
BIOINFORMATICS Vol. 17 Suppl. 1 2001
Pages S132–S139

Design of a compartmentalized shotgun
assembler for the human genome
Daniel H. Huson, Knut Reinert, Saul A. Kravitz, Karin A.
Remington, Art L. Delcher, Ian M. Dew, Mike Flanigan, Aaron L.
Halpern, Zhongwu Lai, Clark M. Mobarry, Granger G. Sutton and
Eugene W. Myers

Informatics Research, Celera Genomics, 45 West Gude Drive, Rockville, 20850, USA

Received on February 5, 2001; revised and accepted on March 30, 2001

ABSTRACT
Two different strategies for determining the human
genome are currently being pursued: one is the “clone-by-
clone” approach, employed by the publicly funded project,
and the other is the “whole genome shotgun assembler”
approach, favored by researchers at Celera Genomics.
An interim strategy employed at Celera, called compart-
mentalized shotgun assembly, makes use of preliminary
data produced by both approaches. In this paper we
describe the design, implementation and operation of the
“compartmentalized shotgun assembler”.
Contact: Knut.Reinert@celera.com

INTRODUCTION
Although current technology for DNA sequencing is
highly automated and can determine large numbers of
base-pairs very quickly, only at most approximately 900
consecutive base-pairs can be reliably read at a time
(Sanger et al., 1977). Thus, a larger stretch of consecutive
DNA can only be determined by “assembling” it from
such short fragments.

Two different strategies for assembling the human
genome are currently being pursued: one is the “clone-
by-clone” approach, employed by the publicly funded
project (PFP) (U.S. Dep. of Energy et al., 1997), and the
other is the “whole genome shotgun assembler” (WGA)
approach, favored by researchers at Celera Genomics
(Webber & Myers, 1997). Both efforts are well under way,
and first assemblies of the genome have been published
(International Human Genome Sequencing Consortium,
2001; Venter et al., 2001). Below we give a brief
description of both approaches.

To best leverage the early stages of both efforts, we
designed and implemented a “compartmentalized shotgun
assembler” that makes use of preliminary data from both
assembly projects and produces a draft of the genome that
is more complete than was obtainable from either source
separately. Together with Celera’s WGA method, our

compartmentalized shotgun assembler was instrumental in
computing Celera’s first assembly of the human genome,
which was announced in June 2000 (Marshall, 2000),
and will be helpful in verifying Celera’s ultimate WGA
assembly. The aim of this paper is to discuss the design,
implementation and operation of our compartmentalized
shotgun assembler from a software engineering point-of-
view, and to give a brief summary of the results obtained.
In (Huson et al., 2001), we discuss some of the algorithmic
issues in detail.

Clone-By-Clone Assembly
In the PFP’s clone-by-clone approach, one first constructs
a tiling of the genome by overlapping pieces, each
typically of length up to 150k base pairs (bp), and then
concentrates on determining the sequence of each such
piece. We will call these pieces BAC clones or simply
BACs, since they are usually cloned using “Bacterial
Artificial Chromosome” vectors.

The sequence of a BAC is determined using shotgun se-
quencing (Sanger et al., 1992): the BAC is randomly bro-
ken into many small fragments which are then individu-
ally cloned and sequenced. For a successful assembly, this
has to be done with a sufficient amount of oversampling.
Statistical calculations (Lander & Waterman, 1988) and
systematic experimental studies (Myers et al., 2000) sug-
gest that the average number of fragments covering any
given site in the BAC should be at least 7. The sequenced
fragments are then run through an assembly program that
attempts to construct the full sequence of the BAC from
them, by determining how these fragments of sequence
overlap with each other. For the purposes of this paper,
a BAC is a collection of bactigs, i.e. pieces of DNA se-
quence that are obtained from a common “source region”
of approximately 150k bp of contiguous DNA in the hu-
man genome, using a shotgun sequencing and assembly
process.

