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Robustness of topological defects in discrete domains
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Topological defects are singular points in vector fields, important in applications ranging from fingerprint
detection to liquid crystals to biomedical imaging. In discretized vector fields, topological defects and their
topological charge are identified by finite differences or finite-step paths around the tentative defect. As the
topological charge is (half) integer, it cannot depend continuously on each input vector in a discrete domain.
Instead, it switches discontinuously when vectors change beyond a certain amount, making the analysis of
topological defects error prone in noisy data. We improve existing methods for the identification of topological
defects by proposing a robustness measure for (i) the location of a defect, (ii) the existence of topological defects
and the total topological charge within a given area, (iii) the annihilation of a defect pair, and (iv) the formation
of a defect pair. Based on the proposed robustness measure, we show that topological defects in discrete domains
can be identified with optimal trade-off between localization precision and robustness. The proposed robustness
measure enables uncertainty quantification for topological defects in noisy discretized nematic fields (orientation
fields) and polar fields (vector fields).
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I. INTRODUCTION

A topological defect (TD) is a singular point in a polar or
nematic vector field. Such fields are ubiquitous in science,
engineering, and mathematics as coarse-grained continuous
descriptors of flows, force fields, molecule and object orienta-
tion, anisotropy, etc. Therefore, TDs are investigated in a wide
range of applications, including fingerprint alignment [1,2],
cosmology [3], topological insulators, superconductors, and
superfluidity [4]. They also play a central role in the theory
of hard and soft matter [5–7], including active matter [8],
where they are related to active stress [9–12] and to geometric
properties such as curvature [13–16].

Although TDs are subject to global constraints, like the
Euler characteristic of closed surfaces, they are defined and
identifiable purely locally. This local identifiability is par-
ticularly useful in discrete domains, as they occur in digital
data, such as numerically solved fields or measurement data
including images. In discrete domains, a TD can be identified
from a finite neighborhood of discretization points.

These neighborhoods are commonly defined by small,
fixed-size stencils [17] or wedges [18], or they are expressed
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as convolutional filters [1]. This includes differential expres-
sions of “diffusive [topological] charge” [19,20] represented
by finite-difference stencils and machine learning approaches
using convolutional neural networks [21]. Alternatively, TDs
and their charge are identified as zeros or close-to-zeros of the
nematic order parameter or a derived quantity [14,22–25].

The identified TDs and their charges are discrete quantities
that cannot depend on each of the input vectors in the discrete
neighborhood in a globally continuous manner. Hence, even
smooth vector field dynamics implies discontinuous dynamics
of the TDs [9]. Additionally, nematic and polar vectors in
simulation or measurement data are usually subject to uncer-
tainty [15,26–28]. To improve defect identification, previous
works therefore used vector field smoothing [e.g., 14,16,29],
defect identification along larger fixed-size closed paths [17],
clustering [30], filtering by temporal persistence [29], ma-
chine learning [21,25], or thresholds on the nematic order
parameter, either absolute [14,15] or relative to the spatial
mean [22]. While all of these methods work in practice, none
of them are based on a rigorous definition of robustness of
TDs, and they do not shed light onto the connection between
the robustness of TDs and the geometry of the underlying
vector field.

Here, we provide a principled definition of TD robustness
by studying how noise and discontinuities in a discretized
two-dimensional vector field influence the estimated topolog-
ical charge. We define the robustness of a TD as the smallest
change to any vector in the neighborhood used for defect
identification that alters the estimated topological charge. This
provides a direct and intuitive connection between the un-
derlying field, the geometry of the neighborhood, and defect
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robustness. We show that the critical vectors, i.e., those for
which the smallest change does alter the TD charge, indicate
dislocation directions of defects and locations of likely defect
pair annihilation or generation.

The so-defined robustness measure of topological charge
applies to all scales from smallest discretization units to the
whole domain. In addition to enabling defect filtering based
on interpretable robustness thresholds, the proposed measure
also allows us to quantify the trade-off between the identi-
fication robustness of TDs and the spatial precision of their
localization estimate in discrete domains. This enables the
quantitative study of defects with large unordered cores, and it
also enables us to automatically choose the shape and size of
the neighborhood used for defect identification in a spatially
data-adaptive manner to always provide the best trade-off
between robustness and localization precision. For this, we
provide a data-adaptive algorithm for identifying TDs and
their charges in discrete domains, which might serve as a
starting point for uncertainty quantification of TDs.

II. BACKGROUND AND NOTATION

We start from a definition of TDs in polar and nematic
vector fields on continuous domains, from which we then state
the definition on discrete domains.

