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Abstract. Using current technology, large consecutive stretches of DNA (such
as whole chromosomes) are usually assembled from short fragments obtained by
shotgun sequencing, or from fragments and mate-pairs, if a “double-barreled”
shotgun strategy is employed. The positioning of the fragments (and mate-pairs,
if available) in an assembled sequence can be used to evaluate the quality of
the assembly and also to compare two different assemblies of the same chro-
mosome, even if they are obtained from two different sequencing projects. This
paper describes some simple and fast methods of this type that were developed to
evaluate and compare different assemblies of the human genome. Additional ap-
plications are in “feature-tracking” from one version of an assembly to the next,
comparisons of different chromosomes within the same genome and comparisons
between similar chromosomes from different species.

1 Introduction

Although current technology for DNA sequencing is highly automated and can deter-
mine large numbers of base pairs very quickly, only about (on average) 550consecutive
base pairs (bp) can be reliably determined in a single read [6]. Thus, a large consecutive
stretch of source DNA can only be determined by “assembling” it from short fragments
obtained using ashotgun sequencing strategy [5]. In a modification of this approach
calleddouble-barreled shotgun sequencing [1], larger clones of DNA are sequenced
from both ends, thus producingmate-pairs of sequenced fragments with known relative
orientation and approximate separation (typically, employing a mixture of2kb, 5kb,
10kb, 50kb and150kb clones). So, usually a sequencing project produces a collection
of fragments that are randomly sampled from the source sequence. The average num-
berx of fragments that cover any given position in the source sequence is known as the
fragment x-coverage.

Given two different assemblies of the same chromosome-sized source sequence,
possibly obtained from two different sequencing projects, how can one evaluate and
compare them? The aim of this paper is to present some fast and simple methods
addressing this problem that are based on fragment and mate-pair data obtained in
a sequencing project for the source sequence. Additional applications are in tracking
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forward “features” from one version of an assembly to the next, comparison of differ-
ent chromosomes from the same genome and of similar chromosomes from different
species. Although each method on its own is just an implementation of a simple idea or
heuristic, our experience is that the integration of these methods gives rise to a powerful
tool. We originally developed this tool to compare different assemblies of the human
genome, see Figures 6 and 7 in [7].

In Section 2 we discuss assembly evaluation and comparison techniques based on
fragments. In particular, we introduce the concept of “segment discrepancy” that mea-
sures by how much the positioning of a segment of conserved sequence differs between
two assemblies. Then we present some mate-pair based methods in Section 3, includ-
ing a useful breakpoint detection heuristic. Finally, we demonstrate the utility of these
methods in Section 4.

2 Fragment-Based Analysis and Comparison Methods

Several useful methods for evaluating a single assembly or comparing two assemblies—
such as sequencing coverage, dot-plots, or line-plots—can be implemented in terms of
the positions in an assembly to which fragments are assigned.

For our purposes, acontig is simply a finite stringA = a1a2 . . . of characters
ai ∈ {A,C,G,T,N} representing a stretch of contiguous DNA, whereA, C, G andT
correspond to the four bases andN stands for “unknown”. Anassembly is a contigA
that was obtained from the fragments of some sequencing project using some assembly
algorithm, without elaborating on the details. A run of consecutiveN’s represents an
undetermined sequence part, and the number ofN’s in the run is sometimes used to
represent its estimated length.

A fragment is a stringF = f1f2 . . . of charactersfi ∈ {A,C,G,T}, of length
len(F ) usually less than 900. We say that a fragmentF hits (or is recruited by) an
assemblyA if F globally aligns toA with high identity (e.g. 94% or more). In this
case, we uses(F,A) andt(F,A) to denote the position inA to which the first character
and last character ofF align to, respectively. In particular, a fragment aligns in the
forward direction ifs(F,A) < t(F,A), whereas the alignment is against the reverse-
complement ofF if s(F,A) > t(F,A). For simplicity, we will assume that alls values
are distinct, i.e.,s(F ) �= s(G) for any two different fragments that hitA. (In practice,
fragment coordinates do sometimes agree, but our experience is that one can simply
ignore such fragments without a substantial loss of coverage.)

