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An important open question in biophysics is to understand how mechanical forces shape membrane-
bounded cells and their organelles. A general solution to this problem is to calculate the bending energy
of an arbitrarily shaped membrane surface, which can include both lipids and cytoskeletal proteins, and
minimize the energy subject to all mechanical constraints. However, the calculations are difficult to
perform, especially for shapes that do not possess axial symmetry. We show that the spherical
harmonics parameterization (SHP) provides an analytic description of shape that can be used to quickly
and reliably calculate minimum energy shapes of both symmetric and asymmetric surfaces. Using this
method, we probe the entire set of shapes predicted by the bilayer couple model, unifying work based on
different computational approaches, and providing additional details of the transitions between
different shape classes. In addition, we present new minimum-energy morphologies based on non-linear
models of membrane skeletal elasticity that closely mimic extreme shapes of red blood cells. The SHP
thus provides a versatile shape description that can be used to investigate forces that shape cells.

1 Introduction

Amphiphilic molecules such as lipids spontaneously aggregate in
aqueous solution. One stable aggregate is the membrane bilayer
composed of two monomolecular leaflets, with the lipid mole-
cules oriented such that their hydrophobic sides face each other
and their hydrophilic sides face the aqueous solution. Membrane
bilayers form the boundaries of vesicles and, despite their simple
structure, can adopt a large variety of shapes. Such bilayer
vesicles are considered the prototype for the boundaries of
organelles and cells, and have consequently been the focus of
many studies.”? To explain vesicle shapes, theoretical studies first
stressed the effect of the bending stiffness of the membrane.’=
Later, the coupling between the two membrane leaflets was
included.®” In the case of red blood cells, which have an under-
lying cytoskeleton that reinforces the bilayer, shear and stretch
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elasticities of the membrane were added as well.#** In all vari-
ants, the energy function, once constructed, is minimized under
constraints such as area and volume, yielding theoretically pre-
dicted shapes.**"*'¢ Such minimum-energy surfaces have
successfully accounted for many of the shapes adopted by
membrane vesicles, and by red blood cells under various buffer
conditions®! and pathologies.!”

There are three general categories of methods for calculating
minimum-energy membrane conformations."® The first is solving
the Euler—Lagrange equations constructed from the integrals of
the energy and constraint expressions.>' This method has so far
been restricted to shapes that are axially symmetric.'>'* The
second is a brute force technique in which the surface is repre-
sented as a simply connected triangular mesh.>222 It permits
general (nonaxisymmetric) shapes, but limits the accuracy of
geometric property calculations and renders energy minimiza-
tion CPU-intensive. This approach may become more attractive
with future developments of faster computer clusters and clouds.
The third approach is to use an appropriate set of basis func-
tions.'”!®23 The parameter set is small and can be varied within
a numerical optimization strategy to minimize the energy
expression directly. An especially intuitive basis is provided by
the spherical harmonics basis functions.?* This basis was used for
vesicle mechanics studies in the pioneering work of Heinrich
et al®® The spherical harmonics are the three dimensional
equivalent of the one dimensional Fourier series, they form an
orthonormal basis and their characteristics are well studied.
However, they can only represent stellar objects, i.e. objects that
have a point inside that can see all points on the surface without
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crossing the surface (Fig. 1a, left). This poses a serious limitation
to modeling cells and vesicles because only nearly spherical
shapes can be represented.

To circumvent the above problems, we implemented the
spherical harmonics method in parametric form (spherical
harmonics parameterization SHP).>**” SHP represents both
stellar and non-stellar closed surfaces (Fig. la, right), and
requires far fewer parameters than the direct spherical harmonics
representation even for stellar objects (Fig. 1b). SHP has been
used successfully in computer vision for performing quantitative
shape analysis.?®?

