation of virus particles with endosomes is observed. This would suggest
that the transport of virus particles before and after the association with
endosomes is very efficient. Locations of virus particles outside endosomes
would then be completely uncorrelated with the endosome locations. Such
a fast loss of spatial correlation would be reflected in a step-like interaction
potential. Conversely, a non-step potential would suggest that virus and
endosome locations are correlated beyond simple co-localization.

The non-parametric estimation procedure for the interaction potential de-
scribed in Section 3.2.4.4 is applied to obtain a first idea of the poten-
tial’s strength and distance dependence. This non-parametric potential
can then be used as a template for subsequent specification and identifi-
cation of more specific parametric potentials. Ignoring, for now, possible
variability between cells and virus types, all data are pooled and a com-
mon non-parametric potential φn.p.(d) is estimated. Taking φ = φn.p.

(Equation 3.29), a penalized joint log-likelihood is constructed for all cells
as:

pl(Θ|{Dk}) =
N

cells�

k=1

l(Θ|Dk, qk) +
P−1�

p=1

�
wp − wp+1

s

�2

, (3.38)

where l(·) is given by Equation 3.23. P = 21 support points dp, distributed
between −5 and 95 pixel with constant spacing h = 5pixel, and a regular-
ization parameter s = 2 were used. The weight of the last point, wP , was
fixed to 0. Numerical maximization of Equation 3.38 was done using the
covariance matrix adaptation evolutionary strategy (CMA-ES) [57, 56], a
black-box global optimization method. The estimated φ̂n.p.(d) is shown in
Figure 3.10. Its shape is clearly different from a step function. The value of
s had a small effect on global trends of the shape, albeit slightly reducing
the slope. The slow increase of the potential suggests that viruses interact
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with endosomes over distances of about 10 pixels (1µm) from their centers.

Figure 3.10: The non-parametric estimate of the interaction potential
based on all imaged cells.

3.2.5.4 Identification of Parametric Potentials

The most prominent feature of the estimated non-parametric potential its
increase from a single minimum to zero with a characteristic interaction
length of about 10 pixels (1µm). The shape of the potential suggests a
1/d-like functional form. However, it must have finite value and slope
everywhere.

Parametric potentials are robustly identified from sets of observed dis-
tances from individual cells. This allows correlating their parameters with
co-variates such as the virus type or the time at which a cell was imaged
after infection. The characteristic features of the non-parametric poten-
tial motivate a candidate set of four different parametric potentials. Two
resemble the shape in Figure 3.10 (Hermquist and Linear type 1, see Fig-
ure 3.11A) and two are generalizations of the step potential with a plateau
below d = 0 (Linear type 2 and Plummer, see Figure 3.11B). For all po-
tentials, the threshold is fixed at t = 0.

All potentials are parameterized as φ(d) = �f((d − t)/σ) with interaction
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Figure 3.11: Examples of the four non-step potentials. (A) Hermquist
(solid line) and Linear type 1 (dashed line); (B) Plummer (solid line) and
Linear type 2 (dashed line).

strength �, length scale σ, and threshold t = 0. Their shapes f(·) are
defined as:

• Hermquist potential:

fhe(z) =

�
− (z + 1)−1 if z > 0
−(1− z) else .

(3.39)

• Linear potential, type 1:

f l1(z) =

�
0 if z > 1
−(1− z) else .

(3.40)

• Linear potential, type 2:

f l2(z) =






0 if z > 1
−1 if z < 0
−(1− z) else .

(3.41)

• Plummer potential:

fpl (z) =

�
−
�
z2 + 1

�−0.5
if z > 0

−1 else .
(3.42)
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σ̂∗ max l∗ rank

Hermquist 3.96 −1.2247 · 105 1

Linear type 1 4.14 −1.2362 · 105 2

Linear type 2 6.61 −1.2427 · 105 4

Plummer 1.15 −1.2374 · 105 3

Step (t = 0) −1.2632 · 105 5

Table 3.2: Comparison of the estimated common scale parameters of dif-
ferent interaction potentials. The scale parameters σ̂∗ of potentials as
found by maximum-likelihood estimation, and the corresponding max-
imized pooled log-likelihoods max l∗ (Equation 3.26) are shown for the
different potentials.

The potentials can be fitted to the observed distances Dk of individual
cells k by maximum-likelihood parameter estimation (Section 3.2.4.1). In
order to exclude cell–to–cell variations of the potential scale, the pairs
(�k,σk) are not determined for each cell separately. Instead, a single scale
parameter σ∗ common to all cells is used, while the interaction strengths �k
may vary between cells. Parameter estimation for this model is discussed
in Section 3.2.4.2.

The estimated common scale σ̂∗ and the maximum of the pooled log-
likelihood l∗ for the four potentials are reported in Table 3.2. As a refer-
ence, the values are also given for a step potential with distance threshold
t = 0. The potentials are ranked according to their log-likelihood. It can
be seen that the step potential is outperformed by all others. This remains
unchanged even if one compares Akaike or Bayesian information criteria,
which take into account the smaller number of free parameters of the step
potential. With a difference in log-likelihood of > 103 to the second-best
fit, the Hermquist potential is by far the best fit. It is also subjectively
most similar to the non-parametric potential shown in Figure 3.10.

The fits of distance distributions of individual cells are visually convincing,
as illustrated by the example in Figure 3.12. The figure shows an example
of an imaged cell, infected with TS1, together with the empirical and es-
timated distance distributions and the corresponding Hermquist potential
(images of Ad2-infected cells are visually indistinguishable from those of
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Figure 3.12: (A) Imaged endosomes (Rab5-EGFP) with overlaid outlines
(solid red lines) and virus centroid positions (blue crosses). Nearest–
endosome–distance isolines (dashed red lines) are shown in the magnified
inset. (B) State density q(d) for the shown cell (dashed black line), ob-
served virus–endosome distances (marks and histogram, N = 143), and
model distance distribution p(d) (solid black line). (C) Corresponding
Hermquist potential (�̂ = 3.90, σ̂∗ = 3.96).
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TS1-infected cells). Despite fitting only one independent parameter (σ∗

is fixed from the estimate over all cells), the estimated model distribution
captures the features of the data remarkably well. This confirms (at least)
that the Hermquist potential is a reasonable choice for the present single-
cell data, and not just the best of five bad options. Although the model
potentials were motivated by a non-parametric average potential for a col-
lection of data sets, their characteristic shape can be recovered in single
cells and across experimental conditions.

3.2.5.5 Covariates

Inspection of the estimated interaction strengths �̂ of the Hermquist po-
tential reveals that it varies within and between the two groups of infected
cells. This observation is consistent with the result of the non-parametric
test for interaction (Tabel 3.1), which showed differences between the two
virus strains. As expected, theses differences are consistently manifested
in stronger average interactions for TS1. Within the groups of TS1- and
Ad2-infected cells, the strengths vary as well.

The within-group variability comprises statistical fluctuations and natu-
ral variations between cells. Since virus internalization and transport is
a dynamic process, the time at which a cell was imaged (time post in-
fection) is a further source of in-group variability. Figure 3.13 shows the
estimated interaction strengths of a Hermquist potential for all cells in-
fected with Ad2 (crosses) and TS1 (circles) as a function of the time post
infection. Throughout the observation period, the interaction strength
for TS1 is significantly larger than that for Ad2, confirming the trend re-
ported in Table 3.1. Furthermore, a temporal maximum of the interaction
strength is apparent for TS1, while for Ad2 no significant variation over
time can be resolved. These results indicate that TS1 and Ad2 use differ-
ent uptake pathways or exhibit significantly different escape kinetics from
Rab5-positive endosomes.
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Figure 3.13: Estimated strength of a Hermquist potential (scale σ∗ = 3.96)
versus the time post infection. Circles: TS1; crosses: Ad2. The time course
of the mean (solid lines) and the ±1 standard deviation interval (shaded
bands) are estimated using a Nadaraya-Watson kernel estimator [132] with
a bandwidth of 5min.

3.2.5.6 Sensitivity to Endosome Segmentation Errors

The present interaction analysis framework is based on the observation of
inter-object distances. Imperfect measurement of distances leads to sys-
tematic and random errors. In Section 3.2.4.5 it was shown how to include
prior knowledge about the distribution of measurement uncertainties. Such
prior knowledge about the localization accuracy of virus particles and en-
dosome outlines can, for example, be estimated from benchmarks on syn-
thetic data (see Section 2.2.3.2). Further sources of uncertainty are the
systematic over- or under-segmentation of endosomes or the failure to de-
tect an endosome altogether, which has a non-trivial effect on both the
measured distances and the state density q(d).

In this section, the robustness of interaction analysis with respect to sde-
tection and segmentation errors is tested by artificially corrupting the en-
dosome outline detection and reconstruction. Starting from the endosome
outlines Y and cell boundary ∂Ω, high-resolution binary images are cre-
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ated that are 1 inside endosomes and 0 outside. The resolution of the
binary images was four-fold higher than the resolution of the original im-
age data. Based on these binary images the state density q(d) is estimated
as described in Section 3.2.1.2. Virus–endosome distances D are measured
as the distance of virus particle locations to the closest non-zero pixel in
the binary image. This discretization allows simulating erroneous segmen-
tation and detection by applying the morphological operations of dilation
or erosion to the binary image prior to determining q(d) and D.

The effect of erosion and dilation is illustrated in Figure 3.14. While dila-
tion mainly shifts all distances to smaller values, erosion has a more drastic
effect whenever it eliminates an entire object. In such situations, the ob-
served virus–endosome distances jump to a much larger value (as seen for
the upper-most and lower-most viruses in the left panel of Figure 3.14).

Figure 3.14: Artificially perturbed segmentation and object detection from
images. Black lines: segmented endosome outlines; gray lines: distance
isolines; crosses: virus locations. Left panel: 4 pixel erosion; middle panel:
unperturbed segmentation; right panel: 4 pixel dilation. Units of pixels
refer to the upsampled binary image.

Using the distances D and state densities q(d) as estimated from corrupted
segmentations, the strength parameter of a Hermquist interaction poten-
tial is determined for each cell in the data set. The estimated potential
strengths are compared with the classical overlap co-localization measure
Ct that is computed using a fixed threshold t = 0. In order to account
for the increase or decrease of the area covered by endosomes (the esti-
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mated cellular context), the simple, but biased (as shown in Section 3.2.2)
measure Ct −Ct

0 is used. Due to the non-trivial perturbations applied, no
attempt is made to model the distribution of measurement uncertainties.

The severity of the perturbations is gradually increased by repeatedly ap-
plying the erosion or dilation operation. Figure 3.15 shows the distribu-
tions of estimated strengths and corrected co-localization parameters for
both virus strains in function of the amount of perturbation applied to
the endosome outlines. Erosion and dilation are performed in the binary
image up to a distance of 8 pixels in steps of 1 pixel.

Figure 3.15: Robustness of parameter estimation with respect to segmen-
tation errors. Upper row: Distributions of strengths of Hermquist po-
tential; lower row: distributions of corrected overlap measures. Left col-
umn: Ad2; right column: TS1. Edges of boxes are the 25th and 75th
percentiles, whiskers extend to the most extreme data not considered as
outliers (crosses).

The estimated strengths of the Hermquist potential are fairly robust with
respect to the perturbations, except for very strong erosion. The corrected
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overlap measure, however, is highly sensitive to the perturbations, both for
dilation and erosion. For strong erosion, the corrected measure practically
drops to zero, since the area covered by endosomes is reduced to the extend
where hardly ever a virus is found inside. For dilation, both the mean and
the variance of the corrected measure significantly increase, hence increas-
ing the overlap between the previously well-separated distributions of the
two strains. These results illustrate how the present interaction analysis
method stabilizes parameter estimation with respect to deficiencies of the
image analysis by taking into account the full state density q(d).