The BACs sequenced by the PFP are submitted to

S132 c© Oxford University Press 2001



Compartmentalized assembler for the human genome

Table 1. Listed by phase, we report the number of BACs, and the
average number and length of bactigs in GenBank on September 1,
2000.

Phase # BACs avg. # btgs avg. length (bp)

0 3067 91.5 784
1/2 20960 19.8 8102
3 9494 1.0 94309

GenBank (Benson et al., 2000) on a regular basis. Such
a Genbank entry usually evolves over time, as more work
is done to determine the BAC’s full sequence. Originally,
a BAC may start out as a phase-0 entry, which means
that it consists of 60 − 100 bactigs of length ≈ 800.
A phase-1 or phase-2 BAC will usually consist of 10 −
30 bactigs of length ≈ 8000, whereas a phase-3 BAC
consists of precisely one bactig that represents the full
source sequence. Note that bactigs associated with a
phase-0 or phase-1 BAC are considered unordered and
unoriented, whereas a phase-2 BAC comes with additional
information on how the bactigs are ordered and oriented
with respect to each other. As of September 1, 2000,
GenBank contained 33421 relevant human BACs, see
Table 1.

Whole Genome Shotgun Assembly
In the WGA strategy, the whole genome is randomly
broken into fragments that are individually sequenced,
with ideally at least 7-fold sequence coverage. Substantial
computational resources and appropriate algorithms are
then used to assemble the genome (Myers et al., 2000).
Due to the abundance of repeats in genomic DNA, a purely
overlap-based approach to WGA assembly is not tractable.
To address this, Celera produces fragments in mate-pairs.
This is done by sequencing larger pieces of DNA from
both ends, thus producing pairs of sequenced fragments
with known relative orientation and approximate distance
(Edwards & Caskey, 1991) (employing a mixture of 2k,
10k, 50k, and 100k bp clones).

Celera’s fragment data consists of about 27.27 million
fragments of human DNA, each between 150 − 800 bp
long. The majority of them come in mate-pairs of known
relative orientation and approximate distance. Paired
mates are organized by the clone libraries they were
selected from, each with an associated, approximately
Gaussian insert length distribution (see Table 2 for mean
and standard deviation of the libraries).

Compartmentalized Shotgun Assembly
The compartmentalized shotgun assembler (CSA) takes as
input the BACs and Celera’s fragments and tries to achieve
the following objectives: 1) to significantly increase the

Table 2. Fragments are organized in mate-pair libraries, each with a
mean distance and standard deviation associated with them. This table was
compiled from all of Celera’s libraries and reflects the numbers of mate-pairs
for the 27.27 million fragments available at Celera.

Library # fragments % mate- mean standard
types pairs distance deviation

2k 13.54M 74.5 1951 119
10k 10.89M 80.8 10800 875
50k 2.83M 75.6 50715 7556

level of assembly of BACs using the information given
by the Celera fragments and mate links, 2) to assemble
regions of the genome not covered by BAC sequence
into “scaffolds” (a scaffold is a collection of pieces of
sequence of known relative orientation and approximate
distance), (3) to produce an accurate tiling of the ordered
BACs and Celera scaffolds, and (4) to assemble the
connected components, or “compartments” of this tiling
using Celera’s WGA assembler.

We ran our incremental pipe-line on approximately
27.27 million Celera fragments, 33241 BACs obtained
from Genbank on September 1, 2000, and 11640 scaffolds
from regions of the genome that were not covered by
public BACs. Using this approach, Celera was able to
assemble the human genome into 3845 components (see
(Venter et al., 2001) for detailed results).

In the remainder of this paper, we describe the general
design, the implementation and operation, and the perfor-
mance of the CSA.

THREE STAGE DESIGN
The compartmentalized shotgun assembler consists of
three stages, fragment recruitment, tiling and component
assembly; see Figure 1.

First Stage: Fragment Recruitment
Given a snapshot of the BACs in GenBank, our first goal
is to determine which BACs align with which of the 27.27
million Celera fragments. More precisely, for each BAC
we compare every bactig with every Celera fragment and
we say that a fragment is recruited by (or hits) a bactig if
it (or its reverse complement) globally aligns to the bactig
with high identity (94% in our implementation).