In this work, we use SHP to map out shape space defined by
the bilayer couple model. In this model, the bending energy is
minimized for fixed values of the reduced volume (the volume
normalized by that of a sphere of equal surface area) and the
relative area difference between the bilayers. Due to the
computational advantages of SHP, we explore transitions from
one class of shapes to another, finding that the transitions are
smooth. We also use SHP to calculate minimum-energy surfaces
produced by a lipid-cytoskeletal composite membrane with
highly non-linear elastic properties, such as that of the human

a

stellar

non-stellar

b

Number of non-zero coefficients
25 49 121 289 441

Fig. 1 The spherical harmonics parameterization (SHP). (a) Spherical
harmonics functions are single-valued; their direct combinations can only
represent stellar surfaces, i.e., surfaces that contain a point inside that can
“see” every point on the surface. SHP, however, can represent both stellar
and non-stellar objects. Left: stellar object, right: non-stellar object. (b)
Surface reconstruction of a human red blood cell discocyte segmented
from 3D confocal microscopy images.’® The top row and lower left
shapes represent direct spherical harmonic expansions (eqn (1)) with
approximations of increasing L., values; number of coefficients = (L ax
+ 1)°. Even at the high order of L., = 22 (lower left), the centre of the
discocyte suffers from artefacts (ringing). Colour: local curvature. Lower
right: SHP of the cell at L,,x = 10. 30 non-zero coefficients capture the
essential features of the cell with no apparent artefacts.

red blood cell. Recently, RBC shapes were obtained for partic-
ular resting shapes of the membrane associated cytoskeleton.®!”
However, the influence of the resting shape on the final
morphology has not been fully investigated. We have used the
SHP method to show that a prolate resting shape for the
membrane-associated cytoskeleton is able to predict observed
detailed morphological features that do not appear for oblate or
biconcave resting shapes.

2 Methods
2.1 Shape description: spherical harmonics parameterization

A function r of the spherical coordinates (6,¢) may be repre-
sented as a series expansion,

%

L
r(6,0) = Y CixYix(6,0) 0]
L K=-L
where 0 < § < 7w and 0 < ¢ < 2w.The C;x are the expansion
coefficients, indexed by the integers L and K with —-L = K= L
and 0 = L = . y;(0,¢) is the spherical harmonics basis
function defined by (ESI, S1t)

Vix(0,¢) = NpgPr k(cos O)cos (K¢), when K = 0
and
YL(0,¢) = NpgPr x(cos O)sin (|K]|¢p), when K <0 (2

where Py g(cos 6) are the associated Legendre functions (LF) and
Nk are normalization constants. P, g(cos 6) and their deriva-
tives are calculated by recursion formulas (ESI, S2t). The
yrx(0,9) form a complete orthogonal basis set of well known
properties. In numerical calculations the series is truncated by
a choice of maximum expansion order (L,,,). Surfaces are then
approximated by (L., + 1)* coefficients.

As stated above, this representation is limited to stellar
surfaces. We represent a general surface S that is topologically
equivalent to the sphere, parametrically?® by expanding, in
spherical harmonics basis functions, its individual Cartesian
coordinates,

) x] [x(0.9)
Se.9)=|y| = | ¥(v.9) 3)
2] lze.9)

using eqn (1). The three sets of expansion coefficients (Cfx, Clx,

4¢) completely define the shape. The total number of coeffi-
cients for general SHP shapes is 3(Lyax + 1)° In order to
calculate geometrical properties such as area, volume and local
mean curvature, using these coefficients, first and second deriv-
atives of the LF must be numerically evaluated. Care must be
taken to use accurate routines, and a consistent normalization
for the LF evaluations. We used numerically stable recursion
relations (ESI, S2+) that are particularly suited for low order LF
derivative evaluations.®! We provide expressions for geometrical
properties calculations for general SHP shapes (ESI, S3t) and
show tests of efficiency (ESI, S4+) and accuracy (ESI, S5t) of our
implementation.
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2.2 Bilayer couple energy of vesicles

A continuum formulation for vesicle shape energy is provided by
the strict bilayer couple model.”*? Tt predicts shapes by minimi-
zation of the bending energy, given by

Ey(S) 2

5 $ (2H)da “)

Surface

under constraints of enclosed volume (¥), total surface area (A),
and area difference (AA4) between the outer and inner leaflets of
the bilayer. The latter constraint reflects the assumption that the
two monolayers do not exchange molecules. H is the local mean
curvature and ky, is the bending elastic modulus. Due to the scale
invariance of the bending energy, only two constraints must be
considered; reduced volume v = V/4r/3)R,}, where
R, = /A/4w, and reduced area difference Aa = M/47tR,?, with
M =1/2¢2HdA. For a sphere v = Aa = 1. We implemented the
above simplified model to demonstrate the numerical power of
SHP and for comparison with established work. However, the
accurate modeling of a bilayer vesicle requires the “generalized
bilayer couple model” in which the hard constraint of area
difference is relaxed by replacing it with an explicit area-differ-
ence-elasticity term.>%33