3.2.5.7 3D versus 2D

So far, the interactions between viruses and endosomes were estimated
from empirical distance data computed from 2D image segmentations. The
2D images were obtained by maximum-projecting the original 3D data sets.
Since this projection introduces a bias toward smaller distances in both D
and q(d), it likely influences the estimated interaction potentials.

In order to illustrate this influence of the projection, a single cell was an-
alyzed in both 2D and 3D. For reasons of simplicity and comparability
between the 2D and 3D data, detection of endosomes and virus parti-
cles was limited to finding their intensity centroids (see Figure 3.16 for a
3D visualization). The resulting virus–endosome distances were therefore
strictly positive. The state density q(d) was estimated as described in
Section 3.2.1.2 for both the 2D and the 3D data.

Using the respective distances D and state densities q(d), Hermquist in-
teraction potentials were estimated for both data sets. Figure 3.17 shows
the empirical distance distributions, q(d), p(d), and the estimated interac-
tion potentials. As expected, the projection to 2D increases the frequency
of short distances. An even stronger compression effect, however, is also
present in the estimate of q(d). The strength of the estimated interac-
tion potential is hence smaller in 2D than in 3D, which suggests that the
shortening of distances by the 2D projection is overcompensated by the
compression of q(d).
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Figure 3.16: 3D rendering of virus particles and endosomes in an HER 911
cell. Shaded surface: cell boundary (darker areas result from invaginations,
which are possibly segmentation artifacts); spheres: endosomes; crosses:
virus particles.

The effect of projection is most pronounced for intermediate distances.
For large distances it is negligible, since they do not occur frequently and
mainly reflect distances in the x-y-plane, since the imaged cell is fairly flat.
The effect on short distances is also small, since the projection only leads
to a minor relative change. This means that, for the presented data, the
effect of the projection is strongest where the 3D-q(d) is large, while the
highest frequency of observed distances is in a region where the projection
is less strong. For other data this may, however, be different.
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Figure 3.17: 3D versus 2D interaction analysis. Virus–endosome distance
distributions (top) and estimated Hermquist interaction potentials (bot-
tom) based on 3D (left, σ̂ = 3.80, �̂ = 6.30) and 2D (right, σ̂ = 3.72,
�̂ = 2.89) image data. Bars: empirical distance distribution; solid lines:
p(d); dashed lines: q(d).
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CHAPTER

FOUR

Modeling the Multi-Scale Transport
Dynamics of Intra-Cellular Objects

Cells are complex chemical factories that manage to simultaneously per-
form countless inter-dependent reactions between huge numbers of reac-
tants. The decryption of the genome and the identification of the proteome
of many organisms are rapidly advancing [88]. Based on this vast amount
of information, more detailed networks of intra-cellular reactions are be-
ing constructed, with the ultimate goal of describing the chemical factory
called “cell” as a dynamic system.

The reaction networks, however, are only one part of the story. Reaction
networks are typically described in terms of deterministic ordinary differ-
ential equations, where the concentrations of the reactants constitute the
state variables. This is adequate for abundant molecules in well-stirred sys-
tems. Reaction networks with low copy numbers of molecules are usually
modeled by stochastic chemical kinetics. In both cases, however, spatial
homogeneity is assumed as well in most cases.

This clearly constitutes a strong assumption as the cell is a highly struc-
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tured environment. Compartmentalization and spatial concentration gra-
dients are ubiquitous in eukaryotic cells. These physical constraints are an
essential component in the regulation of the chemical reaction networks.

Systems of reacting and diffusing species have the potential to generate
highly heterogenous concentration patterns, which are of great importance
in developmental biology [145]. The complex internal structure of individ-
ual cells, however, largely depends on active – as opposed to passive diffu-
sive – transport mechanisms. While passive diffusion is driven by thermal
fluctuations active transport requires energy to move objects around. In
cells, active transport is mainly realized by motor proteins that move cargo
along the filaments of the cytoskeleton. The integration of physical trans-
port models into spatially resolving models of chemical kinetics is thus one
of the great challenges toward understanding how cells work.

Transport processes in cells have been previously described on various
levels. The stochastic kinetics, velocity, force generation, and regulation
of the activity of single motor proteins have attracted considerable at-
tention [94, 18, 76]. These fascinating molecular machines have the re-
markable property that they perform discrete steps along intra-cellular
filaments as they transport cargo [76]. Due to their dependence on fila-
ments, volume exclusion effects may reduce the efficiency of transport in
cases of high motor or cargo densities. The resulting collective behavior is
frequently modeled by variants of the totally asymmetric exclusion process
(TASEP), taking advantage of the discreteness of the steps [24]. Although
most types of motors typically only move in one direction along filaments,
bidirectional movement is frequently observed for a great variety of car-
gos. Whether motors of opposite movement direction simultaneously act
on a single cargo, or are selectively switched on and off, is disputed [54].
Regardless of their physical validity, models in which motors of opposite di-
rection work in parallel have reproduced the so-called saltatory movement
of cargo, and they have been successfully applied to estimate physical pa-
rameters of the motor–cargo complex, such as the number of attached
motors, or binding and unbinding rates [44].

A further type of model is concerned with the mechanisms behind spatial
distributions of intra-cellular objects, such as vesicles and endosomes [75,
34, 33]. Frequently observed patterns such as aggregation around the nu-
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cleus, hyper-dispersion to the periphery of the cell, or areal and radial
dispersion have been reproduced by a single model of organelle trans-
port [34]. In this model, organelles intermittently switch between active
transport on filaments and diffusion in the cytosol. The model is param-
eterized by the rates of switching between the different transport states,
the diffusion constant, and a constant velocity on filaments. Organelles
are treated as independent objects, and patterns emerging from collective
effects can not be reproduced. Fusion, fission, and volume exclusion effects
are not taken into account. Furthermore, it is known that organelles do
not necessarily move with constant velocities along filaments [86, 108], as
assumed in the model.

More detailed models are required if collective behavior, deformation of
organelles, or more realistic movement along filaments have to be taken
into account. One promising approach is to explicitly resolve the forces
acting on and inside organelles. Forces result from the action of attached
motors, viscous drag, collisions between organelles, and tension in response
to deformation. While such a model is already interesting in itself, its out-
put is also of great value for building higher-level descriptions of collective
organelle behavior.

In this chapter, a novel model for the intra-cellular transport of individual
objects is described. One focus is on realistically describing the interplay
between motor force generation, cargo movement, and motor binding and
unbinding events. The model is assembled from simple systems that are
amenable to experimental characterization, such as single motor proteins,
which have been extensively studied using optical trapping techniques [70].
The model is built bottom-up from elementary mechanical and chemical
laws. State transition rules as applied in previous models [44] are not
imposed, but rather emerge as limits of physically meaningful parameters.
In Section 4.1 the model is specified and an efficient simulation algorithm
for it is described. Section 4.2 reports on a large-scale parameter study
that reveals many new behaviors and confirms previously described ones.
The dependence of the transport dynamics on physical cargo parameters
is studied in detail.
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4.1 A Tug–of–War Transport Model

Many intra-cellular cargos are transported along microtubules by motor
proteins. Microtubules consist of 13 protofilaments that are polymers of
α- and β-tubulin dimers. The protofilaments are aligned in parallel in a
tubular bundle structure. An important property of microtubules is their
polarity. The two ends are called the plus and minus end, respectively.
Motor proteins have a dominant direction of movement: Kinesin, for ex-
ample, moves toward the plus end, while dynein moves toward the minus
end [95, 76].

Bidirectional transport along microtubules has been observed in numerous
experimental systems involving a large variety of cargos [152]. Since most
motor proteins have a single dominant direction of movement [94, 76, 45,
71], this suggests that either motors of opposite polarity are simultaneously
present on the cargo, or motors frequently bind and unbind from the cargo
in a coordinated way. The latter is not trivial to achieve and has implica-
tions that have previously been proven wrong in at least some systems [54].
Furthermore, it has been reported that multiple motors of the same or dif-
ferent kind are simultaneously present on the same cargo [44, 108, 130],
resulting in non-trivial velocity and run-length distributions of the cargo.

At first sight, the situation where motors of opposite polarity compete in
a tug of war seems counterintuitive: Why would evolution select such an
inefficient transport system? For energetic efficiency, the activity of plus-
and minus-end motors should be mutually exclusive. This, however, re-
quires a regulating machinery that senses the activity of the motors and is
able to switch groups of motors on or off according to the current demand.
Such a machinery may well be present – and some parts have apparently
been identified [54] – but a tug–of–war model provides the physical base-
line behavior. Any realistic model for a regulated transport mechanism
must build on top of a physical transport model. This physical model de-
scribes the behavior of single motor proteins and the cargo under external
loads. Regulation of motor binding, unbinding, or stepping activity can
then be included through non-constant rates that depend on the internal
state of the motor–cargo complex and on external stimuli, such as regula-
tory mechanisms. This added complexity can be justified if the simpler,
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non-regulated model fails to explain observed transport properties, or if
one has evidence for its existence.

Tug-of-war models can produce a large variety of transport properties that
depend on a number of unknown parameters. Many interesting transport
behaviors of tug–of–war models have been reported, but not all are easy to
understand [74, 108]. Many effects are related to the non-trivial coupling
between individual motors in a tug of war: Motor proteins move in discrete
nano-scale steps. The stepping rate, but also the rate of unbinding from a
filament, depend on the current load, which in turn depends on the state of
all motors in the entire motor–cargo complex (see Figure 4.1). Depending
on the types of motors present, their number, and the drag forces acting
on the cargo, the transport properties change drastically [74, 130, 133].
It is therefore imperative to describe the different possible behaviors of a
realistic tug of war in the greatest possible detail before one can falsify such
models on the grounds of counter-intuitive observed transport properties.

Transport properties of tug–of-war models have been derived mathemat-
ically [74, 9] and have been obtained from numerical simulations and ex-
periments [108, 44, 133]. The kinetic model of Gazzola and co-workers
fitted experimental data remarkably well [44]. Müller and co-workers re-
ported a more refined model that is based on a force balance between all
active motors [108]. A similar approach was followed by Soppina and co-
workers [133]. All of these models are, however, only valid within certain
limits, or they require assumptions about uncertain properties of the mo-
tor and the cargo. These assumptions are manifested in simple rules for
the cargo state transitions. A detailed model for uni-directional transport
has been proposed by Kunwar and co-workers [81]. This model resolves
the mechano-chemical cycle of elastically coupled kinesin motors down to
the level of ATP binding and hydrolysis.

In the following sections, I will describe a force-based model that requires
few assumptions and resolves the dynamics of motors and cargo in detail.
Certain previous models can be identified as limit cases of the present
model for physically meaningful parameters. The present model repro-
duces previously reported behavior, generates transport patterns that were
so far unknown, and helps in understanding the role of the non-trivial cou-
pling between individual motors engaged in a tug of war. The model is
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assembled from well-characterized components and can be efficiently sim-
ulated. Its structure and the associated numerical simulation algorithm
permit many extensions that allow studying more complex systems than
the ones considered in Section 4.2.

During write-up of this thesis, the model presented in [81] was published
in a simplified form [80] for the limit of saturating ATP concentration. In
this limit, the used state transition rules reduce to the model presented in
this chapter, which is then simulated using an approximate Monte Carlo
scheme. The study in [80], however, focusses mainly on the case of uni-
directional motion, whereas the present study is concerned with charac-
terizing the transport properties of a symmetric tug of war.