The human genome has a high abundance of repeats.
We screen fragments for known repeats, mark them
accordingly, and take this information into account when
computing fragment-bactig hits (Myers et al., 2000).
However, not all repeats are known ahead of time and we
take additional steps to address this problem at run time
(Huson et al., 2001).

Overall, 23.74 million fragments of the 27.27 million

S133



D.H.Huson et al.

stage 1

scaffolds
stage 2

stage 3

adjacency graph

fragment recruitment pipeline

WGA assembler

WGA assembler

component assemblies

Celera fragmentsPublic BACs

recruited fragments

regional assembler

unrecruited
fragments

BAC assemblies

fragment/bactig hits

unrecruited

tiling graph

Fig. 1. Three stage design of the compartmentalized shotgun
assembler.

remained unscreened (had more than 40 consecutive
base pairs not matching a known repeat). Based on all
BACs obtained from GenBank, 2.96 million of these
fragments (≈ 12.46%) remained unrecruited, and most
likely represent sequence not present in the public data set.

Second Stage: Tiling
The goal of this stage is to compartmentalize the data
into putatively overlapping or adjacent subsets. First, we
assemble the BACs and recruited fragments using the
“greedy path-merging” algorithm described in (Huson
et al., 2001) and the unrecruited fragments using the
WGA algorithm (Myers et al., 2000). Then we determine
a tiling of the resulting regional assemblies and “unre-
cruited scaffolds” which subdivides the data for the final
component assembly stage.

Recruited Fragments and BACs Assuming that the size
of the euchromatic human genome is about 2.9 billion
bp, and given 27.27 million Celera fragments of average
length 543 bp, each site in the genome will be covered by
about 5.1 fragments, on average.

We can use the fact that the fragments come in
pairs of known relative orientation and approximate
distance to verify and even correct the given bactig
assemblies. Moreover, we can usually determine the
relative orientation and ordering of the bactigs of a given
BAC, especially if the BAC is in phase-1/2.

Generally speaking, the goal is to assign coordinates
to the bactigs that reflect, as closely as possible, the
true relative positions and orientations of the bactigs in
the source sequence, by making use of the additional
information. In (Huson et al., 2001), we formulate this
goal as the bactig ordering problem in terms of a bactig
graph, show its NP-completeness, and describe a heuristic
algorithm to solve the problem. In the following paragraph
we give a brief summary.

Given a BAC and the set of fragments that hit any of
the BAC’s bactigs, we first compute the bactig graph,
which is a weighted, undirected multi-graph, without self-
loops. It has two kinds of edges, namely bactig edges that
represent the bactigs of the given BAC, and mate edges
that represent mate-pairs between the fragments that hit
different bactigs. The length of a bactig edge is simply
the length of the bactig, whereas a mate edge has both a
length, reflecting the distance estimation derived from the
mate-pairs that are represented by the edge, and a weight,
representing the actual number of mate-pairs that support
the edge.

Initially, each bactig edge in the bactig graph is a
selected path. We greedily take the mate edge of highest
weight that has not yet been considered. We then merge
the two adjacent selected paths into a single selected path
of non-overlapping bactigs, if it appears to be reasonable.
The output of the algorithm is a regional assembly in terms
of a set of selected paths, each representing a scaffolding
of the involved bactigs.

Finally, using those mates of fragments that hit bactigs
in the given BAC, but themselves do not hit any such
bactigs, we attempt to join scaffolded bactigs by filling the
gaps between them.

Unrecruited Fragments An unrecruited fragment is a
Celera fragment that has at least 40 bp of sequence that
is not labeled repetitive and that does not possess a high
quality alignment with any PFP bactig. We processed un-
recruited fragments together with the screened fragments
(total of 5.89 million) using Celera’s WGA assembler
(Myers et al., 2000). The output is a list of contigs
(stretches of contiguous sequence), distributed in 11640
scaffolds of size greater than 5k bp (smaller scaffolds
were ignored for the graph construction). In this paper, we
refer to these assemblies as unrecruited scaffolds.

