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Abstract
The IceT library is widely used for parallel compositing but does not support non-convex volume domain decompositions.
We provide a backward-compatible extension of IceT to handle non-convex domain decompositions of volume data. These are
frequently produced in numerical simulations, but it is challenging to render them in parallel due to the non-commutativity of
alpha compositing. We enable parallel volume rendering of non-convex domains in IceT by extending its parallel compositing
to layered images. Our code follows an embedded design, extending and generalizing IceT’s internal functions for image
compression, splitting, compositing, and decompression to efficiently handle layered images, while maintaining the existing
functionality and API. We perform scalability tests and provide our implementation open-source in a public repository, with
in-line documentation and integration tests.

CCS Concepts
• Computing methodologies → Distributed algorithms; Rendering; • Human-centered computing → Visualization tech-
niques;

1. Introduction

IceT – the Image Compositing Engine for Tiles – is a high-
performance sort-last parallel rendering library [Mor11]. It sup-
ports parallel rendering of volumetric and geometric data us-
ing a range of sort-last parallel compositing algorithms [Neu93,
MPHK93, PGR∗09], and it compresses images to optimize per-
formance [LMPM21]. These features have led to IceT becoming
the de facto standard for parallel compositing on distributed high-
performance computers, and it is used in popular visualization tools
like ParaView [AGL05] and VisIt [CBW∗12]. However, IceT does
not support parallel rendering of volumetric data decomposed into
non-convex subdomains.

Non-convex domain decompositions of volumetric data are fre-
quently generated in numerical simulations, e.g., by distributed-
computing frameworks like OpenFPM [ILZ∗19] and Fun3D
[NAS]. In situ visualization of such simulations requires parallel
rendering on non-convex subdomains, which is challenging for vol-
ume rendering because of the non-commutativity of the over op-
erator used in α-compositing [PD84]. In a non-convex domain de-
composition, rays may leave the domain of a processing element
(PE) and later re-enter it. In Fig. 1a, e.g., rays R2 and R4 intersect
the domain of PE 2 twice and the domain of PE 1 in-between. This

implies that PEs cannot render their data independently to a single
image, as is required for sort-last parallel rendering [MCEF94].

This lack of data independence has been addressed by pro-
ducing multiple layers of fragments per pixel on each proces-
sor [GIB∗23, SDW∗24]. In these approaches, one fragment is gen-
erated for each individually convex subdomain intersected by the
ray. Each fragment stores a color together with the associated depth.
The depth is then used during parallel compositing to place the
colors in the correct order, producing the correctly α-composited
result. The popular parallel compositing library IceT, however, cur-
rently lacks an implementation of this approach [Mor11].

Here, we extend IceT to support parallel compositing on non-
convex volume domain decompositions using a layered image ap-
proach. We implement the software extension transparently, en-
suring backward compatibility and consistency with IceT’s exist-
ing design. Specifically, we extend IceT’s image compression and
parallel compositing methods to support layered images and ex-
pose this functionality through the familiar API. We provide the
extended library in a public repository called layered-icet,
contributing, to the best of our knowledge, the first dedicated open-
source parallel compositing tool that supports distributed volume
rendering on non-convex domain decompositions, supporting dif-
ferent compositing strategies and image formats.
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Figure 1: (a) Raycasting on a non-convex domain decomposition.
The subdomains are colored by processing elements (PE). (b) The
layered image produced by raycasting. PE 1 produces an image
with a single layer, while PE 2 requires two layers to represent each
subdomain intersection. The horizontal spacing of fragments within
a pixel represents their relative distances to the camera. White frag-
ments with dashed outline represent empty fragments generated to
maintain the resolution of the layered image.

2. Related Work and Background

We review existing techniques for parallel compositing of non-
convex volume domain decompositions and provide background
on the IceT library.

2.1. Compositing of Non-Convex Domain Decompositions

Parallel volume rendering on non-convex decompositions has gen-
erally been enabled by rendering fragments over individually con-
vex subdomains, gathering all fragments for a given pixel onto a
single PE, and compositing them in visibility order. Ma [Ma95]
applied this approach to unstructured data with non-convex bound-
aries, communicating fragments as they are generated, overlapping
communication with the rendering of other fragments for parallel
efficiency. To achieve better load balance, Childs et al. [CDM06],
and later Binyahib et al. [BPL∗19], adopted a hybrid object- and
image-order approach, sending fragments for small data elements
between PEs and transferring larger elements directly. The redistri-
bution was performed such that all fragments along a pixel reside
on the same PE and can be composited in correct visibility order.