4.1.1 Specification of the Model

A single, rigid cargo object is moved by several motors of opposite move-
ment direction. Motor proteins stochastically step on, bind to, and un-
bind from filaments with rates that may depend on the force acting on
the motor–filament bond. The physical links between motors and cargo
may play a key role in the cargo dynamics, as they define the magnitude
of forces and their fluctuations as a response to stochastic events. In the
present model, the positions of the motors and the cargo, as well as the
resulting forces, are explicitly resolved. An overview of the modeled state
variables, their relations, and state transitions is given in Figure 4.1.

Individual motors are coupled indirectly via the cargo. The cargo–motor
connections are modeled as linear springs, parameterized by their elastic-
ity κ. This allows linking the positions of motors relative to the cargo
with the forces acting between the motors and the cargo. In a response to
the motor forces, the cargo moves in the viscous environment of the cyto-
plasm. Since motors do not “see” each other, transmission of information
between motors exclusively takes place via the movement of the cargo.
Cargo movement is governed by Stoke’s law of drag, parameterized by the
drag coefficient γ. Inertial forces (small Reynolds number) and thermal
fluctuations of the cargo position are neglected. The latter is justified be-
cause the mechanical energy released by motor proteins is one order of
magnitude larger than the average thermal energy of the cargo [64].
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Figure 4.1: Illustration of the tug–of–war transport model. Molecular
motors (black things) are attached to a rigid object (gray circle) by elastic
springs (zig-zag lines). Motors stochastically bind to, unbind from, and
step along discrete binding sites (dashed lines) on a microtubule. The
cargo moves in response to the net motor force Fnet.

4.1.1.1 Time Scales

Molecular motors transform the chemical energy released by ATP hydrol-
ysis to work in a mechano-chemical cycle [73, 18]. In the motor kinesin,
for example, this is achieved by a conformational change of the protein
structure, which pulls the motor along the filament [119, 21]. The time to
complete one such “power stroke” is much shorter than the time between
subsequent steps [21]. Stepping of motors can therefore be modeled as
stochastic events at discrete times that instantaneously bring the motor–
cargo connection into a new state, that is, the motors jump to the next
binding site in their movement direction. Binding and unbinding of mo-
tors are chemical reactions that are modeled analogously to the stepping
events as instantaneous stochastic state changes. The motion of the cargo,
however, has to be resolved to greater detail: Depending on the proper-
ties of the motors and the cargo, the time between single motor steps and
the viscous relaxation time of the cargo position can be of similar order.
This separation of time scales into instantaneous stochastic events with
small rates and slow continuous movement of the cargo allows building a
mathematical model from well-known and well-characterized parts.
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4.1.1.2 Mathematical Description

The motion of motors along microtubules is inherently discrete, since the
motor–filament interaction that establishes a stable bond is localized to
specific parts of the motor and the tubulin dimer. Motors typically do not
switch between protofilaments. Step lengths of motors are thus integer
multiples of the 8 nm distance between two dimers of α and β tubulin
on the same protofilament. Kinesin rarely makes steps of more than 8 nm,
while dynein has been observed to also make steps of 16 nm. This motivates
the use of L = 8nm as the unit of length.

Each motor i is described by the tuple mi = �xi, bi, di�, where xi ∈ Z is
its position, bi ∈ {bound, unbound} its binding state, and the constant
di ∈ {−1,+1} its movement direction along the filament (x coordinate).
The cargo is described by the position of its center of mass xc ∈ R. N is
the total number of motors bound to the cargo, which is assumed constant.
This standard assumption is equivalent to assuming fast binding and slow
unbinding of motors to the cargo from an unlimited reservoir of freely
diffusing motors [44].

The tension in each motor–cargo link depends on the relative position of
the bound motors and the cargo. According to the linear spring model, a
force

Fi(t) = κ(xi(t)− xc(t)) (4.1)

acts on the motor i and the cargo, provided bi(t) = bound. For unbound
motors the force Fi is zero. The dynamic state changes of the motor–cargo
system crucially depend on these forces. In the following, two fundamen-
tally different mathematical descriptions of the dynamics of the cargo and
the motors will be used.

During the time τ after the last discrete state change of the motors the
cargo position evolves according to an ordinary deterministic differential
equation:

ẋc(τ) =
Fnet

γ
=

�
N

i=1 Fi

γ
, xc(τ = 0) = x0

c . (4.2)

This equation describes a dynamic balance of forces, that is, the forces
exerted by the motors on the cargo are balanced by the viscous drag,
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parameterized by the drag coefficient γ. The velocity of the cargo responds
instantaneously to changes in motor forces, i.e., there is no inertia. The
cell cytoplasm is a non-Newtonian fluid in which the drag coefficient γ may
depend on the radius and even the velocity of the cargo in a non-trivial
way. For simplicity, it is here assumed that the law of viscous drag for a
given cargo–fluid combination may be parameterized by a single constant
γ. Using Equation 4.1, the solution of Equation 4.2 is given by:

xc(τ) =
�
x0
c − �xi�

�
exp

�
−κNb

γ
· τ

�
+ �xi�, (4.3)

where Nb and �xi� denote the number of motors bound to the filament and
their mean positions, respectively. The force on a single bound motor i is:

Fi(τ) = κ (xi − �xi�)− κ
�
x0
c − �xi�

�
exp

�
−κNb

γ
· τ

�
. (4.4)

The first term on the right-hand side is the force when the cargo is in its
equilibrium position. The second term is the transient component of the
force, which decays exponentially to zero. Equations 4.3 and 4.4 are only
valid between events of binding, unbinding, or stepping of motors, since
these events may change the states of motors, their average position �xi�,
or N . In the following, τ is used as the primary time variable, that is,
times are measured relative to the time point of the last event. The real
system time t follows by adding up times between events.

Binding, unbinding, and stepping of motors are modeled as inhomogenous
Poisson processes. The events are described by the tuples Rµ = �Ψµ, iµ�,
where the operator Ψµ defines the type of the event. Whenever an event µ
occurs, the state miµ of the associated motor iµ is instantaneously changed
by applying the operator Ψµ. The operators are one of {Ψon,Ψoff,Ψst}:

• For binding events, that is if Ψµ = Ψon, the associated motor binds
to the filament site closest to the current cargo position: Ψµ : biµ ←
bound, xiµ ← ]xc[.

• For unbinding events, that is if Ψµ = Ψoff, the associated motor
unbinds from the filament: Ψµ : biµ ← unbound.

• For stepping events, that is if Ψµ = Ψst, the associated motor

155



CHAPTER 4. MODELING THE MULTI-SCALE TRANSPORT
DYNAMICS OF INTRA-CELLULAR OBJECTS

moves to the next filament site in its movement direction: Ψµ :
xiµ ← xiµ + diµ .

The rates k at which the events occur may depend on the forces in the
system, which change continuously in time due to the movement of the
cargo:

• Binding events occur at a constant rate [74] that does not depend
on the cargo position, the positions of other motors, or any force in
the system:

kµ = k0on. (4.5)

This reflects the assumption that a motor that is bound to the cargo,
but not to the filament, rapidly explores a space on the filament that
contains a large number of free binding sites.

• According to Kramer’s law of force-assisted barrier crossing [18, 79]
for chemical reactions, unbinding events occur with higher rates
if the motor–filament bond is under load:

kµ = koff(Fiµ(τ)) = k0off exp

� |Fiµ(τ)|
Fd

�
. (4.6)

This model is well supported by experimental observations [21]. The
unbinding force Fd is a motor-specific parameter that sets the force
scale; it does not define a maximum force that bound motors can
sustain.

• Stepping events occur at rates that reflect the empirical or theo-
retical force–velocity relation of a specific motor type. A motor that
makes steps of length L with rate kst moves on average with a ve-
locity v = Lkst. For kinesin, for example, the velocity (and therefore
the rate of stepping) decreases roughly linearly with external load,
that is

kµ = kst(Fiµ(τ)) =






k0st if F ≤ 0

k0st

�
1− Fiµ (τ)

Fs

�
if 0 < F ≤ Fs

0 else.

(4.7)
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4.1.2 Simulating the Model

The position of the cargo at time τ after the last stochastic event is given
by Equation 4.3. Between stochastic events, the rates of the stochastic
events are not constant, since they depend on the motor forces. The motor
forces (Equation 4.4), however, only vary in function of the cargo position.
Therefore, the rates of the stochastic events can be evaluated at any τ .

Formally, the model for the motor dynamics corresponds to a stochastic
system of coupled chemical reactions. Simulating the motor dynamics
therefore amounts to finding the next event and the next time at which
it happens. The stochastic simulation algorithm (SSA) is the standard
method for simulating such systems. In its original formulation, it requires
that rates are constant between events. In the present system, however,
rates are not constant between events. The mathematical foundation of a
variant of SSA that allows simulating such hybrid systems [50] is given in
Section 4.1.2.1. A step–by–step specification of the simulation algorithm
is presented in Section 4.1.2.2.

4.1.2.1 Hybrid Stochastic–Deterministic Cargo Dynamics

The concept of SSA is to sample from the joint probability density for
the next stochastic event µ and the time τ after the last event at which
it happens. Say N+ plus-end and N− minus-end directed motors are
attached to the cargo. In total 3N (N+ + N− = N binding, stepping,
and unbinding events each) different events are distinguished. Each event
(except for the binding events) depends on the corresponding motor force.

This joint density for the next event and next time is a time-dependent
exponential distribution [46, 50], conditional on the current system state
S = {m1, . . . ,mN , xc}:

p(τ, µ|S) = kµ(S, τ) exp

�
−

3N�

µ=1

�
τ

0
kµ(S, τ

�)dτ �
�

. (4.8)

Without any explicit time dependence, finding the time of the next event
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amounts to sampling from an exponential distribution, while the next event
itself can be selected with a probability proportional to its rate. For hybrid
system with time-dependent rates, sampling the time increment is less
trivial. It has to be chosen such that

3N�

µ=1

�
τ

0
kµ(S, τ

�)dτ � = − log(u) , (4.9)

where u is a uniform random number in [0, 1]. This can be done in two
ways: The first option is to evaluate the integral numerically from 0 to
increasing τ �’s and to stop integration once the equation is fulfilled. The
second option is to iteratively solve the equation for τ (for instance using
Newton’s root-finding algorithm), which, however, requires that the inte-
grands and integrals are known in closed form. If so, the iterative solution
of Equation 4.9 should be favored, since it is more efficient.

Here, the linear force–velocity relation allows finding integrals in closed
form. For events that can not happen (e.g., binding of an already bound
motor) the rates, and hence the integrals, are zero. For all others, the
integrals are as follows:

• Binding event. kon does not depend on the cargo position xc,
hence: �

τ

0
kon(S, τ

�)dτ � = k0on τ. (4.10)

• Unbinding event. The absolute value in Equation 4.6 requires
special attention. Assume the unbinding event concerns motor i.
First, one has to check whether the force Fi changes sign between
0 and τ . τ1 denotes the time of the sign change. If no sign change
takes place, τ1 = τ . The integral is then split as:

�
τ

0
koff(S, τ

�)dτ � =

�
τ1

0
koff(S, τ

�)dτ � +

�
τ

τ1

koff(S, τ
�)dτ � . (4.11)

The variable s = sign(Fi(0)) and the movement direction d = di of
the concerned motor (motor i) are introduced and Equations 4.6 and
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4.4 are inserted:
�

τ1

0
koff(S, τ

�)dτ � =

k0off

�
τ1

0
exp

�
κds

Fd
(xi − �xi�)−

κds

Fd
(x0

c − �xi�) exp
�
−κNb

γ
τ �
��

dτ � .