Graph Construction So far, we have described how
one can combine the clone-by-clone data and Celera

S134



Compartmentalized assembler for the human genome

fragments to obtain good assemblies of both BACs and
genomic regions not covered by BACs. The next goal is to
determine the relative positions of these assemblies within
the genome.

Our data suggests that the presence of both a low-hitting
fragment f and its (low-hitting) mate g shared by two
different BACs (e.g. fragments 3 and 4 in Figure 2) is
good evidence of the two BACs overlapping. This is also
true if a fragment is shared and its mate hits either of the
BACs (fragments 1 and 2). Similarly, we pay attention
to bridges, which are mate-pairs of fragments that each
hit one of the two BACs (fragments 11 and 12). On
the other hand, if a fragment hits both BACs but the
mate is contained in some unrelated BAC, then this is
negative evidence, as the shared appearance is probably
repeat induced (fragment 8 in the left three BACs, and
fragment 3 in the right BAC). These considerations can be
captured by a simple “adjacency” measure, which is based
on a weighted sum of the number of shared fragments
and bridges. We define the adjacency graph G as the
graph whose nodes correspond to BACs and unrecruited
scaffolds, and for which any two such nodes A, B are
joined by an edge if there is sufficient evidence that they
are adjacent or overlapping.

First we compute the adjacency graph whose nodes
correspond to the BACs and unrecruited scaffolds and
whose edges represent evidence that the connected BACs
or unrecruited scaffolds are situated close to each other
in the genome. Then human curators produce a tiling
graph from this using internal and external verification
methods to determine which edges reflect true adjacencies
and which are repeat induced.

Adjacency Graph If a region of the genome is covered
by more than one BAC, then a good proportion of
Celera fragments that come from that region will be
recruited by both BACs. Similarly, if two BACs come
from neighboring regions of the genome, then there is a
good chance that mated fragments will be recruited by
them.

Unfortunately, this signature is indistinguishable from
the signature produced by two non-overlapping clones
sharing a repetitive region. To reduce this problem,
we only consider low-hitting fragments, i.e. fragments
that only hit a small number of bactigs. We use 5
as the maximum number of hits, under the reasonable
assumption that BACs residing in GenBank cover the
genome no more than 5 deep at any place.

Construction of the Tiling Graph Whereas many of the
edges in the adjacency graph reflect true proximity, others
are false edges introduced by low copy repeats, BACs
with chimeric content, contaminated clones or other such
problems.

Thus, the graph requires manual curation to identify
and delete false edges, using both internal and external
data verification. Internal verification involves examining
the alignment between clones, inspecting the exact place-
ment of shared fragments, checking the “happiness” of
mate-pairs, detecting mis-assemblies and polymorphism,
etc. External verification uses high density STS maps,
fingerprint maps of BACs, and other external sources of
genomic data to confirm or reject edges.

The output of this curation stage is a tiling graph whose
edges should all reflect true adjacencies in the genome.

Third Stage: Component Assembly
For each connected component of the tiling graph, we then
apply the WGA assembler (Myers et al., 2000) to obtain
an assembly of the whole region of the human genome that
is covered by the component.

We use mate-pair information to evaluate the quality of
a given component assembly by comparing the number of
happy and unhappy mate-pairs (a mate-pair of fragments
that both occur in the component is called happy, if its
orientation is correct and if the distance between the two
fragments is approximately correct; see (Huson et al.,
2001) for an exact definition of happiness). Moreover, the
achievable quality of the assemblies provides feedback on
the quality of the hand-curated tiling graph.

IMPLEMENTATION
We now discuss our implementation of the compartmen-
talized shotgun assembler. Due to the importance of the
human genome, speed mattered, and the whole pipeline
was designed and implemented in five months. Where pos-
sible, we made use of existing C code from Celera’s WGA
assembler. New code was written in C++, using the LEDA
library (Mehlhorn & Näher, 1999).