A. Topological defects in continuous domains

TDs are defined in polar and nematic vector fields of arbi-
trary dimension using homotopy theory [7,31]. Here, we focus
on point defects in two-dimensional fields with continuous flat
domain X ⊆ R2. On this domain, we consider a polar vector
field V : X → R2 or a nematic orientation field V : X → R2

∼,
where R2

∼ is the set of nematic vectors (directors, orienta-
tions) obtained from R2 by identifying antipodal polar vectors
y ∼ −y to one nematic vector [y]∼ := {y,−y} ∈ R2

∼.
The spaces of polar vectors R2 and nematic vectors R2

∼ are
isomorphic by halving or doubling, respectively, the azimuth
(angular coordinate, argument) arg (y) of a complex number
representation R2 ∼= C � y = ‖y‖ exp [i arg (y)]. Therefore,
it suffices to consider nematic vectors y ∈ R2

∼ with azimuth
arg (y) ∈ [−π/2, π/2).

A topological defect is then defined as an isolated dis-
continuity x ∈ X of an otherwise continuous vector field V :
X → R2

∼. TDs are classified by their topological charge or
index, which is half integer (integer for polar vector fields).
We calculate the topological charge based on liftings (for de-
tails, see Appendix A). For that, consider the normalized field
V̂ : X → RP1 : x �→ V(x) / ‖V(x)‖. The image space of the
unit nematic vectors RP1 = S1

∼ = {[y]∼ ∈ R2
∼; y ∈ S1}, also

known as the real projective line, has a universal cover
p∼ : R → RP1 ⊆ C∼ : w �→ [ei2πw]∼. Then, for a contin-
uous map γ : [0, 1] → X with γ (0) = γ (1) (i.e., a closed
path), there exists a “lifted” version of V̂ ◦ γ that is a con-
tinuous map h : [0, 1] → R, such that p∼ ◦ h = V̂ ◦ γ . The
lifting h is uniquely determined up to additive multiples of
π , and it counts the number of full rotations of the azimuth
arg(V) = arg(V̂) along the closed path γ . Hence, h(1) − h(0)
defines the Poincaré index indx(V) when γ encloses exactly

one singular point x ∈ X , or the topological charge indA(V)
for general enclosed areas A ⊂ X .1

B. Identification of topological defects in discrete domains

We transfer the above definitions for continuous domains
to vector fields on discrete domains. This requires adapting
the concept of lifting by replacing the continuous closed path
γ : [0, 1] → X with a finite series of pairwise neighboring
discretization points x0, x1, x2, . . . , xN = x0 ∈ X . Then, lift-
ing V̂ ◦ γ turns into lifting the finite series (V̂(xn))n=0,...,N . For
this finite-set domain, continuity as the key defining feature of
liftings is trivial, making any map an admissible lifting.

To recover uniqueness, one assumes—usually tacitly—the
points (xn)n=0,...,N to form a sufficiently fine discretization of
an underlying smooth vector field with a continuous domain
(see Appendix B for feasibility). The unit vectors V̂ to be
lifted are from the periodic set RP1 = S1

∼. Analogous to the
Nyquist-Shannon sampling theorem, correct reconstruction of
azimuthal changes from discrete samples is guaranteed if the
spatial sampling frequency fs is higher than twice the highest
spatial frequency (band limit) Barg of the azimuth. When a
continuous representation arg of the azimuth arg (x) obeys
this condition, the net azimuth change arg(xn) − arg(xn−1)
between neighboring discretization points stays below π/2
(below π for polar vectors). Hence, the lifted version h(xn) −
h(xn−1) is uniquely determined among all possible azimuth
changes by its minimal absolute value ∈ [−π/2, π/2]. De-
fine, for nematic (1) and polar (2) vectors,

modπ : R → [−π/2, π/2) : x �→ x − π�0.5 + x/π�, (1)

mod2π : R → [−π, π ) : x �→ x − 2π�0.5 + x/(2π )� (2)

as the uniquely determined,2 least absolute value modπ (x) of
the π -periodic set x + πZ := {x + πz; z ∈ Z} (of x + 2πZ
for polar). For nematic vectors V(xn−1), V(xn) represented
by any azimuth θn−1, θn ∈ R fulfilling V(xk )/‖V(xk )‖ =
V̂(xk ) = [exp (iθk )]∼, k = n − 1, n, the smallest net az-
imuth change then is modπ (θn − θn−1) [for polar vectors
mod2π (θn − θn−1)].

Then, a closed path x0, x1, . . . , xN = x0 of winding num-
ber one yields the topological charge estimator (TCE) for the
enclosed charge or index,3

TCE(x) := TCEx0,x1,...,xN (x)

:= 1

2π

N∑
n=1

modπ {arg[V(xn)] − arg[V(xn−1)]},

(3)

1We assume areas without holes for simplicity, but our robustness
results equally apply to the general case.