(4.12)

With c1 = k0off , c2 = κds

Fd

(xk − �xk�), c3 = κds

Fd

(x0
v
− �xk�), and

c4 = κN

γ
, this can be written more compactly as:

�
τ1

0
koff(S, τ

�)dτ � = c1

�
τ
�
1

0
exp [c2 − c3 exp(−c4τ

�)] dτ � . (4.13)

If c3 �= 0 (true whenever the cargo is not in its equilibrium position,
i.e., it is still moving), then:

�
τ1

0
koff(S, τ

�)dτ � =

c1 exp(c2)

c4
(−Ei (−c3 exp [−c4τ1]) + Ei (−c3)) ,

(4.14)

where Ei(·) denotes the exponential integral function. Note that
Ei(·) is implemented in the “gnu scientific library” (GSL) and can
therefore be conveniently evaluated. If c3 = 0, the integral reduces
to a simpler form:

�
τ1

0
koff(S, τ

�)dτ � = c1 + exp(c2)τ1 . (4.15)

The second half of the integral (from τ1 to τ) is solved in the same
way, but with s = −sign(F (0)) and different bounds:

�
τ

τ1

koff(S, τ
�)dτ � =

c1 exp(c2)

c4
(−Ei (−c3 exp [−c4τ ]) + Ei (−c3 exp [−c4τ1]))

(4.16)
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for c3 �= 0. The simpler result for c3 = 0 is:

�
τ1

0
koff(S, τ

�)dτ � = c1 + exp(c2)(τ − τ1) . (4.17)

• Stepping event. Due to the piece-wise definition of the force–
velocity relations it is necessary to check whether the concerned mo-
tor (motor i) stalls (dFi > Fs) or is working at full speed (dFi < 0).
Let τ1 denote the time at which dFi crosses 0 from below and τ2 the
time at which dFi crosses Fs from below. The cases when dFi crosses
Fs or 0 from above are analogous, but the bounds of the integrals
have to be exchanged accordingly. The integral is split into three
parts:

�
τ

0
kst(S, τ

�)dτ � =

�
τ1

0
0 dτ � +

�
τ

τ2

k0stdτ
�

+

�
τ2

τ1

k0st

�
1− dκ

Fs
(xi − �xi�)

dκ

Fs
(x0

c − �xi�) exp
�
−κNb

γ
τ �
��

dτ � .

(4.18)

Using c1 = k0st, c2 = 1 − dκ

Fs

(xi − �xi�), c3 = dκ

Fs

(x0
c − �xi�), and

c4 = κNb
γ

the solution is found as:

�
τ

0
kst(S, τ

�)dτ � =

c1

�
c2(τ2 − τ1)−

c3
c4

(exp(−c4τ2)− exp(−c4τ1))

�
+ c1(τ2 − τ1).

(4.19)

The times τ1 and τ2 at which the force crosses 0 and Fs, respectively, are
found by solving Equation 4.4:

τ1 = ln

�
(xi − �xi�)
(x0

c − �xi�)

�
γ

κNb

, (4.20)

τ2 = ln

�
κ(xi − �xi�)− Fs

κ(x0
c − �xi�)

�
γ

κNb

. (4.21)
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τ1 and τ2 only exist if the corresponding crossings indeed take place. Be-
cause the forces change monotonously between events this can easily be
tested by inspecting F (0) and F (τ) (Equation 4.4).

The calculations above are only valid for the specific force–velocity relation
used here (Equation 4.7). For other relations they must be adapted and
it may not always be possible to express all integrals in closed form.

4.1.2.2 Algorithm

The time t, the position of the cargo, xc, and the states mi of all motors
need to be tracked. Starting from an initial state at time t = 0, the
simulation algorithm cycles through the following steps:

1. Compute the time τ to the next event. This requires solving Equa-
tion 4.9) for the upper bound τ of the sum of integrals using Newton’s
root-finding algorithm. This algorithm solves problems of the type
f(τ) = 0. This requires the function value f(τn) and its derivative
f �(τn) at a tentative solution τn. Here, the function value is

f(τn) =
3N�

µ=1

�
τn

0
kµ(S, τ

�)dτ � + log(u) (4.22)

and its derivative is

f �(τn) =
3N�

µ=1

kµ(S, τn) . (4.23)

Each iteration of Newton’s algorithm consists of the following steps:

(a) For all step events check whether the force acting on the con-
cerned motor crosses 0 or Fs between 0 and τn. If so, determine
the crossing times τ1,and τ2 using Equations 4.20 and 4.21.

(b) For each event µ, compute the integrand kµ and integral for
the given τn. The integral might consist of up to three parts (0
to τ1, τ1 to τ2, and τ2 to τn), depending on whether crossings
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happened. The integrals are known in closed form for the linear
force–velocity relation Equation 4.7 (see Section 4.1.2.1).

(c) Compute the sums with respect to µ in Equations 4.22 and 4.23.

(d) Do a Newton step to determine the new tentative τn+1:

τn+1 = τn − f(τn)

f �(τn)
. (4.24)

(e) If τn+1 is not significantly different from τn stop the iteration
and take τ = τn+1 as the solution; else loop back to (a).

2. Update time: t ← t+ τ .

3. Select the next event. This is either a binding, unbinding, or stepping
event of one motor:

(a) Compute the rates kµ(S, τ) of all events µ (Equations 4.5–4.7).

(b) Randomly select the next event. The probability of selecting
an event is proportional to its rate. That is, find the smallest µ
for which

µ�

i=1

ki(S, τ) ≥ u
3N�

i=1

ki(S, τ) , (4.25)

where u is a uniform random number in [0, 1].

4. Update the cargo position: x0
c ← xc(t) ← xc(τ) where xc(τ) is com-

puted using the system state prior to the latest event in Equation 4.3.

5. Update the state of the motor concerned by the event that happened
by applying the corresponding operator Ψ.

6. If t ≥ tmax stop; else loop back to 1.

The main complexity of the algorithm lies in step 1, where the standard
stochastic simulation algorithm (SSA) can not be used. While the logic
is the same the straightforward inversion method for sampling times to
the next event can not be applied, because the intensities of the Poisson
processes change continuously in time between events. Finding the time to
the next event requires on the order of 10 iterations of Newton’s algorithm.
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A further complication originates from the piece-wise linear force–velocity
relation, which makes crossing detection and case distinctions necessary.

Relative to the other steps, selecting the next event is not the computa-
tional bottleneck. There is hence no significant benefit in using anything
else than the simplest event selection algorithm.

4.2 Studying the Model

Some authors [108] have pointed out that the non-trivial coupling between
motors leads to a dynamic instability of the balance N+

b − N−
b between

bound motors on the plus and minus sides. Even a totally symmetric
tug of war (equal numbers of identical motors on each side) can produce
long uni-directional motion, but also frequent switching of movement di-
rections. How can an imbalance of the numbers bound motors on either
side be stable, if the system is symmetric? The reason is that once one
side is dominating (say, just by chance), a coordinated sequence of bind-
ing events on the opposite side is required to re-establish balance. The
time to complete the binding events must be much shorter than the time
it takes to move the cargo by an amount that loads newly established
motor–filament bonds. If this time is too long, newly bound motors are
quickly loaded so strongly that they unbind with a significantly increased
rate (Equation 4.6). On the dominating side, however, newly bound mo-
tors will more likely remain only moderately loaded, unless, by chance,
they outrun the other motors or fail to move at all. The domination by
one side is, therefore, self-stabilizing.

Nevertheless, switching of the movement direction does occur. Assuming
that two stable imbalances (either side may be dominating) exist, switch-
ing amounts to jumping from one stable point to another, that is, the
dynamical system needs to cross the barrier between two basins of attrac-
tion. This requires, as discussed, a sequence of unlikely events, that is,
strong fluctuations around the mean behavior. These events, however, are
not statistically independent. They can thus occur with higher probability
than a sequence of similar, but independent events. If, for example, the
leading motor on the dominating side unbinds, the other motors’ load can
sharply increase. This increases their unbinding rates, which may trigger
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a cascade of further unbinding events and ultimately a switch of direction.

In this view, the magnitude of force changes due to stochastic events is
of great importance for the overall system dynamics. In order to allow
resolving and adjusting such force fluctuations, the motor–cargo link elas-
ticity κ, and the cargo’s drag coefficient γ, have been introduced in the
present model. For elastic links (small κ), single motor steps are of little
importance, since the increase in force due to a step is κL. For slow cargos
(large γ), the effect of steps is only slowly transmitted between motors.
The parameter γ is therefore mainly responsible for the transmission of
noise between motors, whereas the parameter κ sets a noise scale.

Increased noise levels have a strong effect on unbinding rates. Since the
unbinding rates depends on motor forces through an exponential function
(Equation 4.6), the mean unbinding rate changes upon increasing fluctu-
ations of forces. For the same mean force, motors with highly fluctuating
forces unbind more frequently. Since the unbinding events are key for
reversals of the movement direction, it must be expected that the param-
eters κ and γ have a strong effect on the transport characteristics of the
tug of war. As reported previously [108], tug of wars are also sensitive to
motor parameters, such as the unbinding force Fd, the binding rate k0on,
and the maximum number of motors bound N+(−). While the former
two influence the speed with which the system can move away from stable
points, the latter relates to the “distance” between the states where one
side dominates. The present study mainly focusses on changes in trans-
port properties mediated by the two newly introduced parameters κ and
γ. Nevertheless, the maximum number of motors and the binding and
unbinding rates will be varied as well, but within narrower bounds and
with reduced sampling resolution.

The standard motor model as introduced in Section 4.1.1.2 is used in the
following. That is, motors bind, unbind, and step according to Equa-
tions 4.5–4.7. The force–velocity relation in this model prohibits back-
stepping and keeps rates of forward steps constant under assisting forces.
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4.2.1 Parameters

The motor–cargo system is parameterized by properties of the motors, the
cargo, the medium, and the motor–cargo links. In order to reduce the
number of free parameters, the symmetric case with equal numbers and
physically identical motors moving in the plus and minus direction is stud-
ied. Since plus and minus motors and their parameters are very different in
reality, this model is not realistic. Nevertheless, the behavior of the sym-
metric system is a valuable base-line. The symmetric system is expected
to show important characteristics of more realistic asymmetric systems,
such as long directional runs that are caused by the non-trivial coupling
between the motors. Knowing the base-line furthermore allows quantifying
the sensitivity of the transport system with respect to asymmetries.

The used motor parameters are comparable to those of kinesin. The rate
of forming and breaking motor–filament links (the (un)binding rate) may
depend on the cargo and on other factors. The drag coefficient for the cargo
depends on the medium and on the cargo size, but not on the velocity. All
motor–cargo links have the same elasticity κ, with an upper bound roughly
given by the intrinsic elasticity of a single kinesin dimer as determined
experimentally [70] and numerically [3]. The effective elasticity, however,
can be significantly lowered by deformable cargo, such as vesicles [84]. The
unit of length is the length of a single kinesin step, L = 8nm. The unit of
force is pico-Newton (pN). Table 4.1 lists the free model parameters and
the bounds used in the present study..

In the following sections, these parameters are systematically varied within
biologically relevant bounds. Since the main focus is on the effects of κ
and γ, they are varied over a larger range with finer resolution (each over
11 logarithmically spaced values within the bound given in Table 4.1).
As reported previously [108], k0on and k0off play an important role for the
transport characteristics, as does the maximum number of motors N . In
order to reduce the dimensionality of the sampled parameter space, N+

and N− only take the values {2, 5, 10}, which covers the range of values
reported for various cargos [54, 130, 108, 44]. The zero-load equilibrium
constant K = k0on/k

0
off is kept constant at K = 5, while k0on takes the

values {0.2 s−1, 1.0 s−1, 5.0 s−1}. The average rate of motor binding and the
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average number of motors bound are expected to be key determinants of
uni-directional run lengths, switching of movement direction, and directed
motion velocities. The average rate of motor binding is approximately
proportional to the productN+(−) k0on, while the average number of motors
bound is related to N+(−) K. k0off is thus not varied independently of the
other parameters, but is coupled to k0on via the constant K.