Given a set of fragmentsF and an assemblyA, we useF(A) to denote the set of all
fragments inF that hitA. If an assemblyAwas obtained by assembling fragments from
a setF , then the setF(A), and the values ofs(F,A) andt(F,A) for all F ∈ F(A), are
known. If an assemblyA of a chromosome is obtained from one sequencing project,
and the set of fragmentsF available was obtained from a different sequencing project
studying the same chromosome, then a fast high-fidelity alignment program [ 4] can be
used to computeF(A).
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2.1 Fragment-Coverage Plot

LetA be an assembly andF(A) a set of fragments that hitA. For each fragmentF ∈
F(A) define a begin-event (min{s(F,A), t(F,A)},+1) and an end-event
(max{s(F,A), t(F,A)},−1). To obtain afragment-coverage plot for A, consider all
events(x, e) in order of their first coordinatex and for each begin-event, plot the num-
ber of fragments that spanx, given by the number of begin-events minus the number of
end-events seen so far, see Figure 1.
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Fig. 1. Fragment-Coverage Plot for a 1 Mb Region of Chromosome2 of Human [ 7]. The
assemblyA is represented by a line segment[1, len(A)] along thex-axis. The number
of fragments uniquely hittingA is plotted as a function of their position.

A fragment-coverage plot is useful because poorly assembled regions often have
low fragment-coverage, whereas regions of repetitive sequence can be identified as
those stretches of sequence that are hit by unusually high numbers of fragments.

In practice, one can easily accomodate for fragments hitting multiple times. How-
ever, for ease of exposition, throughout this paper we will assume thatF(A) is the set
of all fragments thatuniquely hit A.

2.2 Dot-Plot and Line-Plot

Consider two different assembliesA andB of the same chromosome, and assume that
a setF of fragments obtained from a shotgun sequencing project for the chromosome
is given. Once we have determinedF(A) andF(B), how can we visualize this data?

Let F(A,B) := F(A) ∩ F(B) denote the set of fragments that hit both assem-
blies. A simple dot-plot can be produced by plotting(x, y) with x := s(F,A) and
y := s(F,B) for all F ∈ F(A,B), see Figure 2; at higher resolution, plot a line from
(s(F,A), s(G,B)) to (t(F,A), t(G,B)). Alternatively, represent assemblyA andB by
a line segment from(1, 0) to (len(A), 0) and from(1, 1) to (len(B), 1), respectively. A
simple line-plot showing matching regions of the two assemblies is obtained by draw-
ing a line segment between(s(F,A), 0) and (s(F,B), 1) for all F ∈ F(A,B), see
Figure 3.

If F(A) is given, butF(B) is unknown, then a short-cut to recruiting fragments
to B is to computeFA(B) := {F ∈ F(A) | F hitsB} instead ofF(B), at the price
of obtaining a less comprehensive analysis. Alternatively, one could first compare the
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Fig. 2. Fragment based dot-plot comparison of two different assemblies of a6Mb region
of chromosome2 in human. Each point represents a fragment that hits both assemblies.
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Fig. 3. Fragment Based Line-Plot Comparison. Each line segment represents a fragment
that hits both assemblies. Medium grey lines represent fragments contained in the heav-
iest common subsequence (HCS) of consistently ordered and oriented segments, light
grey lines represent consistently oriented segments that are not contained in the HCS,
and dark grey lines represent fragments (or segments) that have opposite orientation in
the two assemblies.

consensus sequence of assemblyB directly against that of assemblyA and then project
fragments fromA ontoB wherever compatible with the segments of local alignment
betweenA andB.

2.3 Fragment Segmentation

For analysis purposes and also to speed up visualization significantly, it is useful to
segment the fragment matches by determining the maximal consistent and consecutive
runs of them.

Consider a fragmentF ∈ F(A,B). We say thatF haspreserved orientation, if and
only if F has the same orientation inA andB, i.e., if either boths(F,A) < t(F,A)
and s(F,B) < t(F,B), or boths(F,A) > t(F,A) and s(F,B) > t(F,B) hold.
Let F+(A,B) denote the set of all fragments that have preserved orientation and set
F−(A,B) := F(A,B) \ F+(A,B).
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For any two fragmentsF,G ∈ F(A,B), defineF <A G, if s(F,A) < s(G,A),
and defineF <B G, if s(F,B) < s(G,B). Because we assume that alls values are
distinct, these are both total orderings and we use predA(F ) and succA(F ) to denote
the<A-predecessor and<A-successor ofF , respectively.