2The least absolute value is ambiguous for x = π/2 mod π , for
which we choose modπ (x) = −π/2. This corner case will receive
zero robustness anyway; see Eqs. (5) and (6).

3Equation (3) applies to areas without holes. An extension to ar-
eas with holes is possible by subtracting the charge enclosed by
inner paths, to larger winding numbers by splitting paths at self-
intersection points.
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FIG. 1. Estimation of topological charge and its robustness, here shown for nematic vector fields. (a),(b) On a continuous domain, the
normalized vectors along a closed path (green) around (a) a singular point are lifted to (b) a continuously changing azimuth, whose total
change of +π [red half circle in (b)] here indicates a +1/2 defect charge. (c),(d) On a discrete domain, discretized with arbitrary offset
as shown by the thin gray lines in (a), the azimuth changes along finite path steps x0, . . . , x4 = x0 in (c). The normalized vectors in the
corresponding discrete lifting [Eq. (3)] sum to the same index estimate in (d). (e),(f) Upon continuous change of a vector [compare point x1 in
(c) and (e)], the index estimate discontinuously changes, here to 0 when V(x1) crosses the dash-dotted black line perpendicular to V(x0).

where any other azimuth representatives θn can replace
arg [V(xn)]. By construction of Eq. (1), we have modπ (x) =
x + zπ for some z ∈ Z and, therefore,

TCE = 1

2π

N∑
n=1

modπ (θn − θn−1)

= 1

2π

N∑
n=1

(θn − θn−1 + znπ ) = 1

2

N∑
n=1

zn ∈ 1

2
Z (4)

yields half-integer values as required for topological charges
[integer values for polar fields, where mod2π replaces modπ

in Eqs. (3) and (4)]. This also holds true in numerical imple-
mentations to the order of machine precision.

III. ROBUSTNESS MEASURE

We observe that the topological charge estimator in Eq. (3)
does not depend continuously on the input vectors V(xn) and
their azimuths, as the function modπ (·) has discontinuous
jumps of −π at locations π/2 + Z [cf. Eq. (1) and Fig. 1].
Such discontinuous behavior is inevitable for any noncon-
stant map from the connected space (R2

∼)N of orientation
N-tuples to the totally disconnected space 1

2Z. Discontinuities
are encountered at least between pre-images (TCE)−1(c1),
(TCE)−1(c2) of different topological charges c1, c2 ∈ 1

2Z,
c1 = c2. This equally applies to TCE based on azimuth angles,

which are defined over connected spaces (intervals) too. Con-
sequently, the discontinuities of Eq. (3) are not an impairment
of that specific estimator. On the contrary, Eq. (3) is optimal,
as it only possesses the inevitable discontinuities.

Because of the inevitable discontinuities, arbitrarily small
(critical) aberrations of orientations can cause the topological
charge estimate to jump between discrete values. We study the
conditions under which topological charge estimates switch
and find exact algebraic expressions for the corresponding
critical azimuth or vector changes. This allows us to define the
robustness of a TD as the smallest azimuth change that alters
the TCE. This is a natural definition of robustness, as it bounds
the admissible fluctuations in the vector field. For simplicity,
we assume normalized nematic fields to derive the robustness
measure and extend to unnormalized fields in Appendix C.

A. Robustness of a single edge

Topological charge estimation by Eq. (4) involves elemen-
tary net azimuth changes modπ (θn − θn−1) corresponding to
path edges (xn−1, xn). We thus start by defining edge robust-
ness R : R → R�0,

R(x) := dist(x, π/2+ πZ) = π/2 − |modπ (x)| ∈ [0, π/2],
(5)

R(x) := dist(x, π + 2πZ) = π − |mod2π (x)| ∈ [0, π ]

(6)
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for nematic and polar vectors, respectively, as the azimuthal
distance to the nearest discontinuity of modπ (mod2π for
polar). Therefore, the largest symmetric interval of continuity
for modπ (·) around some x0 ∈ R is [x0 − R(x0), x0 + R(x0)],
with one-sided extension to interval size π possible. These in-
tervals are where x �→ modπ (x) − x ∈ πZ is constant. Hence,
the contribution of an edge (xn−1, xn) to the TCE remains
unaltered if fluctuations �θn−1,�θn of azimuths θn−1, θn obey

|modπ (�θn − �θn−1)| < R(θn − θn−1). (7)