2.3 Human red blood cell membrane energy

In the case of human red blood cells, it is assumed—similar to the
generalized bilayer couple model above—that the cell membrane
energy contains the bending energy (of eqn (4)), and a resistance
of the membrane to adopting a shape whose difference in area
between the outer and inner leaflets (AA) deviates from the
unstressed area difference (AA4y). In addition, the membrane
skeletal network, which is largely composed of the protein
spectrin, is associated with the bilayer from the cytoplasmic side,
and provides it with stretch and shear resistance (energy Ens).* 2
The energy function that is to be minimized is given by,

aT

ADZ(AA — AAdo)?| + Eys

©)

where ky, is the bending modulus, ¢; and ¢, are the local principal
curvatures, ¢; + ¢ = 2H(twice the local mean curvature), 4 is the
area of the surface at the separation between the membrane leaf-
lets, D is the separation between the neutral surfaces of the outer
and inner leaflets, and is considered to be constant (=3 nm), and
o = klky, where k is the modulus corresponding to the stretching of
the membrane leaflets due to the deviation from the preferred area
difference. C,, A4 and AA, are the spontaneous curvature, the
difference in area between the outer and inner leaflets and the
preferred difference respectively. Integration of the first term of
eqn (5) is performed over the whole shape. Eyg is the energy
associated with the stretch and shear of the membrane skeleton.
Here we closely follow the expression given in ref. 9 and 34,

ke
Eshape = ?1 ¢(C1 + C) — Co)sz +

sz
EMS = 7¢So (0[2 + a3a3 + 04(14)(]/10 + ,U,¢SU (,3 + blaﬁ
+ by)dA, (6)

where a = 214, — 1 and 8 = (A; — A,)*/2, A, are the local area and
shear strain invariants, and 1, , are the local principal stretches.*

K, and p are the linear elastic moduli for stretch and shear,
respectively. The membrane skeleton energy includes nonlinear
terms as, a4, by and b,, whose values —2, 8, 0.7 and 0.75, have
been shown theoretically to correspond to stiffening of the
membrane skeleton at high deformations. The integration (eqn
(6)) is performed over the undeformed shape S, of given geom-
etry and with the same surface area as the observed shape. We
used for S, a reduced volume v, = V/Vshere = 0.95. (It was
a prolate ellipsoid obtained by minimization of eqn (4) without
the constraint of area difference, ie. it is a minimum energy
shape of the original spontaneous curvature model of Helfrich
with zero spontaneous curvature.) For calculations of the local
principal stretches, we chose a hybrid approach, in which the first
two terms of eqn (5) are evaluated directly from SHP coefficients,
and the last term (i.e. eqn (6)) is evaluated from an SHP-asso-
ciated surface triangulation (based on subdivisions of the icosa-
hedron). Just as in the strict bilayer coupling case, the theory
assumes that RBCs adopt shapes that minimize the energy E(S)
subject to constraints of 4 and V. A sequence of shapes is
obtained by performing this minimization for particular values
of the area difference elasticity parameter Aay = AA/A + k,DC,/
TK. Aag is a measure of the tendency of the membrane to bend in
or outwards and combines local and non-local effects (ESI, S67).

2.4 Computing

We implemented the discrete versions of eqn (4)—(6) (ESI, S7t) in
Matlab using SHP. For the numerical integration we used
Gaussian quadrature®® with 3600 base points (ESI, S3t). We
performed direct numerical constrained minimization using
sequential quadratic programming®”*® (ESI, S8%) on a single 1.6
GHz Intel CPU under Windows XP 64Bit.

3 Results and discussion
3.1 Bilayer couple minimum energy shapes

We calculated minimum-energy shapes of vesicles according to
eqn (4) subject to fixed volume, surface area and difference in
area between the inner and outer leaflets. To explore a broad
range of both axisymmetric and nonaxisymmetric shapes, we
varied the relative area difference from 0.6 to 1.3 in small inter-
vals, 0.1%, at three different reduced volumes v = 0.8, 0.7 and
0.59. This maps out a large part of shape space corresponding to
most of the observed shapes (Fig. 2a, lines I, II, and III respec-
tively). The three lines are overlaid on a section of the phase
diagram published in Fig. 3 of ref. 14.