As the full extent of the project was not known ahead
of time, we employed a modular design using small
programs and simple file-based interfaces. We formulated
precise near-term milestones. Upon reaching such a
milestone, we evaluated the current data and results and
then formulated the next desirable and obtainable goals. It
was clear that an incremental design was necessary, as the
data to be processed would come in batches and indeed
much of it would be redefined over time, as new BACs
appeared, existing BACs were upgraded, and Celera’s
mate-pair sequencing proceeded.

Each of the three stages fragment recruitment, tiling, and
component assembly are designed as separate processes
that are run independently of one another. In this section
we discuss each in turn.

Implementation of the Fragment Recruitment Stage
Fragment recruitment is an incremental process. As new
data becomes available, it is submitted either as a batch

S135



D.H.Huson et al.

��
��
��

��
��
��

���
���
���
���

���
���
���
���

1 2

c)

3

3

3

4

4

4

5

5 6

7 8
8

8

10

8

2

11

3

9

12

1 2 7 8 93

11

5 1064

12

Bac 1

Bac 2

Bac 3

Bac 4

Bac 1

Bac 2

Bac 4

Bac 3

a)

b)

Fig. 2. Example of an adjacency graph. a) is the original sequence with mate pairs sampled from it. The thick lines indicate a repeated region.
b) Four BACs that cover a part of the original sequence and c) the corresponding adjacency graph.

of new Celera fragments or as a batch of new or updated
public BACs. The process is illustrated in Figure 3.

Any new batch of data first must pass the gatekeeper,
a program that does bookkeeping and performs a number
of checks to insure that incoming data looks reasonable.
In the case of a submission of fragments, these are then
processed by the screener, which attempts to identify
and tag possible repeats, using an algorithm similar to
BLAST (Altschul et al., 1990). As this computation is
quite time intensive, it is distributed on a compute farm
using standard load sharing software.

The populator then puts the data into two different file-
based stores: bactigs into the bactig store and fragments
into the fragment store, overwriting the older versions of
bactigs in the case of a BAC redefinition.

The most important and computationally intensive part
of this stage is the overlapper (Myers et al., 2000). This

program compares each Celera fragment with every public
bactig to determine which bactigs it hits, i.e. aligns to with
high identity. Similar to the screener, the overlapper uses
the seed-and-extend idea of BLAST. It looks for seeds
consisting of 20-mer exact matches and then attempts
to extend them using banded dynamic programming. To
avoid repeat-induced hits, repeat regions labeled by the
screener do not give rise to seeds.

Our implementation is tuned to finding high-stringency
matches and can compare millions of fragment/bactig
pairs per second, thus performing orders of magnitude
faster than BLAST. Even so, the total required CPU time
demands the use of parallel processing. The overlapper
program itself is multi-threaded and has an optimal
speedup running with 4 threads. In addition, we distribute
the overlap computation itself into a number of jobs
and run these in parallel on our compute farm. A

S136



Compartmentalized assembler for the human genome

STORE

overlapper

screener

gatekeeper

BAC hit

populator

populator

STORE

Bactig

STORE

Fragment

gatekeeper

BAC update

Files

bactigsfragments

Hit

Fig. 3. Fragment recruitment pipeline.

typical job contains approximately 500, 000 fragments
and approximately 2000 bactigs, which makes optimal use
of machines with 4 GB of main memory by loading up
the memory with as many bactigs as possible, and then
streaming all fragments against them.

The BAC update program uses the resulting frag-
ment/bactig hits (or possible delete intructions) to update
BAC hit files and the hit store. The BAC hit files contain
a history of all fragment/bactig hits per BAC, whereas
the hit store maintains a global view of fragment/bactig
hits, i.e. for each fragment a list of bactigs it hits and vice
versa.

Additional perl-scripts and programs are used to control
the logic of this pipeline. For example, when a batch
of new fragments is submitted, after screening them, we
must compare this increment of fragments with all bactigs
already submitted to the pipeline. On the other hand,
when a batch of new BACs is submitted, this increment
of bactigs must be compared with all present fragments,
whereas for redefinitions of BACs, we must additionally
delete outdated bactigs.