A sequenceS = (F1, F2, . . . , Fk) of fragments is called amatched segment, in
either of the two following cases:

1. {F1, F2, . . . , Fk} ⊆ F+(A,B) and succA(Fi) = succB(Fi) for all i = 1, 2, . . . ,
k − 1, or

2. {F1, F2, . . . , Fk} ⊆ F−(A,B) and succA(Fi) = predB(Fi) for all i = 1, 2, . . . ,
k − 1.

A matched segment is calledmaximal, if it can’t be extended.
Let S := S(F(A,B)) = {S1, S2, . . . , Sn} denote the set of all maximal matched

segments ofF(A,B), and letS+ andS− denote the subset of such segments in cases
1 and 2, respectively. BothS+ andS− can be computed in a simple loop that consid-
ers each fragment in<A order and decides whether it extends the current segment or
defines the start of a new one.

TheA-support of a matched segmentS = (F1, F2, . . . , Fk) is defined as the in-
terval [s(S,A), t(S,A)], with s(S,A) := minF∈S(s(F,A), t(F,A)) and t(S,A) :=
maxF∈S(s(F,A), t(F,A)). TheB-support is defined similarly. Let len(S) denote the
minimum length of theA- andB-supports ofS.

2.4 Heaviest Common Subsequence

Given two orderingsO1 andO2 of the set of numbers{1, 2, . . . , n} (for some fixed
numbern) and a weight functionw : {1, 2, . . . , n} → N

≥0. A subsequenceH :=
H(O1, O2, w) of both orderings is called aheaviest common subsequence, if it has
maximal weightw(H) :=

∑
h∈H w(h). The heaviest common subsequence can be

computed inO(n logn) time and space, see [3].
For S = (S1, S2, . . . , Sn), let O1 andO2 denote the ordering of the indices1, 2,

. . . , n induced by the orderings ofS defined bys(·, A) ands(·, B), respectively. With
weight functionw(i) := len(Si), compute the heaviest common subsequenceH of O1

andO2.
We callH := {Si ∈ S | i ∈ H} the heaviest common subsequence of matched

segments. We can distinguish between four categories of matched segments:

1. S+ ∩ H is the set of segments that have the same ordering and orientation in both
assemblies,

2. S− ∩ H is the set of segments that have the same position in both assemblies, but
are inverted with respect to each other,

3. S+ \ H is the set of segments that have transposed positions, and
4. S− \ H is the set of segments that appear both transposed and inverted.

The amount of sequence contained in each of these four categories is a good mea-
sure of how similar two assemblies are. In visualization, using different colors for each
of them significantly enhances the dot-plot and line-plot representation described above,
see Figure 3.
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2.5 Segment Displacement

Consider two segmentsS = (F1, F2, . . .) andT = (G1, G2, . . .). We say thatS and
T areparallel if either boths(F1, A) < s(G1, A) ands(F1, B) < s(G1, B), or both
s(F1, A) > s(G1, A) ands(F1, B) > s(G1, B) hold.

It seems reasonable to “trust” those portions of the two assemblies that are covered
by segments from the heaviest common subsequenceH. Thus, we propose to measure
the amount by which the positioning of a segmentS not inS + ∩ H differs in the two
assemblies as follows: We define thedisplacement D(S) associated withS as the sum
of lengths of all segments inH that are not parallel toS. In Figure 4 we plot segment
length vs. segment displacement.
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Fig. 4. Scatter-Plot Comparison of Two Assemblies: a dot(x, y) represents a sequence
segmentS of length len(S) = x whose displacementD(S) is y. In other words, the
placement ofS in the two assemblies differs by at leastD(S) bp. Note that points along
thex-axis correspond to in-place inversions.

3 Mate-Pair-Based Evaluation Methods

LetA andB be two assemblies of a chromosome and letF be a set of associated frag-
ments. Assume now that the fragments inF were generated using a “double-barreled”
shotgun protocol in whichmate-pairs of fragments are obtained by reading both ends
of longer clones. For purposes of this paper, amate-pair libraryM = (L, µ, σ) consists
of a listL of pairs ofmated fragments, together with a mean estimateµ and standard
deviationσ for the length of the clones from which the mate-pairs were obtained, see
Figure 5.