Gupta et al. [GIB∗23] avoid replicating or moving data between
PEs, proposing a method potentially more suitable for in situ visu-
alization. During rendering, layers of fragments are generated for
each pixel, at least one for each individually convex subdomain.
These are combined in visibility order during parallel compositing
based on the depth values stored in the fragments. They applied
this method to the parallel compositing of Volumetric Depth Im-
ages [FSE13], while Sahistan et al. [SDW∗24] used a similar tech-
nique for regular images, applying it to non-convex distributions
of unstructured volumes. Here, we contribute an implementation of
this approach for the widely used parallel compositing library IceT.

2.2. The IceT Parallel Compositing Library

The IceT library performs sort-last parallel compositing for both
tiled and single displays. For the application-specific rendering of
each PE’s input image, users can either register a callback with

IceT or pass color and depth buffers to the function icetCom-
positeImage.

IceT performs several optimizations for parallel compositing, in-
cluding active pixel encoding [Mor11], which is a form of run-
length encoding to compress background pixels. The image is thus
compressed into contiguous regions of active (foreground) and in-
active (background) pixels, yielding a so-called sparse image. This
compression reduces network communication during compositing,
which is crucial to IceT’s scalability [LMPM21].

For parallel volume rendering with α-compositing, IceT requires
defining a strict “visibility order” of PEs. If PE 1 is placed before
PE 2 in the visibility order, all parts of the first subdomain must
be in front of the second subdomain with respect to the camera.
In non-convex domain decompositions, such as the one shown in
Fig. 1a, visibility ordering based on PEs is not possible, such that
traditional use of IceT produces incorrect results.

Therefore, we extend IceT to parallel compositing of layered im-
ages. The order of rendered fragments along a ray can then be deter-
mined by per-pixel depths, supporting correct α-compositing also
for non-convex domains.

3. Design Criteria

We extend IceT in such a way that all existing functionality, as well
as the API, remain unchanged. Existing applications using IceT
therefore require no change.

We follow an embedded design approach, extending IceT’s in-
ternal functions for active pixel encoding and parallel composit-
ing to operate on layered images. This leverages the template-and-
macro-based code extensibility and re-usability features present in
the library. IceT uses C macros for specialization of code templates
to, e.g., support images with different bit depths. We define cus-
tom macros and extend existing templates to generalize the code to
handle layered images.

4. Layered Images in IceT

We introduce layered images to IceT as a new image format. Pix-
els contain layers of fragments, each storing color and depth. The
number of layers is constant across the pixels and is declared in
the image header. To ensure that the header size for existing image
types does not change, we store the number of layers as the first
entry of the data, effectively creating an extended header.

For compositing, fragments within each pixel are assumed to be
in visibility order. If a fragment is empty, all subsequent fragments
must also be empty. Fig. 1b shows examples of layered images.
Importantly, our implementation can handle images with different
numbers of layers on each PE, which enables rendering applica-
tions to handle imbalanced domain decompositions without a need
for synchronization. PE 1 in Fig. 1b, for example, generates a lay-
ered image with one layer, while PE 2 utilizes two layers to repre-
sent ray intersections with non-convex domains.

The task of generating the layered image is left to the rendering
application using IceT. Possible strategies include using a two-pass
raycasting approach to count the number of individually convex
subdomains intersected to determine the number of layers.
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Figure 2: An example result of active pixel encoding applied to the
layered images produced in Fig. 1b, showing inactive runs (under-
lined grey numbers) and active runs (dashed rectangular boxes).
Active runs contain the number of active fragments in a pixel (reg-
ular black numbers) followed by the contents of the fragments, and
are preceded by the number of pixels (red italics) and the number
of fragments (blue bold) contained in the run.

5. Parallel Compositing of Layered Images

Layered parallel compositing functionality is exposed via the new
icetCompositeLayeredImage function. The parameters to
this function are pointers to memory buffers containing color and
depth data, similar to the existing icetCompositeImage func-
tion, as well as the number of layers in the image.