The stalling force, unbinding force, and stepping rate of motors are fixed
to the values reported in [108]. In total, four parameters are thus varied.

Symbol Unit Range
Motor parameters
binding rate k0on s−1 0.2 – 5.0
unbinding rate k0off s−1 0.04 – 1.0
stepping rate k0st s−1 100
stalling force Fs pN 6.0
unbinding force Fd pN 3.0
Cargo parameters
drag coefficient γ pN sL−1 0.004 – 0.667
plus (minus) motors N+(−) – 2 – 10
Link parameters
elasticity κ pNL−1 0.024 – 4.0

Table 4.1: List of parameters of the present transport model.

4.2.2 Auto-Correlation of the Cargo Velocity

The main objective of the present study is to robustly characterize quali-
tative and quantitative changes in cargo motion. Detecting the emergence
of stable uni-directional movement is thus central to the analysis. In order
to be unbiased, no prior about the length or the velocity of stretches of
uni-directional motion should be used.
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A simple measure for persistence of uni-directional motion is used: Unless
the cargo undergoes a random walk, the velocities from neighboring time
points should be correlated. If the cargo moves in the same direction for
a long time, the correlation with more distant time points is also high. If
the cargo switches direction between two time points, the velocities will
be anti-correlated. This motivates using the auto-correlation function of
the cargo velocity to quantify the persistence of uni-directional motion.

For a given trajectory xc(t), sampled at discrete times ti = i∆t, the auto-
correlation function of the velocity ẋc(t) is given by:

Rẋcẋc
(j) = (ẋc � ẋc) (j) =

�

i

ẋc(ti) ẋc(ti+j) , (4.26)

where the sum is taken over all possible i. j∆t is the time lag at which the
auto correlation is evaluated. A plot of the auto correlation versus time
lag is called a correlogram. For the present stochastic model, the auto
correlation should vanish for large time lags. In fact, a typical correlogram
shows an exponential decay of the correlations (see Figure 4.3). The time
constant of the decay corresponds to a time scale over which the state
of the motor–cargo complex changes significantly, as reflected by a large
and persistent change in velocity. For trajectories consisting of phases of
processive motion with alternating directions, the time constant of the
decay reflects the typical duration of stretches of uni-directional motion
between two reversals.

Further time scales, however, may be present in the auto-correlation func-
tion. These correspond to other stochastic processes that affect the veloc-
ity, such as unbinding and stepping. The auto correlation of the sum of
two completely uncorrelated signals is the sum of the two auto correlations
of the signals. Stepping events, for example, cause a sharp increase in the
velocity, followed by exponential decay. Such jumps are superimposed to
the current motion, as long as they do not trigger further stochastic events.
Ignoring correlations between the responses to stepping events, unbinding
events, and switching of movement direction, this motivates approximat-
ing the velocity auto-correlation function with a sum of exponential func-
tions. Each exponential reflects the system’s response to a specific type of
stochastic event. Based on this, a specific model for the auto-correlation
function is introduced in the following section.
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4.2.3 Multi-Scale Dynamics

Cargo trajectories produced by the present model show many character-
istics that have been previously described. For suitable parameters, the
trajectories show long stretches of fast uni-directional motion with runs
directed to the plus and minus ends alternating. Switching of direction is
frequently, but not always, accompanied by a deadlock situation in which
motors on opposing movement direction neutralize each other. During
such deadlocks motion can practically stall but random-walk-like behavior
can also be observed. Figure 4.2 shows example time series of the cargo
position xc(t) and its velocity ẋc(t).

On the time scale of tens of seconds, the most significant feature is the
emergence of bi-directional saltatory motion (Figure 4.2A). Phases dur-
ing which the cargo moves uni-directionally with an apparently constant
velocity of about 50L/s typically last 1 to 5 seconds (Figure 4.2B).

On the time scale of seconds, the deadlocks between switches of direc-
tion becomes apparent. Phases of directed motion (light gray shading in
Figures 4.2C and D) end abruptly with sharp drops in velocity, while fluc-
tuations of the velocity about zero remain during the subsequent deadlocks
(dark gray shading). Such deadlocks, however, need not be followed by a
switch in movement direction, as seen for example at t = 31 s and t = 32 s.
Figures 4.2C and D further reveal that the velocity during uninterrupted
phases of directed motion is not necessarily constant. Between t = 27.5 s
and t = 31 s the step velocities appear to cluster around −20Ls−1 and
−50Ls−1, which is reflected in changes of the slope in Figure 4.2C.

The inset in Figure 4.2D, which spans a total of 0.5 s, shows the dynamics
of the velocity on the time scale of tenths of seconds. Between instanta-
neous jumps, the velocity magnitude decays exponentially. Large jumps
correspond to unbinding, small jumps to stepping events. The exponen-
tial decay is given by the derivative of Equation 4.3. Both stepping and
unbinding events essentially change �xi�, but the effect of unbinding is
typically larger (hence the larger jump). Unbinding events additionally
change Nb, thus affecting the time constant of the decay.

In summary, three time scales that can be linked to different stochastic
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Figure 4.2: Multi-scale dynamics of cargo motion. (A and C) Cargo po-
sition; (B and D) Cargo velocity. (C) and (D) are magnifications of the
data shown in (A) and (B). The shading separates phases of uni-directional
motion (light gray) and mutual blocking of opposing motors (dark gray).
(D) illustrates the different time scales for changes of the velocity. The
values of free model parameters were: N+ = N− = 5, k0on = 1.0 s−1,
κ = 1.438 pNL−1, and γ = 0.240 pN sL−1.

events during cargo transport can be identified. Here, the slowest time
scale is of highest interest, since it is related to the length of phases of
directed motion. As presented in Section 4.2.2, the auto-correlation func-
tion of the cargo velocity can be used to quantify the persistence of uni-
directional motion.

In order to enable robust estimation of the velocity auto-correlation func-
tion, very long (Tmax = 2 ·105 s), finely sampled (∆t = 10−4 s) trajectories
are used. Figure 4.3A shows the velocity auto-correlation function of a tra-
jectory similar to that shown in Figure 4.2 (using the same parameters).
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Figure 4.3: (A) Estimated auto-correlation function (circles) and fit
(line) with Equation 4.27. The fitted parameters are: {a1, a2, a3, a4} =
{48.2, 123.3, 758.5, 1.3} and {b1, b2, b3} = {0.01 s, 0.08 s, 1.09 s}. (B) Mag-
nification of the short time-lag region in (A). Upper line: all three expo-
nentials; middle line: fastest time scale left out; lower line: only the slowest
time scale displayed. Note that while some time scales are not displayed
they were still considered in during fitting.

The estimated auto correlation (circles in Figure 4.3A) appears to decay to
zero exponentially, with a time constant on the order of one second. This
time constant matches well the typical duration of uni-directional motion
as shown in Figure 4.2A. The estimated auto-correlation function is fitted
with a mixture of exponential functions. This allows extracting quanti-
tative parameters for comparing the persistence of uni-directional motion
in trajectories generated using different model parameters. The estimated
auto-correlation function is fitted with a sum of three exponentials, each
corresponding to one of the time scales identified in Figure 4.2:

Rm(j∆t) =
3�

i=1

ai exp

�
−j∆t

bi

�
+ a4 (4.27)

with hard constraints

0 s < b1 ≤ 0.01 s, 0.01 s < b2 ≤ 0.1 s, 0.1 s < b3 . (4.28)
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In good agreement with the initial visual assessment of the sample tra-
jectory, the slowest time scale is fit with a time constant of b3 = 1.09 s.
Although the exponential corresponding to the slowest time constant, b3,
dominates, the other two exponentials and the constant a4 are necessary
for a robust fit. Figure 4.3B shows how successively adding the faster time
scales increases the quality of the fit. Ignoring the two fastest time scales
would lead to a systematic under-estimation of b3, because the increased
curvature of the auto-correlation function at small time lags would have
to be compensated by an overall larger slope, i.e. smaller b3.

In summary, the slowest time scale in variations of the cargo velocity,
represented by b3, can be used to quantify correlations of the velocity
caused by processive uni-directional motion. The influence of the free
model parameters on this time scale are studied in the next section.

4.2.4 Persistence of Uni-Directional Motion

The trajectory in Figure 4.2 shows characteristic features that are typi-
cally attributed to a tug–of–war transport mechanism: Since in this model
motor activity is not regulated, motors of opposing sides can engage in a
tug of war that can bring the cargo to a temporary halt. Long phases
of uni-directional transport can occur when one side is dominating and a
large part of the load is shared between many motors.

Absence of these characteristic motion features, however, is insufficient to
reject a tug–of–war model. In the present model, the characteristics of the
cargo motion are highly sensitive to parameters of the motors and cargo,
as shown below.

A robust method for quantifying the persistence of phases of uni-directional
motion was demonstrated in Section 4.2.3 for a single set of parameters.
Now, the link elasticity κ and the drag coefficient γ are systematically
varied within the bounds given in Section 4.2.1 in order to quantify their
effect on the velocity auto-correlation function. The remaining parameters
are kept the same as in the example shown in Figure 4.2. Figure 4.4 shows
the dependence of the slowest time scale, b3, on γ and κ.
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b3 varies between 0.5 s and 2 s, indicating that the persistence of uni-
directional motion strongly depends on the properties of the cargo and
of the motor–cargo links. These variations in b3 are accompanied by dras-
tic changes in the visual appearance of the motion on several time scales,
as illustrated by four sample trajectories representing the extremes of the
parameter space. Interestingly, there are regimes in which b3 is fairly in-
sensitive to parameter variations, for example on the plateau around small
κ and γ.

A clear trend is that b3 increases with increasing ratio κ/γ. This ratio
appears, for example, in the exponential functions in Equations 4.3 and
4.4. For large κ/γ the force of a single motor, and of the motors on the
same side of the cargo, rapidly decreases after a step. Forces of opposing
motors, however, increase faster. The ratio κ/γ thus determines the speed
of communication between motors, which helps establish and maintain
dominance of one side.

The mobility regimes identified in Figure 4.4 are based on trajectories
simulated with N+ = N− = 5 and k0on = 1.0 s−1. The number of bound
motors and its fluctuation, which is related to k0on and k0off , have been
previously identified as important determinants of transport characteris-
tics [74, 108]. The κ-γ parameter screen shown in Figure 4.4 is therefore
extended by also systematically varying the values of N+(−) and k0on. Fig-
ure 4.5 shows the dependence of b3 on κ and γ for all combinations of three
values of N+(−) and k0on.

The most extreme case (N+ = N− = 10 and k0on = 0.2 s−1) yields very
long phases of persistent uni-directional motion. The dominance of one
side over the other is supported by many motors. This redundancy allows
tolerating several unbinding events on the dominating side before a dead-
lock situation can be established. The low unbinding rate additionally
makes it unlikely that the sequence of events required for reversing direc-
tion happens rapidly. This means that on the side opposite to the current
movement direction the load on newly bound motors increases significantly
before any further assisting motors can bind.