B. Robustness of a complete path

Combining edge robustnesses along a closed path
x0, x1, x2, . . . , xN = x0 ∈ X , the TCE remains unaltered if
Eq. (7) holds for all n = 1, . . . , N . Each azimuth θn is con-
tained in exactly two differences, namely, modπ (θn − θn−1)
and modπ (θn+1 − θn), where for simplicity θN+1 := θ1.
Hence, the condition in Eq. (7) is certainly fulfilled if azimuth
fluctuations �θn are limited4 for all n = 1, . . . , N as

|�θn| < 1
2 min{R(θn+1 − θn), R(θn − θn−1)}. (8)

A common bound for all azimuthal fluctuations along the
closed path x0, x1, x2, . . . , xN = x0 ∈ X is given by

|�θn| < 1
2 Rx0,x1,x2,...,xN for all n = 1, . . . , N, (9)

where we define path robustness,

Rx0,x1,x2,...,xN
:= min

n′=1,...,N
R(θn′ − θn′−1), (10)

as the minimum over edge robustnesses.
Any of the conditions (7), (8), or (9) guarantees an un-

altered topological charge estimate by Eq. (4). Each of the
bounds is sharp. They equally apply to singular (topological
charge = 0) and regular (topological charge = 0) points, as
well as general areas enclosed by paths.

Then, critical fluctuations �θ crit
n−1, �θ crit

n are defined by
modπ (θn − θn−1) + (�θ crit

n − �θ crit
n−1) = ±π/2. This implies

(θn + �θ crit
n ) − (θn−1 + �θ crit

n−1) ∈ π/2 + πZ, which charac-
terizes vectors perpendicular to each other. This means that
the TCE remains unaltered as long as nematic vectors fluc-
tuate without becoming perpendicular (polar vectors: without
becoming antipodal) to their neighbors along the path [com-
pare Figs. 1(c) and 1(d) to Figs. 1(e) and 1(f)].

IV. ROBUSTNESS VERSUS PATH SHAPE

The above robustness measure for TDs in discrete domains
can be used to facilitate or improve the identification of TDs
in data from, e.g., numerical simulations, measurements, or
images. It can also be used to study the trade-off between the
robustness with which a TD can be identified and the accuracy
with which is can be localized in space [32]. In order to enable

4Azimuthal differences �θn are π periodic, like azimuth angles
themselves, and therefore not unique. We deem a representation in
the interval [−π/2, π/2) centered around zero suitable for interpre-
tation as an error, noise, or temporal change of small magnitude.

such applications, here we characterize the behavior of the
robustness measure for fixed shapes of the closed path and
for data-dependent paths that are implicitly defined through
the considered vector field.

A. Robustness for fixed path shapes

When searching for TDs using a fixed path, the size and
shape of the path must be decided. The highest localiza-
tion accuracy is obtained for paths enclosing one single grid
cell. However, for the smallest nonzero topological charge
±1/2 to be estimated within a path of length N , there must
be edges of net azimuthal change |θn − θn−1| � π/N , limit-
ing the identification robustness to Rx0,x1,...,xN � π/2 − π/N ,
that is, � π/6 for N = 3 or � π/4 for N = 4. Moreover,
single-cell paths can yield robustnesses 0 even for perfect
defects [32].

The identification robustness can be increased by choosing
longer paths that enclose larger areas containing the defect.
Indeed, regular points have robustness ∈ [0, π/2), and longer
paths around larger areas including a single defect approach
the robustness limit π/2 from below, at the cost of reduced
localization accuracy. An optimal trade-off between robust-
ness and localization accuracy on regular Cartesian grids was
found for 2 × 2 or 3 × 3 square paths [32], with 2 × 2 mostly
used in the literature (e.g., [1,18]).

B. Robustness for data-dependent path shapes

Instead of fixing the path beforehand, one can also fix
the desired identification robustness and ask for the finest
spatial resolution that achieves this robustness. According
to its definition in Eq. (10), path robustness is defined by
the robustness of the critical edge (xnc−1, xnc ) with nc :=
argminn=1,...,N R(θn − θn−1). To increase robustness, one can
replace the critical edge with a new path segment. Let A
be the area enclosed by the original path x0, x1, . . . , xN =
x0. Change the path by encompassing a grid cell ai adja-
cent to the critical edge. This makes (xnc−1, xnc ) an interior
edge of the expanded area A′ = A + ai and thus irrelevant
for the robustness of topological charge estimation. Repeat
this process of “expansion over the critical edge” until the
desired robustness Rthresh is reached; cf. Fig. 2. While this
produces irregular path shapes, they are guaranteed to en-
close minimally sized areas with robustness � Rthresh. The
edges delimiting such minimal-area robust regions form
the maximal leaf-free subgraph among all edges with edge
robustness R � Rthresh.