For parallel compositing, we extend each phase of IceT’s
pipeline: active pixel encoding is performed to compress empty
pixels and fragments, the compressed image is efficiently split for
parallel compositing, communicated via MPI, and then compos-
ited. This process repeats if the compositing strategy requires mul-
tiple passes. Finally, the image is decompressed to form the final
output.

5.1. Active pixel encoding

IceT contains a code template for active pixel encoding
(compress_template_body.h). For regular images, runs of
active pixels are represented by the number of consecutive active
pixels, followed by the color and/or depth values of the respec-
tive pixels. Runs of inactive pixels are represented by the num-
ber of consecutive inactive pixels. Thus encoded images are called
sparse images. The representation alternates between active and in-
active runs, always beginning with an inactive run, which may be
of length 0 if the first pixel is active.

We extend active pixel encoding to layered images using the
same code template with custom macros. Inactive pixels are found
by checking whether the first fragment in a pixel is empty. In addi-
tion to compressing inactive pixels, our implementation also com-
presses inactive fragments within active pixels. For this, a custom
macro counts the number of active fragments in a pixel and writes
the value to the encoded output. The number of active fragments
in an active pixel is stored using one Byte to minimize memory. If
more than 255 layers are required, this can be changed by redefin-
ing the CMake cache variable ICET_LAYER_COUNT_T. Fig. S1
in the Supplement shows the custom macro.

In addition to storing the number of active pixels in a run, we also
store the total number of active fragments in each run. While this
information is not required for decompression, it is useful for split-
ting the encoded image. Figure 2 shows an example of a resulting
active-pixel-encoded layered image.

5.2. Splitting sparse images for compositing

For parallel compositing, the sparse image is split into divisions
containing equal numbers of pixels. Since this splitting happens at

each stage of compositing – the binary-swap [MPHK93] and radix-
k [PGR∗09] compositing strategies require multiple compositing
stages – it is performed directly on the sparse images to avoid en-
coding and decompressing multiple times.

Consider the example of splitting the encoded layered image in
Fig. 2 into two divisions of two pixels each. For PE 1, since the first
inactive run is empty and the first active run contains exactly two
pixels, we select both for the first two-pixel division. Here, storing
the total number of fragments in the active run becomes handy,
as we can compute the offset for the end of the active run without
traversing it. For PE 2, the first active run contains more pixels than
required for the first division, so it must be traversed pixel-by-pixel
to perform splitting.

5.3. MPI communication

The split images are communicated among the PEs according to
the policy of the respective parallel compositing strategy. Since a
PE cannot know the size of the encoded sparse image it is going to
receive, allocating a receive buffer is difficult. For regular images,
IceT pre-allocates a buffer that is guaranteed to be larger than any
sparse image. This is done on the basis of the window dimensions.
For layered images, this is not feasible because the number of layers
can vary across PEs (see Sec. 4). We instead use an MPI_Probe
command to determine the size of the incoming buffer and allocate
the receive buffer accordingly.

5.4. Compositing

Compositing layered images is similar to the existing process in
IceT for compositing regular images. The only difference is that
instead of blending pixels, the fragments along the pixel are ordered
according to their depths. Images at this stage are still in the sparse
format, so pixels can contain differing numbers of fragments. Since
fragments contain only a single depth value, it is not possible to
determine whether they are adjacent. Therefore, no fragments are
blended at this stage.

5.5. Decompression

After all stages of parallel compositing are complete, IceT decom-
presses the composited sparse image. At this stage, the image is
still distributed across PEs, but each pixel is guaranteed to have all
of its fragments on the same PE. We can thus at this stage blend ac-
tive fragments back-to-front by α-compositing. Inactive pixels are
assigned the predefined background color. The blending operation
across all pixels is implicitly parallel over the PEs since the pixels
were distributed among the PEs after the final compositing step.

IceT then gathers the α-composited pixels onto the root PE in
the final step.

6. Code Availability

We release our extension open-source in a public GitHub repos-
itory: https://github.com/plhempel/layered-icet,
under the BSD-3 license. In addition, we provide a line-by-line
diff relative to the original IceT repository in the supplementary
material, both as a git patch and in an HTML file.

© 2025 The Author(s).
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Figure 3: Parallel compositing times (mean ± standard deviation
over a 360◦orbit) over non-convex decompositions of the Rayleigh-
Taylor dataset with 1 non-adjacent block per PE (Layered: 1) up
until 16 non-adjacent blocks per PE (Layered: 16), compared with
the original, non-layered IceT as a baseline (dashed).