Typical clone sizes used to produce mate-pair libraries used in Celera’s human
genome sequencing were2kb,10kb,50kb, and150kb. The quality of shorter mate-pairs
can be very good with a standard deviation of about10% of the mean length, whereas
the standard deviation can reach20% for long clones. Also, because both ends of clones
are read in separate sequencing reactions, there is a potential for mis-associating mates.
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Source sequence

F G
µ, σ

Fig. 5. Two fragmentsF andG that form a mate-pair with known mean distanceµ and
standard deviationσ. Note their relative orientation in the source sequence.

However, a high level of automation and electronic sample tracking can reduce the oc-
currences of this problem to below1%. By construction, any fragment will occur in at
most one mate-pair.

Given an assemblyA with fragmentsF(A) and a collection of mate-pair libraries
M = {M1,M2, . . .}, let m = {F,G} ⊂ F(A) be a mate-pair occurring in some
libraryMi = (L, µ, σ). Thenm is calledhappy if the positioning ofF andG in A
is reasonable, i.e., ifF andG are oriented towards each other (as in Figure 5) and
| |s(F,A)−s(G,A)|−µ| ≤ 3σ, say. An unhappy mate-pairm is calledmis-oriented if
the former condition is not satisfied, andmis-separated if only the latter condition fails.

3.1 Clone-Middle Plot

We obtain aclone-middle plot for A as follows: For each pair of fragmentsF,G ∈
F(A) that occurs in a mate-pair libraryM , draw a line segment from(t(F,A), y) to
(t(G,A), y) , wherey ∈ [0, 1] is a randomly chosen height. Lines can be shown in dif-
ferent colors depending on whether the corresponding mate-pair is happy, mis-separated
or mis-oriented, see Figure 6, and also Figure 6 in [7]. The interval[t(F,A), t(G,A)]
(assuming w.l.o.g.t(F,A) < t(G,A)) is called theclone-middle (inA) associated with
the pairF,G.

One draw-back of this visualization for large assemblies is that substantially mis-
placed pairs give rise to very long lines in the plot and obscure the view of local regions.
To address this, we introduce thelocalized clone-middle plot (see Figure 7): Let{F,G}
be a mis-separated or mis-oriented mate from some libraryM = (L, µ, σ). Assume
w.l.o.g. thats(F,A) < s(G,A). Represent the mate-pair by a line that indicates the
range in whichF expects to seeG, i.e., by drawing a line segment fromt(F,A) of
lengthµ+ 3σ − (len(F ) + len(G)) towards the right, ifs(F,A) < t(F,A), and to the
left, otherwise. As above, define theclone-middle accordingly.

Mis-separated and mis-oriented mate-pairs indicate discrepancies between a given
assembly and the original source sequence or chromosome, as follows.

3.2 Breakpoint Detection

Loosely speaking, abreakpoint of an assemblyA is a positionp in A such that the
sequence immediately to the left and right ofp in A comes from two separate regions
of the source sequence.

Let m = {F,G} be a mis-oriented mate-pair such thats(F,A) < s(G,A). We
distinguish between three different cases:normal-oriented: both fragments are oriented
to the right;anti-oriented: both are oriented to the left; andouttie-oriented:F is oriented
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Fig. 6. Clone-Middle Diagram for AssembliesA andB. Each mate-pairm is repre-
sented by a horizontal line segment joining its two fragments, ifm is mis-separated
(shown in light grey) or mis-oriented (shown in dark grey). Happy mates are not shown.
Mate-pairs are grouped by “library”, labeled2K, 10K and50K. Ticks along the axis
indicate putative breakpoints, as inferred from the mis-oriented mates.

to the left andG is oriented to the right. (Happy and mis-separated mates areinnie-
oriented).

We now describe a simple but effective heuristic for detecting breakpoints. Choose
a thresholdT > 0, depending on details of the sequencing project. (All figures in this
paper were produced usingT = 5.) An event is a three-tuple(x, t, a) consisting of a
coordinatex ∈ {1, . . . , len(A)}, a typet ∈ {normal, anti, outtie,mis-separated}, and
an “action”a ∈ {+1,−1}, where+1 or −1 indicates the beginning or end of a clone-
middle, respectively. We maintain the number of currentlyalive matesV (t) of type
t. For each evente = (x, t, a) in ascending order of coordinatex: If a = +1, then
incrementV (t) by 1. In the other case (a = −1), if V (t) ≥ T , then report a breakpoint
at positionx and setV (t) = 0, else decreaseV (t) by 1. (For a better estimation of the
true position of the breakpoint, report the interval[x ′, x], wherex′ is the coordinate of
the most recent alive+1-event of typet.) Breakpoints estimated in this way are shown
in Figure 7.