Any change in TCE during “expansion over the criti-
cal edge” hints at potential locations of additional defects.
By construction, robustness changes below Rthresh relo-
cate nonzero topological charge within the area enclosed
by the path, but not beyond. This may include annihi-
lation of additional defect pairs that are only separable
with robustness <Rthresh within the area. Hence, the size
of the enclosed area provides localization uncertainty for
TDs solely from the robustness of the path edges. Us-
ing data-driven paths thus requires no prior knowledge
of length scales or sizes of defect cores, and higher-
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FIG. 2. Data-dependent iterative path adaptation. (a) Example defect from Fig. 1 discretized on a regular Cartesian grid. Edge robustness
is shown by line thickness scaling as robustness to the fourth power; “+” marks the grid cell containing defect charge +1/2. (b)–(e) Requiring
robustness above thresholds of Rthresh/(0.5π ) = (b) 0.50, (c) 0.75, (d) 0.82, and (e) 0.91 (arrowheads on the robustness scale) adaptively
increases the area (shaded red) enclosed by the path. All surrounding grid cells have index estimate 0 with high robustness, already at the finest
resolution.

FIG. 3. Robust identification of TDs. (a) Detection of higher-order TDs (here, +1) is possible. Comparing robustness levels R1 and R2,
splitting into or merging from elementary charges (here, two times +1/2) can be detected. (b) Large unordered region with interior edges
of low robustness indicates potential pair generation prior to the formation of “microscopic” charges. For visualization, the line width of the
edges scales as the fourth power of robustness as in Fig. 2; edges below robustness R1 are omitted. (c) Adjustment of detection area to the data
at unordered cores (R0 vs R1 versus microscopic charges). Anisotropic growth of detection areas at higher robustness indicates the direction
of defect motion. Zero total charge at the highest robustness R2 indicates potential pair annihilation. The legend is common to all panels. For
clarity, shading of zero-charge regions without microscopic defect(s) has been omitted in all panels.
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order defects can be identified5 without postprocessing; see
Fig. 3(a).

Tuning Rthresh trades off robustness versus localization ac-
curacy. For 0 � Rthresh,1 < Rthresh,2, the path determined for
Rthresh,1 is contained within the path for Rthresh,2. The per-
cell robustness increase can be used to hint at locations of
likely or imminent defect pair annihilation or generation.
Defect pair generation is likely inside zero-charge areas that
contain multiple edges of low robustness; see Fig. 3(b). De-
fect pair annihilation is indicated by opposite topological
charges separated at low robustness threshold Rthresh,1 � 0,
but merged at higher Rthresh,2 > Rthresh,1; see Fig. 3(c). This
confirms classification as pair annihilation for cases reported
in the literature [22], where defects were identified from or-
der parameters using paths of zero net charge. Finally, likely
directions of defect dislocation are indicated by anisotropic
growth of the detection area for increasing robustness thresh-
olds; see Fig. 3(c).

V. EXTENSIONS

The examples so far considered normalized vector fields
V : X → RP1 (for polar V : X → S1), where robustness is
purely azimuthal robustness. Information encoded in the vec-
tor magnitude, such as speed in flow fields or coherence in
nematic orientation fields, can be accounted for by defin-
ing magnitude-aware robustness of TDs for unnormalized
fields V : X → R2

∼ (for polar V : X → R2), as shown in
Appendix C.

We also so far only considered regular Cartesian grids.
However, the present robustness measure readily extends to
other grid types, including triangulations of unstructured data
(see Appendix D). The theory only requires closed paths.
Data-dependent path adaptation extends to arbitrary grids by
iteratively adding non-Cartesian grid cells over the critical
edge.

VI. CONCLUSION AND DISCUSSION

We have proposed a robustness measure for topological
defects (TDs) and their charges in discrete domains. Topolog-
ical charge is necessarily a discontinuous map for polar and
nematic vector fields on discretized domains, as they typically
occur in computer simulations, measurement data, and digi-
tal images. Our continuous robustness measure complements
the discrete values of topological charge (0,±1/2,±1, . . .),
either in azimuthal or vector space. It quantifies the largest ad-
missible vector variation everywhere in the neighborhood of
a TD that does not alter the estimated topological charge, also
for regular, defect-free areas. This provides an interpretable
notion of robustness that directly links to the underlying
data.