For the more spherical family of shapes corresponding to v =
0.8, we used Ly.x = 3; this has 48 parameters. As the area
difference was reduced from 1.3 to 0.6 in 0.1% steps, the
minimum energy shape changed from bowling-pin morphology
through dumbbell to ellipsoid, discocyte and stomatocyte
(Fig. 2b, right column, corresponding top Fig. 2a, line I). The
computational procedure was as follows. We started with
a sphere and the first part of the optimization consisted of a series
of steepest descent steps to satisfy the reduced volume and area
difference constraints. This required 30 seconds. The second part
consisted of bending energy minimizations satisfying those
constraints at all times (ESI, S8t). A minimum energy shape
resulting from one step was then used as starting shape for the
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Fig. 2 Phase diagram of the bilayer coupling model (adapted from the
phase diagram of Fig. 3 in ref. 14), and simulated morphologies. (a) Part
of the phase diagram adapted from Seifert et al with the main
morphological regions (phases) labeled. This part has been studied by
Seifert et al. 1991 and Ziherl and Svetina 2005. Lines I, IT and III show the
fixed reduced volumes of 0.8, 0.7 and 0.59 along which we calculated
minimum energy shapes using the bilayer coupling model and SHP shape
representation. The three lines correspond to right, middle and left
columns in (b) respectively. Dark circles indicate the locations at which
shapes are shown in (b). (b) Right column: v = 0.8. Middle column: v =
0.7. Left column: v = 0.59. Numbers next to the shapes are Aa values.

next. The complete series was generated in 70 minutes. To test
that a sufficiently broad range of shapes was explored for the
minimization procedure, we raised L, to 5, with a total of 108
parameters. The same sequence was obtained with no significant
decrease in the minimum bending energy, and no significant
amplitudes in L orders above 3. The shape sequence in the right

most column of Fig. 2b is in accord with the findings of Seifert
et al. (1991) for the axisymmetric part, and with the findings of
Ziherl and Svetina (2005)* for the nonaxisymmetric part (fourth
shape from the bottom).

Although axisymmetric shapes require only (Ly.x + 1) + 2
parameters, starting with such a restricted set of parameters is
only acceptable if the symmetry of the minimum energy shape is
known beforehand. Usually, it is not. Therefore we kept our
calculations general and made the full set available for optimi-
zation. Nevertheless, the number, order (L) and degree (K) of
non-zero coefficients reflect symmetry, and result in a sparse
representation for symmetric and smooth shapes. For example,
the number of coefficients with amplitude >1% of the largest
coefficient, for the top five shapes in the v = 0.8 sequence, was
from top to bottom of Fig. 2b right: 13, 13, 11, 8 and 11. This
clearly represents only a subset of the available 48. Truncating
these coefficients from the series resulted in less than 0.01%
increase in bending energy.

We then explored shapes with smaller reduced volume v = 0.7,
in which the morphologies are more “deflated”. As the relative
area difference was decreased from 1.25 to 0.6, the minimum
energy shapes changed from dumbbell, biconcave discoid, dis-
cocyte to stomatocyte (Fig. 2a, line II, and Fig. 2b, middle
column). This series is again in close agreement with the Seifert
et al. phase diagram for the axisymmetric shapes. Non-axisym-
metric morphologies for this constant reduced volume line are
also in agreement with Heinrich et al. 1993%* (Fig. 2b, middle
column; second and third shapes from the top), as well as the
values for the minimum bending energy Ey(S) (data not shown).
The sequence 0.6 < Aa < 1.25 required 60 minutes, and was
generated with L., = 3.

The third reduced volume that we explored was v = 0.59,
corresponding to even more deflated morphologies (Fig. 2a, line
IIT and Fig. 2b, column left). As the relative area difference was
reduced from 1.4 to 0.6, the minimum-energy shapes ranged
from dumbbell, through paddle-shape, plectrum, to discocyte
and finally stomatocyte. The changing symmetry was handled
naturally with SHP, and we found a smooth morphing of one
shape into another. Our results agree with those of Seifert et al.
(1991) for the axisymmetric shapes at L., = 3, including the
dumbbell shape (Fig. 2b, left column: top shape). Our non-
axisymmetric sequence (Fig. 2b, left column: shapes 2-4 from the
top), for which we used L,,x = 5, agreed with Fig. 1 of ref. 20.