A useful variant of the breakpoint estimator is obtained by taking the current number
of alive happy mates into account: Scanning from left to right, a breakpoint is said to
be present at positionx if there exists an evente = (x, t,−1) such that the number of
alive unhappy mates of typet exceeds the number of alive happy mates of typet.
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Fig. 7. A Localized Clone-Middle Diagram for AssembliesA andB. Here, each mis-
separated or mis-oriented mate-pair is represented by a line that indicates the expected
range of placement of the right mate with respect to the left one. Ticks along the axis
indicate putative breakpoints, as inferred from the mis-oriented mates.

3.3 Clone-Coverage Plot

Similar to the fragment-coverage plot discussed in Section 2, one can use the clone-
coverage events to compute aclone-coverage plot for each of the types of mate-pairs,
see Figure 8.

Note that the simultaneous occurrence of both high happy and high mis-separated
coverage may indicate the presence of a polymorphism in the fragment data.

3.4 Synthesis

Combining all the described methods into one view gives rise to a tool that is very
helpful deciding by how much two different assemblies differ and, more, which one is
more compatible with the given fragment and mate-pair data; see Figure 9. This latter
capability is an especially powerful aspect of analysis in terms of fragments and mate-
pairs.

4 Some Applications

The techniques described in this paper have a number of different applications in com-
parative genomics. Originally, our goal was to design a tool for comparing the simi-
larities and differences of assemblies of human chromosomes produced at Celera with
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Fig. 8. Clone-coverage plot for assembliesA andB, showing the number of of happy
mate-pairs (medium grey), mis-separated pairs (light grey) and mis-oriented ones (dark
grey).
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Fig. 9. A combined line-plot, clone-middle, clone-coverage and breakpoint view of the
two assembliesA andB indicates that assemblyA is significantly more compatible
with the given fragment and mate-pair data than assemblyB is.
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those produced by the publicly funded Human Genome Project (PFP). A detailed com-
parison based on our methods is shown in Figures 6 and 7 of [ 7]. As an example, we
show the comparison for chromosome 2 in Figure 10. For clarity, only segments of
length50kb or more are shown.
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Fig. 10. Line-plot and breakpoint comparison of two different assemblies of chromo-
some2 of human. AssemblyC was produced at Celera [7] and assemblyH was pro-
duced in the context of the publicly funded Human Genome Project and was released
on September 5, 2000 [2]. The number of detected breakpoints (indicated as ticks along
the chromosome axes) is73 for C and3592 forH .

4.1 Feature-Tracking

A second application is in tracking forward features from one version of an assembly
to the next. To illustrate this, we consider two assemblies of chromosome 19 produced
in the context of the PFP from publicly available data. AssemblyH 1 was released on
September 5, 2000 and assemblyH2 was released on January 9, 2001 [2].

How much did the assembly change and did it improve? The line-plot comparison of
H1 andH2 in Figure 11 indicates that many local changes have taken place. A detailed
analysis (not reported here) shows that many changes are due to a change of orienta-
tion of so-called “supercontigs” in the assembly. The number of detected breakpoints
dropped from 723 to 488.
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Fig. 11. Line-plot, clone-middle and breakpoint comparison of the PFP assemblyH 1

of chromosome 19 as of September 5, 2000, and the a more recent PFP assemblyH 2

dating January 9, 2001.

4.2 Comparison of Different Chromosomes

Additionally, our algorithms can be used to compare different chromosomes of the same
species e.g. in search of duplication events, but also to compare different chromosomes
from different species, in the latter case using a lower stringency alignment method to
define fragment hits.

We illustrate this by a comparison of chromosomeX andY of human, as described
in [7]. In this analysis we use only uniquely hitting fragments. In summary, we see
approximately1.3Mb of sequence in conserved segments, of which164kb are contained
in the heaviest common subsequence (relative to the standard orientation ofX andY ),
82kb are contained in other segments of the same orientation and1.05Mb in oppositely
oriented segments, see Figure 12. We observe orientation preserving similarity at both
ends of the chromosomes and a large inverted conserved segment in the interior ofX .
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