The proposed robustness measure can efficiently be com-
puted, as it is based on the same path edges and vectors as
topological charge estimation itself. The measure also ap-
plies to higher-order defects without additional processing,

5Because of higher net azimuth change, they require longer paths
anyway and cannot be found on single grid cells.

to irregularly spaced data and arbitrary discretization grids,
and to any path shape from enclosing individual grid cells to
domain-scale areas. Using the proposed robustness measure,
we have derived upper bounds for the maximum robustness
achievable using paths of fixed length, and we have argued
for a trade-off between estimation robustness and localiza-
tion accuracy. Further, we have proposed data-driven iterative
adaptation of paths (“expansion over the critical edge”) until a
given robustness threshold is reached, and we have discussed
how this may hint at defect dislocation, pair annihilation or
generation, and unordered defect cores.

The idea of data-dependent paths is not new. For example,
Ref. [24] constructed adaptive square paths with maximal
distance to TDs in order to indirectly minimize vector field
distortions along the paths. However, the concept of edge ro-
bustness as defined here generalizes these ideas to nonsquare
path shapes with optimal localization accuracy for a given
robustness threshold.

Our geometric robustness measure also enables TD filter-
ing in noisy or uncertain vector fields without presmoothing of
the vector field and without predefined path shapes [1,14,17],
defect core length scales [18], or order parameter thresh-
olds [14,22]. This reduces the risk of “masking” (e.g., by
smoothing) defect pairs and of detecting spurious (e.g., noise-
induced) defects. In spatiotemporal vector data, our measure
can be used to predict defect dynamics (appearance, annihi-
lation, dislocation) when temporal changes of vectors exceed
the robustness threshold. This is especially valuable for study-
ing active nematic and active polar materials, which show rich
behavior of TDs [9–11,13,14,33].

Combining the proposed robustness measure with a noise
model for the vector data could lead to topological uncer-
tainty quantification, e.g., in nematic liquid crystals, solid
state physics, material science, fluid mechanics, and biolog-
ical physics. Such noise models for the vector field may, e.g.,
be available for numerical simulations from numerical error
estimators, or for digital images from camera noise models
and image-processing uncertainty. Then, the present robust-
ness measure defines a noise model or uncertainty on the level
of TDs.

We restricted our considerations to point defects on flat
two-dimensional domains. A generalization to point de-
fects on n-dimensional domains, to curved manifolds, or
to k-dimensional (0 < k < n) defects seems difficult (see
Appendix E) and remains an open problem. Lastly, our ap-
proach requires the robustness threshold to be set. We find
that a quantile from the distribution of individual edge robust-
nesses works well in practice.

Notwithstanding these limitations and open issues, the
present results provide a starting point for robust and noise-
aware defect analysis in discretized data, and they are easily
integrated into the standard process of defect identification.

APPENDIX A: DEFINITION OF TOPOLOGICAL
CHARGE BY LIFTING

We define the index or topological charge based on lift-
ings. There are equivalent definitions in terms of homotopy
groups or by the Brouwer degree in homology groups [31].
The latter indirectly uses liftings as well, but we prefer to
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make the lifting explicit for a clearer transition to the discrete
case.

Consider the space of unit nematic vectors RP1 = S1
∼ =

{[x]∼ ∈ R2
∼; x ∈ S1}, also known as the real projective line,

and its universal cover,

p∼ : R → RP1 ⊆ C∼ : w �→ [ei2πw]∼. (A1)

Then, for any nematic vector field V : X → R2
∼ and any

closed path γ not touching zeros of V, that is, γ : [0, 1] → X
continuous with γ (0) = γ (1), the universal cover p∼ allows
lifting the normalized vector field V̂ : X → RP1 : x �→ V(x)

‖V(x)‖
along γ , i.e., it guarantees the existence of a continuous
map h : [0, 1] → R into the covering space R representative
of V̂ ◦ γ : [0, 1] → RP1 by fulfilling p∼ ◦ h = V̂ ◦ γ . The
process of lifting is equivalent to attributing azimuth angles
h(t ) ∈ R to the vectors V[γ (t )] such that h : [0, 1] → R
changes smoothly along the curve. Given any starting value
h(t0), the lifting h is uniquely determined since the vector
field along the path V̂ ◦ γ is continuous and has a connected
pre-image. In general, h is uniquely determined up to addi-
tive multiples of π , and h(1) − h(0) counts the number of
full rotations the azimuth performs when tracked along the
closed path γ . Since γ is a closed curve, we have p∼ ◦ h(0) =
γ (0) = γ (1) = p∼ ◦ h(1) and, by periodicity of p∼, it follows
that h(1) − h(0) ∈ Z/2 is a half integer. This corresponds to
a net change in the azimuth of an integer multiple of π , with
odd multiples of π only possible when identifying antipodal
vectors x ∼ −x as nematics.