The result of this stage of the assembler is one BAC
hit file for every BAC, listing all hits of fragments to
its bactigs. All fragments that do not hit any bactig are
listed in a file of unrecruited fragments. These files are the
interface to the later stages of the assembler.

Implementation of the Tiling Stage
Local Assemblies Each BAC is processed by three
programs. The first program, called the data collector,
parses the BAC file, fetches the corresponding bactig
and fragment data from the corresponding stores and
produces a complete input file for the regional assembler.
It also detects unscreened repeats and removes probably
repetitive fragments, the placement of which is not con-

firmed by their mate. The regional assembler applies the
greedy path-merging assembly algorithm to produce an
improved assembly of the given BAC in terms of scaffolds
and contigs, with each contig assembled from a number
of fragments and bactigs. These fragments and bactigs
are merged into a multi-alignment and then a consensus
sequence is produced using the consensus program. Since
we are aligning extremely similar sequences, a simple
shift-and-evaluate “abacus” technique suffices (Myers
et al., 2000) (a linear number of pairwise alignments is
merged into a multialignment and then postprocessed to
compress columns). The result is one BAC assembly file
per BAC.

All unrecruited fragments are fed to Celera’s WGA
assembler. From the resulting assembly we extract all
scaffolds bigger than a certain threshold and generate one
unrecruited scaffold file per scaffold.

Construction of the Tiling Graph We have developed a
program, AnnoGraph, that takes as input a complete set of
files for BAC assemblies and unrecruited scaffolds, builds
the adjacency graph, and provides interactive viewing
and editing capabilities on a component-by-component
basis. The program has a general mechanism for launching
further programs on selected sets of nodes or edges such
as dot-plots or mate-pair tests for chimerism, and thus
supports interactive exploration and evaluation of the
graph. Additionally, AnnoGraph displays external BAC
annotations such as STS markers, probable chromosome
assignment, sequencing center, etc.

Celera’s Map Team undertook the task of curating this
graph and producing a tiling graph. In a first step, where
possible, BACs and unrecruited scaffolds were assigned
to specific chromosomes, based on both internal and
external evidence, and then the graph was recomputed on
a chromosome-by-chromosome basis. Problematic edges
in the graph were investigated to decide whether they
indicated an overlap or rather reflect a similarity due
to an unscreened repeat, chimerism, or other problems.
Most frequently, this was decided by visual inspection
of the ordering and sequence alignment of the bactigs
of the two involved BACs. Obviously, this task is very
time consuming and requires a high level of expertise
in the field of human genomics. The end result is a set
of components which compartmentalize all BACs and
unrecruited scaffolds into genomic regions.

Implementation of the Assembly Stage
The only remaining task was to assemble the sequence of
the curated components using Celera’s WGA assembler.

The assembler takes as input a component of the cu-
rated tiling graph (i.e., several putatively overlapping or
adjacent BACs or unrecruited scaffolds) and all associated
BAC assemblies and unrecruited scaffolds, and computes

S137



D.H.Huson et al.

Table 3. Phase-0 BAC statistics for the number of input bactigs and output contigs and scaffolds, and their mean sizes.

Number of pieces mean size (bp)
mean std. dev. median maximum sum

Input bactigs 91.5 44.1 81 411 271633 784
Output contigs 58.6 (85.7) 26.8 51 221 173833 870
Output scaffolds 55.3 (77.87) 24.7 49 188 164128 922

Table 4. Phase-1/2 BAC statistics for the number of input bactigs and output contigs and scaffolds, and their mean sizes.

Number of pieces mean size (bp)
mean std. dev. median maximum sum

Input bactigs 19.8 14.7 17 203 415687 8102
Output contigs 8.9 (11.1) 8.5 7 144 186138 17380
Output scaffolds 2.1 (3.9) 3.6 1 108 44134 73303

an ab initio assembly of the source sequence correspond-
ing to the whole component.