3.2 Human red blood cell morphology

Modeling cell shape is more complex than modeling vesicles
because the lipid bilayer surrounding cells also contains a thin
membrane-associated network of cytoskeletal proteins that
contribute shear stiffness (the fluid membrane cannot support
shear) as well as additional bending stiffness. A paradigm system
for such studies is the human red blood cell (RBC) whose shapes
can be measured accurately by three-dimensional confocal
microscopy. In addition to stomatocytes and discocytes (Fig. 3a,
top two panels), RBCs can also form spiculated morphologies
known as echinocytes, which come in several forms (Fig. 3a,
lower three panels). Some features of echinocytes have been
successfully modeled by incorporating models for the membrane
skeleton.®>!" An important membrane skeleton parameter is its
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resting (relaxed) shape. By varying the morphology of the resting
membrane skeleton from spherical to oblate and then discocytic,
a large number of subclasses of echinocytic shapes has been
modeled.?* With the computational advantages of SHP, which
allows us to explore other resting shapes, we found that a prolate
ellipsoid resting shape (v = 0.95) leads to the prediction of
slightly out-of-plane spicules in the observed echinocyte I (arrow
in Fig. 3a, middle panel and Fig. 3b, middle panel). To our
knowledge this has not been observed computationally before.
For simulating RBC morphology, we calculated minimum
energy shapes corresponding to eqn (5) for a range of Aagvalues.
When using a prolate ellipsoid, our results are in excellent
qualitative agreement with the observed RBC morphologies
(Fig. 3b). As in the case of the bilayer coupling, the number of
parameters was small, so the calculations were fast (40-60
minutes). For example, a discocyte requires only 4 nonzero
parameters and is readily calculated at L,,,,x = 3. A flat spiculated
cell (echinocyte I) contains features available at L., = 10, yet
only 6 nonzero coefficients essentially capture the morphology.
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Fig. 3 Experimentally induced and theoretically predicted sequences of
RBC morphology. (a) 3D confocal images of Dil-labeled RBCs in
solutions of increasing concentrations of NaCl (concentrations in mM
shown on the images). (b) Theoretically predicted shapes that minimize
the shape energy of eqn (5) under constraints of total surface area 140
um?, and volume 100 pm? The sequence was obtained by changing the
value of the effective reduced area difference Aay; from top to bottom by
[%]: 0.072,0.143, 1.717, 1.788 and 2.003. Aqy indicates the tendency of the
membrane towards blebbing (small values) or budding (large values). All
calculations assumed a prolate ellipsoidal relaxed membrane skeleton
with a reduced volume of 0.95.

For more complicated shapes (Fig. 3b, bottom 2), L., was set to
12, and the optimization was performed overnight (12 hours).
However, only 13% of the coefficients are nonzero.

Importantly, our simulations reproduced the out-of-plane
spicules of the echinocyte 1 (Fig. 3, middle panels) when we
introduced the prolate ellipsoidal undeformed membrane skel-
eton geometry. We did not computationally observe such out-of-
plane spicules when oblate or discocytic resting skeleton shapes
were assumed. It should be noted that out-of-plane spicules can
be clearly experimentally observed in about half the cells (ESI,
S9+), and the features persist over the time span of an imaging
experiment (0.5 to 1 hours).

Conclusions

To understand cell and organelle morphology, we need efficient
and accurate morphological tools that facilitate the construction
and testing of theoretical membrane mechanics models. In this
work we have shown that SHP is a powerful way for representing
vesicle and cell morphology, and enables traversing shape phase
diagrams smoothly and at high resolution on a conventional PC
workstation. The main morphologies that emerge from the
bilayer coupling model were represented within a unifying
framework without separate treatments for particular symme-
tries. Also the more involved problem of the human red blood
cell was calculated efficiently. SHP enabled the calculation of
RBC shapes for a model in which the undeformed membrane-
associated cytoskeleton was prolate ellipsoidal, instead of
discoid?®® or oblate.>'” We found that even the subtle out-of-plane
spicules feature observed for echinocyte 1 was successfully
reproduced using this model.

SHP can describe arbitrary genus-zero morphologies. It is not
restricted to symmetric shapes and has an advantage over
methods that calculate shape properties from surface triangular
meshes in terms of accuracy and efficiency. Its primary limitation
is that it is an approximation up to some expansion order. This
limitation, however, will become less of a problem as computa-
tional power increases.
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