Then, the Poincaré index or topological charge indx(V) of
an isolated singular point x ∈ X is defined as h(1) − h(0) for
any path γ winding around x, but around no other singular
points, exactly once in mathematically positive orientation.6

Such a path always exists for isolated singular points x ∈ X ,
for example γ : [0, 1] → x + εS1 : t �→ x + εe2π it for suffi-
ciently small ε > 0, and the definition is independent of the
actual path chosen.

For paths γ winding around any area A ⊂ X exactly
once in mathematically positive orientation, h(1) − h(0) de-
fines the topological charge indA(V) of that area, which
is the sum of the topological indices of all enclosed point
defects [31].

For polar vectors, the definitions apply analogously when
the lifting h is with respect to the universal cover,

p : R → S1 ⊆ C : r �→ ei2πr, (A2)

of the unit polar vectors S1, which is linked to the nematic
case by p∼ = [·]∼ ◦ p. As the identification map [·]∼ : S1 →
RP1 : x �→ [x]∼ induces a double cover of the unit nematic
vectors, we obtain consistent topological charges when con-
sidering only the nematic part [V(·)]∼ of a polar vector field
V : X → R2 or, vice versa, when orienting a nematic field
to the extent possible, in particular only when there are no
half-integer defects.

6While the theory extends to paths with winding numbers larger
than one, we omit this for clarity.

APPENDIX B: FEASIBILITY OF A SUFFICIENTLY FINE
DISCRETIZATION

There is always a resolution above which discretization of
a vector field yields a discretized path that fulfills the Nyquist-
Shannon sampling theorem. To see this, consider a closed path
γ , not touching any singular points, in a vector field on a
continuous domain. Since the closed path γ : [0, 1] → X is
continuous, the vector field is continuous by assumption, and
the map arg : R2

∼ → RP1 is away from singular points, the
concatenation arg ◦V ◦ γ : [0, 1] → RP1 is continuous on a
compact domain, and hence Lipschitz continuous with some
Lipschitz constant L. Therefore, a discretization of the path
with spacing <π/(2L) (<π/L for polar fields) is sufficiently
fine to satisfy the Nyquist-Shannon sampling theorem. The
same holds for any compact subset of X that does not con-
tain singular points. In particular, there is always a compact
annulus around any isolated singular point, and therefore an
appropriate path for identifying this singular point from a dis-
cretization of the vector field. However, global Lipschitz con-
tinuity is not achievable around singular points, not even on
an open set from which the singular point itself was excluded.

APPENDIX C: MAGNITUDE-AWARE ROBUSTNESS

In the main text, we considered normalized vector fields
V : X → RP1 (for polar V : X → S1) with vectors of unit
length. The robustness of TDs then is purely azimuthal ro-
bustness, defined by admissible azimuthal fluctuations. To
account for information encoded in the vector magnitude,
such as speed in flow fields or coherence in nematic orien-
tation fields, here we consider TDs of unnormalized fields
V : X → R2

∼ (for polar V : X → R2). Identification of topo-
logical charges remains solely based on azimuthal changes
according to Eq. (3). Statements of azimuthal robustness
are therefore transferrable to unnormalized fields by limiting
the changes �V(xn) ∈ R2

∼ (or ∈ R2 for polar) of vec-
tors V(xn), n = 1, . . . , N , such that they generate azimuthal
change �θn = |modπ {arg [V(xn) + �V(xn)] − arg [V(xn)]}|
below azimuthal robustness Raz. This requires the altered
vector V(xn) + �V(xn) to be within a sector of azimuthal
width 2Raz around V(xn). However, the bounds of this sector
correspond to changes �V(xn) of different magnitudes in the
Euclidean norm. Since noise, uncertainty, and temporal dy-
namics typically have known limits only in magnitude, we add
bounds on the admissible magnitudes of vector fluctuations.

To start, the vectorial change can be limited in radial and
azimuthal components separately. Requiring ‖�V(xn)‖ <

‖V(xn)‖ prevents V(xn) + �V(xn) from reaching the origin,
and |modπ {arg [V(xn) + �V(xn)] − arg [V(xn)]}| < Raz lim-
its azimuthal variation to azimuthal robustness Raz, as before.
For geometric reasons, both conditions are fulfilled when

‖�V(xn)‖ < Rmagn[V(xn), V(xn±1)]

:=
{‖V(xn)‖, Raz � π/2
‖V(xn)‖ sin(Raz), Raz < π/2.