In preparation for employing the WGA assembler, all
bactigs from BACs present in the given component were
“shredded” into fragments of length 550 with a coverage
of 2. These fragments, together with all Celera fragments
that were recruited by any of the BACs contained in the
component, formed the input set for our WGA component
assembler.

Since individual BAC assemblies were only used to
facilitate the construction and curation of the adjacency
graph, the resulting WGA assembly is free to correct
mistakes made in the upstream processes. If an error
occurred and two regions were joined incorrectly, the
WGA can separate these regions into different scaffolds.
Finally all resulting scaffolds are passed on to be mapped
to the correct genomic region.

PERFORMANCE AND RESULTS
In this section we describe the performance of the
compartmentalized shotgun assembler running on the data
summarized in Table 1 and Table 2.

Fragment Recruitment Stage
Given the 33421 BACs and 27.27 million fragments as
input, a start-to-finish run of the fragment recruitment
stage took approximately 14 days, running on a cluster of
20 Compaq ES 40 (4 GB main memory, four 677 MHZ
CPUs) servers and one Compaq GS 160 (64 GB main
memory, sixteen 667 MHZ CPUs).

The size of the two main stores containing all sequence
data grew to 6 GB for the bactig store and 33 GB for the
fragment store, whereas the BAC hit files occupied 1.44
GB.

Tiling Stage
Running on the specified farm of machines, computation
of all BAC assemblies took about 3 days. In addition,
computation of the unrecruited scaffolds took about 1 day.

Generally we consider a regional assembly successful
if we can order almost all bactigs into a small number
of large scaffolds. “Almost all” means that we disregard
small bactigs that are not incorporated into the large
scaffolds due to, e.g contamination, bad data quality, or
repeats.

More specifically, our measure of quality is the number
of scaffolds and contigs that span more than 90% of the
sum of all contigs. This is a more accurate measure of
the performance of our method than the overall averages,
since even in very successful regional assemblies we
often found a few very small bactigs that could not be
incorporated into the single main scaffold spanning almost
the whole BAC. Counting these small bactigs as scaffolds
would unduly penalize an otherwise successful assembly.
Tables 3 and 4 illustrate the performance of our method
on phase-0 and phase-1/2 BACs, where the numbers refer
to the above mentioned 90% threshold. The first column
contains in addition the total mean. As expected, the
algorithm does not perform well on phase-0 data. Too few
fragments get recruited and thus we can hardly extend the
small bactigs nor order them.

In contrast phase-1/2 BACs are much easier to assemble.
Table 4 shows that we more than double the size of the
ungapped pieces from 8k bp to 17k bp. Or, put it in another
way, we could close on average more than half of the gaps.
Further, the amount of ordering is substantial. On average
we can order the pieces of the BAC into 2 scaffolds of
average length 73k bp.

S138



Compartmentalized assembler for the human genome

Table 5. Computer resource allocation for each of the three stages.

max. memory CPU time wall clock time
Stage gigabytes hours hours

Fragment Recruitment 4 9240 336
Tiling 2 3970 1280
Assemblies 8 2470 62

Given the performance of the regional assembler on
BACs in different phases we observe that a BAC must
be sequenced and assembled with at least 3x coverage in
order to obtain a successful assembly using mate-pairs.

In order to compute the tiling graph we first have to
preprocess the results of the fragment recruitment stage
which takes about 4 hours on a single CPU. After this
step, generating an initial adjacency graph for any given
collection of BACs and unrecruited scaffold takes only
minutes. However, the task of producing a tiling graph
from the adjacency graph is a formidable one and required
the full attention of Celera’s Map team. The resulting
tiling graph consists of 3845 components ranging from
the size of a single BAC to many hundreds of BACs and
unrecruited scaffolds.

Component Assembly Stage
Finally we ran Celera’s WGA assembler on each of the
components. Most of the run-time was spent in construct-
ing the input sets, whereas the actual computation took
less than 2 days wall clock time and 2470 CPU hours. The
assemblies resulted in 53591 scaffolds, 2845 of which
span more than 95% of the published genome (Venter
et al., 2001).