The trends of the dependence of b3 on κ and γ, as shown in Figure 4.4, are
largely preserved in the plots in Figure 4.5. The magnitude of b3, however,
varies over two orders of magnitude for the different values of N+(−) and
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k0on used. An interesting detail is that the slowest time scale of the velocity
auto-correlation can develop a second peak, which is most easily recognized
in the case ofN+(−) = 2 and k0on = 5.0: Beyond a trench oriented along the
log(γ)-log(κ) diagonal, b3 increases for large γ and small κ. This region
corresponds to weak coupling between individual motors, as the cargo
responds slowly to changes in motor forces. Furthermore, single steps of
motors increase the motor’s force only slightly. This means that motors
can move almost independently of one another and fluctuations of forces
are very small. Why this situation increases the length of correlations, an
effect that was previously attributed to tight coupling between motors, can
not be answered based on the data presented so far. In the next section,
distributions of cargo velocities are hence analyzed, which may help reveal
the cause of this counter-intuitive effect.

4.2.5 Velocity Distributions

In order to further characterize cargo motion, distributions of velocities
are determined. As discussed in Section 4.2.3, cargo motion is highly dy-
namic on multiple time scales. High-frequency components of the velocity,
caused by steps and unbinding events of individual motors, are “superim-
posed” on the overall motion caused by the collective action of all motors.
In order to remove the high-frequency fluctuations, time-averaged veloc-
ities are determined. Adaptive averaging of the velocity is achieved by
computing the net cargo displacement within a time Tv determined from
the slowest time scale of the velocity auto-correlation function. The ob-
jective of adaptive averaging is to provide velocity distributions that allow
identifying phases of deadlocks and uni-directional motion. The time Tv

is therefore a tradeoff between averaging out fluctuations and minimizing
the blurring of transitions between different phases of motion. Tv = b3/2
was empirically found to be a good compromise. The velocities

�ẋc�i =
xc(ti + Tv)− xc(ti)

Tv
(4.29)

are computed for all times ti for which the position of the cargo was sam-
pled. The velocity distribution is determined using a histogram density
estimator on a large number of such velocities (i.e., using long trajecto-
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ries). Each of the Figures 4.6 to 4.8 shows the velocity distributions for
three values of γ and all values of κ. For Figure 4.6 N+(−) = 2 and
k0on = 0.2, for Figure 4.7 N+(−) = 2 and k0on = 5.0, and for Figure 4.8
N+(−) = 10 and k0on = 0.2.

Figure 4.6: Cargo velocity distributions for N+ = N− = 2, k0on = 0.2, and
γ and κ as indicated. For better visual appearance, the vertical axis is
truncated at 0.04 s/L.

The velocity distributions exhibit significant quantitative and qualitative
differences. A trend apparent in all three figures is that velocities decrease
with γ. The amount of the decrease, however, also depends on N+(−)
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and k0on. For γ = 0.004 pN sL−1, the drag force exerted by the cargo
on the motors is relatively low, which allows them maintaining effective
stepping rates (and hence cargo velocities) close to k0st = 100Ls−1. For
γ = 0.052 pN sL−1, the velocity is reduced, except for when up to N+(−) =
10 motors cooperate (Figure 4.8).

Some of the distributions show a pronounced peak around zero, which
might correspond to the cargo being in a deadlock situation. In some
cases, however, this peak is rather wide, which is inconsistent with a meta-
stable deadlock. Alternatively, it could correspond to a situation where
the number of bound motors on both sides fluctuates around a common
mean value, which could lead to uncorrelated random jumps of the cargo
to either side, that is, some sort of diffusion process on the filament. Wide
peaks around zero occur for small values of κ and not too small values of γ,
which yield weak coupling between motors and small fluctuations of forces
upon stepping events. Weak coupling between motors, however, implies
that their stepping and unbinding kinetics are largely independent of the
overall motor–cargo state. In the limit of completely uncorrelated motors,
their actions would have an effect on the cargo that is similar to thermal
noise.

A further notable feature of the velocity distributions is the occurrence of
peaks at non-zero velocities. For N+(−) = 10 (Figure 4.8), for example,
two sharp peak appear close to the zero-load velocity of the motors. This
indicates that the system mostly is in states where one side dominates
and during dominance the state (e.g. number of motors bound) does not
vary significantly. Similarly well-resolved peaks are also present in in the
distributions shown in Figure 4.6, where, however, the strong peaks at
zero remain. Therefore, the system spends considerable amounts of time
in tied configurations that do not produce significant net movement.

The distributions shown in Figure 4.6 can have additional peaks appear-
ing close to the peak at zero, the outer peaks, or even close to both. For
γ = 0.052 pN sL−1 and small κ, up to seven peaks are clearly resolved.
These peaks can be identified with configurations consisting of all possible
combinations of 0, 1, or 2 motors bound on either side, with all symmetric
configurations mapped to the peak at zero. It has previously been sug-
gested that several peaks in the velocity distribution may occur if the cargo
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Figure 4.7: Cargo velocity distributions for N+ = N− = 2, k0on = 5.0, and
γ and κ as indicated. For better visual appearance, the vertical axis is
truncated at 0.04 s/L. Note that the fine peaks for γ = 0.004 pN sL−1 are
a quantization artifact, as discussed in the main text.
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Figure 4.8: Cargo velocity distributions for N+ = N− = 10, k0on = 0.2,
and γ and κ as indicated. For better visual appearance, the vertical axis
is truncated at 0.04 s/L.
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drag force is high [130]. The observation that this phenomenon depends
on κ, as shown in Figure 4.6, is new.

For N+(−) = 2 and k0on = 5.0, no additional peaks are apparent (Fig-
ure 4.7), but wide distributions are observed for small γ. In case of
γ = 0.052 pN sL−1 and large κ, the two side peaks become apparent.

In Figure 4.7, many sharp peaks occur in case of large κ and small γ.
These peaks are not measurement noise, but rather a quantization effect:
After a step of any motor, the cargo quickly relaxes to its new equilibrium
position, where it comes to a halt. The time scale of relaxation is smaller
than the stepping rate of the motors. Computing the velocities with a
moving-window average therefore amounts to counting individual steps.
This quantization effect becomes apparent if the total number of steps
made by all motors during the averaging window is small. In the cases
where the peaks are most pronounced, typically as few as 10 steps occured
in a window. For the cases shown in Figure 4.7, the quantization effect is
much less pronounced, although the same number of motors was used. The
reason is that k0on = 0.2. This facilitates maintenance of uni-directional
motion supported by two motors (see Figure 4.5). With more motors
bound, the number of steps per unit of time increases and the quantization
effect is less pronounced.

A noteworthy feature of the cargo velocity distributions is that the max-
imum velocity does never significantly exceed the zero-load velocity of a
single kinesin (100L/s). In contrast to that, higher velocities have occa-
sionally been observed in vivo (see e.g. [44] and Figure 1.10).

The output of the present model seems reasonable, because the mean mo-
tor velocity decreases with increasing load. Nevertheless, it has to be taken
into account that motors step stochastically. This means that within a fi-
nite time a motor’s velocity fluctuates around its mean. Therefore, it has
to be expected that in a group of motors moving in the same direction
some will have advanced further than others. Could it be that this yields
higher net cargo velocities? In the present model, this is only possible if
motors can speed up each other. Three conditions need to be fulfilled for
this to happen: First, the stepping rate needs to increase with an assist-
ing load on the respective motor (the force-velocity relation used in the
present model does not have this property). Second, leading motors need
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to be able to exert assisting forces on rearward motors. In order to allow
for motors to be “pushed” forward, the motor–cargo link must not buckle
under compression. In the present model it is assumed that springs do not
buckle, but there is experimental evidence that kinesin has a significantly
lower (if not vanishing) stiffness under compression (see Figure 5 in [70]).
The third prerequisite is that already few steps of the leading motor re-
sult in assisting loads on the rearward motors. Otherwise, fluctuations
would be averaged out and motors would have similar loads. This requires
stiff motor–cargo links and fast relaxation of the cargo to its equilibrium
position (i.e., low drag forces).

Taken together, the force-velocity relation used here does not allow for
groups of motors to speed up each other beyond the single-motor velocity.
Furthermore, the resting length of the motor-cargo link is at least the
length of the motor protein, which is about 110 nm≈ 15L for kinesin. If
pushing forces are excluded due to buckling of the link, an assisting force
is only possible if the rearward motor is pulled by the leading one. This
requires that they are at least two resting lengths (≈ 30L) apart. Taking
this into account, it is very unlikely that simple extensions of the present
model systematically generate cargo velocities that are higher than single
motor–velocities.

The failure to systematically generate higher velocities does, however, not
invalidate the present model. Due to their short duration, stretches of fast
directed motion on intra-cellular filaments can show higher velocities than
the long-term average velocities predicted by the present model. On short
time scales, the model can produce cargo velocities that are significantly
higher than single-motor velocities due to the stochastic nature of stepping
of individual motors.

Intriguingly, it is not easy to imagine how the stepping rate of motors
could be increased by other means, e.g. by regulatory molecules: At sat-
urating ATP concentrations, the stepping rate of kinesin is likely limited
by the diffusive search of the free head for a new binding site [21]. The
rate of this event mainly depends on the structure and elasticity of the
neck-linker region, which may not be easily adjusted without altering fun-
damental properties of the motor (such as the stalling force, which seems
to be the same in vivo and in vitro). In order to explain the full range of
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observed cargo velocities, physical effects ignored so far (e.g., head–head
interactions) may have to be included in future models.

4.3 Relationships to other Models

The present model includes some transport models used in previous stud-
ies as limit cases, which are briefly discussed in the following paragraph.
The discussion of these models is followed by a few examples of other re-
lated models. Some of these models, however, focus on slightly different
systems or use different approaches, which renders a direct comparison to
the present model difficult.

The model for the motion of Adenovirus particles on intra-cellular micro-
tubules proposed by Gazzola and co-workers [44] does not explicitly resolve
the forces acting on motors and cargo. In their model, steps of the cargo
are instantaneous consequences of single motor steps, which occur at con-
stant rate. Each step brings the cargo forward by one unit of length, but
has no effect on the binding, unbinding, or stepping rates of any motor
in the system. In the present model, this behavior can be recovered by
infinitely stiff motor–cargo links (κ → ∞) and zero drag force exerted on
the cargo by the surrounding fluid (γ → 0). For virus particles, which are
small and rigid objects, these limits seem reasonable. Furthermore, the
present force–velocity relation (Equation 4.7) needs to be changed: Each
step of any motor needs to be followed instantaneously by steps all other
motors. This requires that the rate of forward steps is increased by assist-
ing forces and that back-stepping of motors can be triggered by backward
forces. Experimentally determined force–velocity relations of, for example,
kinesin, indeed show such phenomena [21].

The tug–of–war transport model of Müller and co-workers [108] is based
on equal load sharing between motors. For a given number of bound plus-
and minus-end directed motors, a common motor (and cargo) velocity is
determined that must be in agreement with the force–velocity relation of
all bound motors. The sum of all motor forces has to be equal to the sum
of all external forces at all times. In the present model, this amounts to
assuming very elastic motor–cargo links (κ � 1). With such links, the
motors on either side will be able to step into configurations in which they
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all have the same load. Nevertheless, back-stepping of motors is needed to
allow for any cargo motion when motors of opposing movement directions
are simultaneously bound to the cargo. Since load balance is established
instantaneously, γ → 0 is also required.

The model of Kunwar and co-workers [81, 80] resolves forces acting on the
cargo that result from stretching of the motor–cargo link and viscous drag
on the cargo. In their formulation, the full kinetic cycle of ATP binding
and hydrolysis is included. At saturating ATP concentration, the effective
binding, stepping, and unbinding rates of kinesin reduce to the ones used in
Reference [108] and in the present work. However, Kunwar and co-workers
also consider non-linear force-velocity relations of single motors.