(C1)

Note that nematic orientation fields always are in the sec-
ond case, and that the right-hand side is the optimal such
bound. Unlike azimuthal robustness, the magnitude robustness
Rmagn[V(xn), V(xn±1)] is not symmetric in its arguments. Yet,
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FIG. 4. Robust identification of TDs in non-Cartesian data. We
show an example of an irregular planar graph (thin, curved solid
lines) extracted from an image of biological cells. Connecting the cell
centers converts this graph to a planar triangulation (straight solid
lines; line width scales as fourth power of edge robustness). Such
conversion is always possible for planar graphs in two dimensions
(2D). Blue sticks visualize the elongation and orientation of the
cells in the original graph, computed from their tensor of inertia.
“Microscopic” topological charges are visualized by symbols (+ for
+1/2, o for −1/2). Areas found by “expansion over critical edge”
for robustness threshold 0.25π are shown shaded (blue: total charge
+1/2; red: total charge −1/2; gray: total charge 0 if they contain
microscopic defects).

all results for azimuthal robustness transfer to the magnitude-
aware case by limiting each vectorial change along a closed
path xn, n = 1, . . . , N , as

‖�V(xn)‖ < 1
2 min{Rmagn[V(xn), V(xn−1)],

Rmagn[V(xn), V(xn+1)]}. (C2)

For other measures of magnitude, e.g., the infinity norm,
magnitude-aware robustness can be constructed similarly.

APPENDIX D: NON-CARTESIAN DISCRETIZATIONS

We outline how the present ideas, in particular the ro-
bustness measure and the data-adaptive paths, extend to
non-Cartesian discretizations. Since any spatial distribution of
discretization points in 2D can always be represented as a tri-
angulation, it is sufficient to show how to extend to triangular
meshes, as shown in the example in Fig. 4. The concepts and
definitions introduced here only require a planar graph with
discretization points as vertices. We made no assumptions
about the geometry of the graph. Each of the edges between
two discretization points can be assigned an edge robustness
as defined in Sec. III A. For any area bounded by a single loop
in the planar graph, the topological charge is then given by

the topological charge estimator as introduced in Eq. (3). The
path robustness remains as defined in Eq. (10).

APPENDIX E: HIGHER DIMENSIONS AND CURVED
MANIFOLDS

Generalizing the present robustness measure to higher di-
mensions seems difficult. We explain where this difficulty
comes from, without being able to provide solutions. A gener-
alization to point defects on n-dimensional domains would re-
quire considering discretized forms of the maps Sn−1 → Sn−1

and Sn−1 → Sn−1
∼ that define the topological charge of point

defects in the homotopy group πn−1(Sn−1) [7]. This group is
isomorphic to Z, as is π1(S1) in the two-dimensional case. The
difficulty is to determine the homotopy class ∈ πn−1(Sn−1)
that vectors on a finite discretized neighborhood represent.
When this is done locally, one must additionally assure that
the local representatives fit together globally. This joining is
straightforward in two-dimensional fields, where the edges
only connect in points. However, in n-dimensional fields, it
is unclear how to join the (n − 1)-dimensional hypersurface
pieces of Sn−1 along a complete submanifold of dimension up
to n − 2. Extending the data-dependent choice of the region
for topological charge estimation also requires extra care in
higher dimensions, as the boundary—in 2D formed by the
edges—needs to maintain the topology of an Sn−1 sphere.

These difficulties amplify for k-dimensional (1 � k <

n) defects in discretized vector fields over n-dimensional
domains. Such defects are extended objects that can (self-
)intersect [34], and already the identification of line (k = 1)
defects in three dimensions requires an iterative process [35].
In this special case, planar cuts through a line defect yield
point defects in two dimensions, and our presented robustness
could be applied within each plane. However, the paths within
each plane have to join topologically correctly to a cylinder
or torus enclosing the whole line defect, which defines similar
difficulties as the construction of an enclosing hypersurface
for point defects in dimensions �3.

Another possible extension is to two-dimensional curved
manifolds, with the azimuthal difference between vectors in
tangent spaces of different discretization points defined by
parallel transport. Note that parallel transport itself is path
dependent, such that the angle change accumulated by parallel
transporting along a closed path is equal to the integral over
the enclosed curvature. Hence, for TDs located in regions of
curvature of equal sign, the parallel transport already covers
parts of the net azimuthal change required for defect identi-
fication. For example, ±1/2 defects on curved manifolds can
therefore be identified from a path of length N with robustness
above the threshold π/N valid in flat domains (see Sec. IV A).
This is compatible with the experimental and simulation re-
sults suggesting that TDs prefer to be in regions of maximal
curvature of the same sign as the defect charge [13,14,36]. A
high defect robustness, according to the definition provided
here, then relates to energetically favorable minimization of
field distortions between neighboring discretization points,
observed only along the associated loop path rather than inte-
grated over the whole field. Therefore, the present robustness
measure makes explicit a coupling between the topology and
geometry in curved domains.
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