(a) Original IceT (b) Layered IceT

Figure 4: Visual comparison of compositing output by the original
IceT (a) and Layered IceT (b) on a non-convex decomposition of
the Rayleigh-Taylor dataset [CCM04] over 4 PEs. Inset highlights
artifacts in original IceT.

7. Results and Benchmarks

We test the performance of our implementation on the Barnard
high-performance computer of TU Dresden. A block distribution is
used for MPI ranks across compute nodes, with a maximum of 8
ranks per node. Each node consists of 2 Intel Xeon Platinum 8470
CPUs with 52 cores and 512 GB of RAM. IceT uses CPUs for
parallel compositing.

We conduct microbenchmarks to assess scalability across
PE counts and number of layers. We use the Rayleigh-Taylor
[CCM04] and the Richtmyer-Meshkov [CDD∗02] datasets, both of
which are regular grids, and decompose them into cuboidal blocks.
Each PE gets multiple non-adjacent blocks, resulting in a non-
convex domain decomposition. Images of resolution 1920× 1080
are composited, and the radix-k [PGR∗09] strategy in IceT is used.

Fig. 3 shows the results for the Rayleigh-Taylor dataset. We
observe a general reduction in compositing time with increasing
numbers of PEs. This is because each PE composites increasingly
sparse images, which reduces the image splitting time (Sec. 5.2).
When using 24 PEs, for example, the time for compressing and
splitting images reduces by 24% relative to 4 PEs for the 8-
layered images. As a baseline, the performance of the original IceT
on the same dataset is reported (dashed line). The ‘Layered:
1’ configuration performs the same compositing operation as the

baseline but incurs an overhead ranging between 1.5× and 2.5×.
This is because sparse layered images additionally contain depth
data, and store the number of fragments in active runs (Sec. 5.1),
both of which increase image compression, splitting, and merg-
ing times. This is also responsible for the relatively smaller over-
head as the number of layers increases: compositing 8-layered im-
ages, for example, only incurs an overhead between 1.7× and 2.5×
over 2-layered images. In addition, our extended image encoding
(Sec. 5.1) compresses inactive fragments within active pixels. This
results in the total data communicated via MPI for compositing 8-
layered images being only 1.5× the data for 2-layered images when
using 8 PEs. Complete profiling results, along with results on the
Richtmyer-Meshkov dataset, are provided in the Supplement.

Fig. 4 shows an example of the artifacts produced by using the
original IceT for compositing on non-convex decompositions. Full-
resolution images, as well as reference images for the dataset, are
provided in the Supplement.

8. Conclusion

We have presented an open-source extension of IceT for parallel
compositing of layered images, enabling distributed volume ren-
dering of non-convex domain decompositions. We exposed the
functionality through the familiar API of IceT, leveraged IceT’s
code templates to reuse code and logic, and ensured that all ex-
isting functionality and API are unaffected. We therefore call our
implementation “transparent”.

Embedding our code into the internal functions of IceT also
means that our implementation can take advantage of existing fea-
tures and flexibility in IceT. While the implementation of Sahis-
tan et al. [SDW∗24] benefits from GPU-accelerated compositing,
it relies on CUDA. IceT performs compositing on the CPU and
is platform agnostic. Existing implementations [CDM06, BPL∗19,
GIB∗23, SDW∗24] supporting parallel rendering on non-convex
data are limited to the direct-send compositing strategy [Neu93].
Our implementation can take full advantage of the binary-swap
[MPHK93] and radix-k [PGR∗09] compositing strategies available
in IceT, which have been shown to scale better [PGR∗09]. Our im-
plementation also supports images of different bit resolutions.

We presented microbenchmarks to assess the scalability of our
implementation and its dependence on the number of convex sub-
domains per PE. Future work could consider running tests at scale,
where MPI communication is likely to become a bottleneck, espe-
cially since layered images require accumulation of fragments dur-
ing compositing instead of blending (Sec. 5.4). “Early blending”
of fragments could be considered as an optimization to alleviate
the bottleneck, weighing the advantage against the cost of using an
additional depth layer.

Overall, we believe our contribution adds useful functionality to
IceT, and we see it finding use especially in in situ visualization.
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