Badoual and co-workers [7] presented a model for the collective motion of
rigidly coupled motors. The lack of elasticity requires treating the collec-
tion of motors as a single object undergoing biased diffusion in a periodic
potential. Depending on their state, individual motors “see” a potential
that is either flat or has a skewed saw-tooth-like shape. Switching from the
saw-tooth potential to the flat one occurs preferentially at the saw-tooth’s
minima, hence generating net motion in one direction. In the inelastic
limit studied, a separation of time-scales into the power-stroke scale and
the cargo-movement scale is not valid. Therefore, their model can not be
recovered as a limit of the model presented in this chapter.

Vilfan and co-workers [148] presented a model for motor-driven filament
motion as frequently studied in gliding assays. In their model, a linear
chain of elastically coupled single-headed, non-processive motors moves on
a rigid filament. Individual motors cycle through binding, power-stroke,
unbinding, relaxation, and rebinding. The power strokes can move cur-
rently unbound motors forward due to the elastic coupling, which yields
processive uni-directional motion. Due to the different motors used, this
model’s output is incomparable to the one presented in the present chapter.

Campàs and co-workers [19] studied the collective dynamics of molecular
motors coupled by an effective interaction potential. In their model, mo-
tors move on a lattice with rates that depend on the local arrangement
of motors and on external forces. Since the coupling between the mo-
tors is extremely strong (rates change instantaneously after motor steps),
this model is probably close to the case of very rigid motor-cargo links.
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However, an external drag force on the cargo is not included. Instead,
the leading motor bears the total external load, which seems to be an
unrealistic assumption for most (if not all) intra-cellular cargos.
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CHAPTER

FIVE

Conclusions and Outlook

This thesis has addressed a number of methodological and scientific ques-
tions pertaining to the study of endocytosis and trafficking of cargo in
mammalian cells. The emphasis was on the development of computational
techniques for image-based analysis, modeling, and simulation of biophys-
ical processes that are linked to intra-cellular transport. Measurements
that probe properties of the endocytic system in live cells are strongly con-
strained by physical processes, such as diffraction of light, which limits the
resolution of optical microscopes. Model-based computational approaches
are hence critical for the study of these phenomena.

Several key mechanisms and phenomena in endocytosis and trafficking de-
pend on tight coupling between biophysical and biochemical processes.
Active transport, for example, delivers internalized cargo to its destina-
tion, controls the spatial arrangement of organelles, affects the shape of
intra-cellular objects, and regulates fusion and fission of membrane com-
partments, which is central for cargo sorting. In the systems studied in
this thesis, relations to motor-dependent active transport are ubiquitous.
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This thesis contributes novel data-analysis methods as well as statistical
and physical models for studying endocytosis and intra-cellular trafficking.
In particular, a novel algorithm was developed that decomposes heteroge-
nous trajectories into distinct segments containing only a single motion
type. Such heterogenous trajectories are frequently observed for objects
moved by molecular motors, as demonstrated for virus motion inside cells
and on their plasma membrane. The intra-cellular localization, shape, and
dynamic shape changes of endosomes were studied using a novel image
analysis technique that combines image deconvolution with active contour
segmentation. The possibility of a coupling between virus infection and
biophysical and biochemical causes of the shapes of endosomes was in-
vestigated using statistical tests on endosome shape feature distributions.
Shape changes, as frequently caused by motor action, could be resolved.
A statistical framework for studying spatial correlations between intra-
cellular objects was introduced, leading to an extension of co-localization
analysis to interaction analysis. Applying novel interaction measures and
statistical tests allowed following virus trafficking through the endosomal
network. A mechano-chemical model for cooperative, but unregulated
cargo transport by several molecular motors was then presented. The
model includes extensions to previous works that revealed non-trivial ef-
fects of motor–cargo coupling, as demonstrated in a large simulation study.

The key methodological and biological contributions of this thesis, lim-
itations of the presented methods, and possibilities for future work are
discussed in the following sections.

5.1 Trajectory Segmentation

In Chapter 1, a novel trajectory segmentation method was introduced and
applied to trajectories of Adenovirus particles moving inside live cells and
on the plasma membrane.

Adenovirus motion is highly heterogenous with frequently alternating pha-
ses of directed motion, drifts, confinement, and diffusive motion. The
duration of the different motion types could be as short as a few tenths
of a second, which translated into some 10 consecutive point detections.
The problem of detecting motion patterns was rephrased as a classifica-
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tion problem on application-specific sets of motion features. Features were
computed in overlapping windows over the trajectory. The representation
of window contents by feature vectors is essential in overcoming the poor
classification performance observed on raw point positions. The method’s
ability to reliably detect short segments of directed motion, enabling anal-
ysis of active cargo transport on the important one-second time scale, was
demonstrated on synthetic data. The sensitivity and specificity of de-
tecting different motion types were assessed on synthetic trajectories and
manually segmented trajectories of Adenovirus motion and were found to
be >90% for all motion types considered. In trajectories containing purely
random motion, only negligible, insignificant amounts of the motion types
were found.

The performance of trajectory segmentation was largely owed to the im-
plicit definition of the criteria used to identify the different motion types.
Support vector machines were trained with manually segmented trajecto-
ries. The training sets were iteratively augmented with additional samples
where classification previously failed. Supervised classification circumvents
the tedious process of manually defining classification criteria for motion
types . The latter approach has been formerly applied to trajectories of se-
cretory vesicle dynamics [65]. Furthermore, the present trajectory segmen-
tation algorithm is highly flexible with respect to the detection of different
motion types. No prior knowledge about the motion types is included in
its design. Adaptation to specific motion types is achieved through the
design of features and user-provided collections of training data.

Once trained, the trajectory segmentation algorithm can automatically
segment large numbers of trajectories, as frequently produced in cell bio-
logical assays. The possibility to reliably and automatically segment large
numbers of trajectories enabled frequency analyses for motion types in
Adenovirus trajectories. A perturbation study unambiguously identified
the dependence of directed and fast-drifting motion on microtubules.

Using the present trajectory segmentation algorithm, Gazzola and co-
workers were able to extract velocity and run-length distributions sub-
sequently used them to infer the parameters of an active transport model
for Adenovirus particles [44].
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In the presented benchmarks and applications, trajectory segments were
reliably detected. Correct localization of transitions between different mo-
tion types, however, was not always guaranteed. The use of carefully
trained supervised classifiers to transform a collection of features into a sin-
gle vote greatly increases detection power, especially for short segments.
Nevertheless, moving-window feature extraction has a strong averaging
effect, which inevitably blurs transitions. Shorter feature-extraction win-
dows in conjunction with advanced signal-processing methods for classifier
output filtering could possibly increase transition localization accuracy.
Therefore, a solid theoretical foundation for designing trajectory and clas-
sifier output filter functions should be developed on the basis of statistical
decision theory.

5.2 Deconvolving Active Contour Segmentation
of Intra-cellular Organelles

In Chapter 2, a novel image analysis method for segmenting intra-cellular
objects from live cell fluorescence microscopy images was presented. The
method was benchmarked on synthetic data, demonstrated on images of
the Golgi apparatus and endosomes, and applied to quantifying the dy-
namic and static shapes of endosomes in virus-infected HER 911 cells.

Accurate segmentation of endosomes and similarly-sized intra-cellular or-
ganelles is challenging due to the limited optical resolution and signal–
to–noise ratio available in live cell optical microscopy techniques. In the
present work, this problem was addressed by incorporating the concept
of deconvolution into image segmentation. Dimensionality reduction and
regularization of the deconvolution problem was achieved by representing
the solution as explicit active contours enclosing constant-intensity regions.
As shown in tests on synthetic data, this allowed efficiently reconstructing
details of outlines on the length scale of the width of the point spread
function. The localization accuracy of the reconstructed outlines was on
the order of tenths of pixels, even at modest signal–to–noise ratios. For
signal–to–noise ratios larger than 10, the error of the estimated total in-
tensity was below 5%.
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Compared to classical pixel-based image segmentation techniques, de-con-
volving active contours reconstruct the true physical boundaries of the
imaged objects in a less biased and more accurate way. As shown in appli-
cations considering endosome shapes in virus-infected cells and dynamic
shape changes of during fusion of endosomes, this does not only improve
the results quantitatively, but also reveals previously undetectable quali-
tative effects. Furthermore, the reconstructed outlines can be considered
highly correlated with true object outlines, provided the model assump-
tions are valid. This high degree of correlation is of particular importance
if the parameters of models of physical processes, such as the deformation
of endosomes due to the collective action of motor proteins, have to be
inferred from image data. In a recent study [133], it was concluded that
the elongation of endosomes along the direction of microtubules is a result
of a tug of war of dissimilar motors. Inference of, for example, the num-
ber of motors pulling an endosome requires precise quantification of the
endosome deformation, as enabled by the image segmentation approach
presented here.

In order to minimize the number of parameters to be estimated from the
images, the fluorophore density within each imaged object was modeled
with as constant. Different objects can have different intensities and in-
tensities can change over time. An acceptable bias of outline estimates
can only be expected if this model assumption is – at least approximately
– valid. In the Golgi and endosome applications shown, the model was
adequate, judging from the small residual error of fitted images. Allowing
for more general fluorophore density models could potentially further the
practical utility of the method. Even in the present simple form, however,
inference of the fluorophore density model parameters is the dominant
source of uncertainty. It is thus doubtful whether more complex models
can be robustly inferred, without including prior knowledge about the true
fluorophore density. A further limitation of the present method concerns
the topology of the collection of reconstructed outlines, which is defined
by the segmentation used for initializing the active contours. This seg-
mentation can be ambiguous if objects are close to each other. An implicit
representation of the outlines as level sets could circumvent this limita-
tion [129, 90, 118, 93]. Nevertheless, the additional flexibility probably
has to be constrained by additional shape or topology priors in order to
avoid over-fitting.

189



CHAPTER 5. CONCLUSIONS AND OUTLOOK

5.3 Interaction Analysis for Intra-Cellular
Objects

A statistical inference framework for robustly estimating interaction pa-
rameters from experimentally observed spatial distributions of intra-cellu-
lar objects was introduced in Chapter 3.

For the first time, a connection between co-localization and spatial interac-
tion could be established. This was achieved by phrasing the object-based
interaction analysis problem in a spatial statistics framework that is based
on nearest-neighbor distance distributions. This provided generic proce-
dures for inferring interaction strengths and quantifying their statistical
significance. Standard object-based co-localization analysis was included
as a special case, making explicit the connections between spatial inter-
action and co-localization. Novel interaction measures were derived from
a statistical model of nearest-neighbor distributions. These measures and
the related statistical tests allowed following the trafficking of different
Adenovirus strains through the endosomal network, in particular Rab5-
positive early endosomes.

In the presented framework, two key quantities emerge: (i) the state den-
sity q(d), which is the distribution of nearest-neighbor distances expected
under the null hypothesis of no interaction, and (ii) the interaction po-
tential φ(d), which defines the strength and distance dependence of the
interaction. It was shown that classical co-localization analysis amounts
to estimating the parameters of a step potential for the interaction. This
requires a notion of “inside” and “outside”, either naturally defined by
the physical extent of the objects or imposed through the step function’s
distance threshold. For point-like objects, or weak correlations between
object positions, the choice of distance threshold is, however, arbitrary.

These limitations were be relaxed by allowing more general shapes of the
interaction potential, which naturally extended co-localization analysis to
(spatial) interaction analysis, without requiring any additional assump-
tions. The additional flexibility allows capturing information about a wider
range of sub-cellular interactions. This was demonstrated by statistical
power analysis of the classical and generalized measures. It was found that
the probability of detecting an actual interaction strongly depends on the
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cellular context, and that longer-ranging interactions are harder to detect.
Test statistics that include prior knowledge about the shape of the true in-
teraction potential can thus greatly reduce the number of samples required
to achieve a certain target power. Physico-chemical models might provide
such prior knowledge. Alternatively, a non-parametric phenomenological
potential can be estimated from the data, as it was demonstrated here for
the virus–endosome interaction.