In Table 5 we summarize the resource requirements for
the three stages. The column CPU time refers to the CPU
time consumed whereas the column “wall clock time” re-
ports the time needed for backups, manual curation of the
adjacency graph etc. (The maximal memory requirement
is per machine used.) Although the maximal memory
requirement was low, the use of our 64 GB machine
sped things up considerably, presumably due to its better
caching behavior for disk based data.

ACKNOWLEDGEMENTS
We are greatly indebted to the members of Celera’s Map
team, who hand curated the components of the adjacency
graph to obtain a biologically meaningful tiling graph,
in particular Lin Chen, Pat Dunn, Carlos Evangelista,
Zhiping Gu, Ping Guan, Tom Heiman, Ruiru Ji, Zhaoxi
Ke, Peter Li, Yiding Lei, Alex Levitsky, Yong Liang,
Xiaoying Jonathan Lin, Fu Lu, Natalia Milshina, Helen
Moore, Deborah Nusskern, Jack Wang, Jian Wang, Alison

Yao, Ming Zhan, Qing Zhang, Weiqing Zhang, Xiangqun
Zheng, Fei Zhong, and Wenyan Zhong. We would like to
thank our colleagues Mike Flanigan, Randall Bolaños, and
Laurent Mouchard.

REFERENCES
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.

(1990). Basic local alignment search tool. Journal of Molecular
Biology, 215, 403–410.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp,
B. A. & Wheeler, D. L. (2000). Genbank. Nucleic Acids
Research, 28, 15–8.

Edwards, A. & Caskey, C. (1991). Closure strategies for random
DNA sequencing. Methods: a companion to Methods in
Enzymology, 3, 41–47.

Huson, D. H., Reinert, K. & Myers, E. W. (2001). The greedy
path-merging algorithm for sequence assembly. In Proceedings
of the Fifth Annual International Conference on Computational
Biology (RECOMB01). pp. 157–163.

International Human Genome Sequencing Consortium (2001).
Initial sequencing and analysis of the human genome. Nature,
409, 860–921.

Lander, E. S. & Waterman, M. S. (1988). Genomic mapping
by fingerprinting random clones: A mathematical analysis.
Genomics, 2, 231–239.

Marshall, E. (2000). Human genome. Rival genome sequences
celebrate a milestone together. Science, 288, 2294–5.

Mehlhorn, K. & Näher, S. (1999). The LEDA Platform of Combina-
torial and Geometric Computing. Cambridge University Press.

Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo,
D. P., Flanigan, M. J., Kravitz, S. A., Mobarry, C. M., Reinert,
K. H. J., Remington, K. A., Anson, E. L., Bolanos, R. A.,
Chou, H.-H., Jordan, C. M., Halpern, A. L., Lonardi, S., Beasley,
E. M., Brandon, R. C., Chen, L., Dunn, P. J., Lai, Z., Liang, Y.,
Nusskern, D. R., Zhan, M., Zhang, Q., Zheng, X., Rubin, G. M.,
Adams, M. D. & Venter, J. C. (2000). A whole-genome assembly
of Drosophila. Science, 287, 2196–2204.

Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F. & Petersen,
G. B. (1992). Nucleotide sequence of bacteriophage λ DNA.
J. Mol. Bio., 162, 729–73.

Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing
with chain-terminating inhibitors. Proceedings of the National
Academy of Sciences, 74, 5463–5467.

U.S. Dep. of Energy, Office of Energy Research
& Office of Biological and Environmental Re-
search (1997). Human genome program report.
http://www.ornl.gov/hgmis/publicat/97pr/.

Venter, J. C., Adams, M. D., Myers, E. W. et al. (2001). The
Sequence of the Human Genome. Science, 291, 1145–1434.

Webber, J. L. & Myers, E. W. (1997). Human whole-genome
shotgun sequencing. Genome Research, 7, 401–409.

S139