The presented approach to interaction analysis enables applying a wide
range of established statistical tools for analyzing experimental data, from
parameter identification to model selection. This workflow was illustrated
by studying the spatial patterns of endosomes and viruses infecting live
human cells.

The presented framework is limited by the same assumptions that also
underlie classical co-localization analysis: (i) spatial homogeneity and (ii)
isotropy of the interaction within the observation window, and (iii) ex-
clusively nearest-neighbor interactions between objects of different classes.
Assumption (i) is, e.g., violated if large areas of the images analyzed do
not contain any objects. In this case, estimation of q(d) is not robust.
Partitioning a cell’s interior into smaller sub-domains and estimating a
hyper-model for the interactions within the individual sub-domains could
potentially increase the robustness of parameter estimation in such cases
and enable resolving finer spatial variations in the interaction process.

General Gibbs processes could be used to analyze many-body interactions.
Such processes, however, are theoretically and numerically challenging.

The interpretation of fitted potentials is limited to their relative strengths.
In the absence of a mechanistic or physical model of the process that has
created the observed spatial pattern, biophysical interpretation of the iden-
tified parameter values is difficult or misleading. This is because the fitted
interaction potentials reflect the collection of all intra-cellular phenomena
that led to the observed point pattern. For the virus–endosome interaction
considered here, these phenomena include passive (diffusion) and active
(motor-dependent) transport of internalized viruses, structuring of the cy-
toplasm by collective dynamics of organelles and filaments [35, 75, 34, 33],
fusion and fission of organelles during sorting processes [120, 33, 99], signal-
induced penetration of organelle membranes by virus particles [114], etc.
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Interestingly, however, a relation between the steady-state distribution of
a diffusion process with deterministic drift and the distribution of the
Gibbs process (Equation 3.6) exists: If the deterministic force causing
the drift is given by −∂φ/∂d, then the two distributions become identical
(in appropriate units). This fact points a possibility of connecting fitted
interaction potentials with biophysical models of transport processes.

5.4 Active transport model

A novel mechano-chemical model for cooperative – but uncoordinated –
intra-cellular cargo transport by several molecular motors was presented
in Chapter 4. The model was studied extensively using numerical simula-
tions.

Molecular motors play important roles in many cellular functions, includ-
ing endocytosis (discussed in Chapter 2) and intra-cellular trafficking of
cargo (Chapter 1). Motors like, such as kinesin can sustain forces on the
order of a few pico-Newton (10−12 N). Forces of this magnitude are suffi-
cient to move small cargo, such as vesicles or virus particles, with velocities
of some hundred nanometers per second through the highly viscous cyto-
plasm of cells. Furthermore, the lipid membranes of organelles may be
significantly deformed under the action of motor forces, as, for example,
is the case in membrane tubule extraction [77, 84] or fusion of endosomes.
Pico-Newton forces also have a significant effect on the dissociation kinet-
ics of motor–filament bonds. The coupling between deformation, drag, and
the chemical reactions involved in the stochastic motor stepping renders
the collective dynamics of motor–cargo complexes non-trivial; even in the
absence of regulatory mechanisms.

In the presented model, the forces and their effect on reactions, such as
stepping and unbinding of single motors were explicitly included. Due to
the continuous motion of the cargo reaction rates continuously changed
in-between reactions. Such hybrid stochastic-deterministic models can ex-
actly and efficiently be simulated using a variant of the stochastic sim-
ulation algorithm. 1000 seconds of cargo motion, which required some
105 reactions, could be simulated in less than 1 second of CPU time using
a sequential code running on a 2.66GHz intel processor.
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As demonstrated in a large-scale parameter study (based on >1000 trajec-
tories lasting 2·105 seconds each), the drag coefficient γ of the cargo, which
depends on cargo size, and the elasticity κ of the motor–cargo link, which
mainly depends on cargo rigidity, had significant qualitative and quanti-
tative influence on the transport properties. The sensitivity of the proces-
sivity of uni-directional transport with respect to the number of motors,
binding rates, and motor forces has previously been demonstrated [108].
The present model showed that the elasticity of the motor–cargo link is
of equal importance. Furthermore, the emergence of different mobility
regimes, as characterized by the processivity of uni-directional motion,
the duration of immobile deadlocks, and the number and values of dis-
tinct transport velocities, could be related to – and explained by – the
magnitude of κ and γ.

Drag forces significantly reduce the velocity of larger intra-cellular cargo.
In systems with several cooperating motors, the degree of multi modality
of velocity distributions has been linked to cargo size [130]. Using the
model presented in this thesis, this picture is extended by the observation
that the elasticity of the motor–cargo link has a significant effect on the
number of distinct velocities that the cargo can adopt. Interestingly, this
number can both increase or decrease with increasing κ, depending on
the values of the other model parameters. Several characteristics indeed
depended on combinations of two or more parameters, and not simply sin-
gle model parameters. This illustrates that interpreting observed cargo
dynamics in the context of overly simple transport models may be mis-
leading. Moreover, since the important model parameters κ and γ depend
on physical properties of the cargo, results concerning specific systems
(reviewed in References [54, 152, 45]), probably do not generalize across
different cargos.

Future work is concerned with extending the present model to include
cargo deformations and cargo–cargo interactions. The present model may
be used as a basis for constructing models of intra-cellular transport dy-
namics on the scale of entirely populations of organelles. Such models
could fully resolve all internal degrees of freedom of individual motor–
cargo complexes. The resulting simulations, however, would be computa-
tionally expensive. Alternatively, the present model can be used to esti-
mate coarse-grained properties of single cargo objects and pairs of cargo
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objects, such as effective unbinding rates, velocity distributions, effective
stalling forces, or effective interaction potentials (similar to those discussed
in Chapter 3) for cargo–cargo collisions. Using these properties, a coarse-
grained population-level model could be constructed that enables more
efficient simulations of collective cargo behavior. This collective behavior
in turn forms the basis for the theory of spatial patterns of intra-cellular
organelles.

5.5 Significance of the Present Work

This thesis has presented work at the interface between biology and com-
putational science: Biological questions are tackled by, e.g., analyzing com-
plex data using computational tools, performing numerical simulations of
accepted models, or creating new models from unstructured pieces of in-
formation.

In the process of modeling, false positive and false negative are a major
concern. If one uses statistical tests with a prescribed significance level of,
say, 5%, one out of 20 trials is expected to be a false positive. In practice
this means that if in only few cases the behavior of the studied system
is unexpected and failure to detect this is likely one has to expect that a
large portion of all rejected hypotheses are actually not false. It is therefore
important to work with high detection power. This can be achieved by
collecting more data, better statistical tests, or reduction of systematic and
unsystematic errors in the data1. A large portion of the work presented in
this thesis has pushed the state of the art in these directions by enabling
automated (by using efficient software), accurate (by reducing [human]
bias), and precise (by using all available information in the data) analysis
of large sets of biological data pertaining to intra-cellular transport.

The general significance of this thesis is that the newly developed algo-
rithms and models can help structure and systematize research in cell
biology. Furthermore, the presented algorithms improve the analysis of
frequently encountered data and may motivate novel experimental ap-
proaches.

1Note that decreasing the significance level is usually not an option.
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Trajectory segmentation: Vast numbers of trajectories of intra-cellular
objects are nowadays routinely acquired. Their systematic analysis is ham-
pered by factors such as alternating motion patterns, dilution of the data
sets by spurious detections (no real objects) or objects not moving at all,
or erroneous links introduced by the particle tracking algorithm. The
trajectory segmentation algorithm presented here allows “cleaning” data
sets from stretches of uninteresting motion or corrupt trajectories in an
automated way. This is essential for accurate and precise quantification
of physical parameters (or any other statistic such as MSD or MSS) of
the studied transport processes, as the “uninteresting” trajectory parts
bias statistics and increase their variance. The algorithm is easy to use
and adapt, and it can be used in high-throughput screens, thanks to its
simplicity and efficiency.

Reconstruction of organelle shapes: The image analysis algorithm
presented in Chapter 2 combines ideas from deconvolution and image seg-
mentation. So far, the necessity to account for the strong blurring in-
troduced by fluorescence microscopy optics was largely ignored in image
segmentation. The output of classical image segmentation techniques was
frequently used as an estimate of the imaged object’s shape. For small
intra-cellular structures, these estimates are strongly biased and imprecise.
The novel algorithm reduces these deficiencies, which opens new possibili-
ties for automated, high-throughput, and unbiased characterization of the
morphology of intra-cellular objects. This may provide the high-quality
data required to unravel biophysical causes of organelle shapes. Further-
more, the automatic detection of fusion events may be used to map the
connectivity of trafficking networks from live cell imaging experiments. In
addition to motivating such biological experiments, the algorithm points
to possibilities for future research at the largely unexplored interface of
image deconvolution and segmentation.

Image-based interaction analysis: The statistical framework intro-
duced in Chapter 3 provides a solid theoretical foundation for the analysis
of spatial patterns of intra-cellular objects. Such patterns are very com-
mon data that are frequently used to infer functional relations between
intra-cellular objects. The spatial proximity required for direct molecular
interactions, and the high degree of compartmentalization of eukaryotic
cells, previously motivated simple overlap co-localization measures. Such
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measures, however, are just one instance of the general class of measures
derived here from a statistical model for the spatial patterns of objects.
Within this model, more general correlations in the localization patterns
of two classes of objects are assumed to be caused by an effective inter-
action between the objects. Most importantly, prior knowledge about the
studied system can be formally described by a hypothesis for the shape
of the effective interaction potential. This hypothesis can then directly be
tested against the observed localization pattern. The presented framework
provides statistical tools such as parameter estimation, model selection,
non-parametric hypothesis tests, etc. Moreover, it can assist in the design
of experiments by, e.g., a-priori characterization of the detection power of
an experimental test of a hypothesis.

Model for active intra-cellular transport: Intra-cellular transport is
a complex process that is still not fully understood, although many ele-
ments of the transport machinery have been identified and characterized.
This is partly due to the fact that the bigger picture is hard to see from
the individual pieces of knowledge. The model presented in Chapter 4
serves as a container to organize knowledge about the different aspects
and elements of intra-cellular active transport. Using computer simula-
tions of this model or variants thereof, one can test new hypotheses about
the working mechanisms of intra-cellular transport. Moreover, the model
allows measuring non-observable variables and provides control over ex-
perimentally un-controllable parameters. Prior to experimental assays,
the model’s output can be explored in order to identify the most informa-
tive experimental conditions and testable hypotheses. Several important
parameters of the model, such as single motor properties, can be estimated
from optical trap experiments. Links to particle tracking experiments can
be established through the physical properties of cargo motion, such as
the average velocity or the length of uninterrupted runs along filaments.
By reproducing experimental distributions of these properties, unknown
parameters of the model can possibly be estimated. A potentially interest-
ing readout that could be reproduced by a simple extension of the present
model is the shape of deformable cargo as caused by motor forces. Us-
ing the approaches presented in Chapters 1 and 2, such shapes could be
reconstructed and tracked from fluorescence microscopy images, and the
resulting trajectories could be segmented in order to focus the analysis on,
e.g., filament-dependent motion types. Such data could be used to further
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test the validity of different model assumptions. Finally, the model can
be extended to realistically resolve cargo–cargo interactions in order to
build a model of entire populations of cargo. This population-level model
would generate spatial patterns of organelles and could serve as a starting
point for a biophysical interpretation of the effective interaction potentials
estimated in Chapter 3.
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